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Abstract

In Density Functional Theory simulations based on the LAPW method, each self-consistent
cycle comprises dozens of large dense generalized eigenproblems. In contrast to real-space
methods, eigenpairs solving for problems at distinct cycles have either been believed to be
independent or at most very loosely connected. In a recent study [7], it was proposed to re-
vert this point of view and consider simulations as made of dozens of sequences of eigenvalue
problems; each sequence groups together eigenproblems with equal k-vectors and an increas-
ing outer-iteration cycle index `. From this different standpoint it was possible to demonstrate
that, contrary to belief, successive eigenproblems in a sequence are strongly correlated with one
another. In particular, by tracking the evolution of subspace angles between eigenvectors of
successive eigenproblems, it was shown that these angles decrease noticeably after the first few
iterations and become close to collinear: the closer to convergence the stronger the correlation
becomes. This last result suggests that we can manipulate the eigenvectors, solving for a spe-
cific eigenproblem in a sequence, as an approximate solution for the following eigenproblem.
In this work we present results that are in line with this intuition. First, we provide numerical
examples where opportunely selected block iterative solvers benefit from the reuse of eigen-
vectors by achieving a substantial speed-up. We then develop a C language version of one of
these algorithms and run a series of tests specifically focused on performance and scalability.
All the numerical tests are carried out employing sequences of eigenproblems extracted from
simulations of solid-state physics crystals. The results presented here could eventually open the
way to a widespread use of block iterative solvers in ab initio electronic structure codes based
on the LAPW approach.
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1 Introduction
Materials simulations based on Density Functional Theory (DFT) [1] methods have at their core a set
of partial differential equations (Kohn-Sham [2]) which eventually lead to a non-linear generalized
eigenvalue problem. Solving the latter directly is a daunting task and a numerical iterative self-
consistent approach is preferred. It starts off by inputting an approximate electronic charge density
to a cyclic process within which a linearized version of the eigenvalue problem is initialized and
solved. At the end of each cycle a new charge density is computed and compared with the initial
one. Self-consistency is reached when the distance between the input and output densities is below
a certain required threshold; the process is then said to have converged. The entire simulation results
in a series of so called “outer-iteration cycles” often referred to as self-consistent field iterations.

Roughly speaking, all the existing DFT-based methods differ from each other by the choice
of linearization scheme (also denoted as discretization), and by the choice of the effective Kohn-
Sham (KS) potential. There are three discretization strategies commonly in use: 1) manipulation
of localized functions (Gaussians, etc.), 2) expansion of the eigenfunctions over a plane wave basis
set, and 3) discretization of the KS equations over a lattice in real space. While the first method is
almost exclusively used in Quantum Chemistry the last two are widely used in Materials Science
and present a series of pros and cons. The plane wave expansion leads to Hamiltonians with kinetic
energy terms only on the main diagonal and are well suited to simulate solid crystals. In turn
this discretization needs to approximate the Coulomb potential near the nuclei substituting it with
a smooth pseudo-potential. In real-space discretization, potential terms in the Hamiltonian decay
exponentially away from the diagonal [6] giving rise to quite sparse and large eigenvalue problems.
This strategy is well suited mostly for disordered systems and insulators.

Among the plane wave strategies, the Full-Potential Linearized Augmented Plane Wave (FLAPW)
[4, 5] method constitutes one of the most precise frameworks for simulating transition metals and
magnetic systems. The Kohn-Sham equations are discretized using a mix of radial and plane wave
functions (see section 2), parametrized by a vector k within the Brillouin zone of the momentum
lattice. At each outer-iteration ` a set of eigenpencils P(`)

k , labeled by k, is initialized and solved.
Because FLAPW uses full-potential together with a partial plane wave expansion, each P(`)

k is a
dense and hermitian generalized eigenvalue problem; its size n depends linearly – with a large pre-
factor – on the number of atoms considered in a simulation, and typically ranges between 2,000
and 20,000. Only a relatively small percentage of the bottom end of the spectrum is required, never
exceeding 15-20%, and often quite less.

In this work we consider sequences of generalized hermitian eigenvalue problems as they arise
in FLAPW. In this context a sequence is a set of N generalized eigenproblems identified by a pro-
gressive index `

{P(`)} .
= P(1), . . . ,P(N) ; P(`) : A(`)x = λ B(`)x. (1)

Within a sequence each eigenproblem is characterized by a hermitian indefinite matrix A and a pos-
itive definite hermitian matrix B. This setup is generally referred to as a matrix pencil or eigenpencil
and it is known to have a bounded discrete spectrum with real positive and negative eigenvalues

λmin = λ1 ≤ λ2 ≤ ·· · ≤ λn = λmax. (2)
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Eigenpencils usually admit n distinct eigenvectors xi satisfying a B-orthonormality relation (xi,Bx j)=
δi j even when they correspond to identical eigenvalues. While in general B 6= I, in the special case
B = I the eigenpencil becomes a standard eigenvalue problem, and the orthonormality relation re-
duces to the standard (xi,x j) = δi j.

In current codes implementing FLAPW [19, 20, 21, 22, 23], each sequence of eigenpencils
{P(`)} is handled very much as a set of uncorrelated problems: each P(`) is solved in complete iso-
lation from any other and independently passed as input to a prepackaged eigensolver of a standard
library – like LAPACK [24] or its parallel version ScaLAPACK [25] – which outputs the desired
portion of eigenspectrum and corresponding eigenvectors. The eigensolver is thus used as a black
box and has no knowledge of the eigenproblems’ spectral properties nor of the application from
which they originated. As much as this process grants standardization and reliability, it is also far
from being optimal. What is “lost in translation” is the possibility to render manifest the correlation
between eigenpencils of the sequence {P(`)} in terms of precise numerical properties which are then
passed to a solver that can exploit them.

