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Quenched Slonczewski windmill in spin-torque vortex oscillators
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2Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e. V., D-01314 Dresden, Germany
3Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504,
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We present a combined analytical and numerical study on double-vortex spin-torque nano-oscillators and
describe a mechanism that suppresses the windmill modes. The magnetization dynamics is dominated by the
gyrotropic precession of the vortex in one of the ferromagnetic layers. In the other layer, the vortex gyration is
strongly damped. The dominating layer for the magnetization dynamics is determined by the sign of the product
between sample current and the chiralities. Measurements on Fe/Ag/Fe nanopillars support these findings. The
results open up a new perspective for building high quality-factor spin-torque oscillators operating at selectable,
well-separated frequency bands.
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I. INTRODUCTION

The advent of spintronics lead to the development of excit-
ing new concepts for nanoscale devices using the spin-degree
of freedom of the electron besides its charge property.1 One
particular class of devices under intense study over the past
years is that of the spin-torque nanooscillators (STNOs).2–7

Typical STNOs consist of two single domain ferromagnetic
layers separated by a metallic spacer or a tunnel barrier,
one with its magnetization fixed (polarizing layer), the other
one susceptible to torques (free layer). An electric current
traversing the system perpendicular to the layers becomes
spin-polarized and exerts torques on the magnetizations,8–10

leading to magnetization dynamics of the free layer. These
excitations are typically in the range of a few gigahertz
and can be detected by measuring the time variation of
the magnetoresistance (MR). STNOs are thus considered
as promising candidates for on-chip microwave sources, a
technology ingredient that would allow to greatly advance
today’s state of the art telecommunication.

Commonly investigated STNOs are based on single-
domain nanomagnets. Recently however, vortex oscillators
have shifted into focus. The magnetic vortex is the ground
state of magnetization in disk-shaped ferromagnets with
dimensions between the single and the multidomain regimes.
With its magnetization mainly parallel to the disk plane and
circulating the disk center, the vortex is basically a closed-flux
structure. The only surface charges originate from the vortex
core, a tiny region with lateral size in the order of the
exchange length, where the exchange interaction forces the
magnetization out of the disk plane. A particular vortex state
is thus determined by two binary parameters. The counter-
clockwise or clockwise sense of rotation of the in-plane
magnetization (chirality) and the up or down orientation of
the out-of-plane core (polarity). The lowest excitation of the
vortex state corresponds to a circular motion of the core
around the disk center, the gyrotropic mode, with frequencies
typically ranging from a few hundred megahertz to about
two gigahertz. The corresponding linewidths can reach well
below one megahertz, rendering magnetic vortices high quality

oscillators. In their 2007 paper, Pribiag et al. reported the
excitation of gyrotropic motion by means of spin-transfer
torque,11 opening up the possibility for vortex-based STNOs.
Among the considered vortex oscillators, most configurations
involved homogeneously magnetized polarizers.12–19

Here, we investigate STNOs containing two stacked mag-
netic vortices, i.e., a system consisting of two ferromagnetic
disks, each in a vortex state and separated by a metallic,
nonmagnetic spacer [see Fig. 1(b)]. Such double-vortex
systems have so far rarely been treated in the literature,20

although they actually represent a natural choice. Depending
on the relative chiralities, the vortex pair can be either in
a parallel or antiparallel configuration, thus constituting the
analog of the single-domain case. Besides the choice of
vortices instead of homogeneously magnetized layers, there
is another fundamental difference between our device and
typical STNOs: in our double-vortex system, neither of the
two ferromagnets is pinned, that is, one vortex serves as
the polarizer for the other and vice versa. Thus, in both
layers, magnetization dynamics can be excited by spin-transfer
torque. This is a particularly interesting condition, since for the
case of two spin-torque-coupled macrospins the spin-transfer
torque has the tendency to conserve the relative angle of
the two moments. A dynamic state where both macrospins
precess while their relative angle remains constant in time
is referred to as Slonczewski windmill. It has been shown21

that in single-domain-based STNOs, such states can appear if
the degree of symmetry between the two layers is sufficiently
high.

