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A magneto-optical imaging approach for the simultaneous imaging of multiple magnetization

components is demonstrated. The method is applied to investigate complex magnetization reversal

processes in single crystal iron and patterned amorphous magnetostrictive ferromagnetic structures.

The use of a splitted optical illumination and observation path allows for the direct extraction of

different complementary magnetic information. Real-time in-plane vector magnetization imaging

reveals complicated domain arrangement processes in magnetostrictive films due to locally varying

stress induced magnetic anisotropy. Magnetic domain features concealed by standard domain

imaging techniques are directly exposed. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4824426]

The imaging of magnetic domains in magnetic materials

is essential to obtain an understanding of the underlying

mechanisms of magnetization reversal and the related proc-

esses in micro- or nanoscale magnetic devices,1 e.g., spin-

tronic applications. This promotes further development in

domain imaging techniques. Despite recent years’ advances,

mainly in improving lateral and temporal resolution, the con-

tinuous imaging of the vector nature of magnetization cannot

be performed. Yet, integral magnetic vector information can

be extracted from magnetization loop measurements. Vector

magnetometry can be performed for instance by means of

vibrating sample magnetometry2–4 and by magneto-

optics,5–8 from which, however, no information on the do-

main state can be extracted.

Essentially, vectorial magnetic domain observation is

merely possible by imaging methods that provide a signal

being proportional to the magnetization M of the observed

magnetic materials and offer as well the possibility of sepa-

rating different components of M individually. Applied vec-

torial domain imaging methods, like scanning electron

microscopy with polarization analysis,9–12 differential phase

contrast Lorentz transmission electron microscopy,13,14 elec-

tron holography,15 or X-ray microscopy16 require a rather

long exposure time of up to several minutes. The process of

obtaining magnetic vector information by magneto-

optics17–19 involves multiple calibration images that must be

taken before and after the imaging of the magnetization pat-

tern of interest. In particular, the scheme is restricted to static

magnetization patterns, as the same magnetization distribu-

tion has to be imaged subsequently under different imaging

conditions, from which only a single vector image of an indi-

vidual stationary domain structure can be constructed. For

the case of the associated scanning Kerr microscopy, vector

components of M can be extracted, however, likewise with a

rather long integration and scanning time. Similar restric-

tions exist for the (scanning) type domain imaging techni-

ques mentioned above. Methods that allow for the real-time

investigation of local magnetization directions, providing at

least partial vector information of magnetic domains or do-

main walls, do not exist.

In this letter, real-time vector imaging of the spatial var-

iation of M using dual wavelength magneto-optical micros-

copy is demonstrated for the investigation of magnetic thin

films. First, the applicability of the method to extract mag-

netization vector data in real-time is proven. Second, we

investigate the magnetization structure in high magnetostric-

tive films as used for magnetoelectric composites that dis-

play a variety of changing complex magnetic structures due

to a lateral stress induced distribution of effective magnetic

anisotropy.

The employed technique for the investigation of mag-

netic domain structures is based on the merging of two imag-

ing paths with different wavelengths in the microscope. The

overall experimental arrangement is sketched in Fig. 1. For

the shown implementation of the method red (k ¼ 630 nm)

and blue (k ¼ 490 nm) light from high power light emitting

diodes (LED) with >1 W of collimated output power are

used for illumination. The LEDs are coupled into the

FIG. 1. Microscope illumination ray path for the complementary imaging of

magnetic domain structures. Each of the individual illumination paths fol-

lows the K€ohler-type illumination principle. Unification and divergence of

the light paths are achieved by dichroitic mirrors.a)Electronic mail: jmc@tf.uni-kiel.de
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illumination path through optical fibers, by that allowing an

individual positioning of the fiber outputs in the microscope

objective’s back focal image plane. In this way, an independ-

ent adjustment of the illumination conditions for both light

sources is achieved. By focussing and positioning the red

and blue LED fiber outputs accordingly (Fig. 1) oblique and

orthogonally aligned planes of incidence are achieved. An

imaging scheme using s- and p-mode longitudinal Kerr sen-

sitivity is sketched in Fig. 2(a). The imaging beams are

united into the illumination light path through a wavelength

sensitive dichroitic mirror, by which two separate and inde-

pendent imaging conditions can be achieved. In the observa-

tion light path, the reflected light is redivided into red and

blue beams directed individually to two high sensitivity

microscope cameras. Image exposure of the two cameras is

synchronized by an external trigger (TTL) signal, ensuring

concurrent image acquisition for the two imaging conditions

of choice. Both imaging paths share the optical polarizing

elements.

Two complementary domain images of an epitaxial Fe

film, displaying both longitudinal magnetic information of a

single magnetic configuration, are displayed in Fig. 2(b).