In a recent work [7] it has been reported that eigenpencils with a successive outer-iteration index
` and the same k-vector are strongly correlated. Consequently, problems in a sequence are not only
connected by a progressive index but, as for a sequence of numbers, there is a relation linking them.
In FLAPW, such a numerical correlation become evident in the way the subspace angles between
eigenvectors evolve from larger to smaller values as the sequence progresses towards higher outer-
iteration indices [7]. It needs to be stressed that, contrary to what happens in real-space methods,
correlation between eigenvectors is a new and unexpected feature of FLAPW-based methods: since
the eigenfunctions are delocalized and the function basis set is modified at each successive outer-
iteration, it had been common belief that correlation was an unlikely phenomenon.

With evidence of the contrary in hand, it becomes natural to consider eigenvectors of P(`) as
a set of approximate solutions that can be used by an appropriate eigensolver to accelerate the
solution of P(`+1). The novelty of our contribution consists in showing that, by exploiting the
collinearity between vectors of adjacent problems, we can significantly improve the performance of
certain classes of eigensolvers. Since no eigensolver (QR, MRRR, Divide&Conquer, etc.) for dense
problems accepts as input approximate eigenvectors, our strategy can only be carried out by using
iterative eigensolvers. In the rest of the paper we first illustrate, through numerical experiments, the
success of this strategy for three distinct block iterative eigensolvers, each representing a specific
class of available methods. Then we focus on one of these solvers, develop a C language version
and obtain similar results with emphasis on high-performance and scalability.

In section 2 we first give a short description of how sequences of eigenproblems arise in DFT
and how they translate into apparently uncorrelated dense eigenvalue problems. We then proceed to
briefly report on the correlation between adjacent eigenproblems as illustrated in [7]. The core of
our results are presented in section 3 where we introduce the selected block iterative eigensolvers
followed by a description of the experimental setup and the numerical tests performed. We summa-
rize our results in section 4, and conclude with future work and acknowledgments.
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2 Sequences of correlated eigenproblems
In this section we illustrate in some detail how sequences of eigenpencils arise in DFT. We start
with a brief recall of the fundamentals of quantum mechanics, explain the need for an effective
theory dealing with many particles and describe the FLAPW method self-consistent cycle. It is then
shown why correlation among eigenproblems in a sequence is unexpected, and how the presence
of such a correlation was exposed by looking at the evolution of eigenvectors as a function of the
outer-iteration cycle index `.

2.1 The rise of sequences in Density Functional Theory
The electronic structure of a quantum mechanical system with L atoms and M electrons is described
by the Schrödinger equation

H Φ(x1;s1,x2;s2, . . . ,xn;sn) = E Φ(x1;s1,x2;s2, . . . ,xn;sn). (3)

In this equaton, H =− h̄2

2m ∑
M
i=1 ∇2

i −∑
M
i=1 ∑

L
µ=1

Zµ
|xi−aµ|+∑i< j

1
|xi−x j| is the Hamiltonian characterizing

the dynamics of the electrons whose positions and spins are indicated by x and s respectively. E
represents the energy of the system while Φ is the high-dimensional antisymmetric electronic wave
function solving for eq. (3). Already at this stage the Schrödinger equation looks very much like an
eigenvalue problem, unfortunately one that is already very challenging to solve for values M,L≥ 2.

During the 1960s, a series of simplifications were introduced based on rigorous theorems [2, 3]
where the exact high-dimensional eq. (3) was replaced by a large set of one-dimensional Kohn-Sham
(KS) equations

∀ a solve ĤKSφa(r) =
(
− h̄2

2m
∇

2 +V0(r)
)

φa(r) = εaφa(r). (4)

The most important element in these equations is the substitution of the last two terms of H with
an effective potential V0(r)[n] that functionally depends on the charge density n(r): a function of
all the one-particle wave functions φa(r). Because of this interdependence between V0 and φa(r),
eq. (4) constitutes a set of non-linear partial differential equations.

Typically this set of equations is solved using an outer-iterative self-consistent cycle: it starts off
with an initial charge density ninit(r), proceeds through a series of iterations and converges to a final
density nN(r) such that |n(N)−n(N−1)|< η, with η as an a priori parameter.

Initial input
ninit(r) =⇒

Compute KS potential
V0(r)[n] −→

Solve KS equations
ĤKSφa(r) = εaφa(r)

↑ No ↓

OUTPUT
Energy, forces, etc.

Yes⇐=
Converged?

|n(`+1)−n(`)|< η ←−
Compute new density
n(r) = ∑a |φa(r)|2

(5)
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In practice this outer-iterative cycle is still quite computationally challenging and requires some
form of broadly defined discretization. In the FLAPW method, the wave functions φa(r) are ex-
panded on a basis set ψG(k,r) parametrized by vectors k living in the momentum space discretized
on a lattice

φa(r)−→ φk,ν(r) = ∑
|G+k|≤Kmax

cG
k,νψG(k,r). (6)

Here Kmax is a cut-off and its value determines the range of the vector index G, ultimately control-
ling the size of the eigenproblems n (not to be confused with the charge density n(r)). Thus, the
number of basis functions in the expansion equals the size of the problem at hand. In FLAPW the
basis functions ψG(k,r) are constructed by merging together radial-like functions uα

l (r) inside a
spherical region around the atoms (also called Muffin-Tin) and simple plane waves in the interstitial
areas between atoms

ψG(k,r) =


1√
Ω

ei(k+G)r − Interstitial

∑
l,m

[
aα,G

lm (k)uα
l (r)+bα,G

lm (k)u̇α
l (r)

]
Ylm(r̂α) −Muffin-Tin.

At each iteration cycle the radial functions are computed anew by solving auxiliary Schrödinger
equations. Moreover a new set of the coefficients aα,G

lm and bα,G
lm is derived by imposing continuity

constraints on the surface of the Muffin-Tin spheres. Consequently at each iteration the basis set
ψG(k,r) changes entirely. As will be explained in the next section, this peculiarity of the FLAPW
method is one of the main reasons why correlation between eigenvectors of adjacent eigenproblems
had been, until recently, considered unlikely.