We employ analytical and numerical methods to study
the coupled spin-torque-driven motion of the vortices in the
two disks. First, we analyze in detail the underlying torques
and the resulting force that one vortex exerts onto the other.
We then numerically solve the spin-torque-coupled Thiele
equations for the two-vortex system. The analysis of the
spin-torque-driven dynamics yields an intriguing mechanism
that quenches windmill modes. It turns out that the sign
of the current-chiralities-product determines which disk is
excited and thereby the frequency band at which the device
is operating. These theoretical findings are supported by our
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FIG. 1. (Color online) Coordinate system (a) and sample structure
(b) used in the calculation. The sample consists of two ferromagnetic
disks (1 and 2), each containing a vortex characterized by its
chirality and core polarity (illustrated by the white arrows). The
two ferromagnetic layers are separated by a metallic, nonmagnetic
spacer (transparent). The positive technical current direction is shown,
corresponding to an electron flow from the top to the bottom layer.
(c) Scanning electron micrograph of a nanocontact after ion beam
etching.

experimental data obtained from double-vortex Fe/Ag/Fe
STNOs.

II. MODEL

Figure 1(b) depicts the considered sample geometry. The
motion of the magnetic vortex in each of the disks is governed
by the Thiele equation22 that we write here for the vortex in
the top disk, as indicated by the indices:

G1 × dX1

dt
− dW1

dX1
− D1

dX1

dt
+ h̄jP

4e
F1 = 0. (1)

G = −2πκ(μ0MsL/γ )êz is the gyro vector, where L and
κ = ±1 are the disk thickness and the vortex core polarity,
respectively. X is the core position with respect to the disk
center, W refers to the effective magnetostatic potential in
which the core is moving, and D = (αμ0Ms/γ )Lπ ln(R/r0)
characterizes the damping of the vortex motion. The param-
eters R and r0 are the radii of the disk and the vortex core.
An analog equation, with the index 1 replaced by 2 holds for
the bottom disk. The term F1 in Eq. (1) corresponds to the
spin-transfer torque-induced force acting on vortex 1. This
force is generated by vortex 2 in the bottom disk, which
acts as a polarizer for the magnetization in disk 1 (and vice
versa). Before we investigate the coupled dynamics of the
two vortices, we will first consider the characteristics of the
spin-transfer torque-induced force term in more detail.

F1 can be decomposed into two contributions F1 = Fd
1 +

Fc
1. Fd

1 arises from the in-plane magnetization of vortex 2 and
acts on the core of vortex 1. The second term Fc

1 is caused
by the core of the polarizer vortex and acts on the in-plane
magnetization of vortex 1. Both force contributions depend on
the lateral core-core distance l. Following Ref. 23, we obtain
the expressions

Fd
1 =

∫
A

d2x [m2,x sin(ϕ) − m2,y cos(ϕ)]∇θ

+ sin(ϕ) cos(ϕ)[m2,x cos(ϕ) + m2,y sin(ϕ)]∇ϕ

= C1C2κ1F
d ê12 (2)

FIG. 2. Spin-torque magnitudes exerted by disk 2 on the vortex
in disk 1 and their dependence on the lateral core-core separation.
The torque arising from the polarizer core, F c

1 is negligible at
large distances, explaining the results obtained by micromagnetic
simulations and presented in Ref. 26.

and

Fc
1 = −

∫
A

d2x m2,z sin2(θ )∇ϕ = κ2F
cê12, (3)

where we introduce the vectors

ê12 = −ê21 = êz × (X1 − X2)√
(X1 − X2)2 + (Y1 − Y2)2

. (4)