The images prove the general feasibility of dual wavelength

domain imaging technique.

The calibration of the individual magneto-optical sensi-

tivity directions is performed as described in Ref. 19.

However, only a single calibration procedure is needed for

the extraction of the magnetic vector information from multi-

ple sequentially obtained image pairs. Results from the dual

wavelength vectorial domain analysis of moving domains in

a single crystal iron film are displayed in Fig. 3. The eval-

uated quantitative information of the magnetization distribu-

tion as well as the individual components of M are

displayed. The calculated distribution of M is in accordance

with the known easy axes of anisotropy in the single crystal

Fe film. The angular error of the determined magnetic direc-

tions is almost negligible, as seen from the minimal contrast

between the magnetic domains with M aligned antiparallel

to each other, but orthogonal to the displayed magnetization

components in Figs. 3(b) and 3(c). Computationally rotating

the effective sensitivity axis to lie at 45� relative to the easy

axes of magnetization confirms the statement (Fig. 3(d)).

180� and 90� domain wall contrasts, respectively, become

visible in the images. Using the same procedure, quantitative

domain information of constantly realigning domains was

obtained. Some extracted magnetization vector information

is displayed in Figs. 3(e)–3(i). No image averaging for noise

reduction is performed. The exposure time of the individual

single-shot domain image pairs obtained in real-time is 0.05 s.

Starting from the saturated state (Fig. 3(e)) the magnetization

reversal process occurs by combined 180� and 90� domain

wall motion. After the instantaneous nucleation of 90� spike

domains and a magnetic vortex structure (Figs. 3(f) and

3(g)), the vortex structure is expanding to a different domain

wall arrangement, including a central 180� wall (Fig. 3(h)).

Subsequently, the reversal process is accompanied by

continuous motion of a 180� or 90� domain wall network

(Fig. 3(i)). Again, the obtained magnetic vector data, an

example of which is displayed in Fig. 3(g), is in agreement

with the magnetocrystalline cubic anisotropy distribution of

the thin film.

The magnetic reversal in an amorphous ferromagnetic

FeCoBSi layer as used for magnetoelectric composite

AlN/FeCoBSi sensor structures21,22 is investigated next.

Most importantly, the alignment and distribution of magnetic

anisotropy is of significance in order to obtain a defined mag-

netoelectric response signal.22 The effective anisotropy dis-

tribution in the structured films will directly influence the

exhibited magnetic domain distribution. The control of the

magnetic domain rearrangement processes under the applica-

tion of varying magnetic fields is of essential importance in

order to understand and minimize the origin of magnetically

induced (Barkhausen) noise.23 For the highly magnetostrictive

FIG. 2. (a) Simultaneous measurement of the longitudinal Kerr effect in the

s- and p-mode with the red and blue, respectively, microscope ray paths. (b)

Concurrently obtained Kerr images of a single crystal iron film with orthog-

onal sensitivity directions. The corresponding illumination arrangements in

the back focal plane of the objective are indicated. 32 images of the static

domain state were acquired simultaneously and averaged in order to improve

the signal-to-noise ratio in the domain images. (Sample: GaAs/Fe(1 nm)/Ag

(150 nm)/Fe(50 nm)/ZnS).

FIG. 3. (a) Quantitative magneto-optical image from the magnetic structure

of Fig. 2(b). The angular distribution of M is color coded as indicated in the

inset. Extracted magnetization components along (b) the y-direction, (c) the

x-direction, and (d) the diagonal direction. The axes of the displayed compo-

nents of M are indicated in (b)–(d) by arrows. The (100) easy axis directions

of the magnetic thin film are indicated. (e)–(i) Magnetic reversal in the Fe

thin film. The color coded angular magnetization distributions and an exem-

plary magnetic vector plot are shown (see supplementary material20). The

orientation of the external magnetic field Hext is indicated. (Sample:

GaAs/Fe(1 nm)/Ag (150 nm)/Fe(50 nm)/ZnS).
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alloy the domain behavior is strongly determined by local

stress effects as will be evidenced next.

Complementary domain images sequentially obtained for

two orthogonal magneto-optical sensitivity directions and var-

ious magnetic field values are displayed in Fig. 4. The nominal

anisotropy axis (EA) of the system is vertical in Fig. 4. The

magnetic field is aligned perpendicular to the nominal EA of

the system and parallel to specimen’s edge at the bottom.