Having defined a basis set of wave functions allows us to translate the KS equations into a set of
generalized eigenvalue problems. First the expression (6) is inserted in eq. (4)

ψ
∗
G(k,r)∑

G′
ĤKS cG′

k,ν ψG′(k,r) = λkν ψ
∗
G(k,r)∑

G′
cG′

k,ν ψG′(k,r). (7)

Then, by integrating the left and right hand side of eq. (7) over the configuration space, the matrix
entries for the Hamiltonian Ak and Overlap matrices Bk are computed

[Ak Bk]GG′ = ∑
α

∫
dr ψ

∗
G(k,r)

[
ĤKS 1̂

]
ψG′(k,r). (8)

The end result is a set of generalized eigenvalue equations parametrized by the vector k

Pk : ∑
G′
(Ak)GG′ cG′

kν = λkν ∑
G′
(Bk)GG′ cG′

kν. ≡ Akxi = λiBkxi.

As can be readily seen the coefficients ckν play the role of eigenvectors while the indices k and
ν can be compactly condensed in the single index i. Moreover because of the complex structure
of ψG(k,r), interactions in ĤKS are “delocalized” with the net effect of filling up the Hamiltonian
matrix A and losing any diagonal dominance. At the same time the over-completeness of the basis
set renders B dense as well as somewhat ill-conditioned. These characteristics differentiate FLAPW-
based methods from real-space ones, and make them very well suited to simulate physical systems
where electrons are partially delocalized (metals, semi-conductors, etc.).
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The net effect of this discretization is the translation of the KS equations into a set of generalized
eigenvalue problems for each outer-iteration

Solve KS equations
ĤKSφa(r) = εaφa(r) =⇒

Solve a set of eigenproblems
Pk1 . . .PkN .

In the end the entire process has at its core the initialization and solution of a set of sequences of
dense eigenpencils {P(`)

k }.

2.2 Correlation in the sequence
In analogy to the definition of a sequence of numbers, a sequence of eigenvalue problems is consid-
ered as such if P(`) has some connection to P(`+1) ∀`. Therefore, we now focus on a single sequence
{P(`)} and describe how this correlation becomes manifest in the evolution of subspace deviation
angles between eigenvectors of successive eigenproblems.

In sequences arising from DFT the most obvious form of connection comes from the fact that the
problem with index `+1 is initialized only after the previous problem is solved. Despite this simple
fact, the initialization and solution of the new eigenproblem depends very indirectly on the solution
of the old one. Eq. (8) shows that matrix entries are computed using a new set of ψ

(`+1)
G (k,r),

whose Muffin-Tin (MT) components can be radically different from the one of ψ
(`)
G (k,r). The

same MT components depend very non-linearly on the charge density n(r) which, in turn, is a
sum of linear combinations (eq. (6) ) of eigenvectors c(`)kν

and the same basis functions ψ
(`)
G (k,r).

In conclusion at each outer-iteration, the Hamiltonian, the Overlap and the basis function set vary
substantially and in a way that cannot be estimated. Due to this series of deductions, correlation
between successive eigenvalue problems in FLAPW is a rather novel discovery which had been
considered by the computational physics community to be a rather unlikely outcome.

In [7] the link between adjacent eigenproblems is unraveled by looking at the existence of a
correlation between eigenvectors as a numerical inverse problem. Starting from a constrained as-
sumption, the authors conduct an a posteriori numerical analysis of angles between eigenvectors
with successive outer-iteration indices `. For instance, let us look at two neighboring eigenproblems
of a sequence

A(`)x(`) = λ B(`)x(`) and A(`+1)x(`+1) = λ B(`+1)x(`+1),

with B(`) = L(`) L(`)T and B(`+1) = L(`+1) L(`+1)T the Cholesky decomposition of the respective
Overlap matrices. In [7] it is shown that the eigenvectors of these two problems satisfy the following
general relation

〈x(`)i x(`+1)
j 〉= c∗(`)k,ν L(`) L(`+1)T c(`+1)

k,µ = δi j + ε

[
Ei j− c∗(`)k,ν L(`) D L(`+1)T c(`+1)

k,µ

]
+o(ε2), (9)

where both E and D are block diagonal, each block being diagonally dominant, and ε being an
expansion parameter. As long as ε is small, eq. (9) implies that the matrix of scalar products between
eigenvectors of adjacent eigenproblems has a lumpy structure with most of its dominant entries
concentrated in the neighborhood of the main diagonal. This structure makes it possible to devise
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an algorithm establishing a one-to-one association between a generic eigenvector x(`)i of A(`) and
the corresponding eigenvector x(`+1)

i of A(`+1).
Once established, the one-to-one correspondence lays the ground for a systematic numerical

analysis of the distribution of deviation angles θ
(`)
i = 〈x(`)i x(`+1)

i 〉 along the entire sequence. Plots
of θ

(`)
i illustrate how the eigenvectors become more and more collinear as the sequence progresses

(e.g. Figure 1). In particular, we can observe how angles are already very small –∼ 10−4 on average
– after a few iterations, becoming almost negligible towards the end of the self-consistent cycle. This
result confirms a posteriori the correctness and reliability of the expansion (9) in powers of ε.

The importance of the eigenvector collinearity is two-fold: on the one hand it makes it clear that
there is a deep connection between the convergence of the charge density n(r) and the solutions
of the eigenpencils. At the same time it provides the means to go beyond the current algorithmic
paradigm and improve the solving process of the entire sequence.

Table 1: Simulation data

Materials nev Kmax
# of

iterations
Size of

eigenproblems

CaFe2As2 136 4.0 24 2,612

Au98Ag10 972
3.0 22 5,638
3.5 29 8,970

Na15Cl14Li 256
3.0 13 3,893
3.5 13 6,217
4.0 13 9,273

We will see in the next section how this is possible for a limited group of iterative eigensolvers.
We conclude this section by illustrating two examples of evolution of deviation angles taken from
real case solid-state crystals: CaFe2As2 and Au98Ag10. The first is a superconducting compound
that undergoes a first order phase transition from a high temperature tetragonal phase to a low
temperature orthorhombic phase. The latter is an artificial alloy of gold and silver. In order to avoid
cluttering, in Figure 1 θ

(`)
i are plotted only for a small fraction of the eigenspectrum. In both plots,

we can observe the deviation angles decreasing quasi-monotonically during the entire sequence.
This behavior is not only characteristic of the lowest portion of the spectrum; it is noticed for all
values of the index i. Simulation data for these two materials are shown in Table 1.