Ci = ±1 defines the chirality of vortex i (“ + ” corresponds to
counterclockwise, “ − ” to clockwise) and m2,j refers to the
j th component of the bottom vortex unit magnetization vector.
The top layer magnetization is written in spherical coordinates
(ϕ,θ ), where ϕ and θ are the azimuthal and polar angles,
respectively. The cylinder axis is chosen as the z axis [see
Fig. 1(a)]. In the calculation we assume rigid vortices with z-
independent magnetization. Using the ansatz of Feldtkeller and
Thomas24 for the out-of-plane core magnetization (|mi,z| =
exp(−a2r2) with a2 ≈ ln 2/(25 nm2) for the vortex core size
in Fe),25 we obtain the forces and their dependence on the
lateral core-core distance l as shown in Fig. 2. For large l,
the contribution of Fc

1 to the total force becomes negligible.
This is in agreement with the simulation results reported in
Ref. 26, where the influence of the polarizer-vortex core on
the dynamics was found to be small. From Eq. (3) we see
that this is caused by the reduction of the function |∇ϕ| with
increasing distance from the top vortex core. In contrast to
the asymptotic decrease of Fc

1 to zero, the magnitude of Fd
1

approaches a finite value for large l. For small distances l <

2r0 ≈ 10 nm, however, we observe that both torques fall to
zero. This can be attributed to the gain in symmetry with
decreasing core-core distance. The small torque introduced by
Fc

1 is neglected in our investigation on the dynamics of the
system with the vortices coupled by the electric current. This
is justified by the fact that we are interested in the situation
when the system is excited to high amplitudes, that is, when
large current densities are applied. The decrease of Fd

1 at small
l must, however, be included.
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The coupled Thiele equations for vortices 1 and 2 read, with
j̃ := h̄jP/(4e)

G1 × dX1

dt
− dW1

dX1
− D1

dX1

dt
+ j̃C1C2κ1F

d ê12 = 0, (5)

G2 × dX2

dt
− dW2

dX2
− D2

dX2

dt
− j̃C1C2κ2F

d ê21 = 0. (6)

The sign of j̃ is positive for electron flow from the top to
the bottom layer [see Fig. 1(b)]. The effective magnetostatic
potential of a vortex inside a disk consists of several energy
terms: the exchange and demagnetizing energies as well as the
Zeemann energy of the vortex in the current-induced Oersted
field depend on the coordinates of the vortex core and thus
lead to an effective energy landscape. Expressions for the latter
two contributions are, for instance, given in Refs. 15 and 23.
Here, we do not attempt to compute the effective potentials of
the vortices. Since the parameters defining the materials and
the geometry are fixed quantities, we simply use potentials of
parabolic form that yield reasonable gyro-frequencies for each
uncoupled disk, i.e., Wi = kiX2

i . The proportionality constants
k1 and k2 define the free-running gyrofrequencies f 0

1 and f 0
2

of disk 1 and disk 2, respectively. For clarity, the Oersted
field is neglected at this point. Its effect would be to shift ki

to higher or lower values, depending on whether its chirality
is equal or opposite to that of vortex i. For the numerical
solution of the spin-torque-coupled Thiele equations, we
choose f 0

1 = 1.0 GHz and f 0
2 = 1.67 GHz as to represent

our Fe/Ag/Fe nanopillars. These adjustments are achieved
by letting W1(X1)/|G1| = 6.28 ns−1X2

1/2 and W2/|G2| =
(5/3)W1/|G1|. The factor of 5/3 thereby corresponds to the
thickness ratio of the ferromagnetic disks in our nanopillar and
accounts for the fact that the gyrofrequency of a ferromagnetic
disk roughly scales with the disk aspect ratio.27 Furthermore,
we use a current of j̃ /|G1| = (5/23) ns−1 corresponding to
about 1.12 × 1012 A/m2 (for P = 1), which is within the range
of experiments. The spin-transfer torque-induced force Fd

is assumed to increase linearly from l = 0 to 10 nm, from
whereon it is set to the constant value Fd