Starting from high magnetic fields, antiparallel aligned

domains form with M oriented close, but slightly tilted to the

initial EA form. However, the domains are not reaching the

structure’s edge at the bottom and closure domains form inside

the magnetic structure. Concurrent with reduction of the field

amplitude, the domains penetrate from the center portion of

the film towards the edges (dotted line in Fig. 4). Yet, the par-

tially dagger-shaped closure domains never reach the sample’s

edge. The magnetization at the edge stays aligned with the

sample’s edge, indicating an alignment of effective magnetic

anisotropy parallel to sample’s edge in the region close to the

edge orthogonal to the initial anisotropy direction. Similar do-

main structures are discussed in anisotropy patterned magnetic

thin films or magnetic film structures with stress relaxation at

the edges.6 The origin is tensile stress in the films, which then

in connection with edge relaxation effects leads to a total

realignment of magnetic anisotropy direction.

With the transformation process, the magnetic Bloch

line first visible in the bottom image of Fig. 4(e) (see arrow)

starts to move to the edge of the sample, and then in the

reversing field before switching (Fig. 4(h)) back inside the

sample. With reversing the magnetic field the magnetization

at the edge switches instantaneously (from Figs. 4(i) and

4(j)) along the field direction. With increasing field ampli-

tude the inner domain walls pull back from the edges again.

The color-coded magnetization distribution, the calcu-

lated magnetic vector plot, and the complementary domain

images before, during, and after the magnetic switching

event are displayed in detail in Figs. 5(a)–5(h). The main

deviation in the domain structure between the two magnetic

states lies in the switching of magnetization by nearly 180�

close to the sample’s edge, clearly visible in the (red) hori-

zontal sensitivity direction. However, with the reversal the

bended domain wall structure in the bulk portion of the sam-

ple changes position, one type of closure domains and the

connected 180� domain walls annihilate, rearranging to form

a closure domain at the neighboring domain. Likewise the

dagger-shaped spike domain switches position. The domain

structure apart from the edge, visible in the (blue) vertical

sensitivity images, seems to be uninfluenced, but the reversal

of magnetization at the edges also influences the magnetiza-

tion inside the sample. The difference D between the mag-

netic states extracted for both sensitivity directions is

displayed in Figs. 5(i) and 5(j). Due to the reorganization of

the closure domain states with the switching event, the rever-

sal is accompanied by 180� domain wall motion in the neigh-

boring regions. Yet, the overall magnetization alignment within

the domain in the central portion of the film stays constant, no

additional change of magnetic contrast that would be related to

the rotation of magnetization inside the domain is found.

Overall, the magnetic reversal inside the sample is

accompanied by rotation of magnetization and domain wall

motion. Also internal changes in the wall structure occur.

Only by visualizing both magnetization components simulta-

neously, the magnetization distribution, including domain

and domain wall effects, can be determined accurately and

the mixed hard and easy axis magnetic reversal behavior and

its connection is identified undoubtedly.

In conclusion, the addition of direct real-time vector

imaging to magneto-optical Kerr microscopy is demon-

strated. The technique is applied to investigate complex

magnetization reversal in magnetic film structures. Using

FIG. 4. Magnetization reversal in the ferromagnetic FeCoBSi layer (see supplementary material20). (a)–(r) Complementary domain images with orthogonal

sensitivity direction. The edge of the sample is located on the bottom of the images. The orientation and amplitude of the applied magnetic field Hext is indi-

cated. The exposure time of the individual domain images is 0.05 s. (Sample: Si/SiO2/Ta(10 nm)/(Fe90Co10)78B10Si12(2000 nm)/Ta(5 nm)).
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two imaging paths, domain images with different vector com-

ponents are recorded simultaneously. The spatial variation of

the magnetization vector is extracted directly and in real-time.

In principle, the method is not limited to the shown quantita-

tive domain imaging. Additional embodiments include the

adaption to methods that rely on the combination of different

imaging conditions. This includes layer selective magnetic

domain imaging as well as the separation of in-plane and

out-of-plane magnetization components (i.e., separation of

longitudinal and polar Kerr contrast) in film structures with

out-of-plane and in-plane magnetization components.

Moreover, the method can be applied to time-resolved strobo-

scopic and single shot imaging schemes using pulsed-laser

illumination sources. With the addition of real-time multiple

component imaging to full field magneto-optical Kerr micros-

copy the technique will continue to be of great importance for

the investigation of fundamental and applied aspects of mag-

netization domain processes in magnetic materials. Magneto-

optical imaging is taken to the next level.
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FIG. 5. Magnetization reversal in the ferromagnetic FeCoBSi layer around Hc. (a) and (e) Color-coded angular distributions of M before and after the magnetic

switching event. (c) and (g) Display the corresponding magnetic vector plots. (b), (d) and (f), (h) Show the complementary images with orthogonal sensitivity

directions. In (i) and (j) the change (D) of magnetization as imaged for the different sensitivity directions during switching is displayed. The edge of the sample

structure is on the bottom. The amplitude of Hext is indicated. (Sample: Si/SiO2/Ta(10 nm)/(Fe90Co10)78B10Si12(2000 nm)/Ta(5 nm)).
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