3 Exploiting the sequence evolution
In the following we present experimental evidence of the acceleration of iterative eigensolvers due
to the use of approximate solutions. We proceed in two stages: first, using a direct eigensolver,
we compute the eigenpairs of eigenpencil P(`) for a certain fraction of the eigenspectrum. Next,
we feed these eigenpairs to a selected iterative eigensolver as an initial guess when solving for
P(`+1). Finally we repeat the same computation with randomly generated vectors and compare the
respective CPU times. These tests are repeated for three different choices of crystals and at each
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(a) Lowest 3% of eigenspectrum for CaFe2As2.
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(b) Lowest 1.5% of eigenspectrum for Au98Ag10.

Figure 1: Evolution of subspace deviation angles between eigenvectors of adjacent eigenvalue prob-
lems within a sequence.

increasing outer-iteration index. The result of the comparison provides a measure of the possible
speed-up iterative methods can achieve when used in sequences of correlated eigenvalue problems.

Among the many available iterative methods, only a few possess the ability of taking advantage
of multiple approximate solutions and gain a sensible speed-up. In this respect an iterative algo-
rithm has to comply with two essential properties that: 1) the ability to receive as input a sizable set
of approximate eigenvectors, and 2) the capacity to solve simultaneously for a substantial portion
of eigenpairs. In particular we considered three classes of iterative solvers: Davidson, conjugate
gradient and subspace iteration. For each class we choose a block eigensolver whose characteristics
are the closest to the requirements listed above. Block methods generalize the action of an eigen-
solver on one single approximate eigenvector to a set of vectors. As such they satisfy quite clearly
the first requirement while the ability to obtain multiple eigenpairs in one shot is rather algorithm
dependent.

In this section two sets of numerical results are illustrated: first we three iterative algorithms
exclusively in a Matlab environment. The objective is to gain an overview of the behavior of the
eigensolvers and their relative efficiency in exploiting approximate solutions. In a second moment
we focus on one of the eigensolvers, briefly illustrate its implementation in the C programming
language and conduct a more performance-oriented numerical analysis of its features. In section 3.1
we illustrate the salient characteristics and properties of the block algorithms under scrutiny. This
is followed by a detailed description of the experimental setup. Finally in section 3.3 the results of
our numerical tests are presented and explained.

3.1 Block iterative eigensolvers
By their own nature iterative eigensolvers come in many variants and often some of their internal
parameters can be tuned opportunely. In block methods one obvious input parameter is the block
size blk; since block methods are notoriously more efficient in dealing with multiple and clustered
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eigenvalues, adjusting blk could improve the eigensolver performance. On the other hand, knowing
a priori the positions of clusters of eigenvalues is usually not possible, so a value of blk that is
optimal for a certain fraction of eigenspectrum may not work for another. On algorithms augmented
with a polynomial accelerator another evident parameter is the polynomial degree deg. In this case a
good choice for deg would balance the influence of two competing mechanisms: CPU time spent in
performing matrix-matrix operations and the efficiency with which vectors converge to the solution.

In light of these considerations, it is important to understand that an eigensolver that performs
well for a certain problem may become very slow for another. In particular we want to stress that
we utilize iterative eigensolvers outside the “comfort zone” where they usually perform the best,
namely sparse eigenproblems. By using these solvers on dense eigenproblems we are deliberately
pushing them to the limit. The idea is to compensate for the misuse of the solvers by providing them
with approximate eigenvectors. In doing so we want to test how effectively each eigensolver can
gain in performance by exploiting problem solutions of the previous outer-iteration.

In order to extract the best behavior, all the numerical tests were carried out after optimizing
each solver to the specific problem at hand. Optimization was achieved by tuning the values of the
available parameters (see table 3). Despite these efforts not all eigensolvers seemed to have been
able to take full advantage of the approximate solutions. We emphasize that this behavior is in no
way detrimental to the value of the particular solver; it just indicates that the chosen eigensolver was
too stressed to be able to overcome the inherent difficulties of the dense eigenproblems selected. All
the eigensolvers described below were inherently developed for the lower portion of the spectrum.
Unless otherwise specified, in the rest of the paper we refer exclusively to this part of the eigenspec-
trum.

Block Chebyshev-Davidson (BChDav) – This eigensolver is part of the Davidson-like meth-
ods. These methods sacrifice the Krylov subspace structure by computing an approximate resid-
ual which, opportunely preconditioned, is used to augment the subspace. In 2007 Saad and Zhou
developed a version of the Davidson algorithm for problems where the preconditioning could be un-
known or too expensive to compute [12]; in particular by filtering with Chebyshev polynomials the
augmentation vector instead of solving a correction equation, they achieve better numerical results.

In 2010 Zhou implemented a block version of this method by adding an inner restart loop beside
the usual outer restart one [13]. This version of the method succeeds in better deflating converged
vectors and has the added ability to accept approximate solutions in place of the standard augmen-
tation vectors. In particular the inner restart loop allows the addition of a new block of approximate
vectors as soon as some of the sought after eigenpairs have converged. This is the first of the
Chebyshev filtered methods that we tested. In his work Zhou has also shown that the method is not
particularly sensitive to blk nor to deg. In our test we verified that this is indeed true and fairly small
variations in computing time are observed by varying one or both of the parameters independently
of the size of the eigenproblem. For our test we used a Matlab version of BChDav kindly provided
by Y. Zhou.

Locally optimized block preconditioned conjugate gradient (Lobpcg) – Developed in 2001 by
Knyazev [14], this algorithm uses a locally optimized version of a three-term recurrence relation for
the preconditioned conjugate gradient method. In practice the Rayleigh-Ritz method is used for the
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eigenpencil on a trial subspace generated by the current guess for the Ritz vector, the preconditioned
residual, and a third Ritz vector built by maximizing the Rayleigh quotient. Knyazev implemented
a block version of the algorithm where the three-term relation is generalized for a block of vectors.