∞ = 23 nm.
The solutions to Eqs. (5) and (6) are obtained numerically

using MAPLE’s rkf45 implementation.28 The results can be
summarized as follows: for positive currents and equal chirali-
ties, the top vortex gyrates around the disk center on a trajectory
of about 50 nm in radius, regardless of the core polarity.
The sense of rotation is determined by the core polarization
(counterclockwise for positive and clockwise for negative core
polarity). The gyration frequency is 1.0 GHz. The bottom
vortex adapts its frequency and sense of gyration according
to the top vortex. A dynamic equilibrium develops with a
constant phase difference between the vortices even in the case
of opposite relative core orientation. This frequency adaption is
accompanied by a strong reduction in radius of the bottom core
trajectory: for parallel cores, the radius is about 0.7 nm, while
for the antiparallel configuration, the reduction is even more
pronounced (approximately 0.2 nm). For negative currents,
the vortices switch roles: the bottom vortex gyrates on a large
orbit (18 nm), while the top vortex trajectory is quenched
(1.2 nm for parallel, 0.3 nm for antiparallel core alignment).
In the dynamic equilibrium the phase difference is constant

FIG. 3. Vortex dynamics obtained for the case of equal chiralities,
represented by the time variation of the respective X coordinates of
the vortex cores. (a) For positive and negative current, the system
gyrates at 1.0 GHz (solid) and 1.67 GHz (dotted), respectively. The
X coordinate of the vortex cores is shown in the lower panels for
positive (b) and negative (c) currents. The thin line corresponds to
the top, the thick line to the bottom vortex. In (b), both cores have
positive polarity, while in (c) they are antiparallel with the bottom
core pointing down.

and the gyration frequency is about 1.67 GHz. This frequency
corresponds to the eigenfrequency of the bottom vortex while
the sense of rotation is determined by its core polarity. The
gyration phase difference between the two vortices depends
on the relative core alignment. For positive currents and equal
chiralities, the bottom core gyrates approximately π/2 ahead
of its top counterpart if the cores are parallel, while for
antiparallel cores a −π/2 lag is observed. Figures 3(b) and 3(c)
depict the X coordinates of the two vortex cores for positive
and negative current, respectively. Figure 3(a) displays the
resulting spectra, in each case obtained from the dynamics in
the dominantly excited disk. From Eqs. (5) and (6), it is clear
that the solutions for opposite chiralities are identical to those
obtained for equal chiralities with a negative current polarity.

For large enough |j |, the obtained characteristics of the
dynamics are the generalization of the criterion found in
Ref. 26. In the model used by those authors, the polarizer was
assumed to be a fixed, rigid vortex, and only magnetization
dynamics in the other, free disk was allowed. In our case, both
disks can be polarizing or free layer. For a given combination
of chiralities C1C2 and applied current polarity, the system
responds with a damped and a dominant gyration, the former
defining the polarizing and the latter the free disk. As is
evident from Eqs. (5) and (6), it is the product of current
and chiralities that matters. For given chiralities, the current
polarity determines which disk is dominantly excited. On
the other hand, changing the current sign influences the
dynamics in the same way as changing one of the chiralities.
Therefore we can write down a generalized jCC criterion:
for jC1C2 > 0 the top and for jC1C2 < 0, the bottom disk is
excited.

A general analytical solution for steady state trajectories is
difficult to establish due to the complexity of the denominator
in Eq. (4); however, it is instructive to analyze the situation
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when one trajectory radius is much larger than the other, a
condition that, according to our numerical results, also holds
in the vicinity of the limit cycle. We define ri :=

√
X2

i + Y 2
i

and consider the case of positive jC1C2. Requiring that the
whole system gyrates at a frequency f while the bottom vortex
has a phase φ with the top vortex we find, up to first order in
r2/r1, the following relations:

r2(φ)

=
[ |G2|

D2
cos(φ) + κ2 sin(φ)

]

×
{

2πκ2|G2|f 0
2

j̃C1C2Fd∞
− sin(φ)

r1

[
κ2 cos(φ) − |G2|

D2
sin(φ)