We performed our tests using the freely available Matlab version of the code. In this version blk

is set by construction to be equal to the number of requested eigenpairs nev. While this choice seems
natural, it encounters difficulties in converging the last few vectors requested due to the reduced size
of the trial subspace. Despite being potentially disruptive, this limit is usually overcome by setting
a rather large tolerance for the residuals and restarting the solver with the obtained solutions and a
smaller tolerance. In order to put this method on par with the others analyzed, we augmented blk

by 5% of nev and introduced a slight modification in the stopping criterion. In this way we could
use the eigensolver in one run and obtain solutions possessing the required accuracy.

We deliberately used this method without a preconditioner, since in general such an operator is
unknown in DFT-generated sequences {P(`)}. Moreover Lobpcg accepts the matrices of a general-
ized eigenproblem directly as input. We show that for the case of FLAPW-generated eigenproblems
this is a sub-optimal use of the solver due to the high conditioning number of the overlap matrices
B. Much better behavior is observed when the generalized eigenproblems are reduced to standard
form and then inputted to the eigensolver (see Table 2).

Chebyshev filtered subspace iteration (ChFSI) – This is the second of the Chebyshev-filtered
methods we tested. This method is well known in the literature [10] and has been developed in the
context of Density Functional Theory in real-space by Chelikowsky et al. [15, 16] for the PARSEC
code [26]. Subspace iteration is perhaps one of the oldest known iterative algorithms. This is by
nature a block solver since it simply tries to build an invariant eigenspace by block-multiplying
a set of vectors with the operator to be diagonalized. It is well known that this class of methods
converges very slowly and could end up with blocks of vectors spanning an invariant eigenspace
that are linearly dependent (rank deficient case). By using a polynomial filter on the initial set of
blk vectors both these problems are improved very efficiently and the method experiences a high
rate of acceleration.

Also in this case the degree of the filter deg does not particularly influence the convergence
as long as it is sufficiently high. In general the value for blk is chosen to be bigger than the
requested number of eigenpairs nev. This choice ensures that the last eigenpairs converge quickly
enough. In ChFSI, the subspace iteration loop is preceded by a Lanczos step in order to determine
the boundaries of the interval out of which the set of vectors is filtered.

Starting from the backbone of a routine first developed for a Matlab version of the PARSEC
code, we implemented a more sophisticated algorithm including an inner loop and a natural “defla-
tion and locking” mechanism for the converged eigenvectors. Contrary to the code used in PAR-
SEC, our implementation performs several filtering steps until all eigenpairs have converged to the
required tolerance. A more detailed description of the routine is provided in Algorithm 1 below.
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Algorithm 1 Chebyshev Filtered Subspace Iteration with locking

Require: Matrix H(`) of the standard problem, approximate eigenvectors Ŷ := [ŷ1, . . . , ŷblk] and
lowest eigenvalue λ1

Ensure: Wanted eigenpairs (Λ,Y ) .

1: Estimate of largest eigenvalue . LANCZOS

2: repeat
3: Filter the vectors by a deg Chebyshev polynomial Ŷ =Cdeg(Ŷ ). . CHEBYSHEV FILTER

4: Orthonormalize Ŷ . . RAYLEIGH-RITZ (Start)
5: Compute the Rayleigh quotient G = Ŷ †H(`)Ŷ
6: solve the reduced standard problem Gw = λw giving

(
Λ̂,Ŵ

)
.

7: Compute new Ŷ = ŶŴ . . RAYLEIGH-RITZ (End)
8: for i = converged→ NEV do . RESIDUALS (Start)

9: if
||H(`)Ŷ (:, i)− Λ̂(i)Ŷ (:, i)||

||Ŷ (:, i)||
< TOL then Convergence checking of Ritz vectors.

10: Λ←
[
Λ Λ̂(i)

]
Locking converged eigenpairs.

11: Y ←
[
Y Ŷ (:, i)

]
. RESIDUALS (End)

12: else
13: break
14: end if
15: end for
16: converged← i
17: Λ̂←

[
Λ̂(CONVERGED : END)

]
18: Ŷ ←

[
Ŷ (:,CONVERGED : END)

]
19: until converged < NEV

3.2 Experimental setup
In order to test the behavior of the selected solvers, we singled out sequences of eigenproblems
arising from three DFT systems presenting heterogeneous physical properties: a metal, an ionic
crystal and a high-temperature superconductor. Besides having different physical properties, these
systems differ in the size of the eigenpencils, and in the structure of the eigenspectrum. Since the
efficiency of iterative eigensolvers is often quite sensitive to these characteristics, we could verify
the robustness of our conclusions in different conditions. Simulation data are collected in Table 1.

Each sequence {P(`)} of eigenproblems was generated by running simulations using FLEUR,
a FLAPW-based code developed in Jülich [19]. By fixing a specific k-vector we identified one
sequence per system and stored the relative A(`) and B(`) matrices. For all the simulations we
adopted the value η <1e-03 (see eq. (5)) as a signal for convergence; in turn this choice determines
the maximum value of the iteration index for each sequence. All simulations were run on JUROPA, a
powerful cluster-based computer operating in the Supercomputing Center of the Forschungszentrum
Jülich.

The first set of numerical tests was performed using Matlab version R2011b (7.13.0.564) under
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an OpenSuSE 12.1 running on two Intel i7-870 (Nehalem “Lynnfield”) quad-core processors at 2.93
GHz. In order to avoid lengthy simulations, we took advantage of Matlab multi-threaded routines so
that up to four cores and 8 Gb of RAM (2 DDR3, 1333 MHz) were fully dedicated to computations.
The second set of tests for the C language implementation of ChFSI were performed on one node of
JUROPA equipped with 2 Intel Xeon X5570 (Nehalem-EP) quad-core processors at 2.93 GHz and
24 GB memory (DDR3, 1066 MHz). All CPU times were measured by running each test for each
algorithm 12 times and taking the median of the results.

Directly solving for the generalized eigenproblems makes a fair comparison among the selected
eigensolvers cumbersome. One of the solvers can use B directly (i.e. Lobpcg) while the other two
deal with generalized eigenproblems by left multiplying B−1 to A. Unfortunately, because of the
over-completeness of the set of basis functions in eq. (6), the overlap matrices B are positive definite
but usually quite ill-conditioned. This characteristic prevents the inversion of B due to inherent
numerical difficulties associated with a few singular values of B very close to zero. Consequently,
in order to set the solvers on equal footing, we prepared our tests reducing all the eigenpencils to
standard eigenvalue problems. By using the Cholesky decomposition of B = LLT , we defined H =
L−1AL−T and solved for P̃ : Hy = λy, with y = LT x. This choice solves the problem of computing
B−1A for both BChDav and ChFSI, but does not justify a priori the use of H for Lobpcg.

In order to address this disparity in the use of Lobpcg we investigated its performance when
solving directly for the generalized eigenproblem versus the combined time spent in reducing the
problem to a standard one before feeding it to this solver. The results are shown in Table 2. In the
column labeled “GEN Problem” CPU time to completion is listed for the eigensolver when the two
matrices A and B are directly inputted. In the column “STD Problem” the CPU time is the sum of
the reduction of the generalized eigenproblem to standard form H, plus the solution of the standard
eigenproblem by the solver. The tests were executed on the CaFe2As2 system (n=2612) for iter=17,
nev=136, blk=142, maxiter=20001. All the numbers refer to median values over 10 repetitions
performed for both random vectors and approximate solutions. The results clearly show that as
the solution accuracy grows, Lobpcg increasingly struggles to solve the generalized eigenproblems
directly: a direct consequence of the ill-conditioned nature of B. Consequently, as for the other
algorithms, we performed numerical tests for Lobpcg on just the reduced problem P̃ : Hy = λy.

Table 2: Lobpcg – Generalized vs. Standard eigenproblems

Accuracy
Initial
vectors

CPU time (sec)
GEN Problem

CPU time (sec)
STD Problem

TOL:1e-06
random 763.05 32.73
approx. 13.07 11.55

TOL:1e-07
random 918.47 42.97
approx. 48.66 15.38

TOL:1e-08
random 1287.60 48.90
approx. 149.22 20.46

1See section 3.3 for a detailed explanation of the parameters meaning
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For each sequence of eigenproblems we tested the eigensolvers for all outer-iteration indices
and the choices of nev required by the DFT simulation (see Table 1). For each of these choices the
numerical experiments can be schematically divided into four stages:

1. solving the standard problem H(`)y = λ y using a direct method (i.e. the MRRR algorithm)
and storing a fraction of the eigenvectors in a matrix Y (`);

2. solving H(`+1)y = λ y utilizing the iterative eigensolvers with randomly generated vectors and
recording the CPU time to completion, trnd;

3. solving H(`+1)y = λ y utilizing iterative eigensolvers with the eigenvectors in Y (`) and record-
ing the CPU time to completion, tapp;

4. comparing the CPU times measured at 3. and 4. by plotting the speed-up, trnd
tapp

.

In the Matlab tests, speed-up and tapp are plotted separately with respect to the iteration index
for all three eigensolvers. On the one hand we expect to observe a growth in speed-up as the outer-
iteration index increases; eigenvectors become more and more collinear as the sequence progresses
(see Figure 1), a behavior that should enhance the efficiency of the iterative eigensolvers. On the
other hand, from the absolute time tapp plots, we gain some perspective on which algorithm, among
the three, may have a performance advantage. To conclude we focus on the ChFSI algorithm,
program a C language version, and test its speed-up, performance and scalability.

3.3 Numerical results and discussion
Once more we would like to stress that we tested a range of values for all the parameters available
to each eigensolver. The aim was to optimize the algorithms for the sequences of problems at hand
when started with random vectors before endeavoring in the task of evaluating the solvers’ speed-up.
Once determined, the optimal set of parameters was maintained for all the sequences of the physical
systems under scrutiny. A schematic list of these values is available in Table 3. In this table nkeep

is a parameter indicating the number of vectors that are kept after a restart of the inner loop. vimax
and vomax are the maximum size of the augmentation subspace for the inner and outer loop (not to
be confused with the outer-iteration DFT cycle) of BChDav, while the maxiter sets the maximum
number of iterations for the inner loop. lanczos-iter indicates the maximum number of iterations
of the Lanczos step that ChSI uses to bound the spectrum to be filtered out; this number can vary
substantially depending on the nature (random or approx.) of the starting vectors. All tests for each
eigensolver were run requiring the same accuracy for the residuals 2.

3.3.1 Matlab tests

In Figures 2 and 3 we have plotted the speed-up and CPU times for all three eigensolvers BChDav,
Lobpcg and ChFSI. We aim at visualizing the improvement in performance of each algorithm and,
at the same time, gaining some insights on the behavior of the different methods. Due to the limited

2While BChDav uses relative residuals, for both Lobpcg and ChFSI absolute residuals are employed. Since ||H||
was in most cases of the order of 10, differences between the use of two definitions of residuals are not very significant.

12



Table 3: Parameter settings

Parameters BChDav Lobpcg ChSI
blk 35 1.05×nev nev+40
deg 25 – 25

nkeep 3×blk blk−nconv blk−nconv
vimax max(dnev4 e, 5×blk, 30) – –
vomax nev+50 – –

maxiter max(bn
2c, 300) 1000 –

lanczos-iter – – 10 ÷ 3×blk
TOL 10−10 10−10 10−10

memory available on the desktop machine running Matlab, we measure execution time only for
the two smallest physical systems listed in Table 1. In Figure 2 the data refers to the lowest 136
eigenpairs of the CaFe2As2 system, corresponding to 5.2% of the eigenvalue spectrum. In Figure 3
the plots pertain to the lowest 256 eigenpairs of the n = 3898 Na15Cl14Li system, corresponding to
the lowest 6.6% of the spectrum. In order to clearly address the performance of each algorithm, the
numerical results on the plots are discussed independently for each solver.
Block Chebyshev-Davidson – In both figures the behavior of this algorithm is clearly influenced
by the outer-iteration index; in the first half of the sequence the solver does not gain almost any
advantage from the use of approximate solutions and only in the second half does it experience a
limited speed-up, never reaching values higher than 1.5X. In particular, plot (a) of Figure 2 shows
the solver is actually penalized by the approximate eigenvectors and slows down at the beginning of
the sequence. This anomalous behavior of BChDav could largely be caused by its non-optimal use.
In particular the Chebyshev filtering step could be aligning more than one approximate eigenvector
along the same direction leading to a rank deficient subspace. This fact in combination with the
modest size of the matrices may explain the negative speed-up for the first outer-iterations.