]}−1

,

(7)

f (φ) = j̃C1C2F
d
∞κ2

2πD2

[
cos(φ)

r2(φ)
− sin2(φ)

r1

]
. (8)

These relations are displayed in Fig. 4 in the limit r2/r1 →
0 and reproduce the behavior observed in the numerical
solutions: for both cases of positive [see Fig. 4(b)] and negative
[see Fig. 4(c)] bottom vortex core polarity, the bottom vortex
can adapt to the (a priori arbitrary) frequency of the top
vortex by adjusting the phase. Positive (negative) frequency
corresponds to counterclockwise (clockwise) gyration. As
displayed in Fig. 4(a), this phase shifting is accompanied
by a strong reduction of the orbit radius or, in other words,
a quenching of the windmill modes. By means of a phase
adaption and reduction of the radius, the vortex can use a
fraction of the spin-transfer torque-induced force to assist or
counteract the force due to its magnetostatic potential. The
resulting radial force component can differ strongly from the
purely magnetostatic force. It may even lead to an inversion of
the relation between the sense of gyration and the core polarity.
The closer the eigenfrequencies of the two disks are to each
other, the lesser is the need for frequency adaption, given that
the vortices exhibit equal polarities. As a consequence, the
distance between the moving vortices decreases for a given

FIG. 4. (Color online) Trajectory radius r (a) and frequency f [(b)
and (c)] of the bottom vortex as functions of the phase φ with respect
to the top vortex which gyrates at the same frequency. The solid and
dashed lines correspond to positive and negative bottom vortex core
polarity, respectively. The dash-dotted lines mark the eigenfrequency
f 0 of the uncoupled bottom vortex for positive (b) and negative
(c) core polarity.

FIG. 5. X components of the top (thin line) and bottom (thick
line) core coordinates versus time for the case of symmetric disks. The
cores are aligned parallel in (a) and antiparallel in (b). In the parallel
case, a windmill mode only appears in a transient time interval, but
is hindered afterwards. The oscillation decays due to the low core
separation and the related decrease of the spin-transfer torque-induced
force.

current, as one eigenfrequency approaches the other. If the
intercore distance falls below the core diameter, the mutual
spin-torque-induced force decreases, too. Figure 5(a) displays
the extreme case, where the two disks are identical and the
cores parallel. In this configuration, the vortices start rotating
in phase, but as they reach the limit cycle and the core-core
distance drops below 10 nm, the mutual spin-transfer torque-
induced force decreases, leading to a decay of the oscillation
amplitudes. For antiparallel alignment, the windmill modes are
quenched by the mechanism of frequency and phase adaption
[see Fig. 5(b)].

III. EXPERIMENT

In order to check the validity of our theoretical model
we study the current-induced magnetization dynamics of an
Fe/Ag/Fe nanopillar with a Fe layer thickness ratio of 5/3.
According to the model, we expect to observe excitations
for both current polarities, but with different frequencies
yielding a frequency ratio of approximately 5/3. Cylindrical
nanopillars are patterned using e-beam lithography and Ar
ion milling from molecular beam epitaxy-grown GaAs(001)/
Fe(1)/Ag(150)/Fe(25)/Ag(6)/Fe(15)/Au(25) stacks [layer
thicknesses in nm, see Fig. 1(c) for a scanning electron
microscopy (SEM) image]. SEM yields a pillar diameter of
about 210 nm. The milling was stopped after reaching the
150-nm-thick Ag buffer layer. Thus the oscillator consists of
two ferromagnetic disks of equal diameter and comparable
thickness stacked on top of each other. Figures 6(d)–6(f)
display the field dependence of the nanopillar resistance for
I = +21 mA [(d) and (f)] and I = −21 mA (e), corresponding
to a current density of ±6.1 × 107A/cm2, respectively. The
external magnetic field is applied in the sample plane with the
field sweep direction from negative to positive in Figs. 6(a) and
6(d) and in the opposite direction for Figs. 6(b), 6(c), 6(e), and
6(f). The magnetoresistance profiles are characteristic for this
sample type29 and reflect two magnetization states: the first one
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Ω