For a larger matrix system (see plot (a) of Figure 3) we again observe that BChDav does not take
much advantage of the approximate solutions at the beginning of the sequence but it is at least not
penalized by them. Despite its limited speed-up, CPU timings decrease substantially as the iteration
index grows when the solver is fed approximate vectors. In turn this observation indicates that the
correlation among eigenvectors in the sequence has nonetheless a certain influence on the behavior
of the eigensolver.
Locally optimized block preconditioned conjugate gradient – Quite different is the performance
of Lobpcg: this solver has speed-ups larger than 1.5X already at the beginning of the sequence.
Both figures shows that as the sequence progresses, Lobpcg speed-up presents moderate oscillations
instead of a steady increase. Moreover while it reaches more than 2.5X for the last two outer-
iteration indices of the CaFe2As2 system, it never does so for the larger system. The oscillation
could be the consequence of different eigenvalue clustering for eigenproblems of distinct iteration
indices. The decrease in speed-up for the larger system can be explained by the effectiveness of
the conjugate gradient method to converge vectors even when Lobpcg is inputted random vectors.
Conversely this trend implies a decreasing threshold for the speed-up for larger matrix sizes as
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Figure 2: Comparison between the 3 most effective block iterative eigensolvers for CaFe2As2 with
respect to the outer-iteration index

signaled by the flattening of the CPU time curve in going from Figure 2 to Figure 3. This last
observation suggests that, despite the nice speed-up, Lobpcg may take less and less advantage of
approximate solutions as the size of the eigenproblem increases.
Chebyshev Filtered Subspace Iteration – Among all the eigensolvers ChFSI seems to be able to
take greater advantage of the approximate solutions and have a more predictable behavior: in plot (a)
of Figure 2 its speed-up proceeds in 3 different steps jumping from∼ 1.8X to∼ 2.2X and to almost
3X at the end of the sequence. In Figure 3 the same trend appears in just two steps: ChFSI speed-up
starts at ∼ 2X and reaches just above 3X towards the end of the sequence. In the next subsection
we explain in more detail the reasons for this step-like behavior. For the moment it is enough to say
that ChFSI exploitation of approximate solutions seems to increase with matrix size. This aspect
together with the fact that its CPU time curve is not very different from Lobpcg’s delivers a better
promise for this eigensolver to be the optimal one to take advantage of the correlation magnification
as the sequence progresses. With this last consideration in mind we decided to single out ChFSI
and implement it in the more efficient C programming language in order to be able to evaluate its
performance and scalability.

We conclude this small section reiterating that, despite the differences in their behavior, all
eigensolvers considered succeed to exploit the eigenvectors increasing collinearity, confirming the
expectations that motivated this study.

3.3.2 The performance of ChFSI

The numerical tests of this section have their origin in an optimized C language implementation
of ChFSI that, for sake of clarity, we will refer to as ChFSIc. Besides being able to carry out
performance tests, this implementation also allows us to run ChFSIc on JUROPA, a Jülich-based
general purpose cluster with a large memory per node (24 Gb). We are able now to run the same
tests of Section 3.3.1 on the larger matrix size systems of Table 1. The immediate objective is to
verify the claim we made over the proportionality between eigenproblem size and effectivity of the
algorithm to exploit approximate solutions.
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Figure 3: Comparison between the 3 most effective block iterative eigensolvers for Na15Cl14Li with
respect to the outer-iteration index

Figure 4 clearly shows a tendency for the speed-up to grow as the size of the matrices increases.
A closer analysis suggests that the extent of the speed-up is not only influenced by the iteration
index, but additionally by the sought-after eigenspectrum fraction. From both plots it seems that
both factors play a not-easy-to-predict role in the trend towards higher effectivity. A closer look
at the algorithm (see Algorithm 1) reveals that speed-up is strongly related to the number of inner-
loops that are necessary for all the eigenpairs to converge. Experimentally we observed that the total
number of loops required by any eigenproblem is well below 10 and tends to decrease suddenly by
one or more units every few outer-iteration cycles. For larger eigenproblem sizes this transition
typically happens at later outer-iteration indices. For instance in plot (a) of Figure 4 the number of
inner loops goes from 4 to 3 at the ninth iteration for n = 6217, while the same change happens at
the twelfth iteration for n = 9273.

Table 4: Number of inner loop and filtered vectors w.r.t. iteration index for n = 8970

Iteration
Index 11 12 13 14 15 16 17 18 19 20 21

Number
of loops 6 6 5 5 5 5 5 4 5 4 4

Number of
filtered vectors 2794 2366 1999 1918 1957 1929 1839 1766 1807 1711 1680

In the same figure plot (b) follows the same trend of plot (a) with the difference that the speed-up
amplification is more gradual than step-like. Consider for example the n = 8970 case, and observe
the increase in speed-up from iteration index 10 on with the help of the data printed in Table 4. We
can notice that there are two jumps in number of loops: a sharp one between index 12 and 13 where
the total number of filtered vectors decreases suddenly by a factor of more than 200, and a less
definite one across the range of indices 17-20. In the latter the total number of filtered vectors does
not change so dramatically. In practice progressively less vectors are filtered during the fifth loop
and progressively more by the fourth loop. There is not a sharp transition here probably due to the
absence of a large block of vectors that suddenly succeed to converge during the fourth loop. This
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behavior of the algorithm does not make it less effective but indicates that eigenproblems appearing
in materials without an energy gap can affect the behavior of the filter.
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Figure 4: Speed-up for distinct matrix sizes. The matrix sizes are determined by distinct choices
for Kmax: namely Kmax = [3.0 3.5 4.0] for Na15Cl14Li, and Kmax = [3.0 3.5] for Au98Ag10. The
speed-up is plotted with respect to the outer-iteration index.

Since realistic utilization of an iterative eigensolver in a FLAPW-based code requires evidence
of scalability when used on multiple cores, we proceeded to test ChFSIc in a final set of numerical
tests. From the pie chart in Figure 5 one can observe that the great majority of computational time
for the sequential code is spent on the Chebyshev filter fraction (see Algorithm 1). The data refers
to the algorithm as used with approximate solutions and the fractions of computational time remain
pretty much the same for any system tested. In turn this chart suggests that parallelizing the filter
is the first priority in order to scale on many cores. Since the Chebyshev filter uses almost entirely
BLAS-3 kernels, it seems natural to call a multi-threaded version of BLAS.

For our tests we used MKL BLAS version 11.0 (Intel compiler version 12.0.3) over the possible
range of cores available on one node of JUROPA. In plot (b) of Figure 5 speed-up of total execution
of ChFSIc w.r.t. the number of cores is illustrated for three larger increasingly eigenproblems. As
expected, the larger the physical systems the better it scales over an increasing number of cores.
What is remarkable is the efficiency of the algorithm: due to the repetitive use of the ZGEMM
routine by the polynomial filter, its scalability is as close to ideal as one can hope for. Clearly we
do not claim this is the whole story, but it is suggestive of what ChFSIc could deliver when oppor-
tunely parallelized for a larger number of cores. Ultimately such a parallelization would allow the
community of computational materials scientists to simulate larger and larger systems: an objective
that is difficult to achieve with the present implementations of FLAPW-based codes.

4 Summary and conclusions
Sequences of generalized eigenvalue problems emerge in many common applications. In DFT
they arise quite naturally in the search for a self-consistent solution for a set of coupled non-linear
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Figure 5: The ChFSIc promise for optimal scalability. All measurements refer to the use of the
algorithm when inputted approximate solutions.

eigenvalue equations. In the FLAPW method, the matrix pencils making up each sequence are
dense and are generally solved in isolation using direct solvers straight out of standard libraries. In
this paper we started off from the idea that a sequence of eigenproblems should be considered as
a whole and solved accordingly. The final aim is to uncover the possibility of a different approach
where the connecting factor between eigenproblems can be exploited to accelerate the solution of
the entire sequence.

To this end we illustrate the existence of the correlation between eigenpencils: subspace angles
between eigenvectors of adjacent problems decrease monotonically as the sequence progresses to-
wards convergence of the FLAPW DFT self-consistent cycle. In other words, eigenproblems of
growing outer-iteration indices enjoy increasingly collinear eigenvectors. Our approach focuses on
exploiting this property of the sequence by employing an iterative eigensolver tailored to accept the
solution of an eigenproblem at a certain iteration to solve the eigenproblem at the next one. Out of
the several variants of currently available iterative methods we selected three promising eigensolvers
and proceeded to devise numerical experiments to test the alternative approach. In the context of
the FLAPW method this is a novel and unexplored methodology.

The block solvers we evaluate represent three different classes of iterative methods: Davidson,
conjugate gradient and subspace iteration methods. We carried out an exhaustive series of CPU
time measurements for each algorithm. Times to reach solution were taken initializing the solvers
with both random vectors and approximate solutions with respect to outer-iteration index. Each
measurement was performed for eigenproblems of different sizes, a 5-10% range of sought-after
eigenspectrum, and sequences {P(`)} of increasing length. Speed-ups were plotted as the ratio
between “random” over “approximate” CPU times.

The numerical results show that all eigensolvers take an increasing advantage of the approximate
solutions as the outer-iteration index increases. While BChDav is probably over penalized by its use
on dense eigenproblems, Lobpcg and ChFSI seem to be able to counter-balance their non-optimal
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use by substantially increasing their performance. In particular both solvers experience a speed-
up larger than 2.5X towards the end of the sequence. These results carry evidence that a different
approach to solve sequences of correlated eigenproblems arising in DFT is not only possible but
desirable.

Among the three solvers ChFSI seems to have an extra performance edge thanks to a consistent
increase of effectivity for larger sized systems. This result is confirmed by numerical tests run on
a C language version of the algorithm and it is further strengthened by the promise for excellent
scalability of this eigensolver: when the solver is run in a multi-threaded BLAS environment it
scales increasingly better for larger sized eigenproblems reaching an efficiency above 85%. Since
the size of the eigenproblems depends linearly on the number of atoms, optimal scalability is the
crucial element which enables the use of a larger number of processors in order to maximally expand
the size of the physical system that can be simulated [17].

In conclusion we observe that out of three iterative block eigensolvers, two of them greatly
benefit from the use of approximated solutions. This result indicates the possibility of a different
strategy in solving sequences of dense eigenproblems in the context of DFT. Instead of using a direct
solver for each single eigenproblem in isolation it could be more efficient to exploit the numerical
properties of the sequence as a whole. Eventually this change in strategy could lead to substantial
speed-up of the entire self-consistent outer-iterative process.

While our conclusions constitute a proof of concept, they do not claim to be an exhaustive
performance analysis. Some of the described algorithms are already available on working platforms
more appropriate for performance studies [18]. Moreover, current efforts are underway to parallelize
ChFSIc for shared, distributed and hybrid architectures and a thorough study on its performance
will be presented in a follow-up publication. Eventually, our goal is to conclusively demonstrate
that, despite the dense nature of DFT eigenproblems, a promising block iterative eigensolver like
ChFSIc together with an appropriate strategy to reuse previous solutions, can be competitive with
direct solvers when only a fraction of the eigenspectrum is sought after.

The authors would like to thank Prof. Bientinesi for his support, collaboration and steady flow of
suggestions, Dr. Wortmann for his prompt support with the use of FLEUR and the provision of the
physical systems for the numerical tests, Prof. Zhou for kindly providing one of the Matlab routines
used in running the numerical tests, Prof. Chelikowsky for his suggestions and finally Prof. Blügel
for his enthusiasm and support for our ideas. A special acknowledgement to the Jülich Supercom-
puting Centre and the John von Neumann Institute for Computing for providing the computational
resources to perform all numerical experiments.
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