FIG. 6. Resistance vs field measurements at sample currents of +21 mA [(d) and (f)] and for −21 mA (e). Simultaneously to the resistance
measurements, the high-frequency spectra resulting from the magnetization dynamics were recorded. The square symbols on the MR curves
indicate data points at which the corresponding spectrum displayed a peak (regardless of whether or not the sample was in a double vortex
state). The top panels (a)–(c) display the peak frequencies. The insets to (a)–(c) show single spectra recorded at a field magnitude of about
70 mT. Arrows indicate the sweep directions. The second sweep belonging to negative current is not shown, since no magnetization dynamics
was visible in the double vortex state.

comprises a vortex in one disk, while the other nanomagnet
remains in a quasihomogeneous state. These configurations
are characterized by a nearly linear field dependence of
the resistance [e.g., Fig. 6(d) between −200 and −100 mT]
caused by a continuous lateral displacement of the vortex with
changing field. The second state is observed from low-field
magnitudes up to about 200 mT and is characterized by low
resistance values near the level in magnetic saturation. Here,
each disk contains a vortex with the chirality given by the
circumferential Oersted field. This results in locally parallel
alignment of the two disks’ magnetizations explaining the
observed low resistance. Simultaneously to the dc measure-
ments we recorded the high-frequency spectra, thus allowing
to correlate the information about magnetization dynamics
with the magnetoresistance curve. Figures 6(a)–6(c) display
the peak frequencies from the spectra corresponding to the
field sweeps in Figs. 6(d)–6(f), respectively. The insets to
Figs. 6(a)–6(c) show sample spectra measured at a field
magnitude of 70 mT. As is apparent from Fig. 6, for both
current polarities we detected magnetization dynamics in those
field intervals, in which the double-vortex state occurs. The
excitation frequencies are below 2 GHz, which is typical
for vortex gyration in Fe/Ag/Fe nanopillars,16,29,30 but the
frequencies are clearly different and well separated for the
two current polarities. If we compare the modes shown in
Figs. 6(a) and 6(b) at low external fields, their ratio is about
1.46. Using previous data on single vortex dynamics,15,29 we
estimate the influence of the Oersted field on the zero-field
vortex frequencies to be about 145 MHz for both disks. This
shifts the above value to 1.54, i.e., very close to the ratio
of the disk aspect ratios (5/3 � 1.67), which is the value
predicted by our model. One should bear in mind, however,
that in Eqs. (5) and (6), the dipolar interaction between the
vortices has been neglected. This interaction is expected to

influence the modes and their respective frequencies in real
samples. The dipolar interaction between the vortices may
vary from sweep to sweep, e.g., when configurations with
different core polarization alignments nucleate after reducing
the field from saturation. Such differences explain variations
of the observed frequency ranges. For instance in Fig. 6(c),
which is measured at the same current polarity as Fig. 6(a) but
with the opposite field sweep direction, the frequencies are in
the range of 0.74 to 0.84 GHz. Nevertheless, the data clearly
demonstrate that in double vortex oscillators, dynamics can be
excited for both current polarities and the resulting modes have
distinct frequencies, which is consistent with the prediction of
our model.

IV. SUMMARY

In summary, we have presented a spin-torque-based
mechanism that quenches windmill-modes in double-vortex
nanooscillators. The origin is frequency and phase adaption
of the gyrotropic motions in the two disks, which results in a
strong suppression of the gyration radius in one of the disks.
Changing the sign of the product jC1C2 interchanges the roles
of active and suppressed vortices. In particular, flipping the
current sign at a fixed relative chirality combination provides,
in agreement with our experimental data, an effective mode
selection mechanism, which allows to deliberately choose
between separated frequency bands of the oscillator.
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