Investigation of Runaway Electron generation and Mitigation on TEXTOR

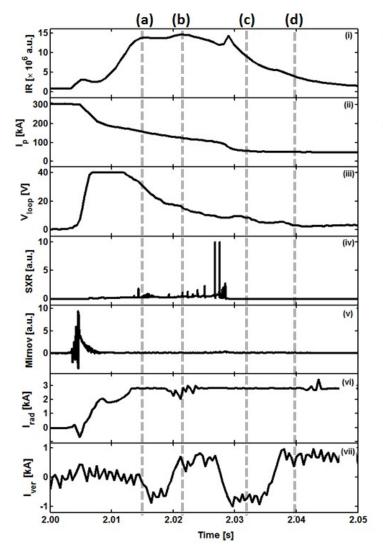
R Koslowski¹, A Lvovskiy¹, K Wongrach², L Zeng¹, TEXTOR Team

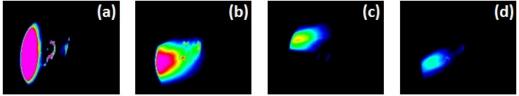
¹FZ Jülich, ²HHU Düsseldorf

Disruption Physics at TEXTOR

- TEXTOR is well suited to study disruption physics (especially REs)
 - Carbon walls / limiter
- Two DMVs
 - 50 ml; 3.5 MPa; 10 mm; 40 mm tube; 1.5 m from LCFS
 - 110 ml; 10 MPa; 30 mm; no tube; 0.1 m from LCFS
- IR camera measuring the synchrotron radiation from REs ($W_{\rm RE} \sim 25$ MeV)
- Dispersion interferometer
 - CO₂ laser
 - Able to measure extremely high densities after MGI

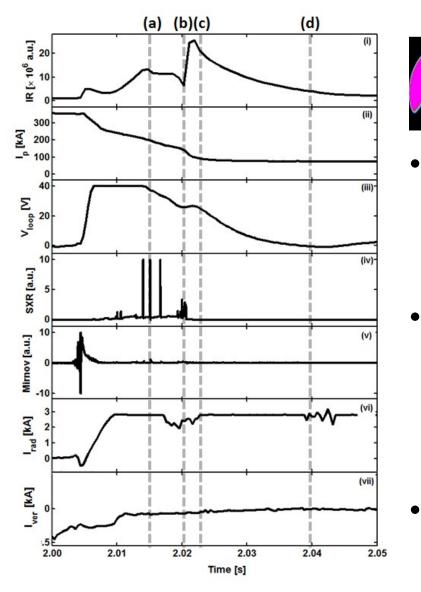
2013-04-24

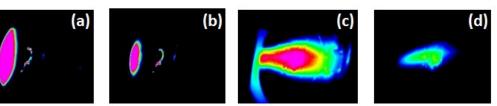

Runaway Electron Suppression


- One possible option for the DMS on ITER is MGI
 - Mitigation of heat loads (ok), reduction of forces (ok), suppression of runaway electrons (?)
- Deliberate RE generation on present machines uses MGI
 - MGI below critical density may make things worse!
 - Little experimental proof of achievement of critical density in present machines up to now
 - Parameter range of present machines may not allow to show that collisional RE generation is suppressed
- Alternative option:
 - Control RE beam for sufficient time to allow actions for controlled (slow) de-confinement of RE

TEXTOR Experiments

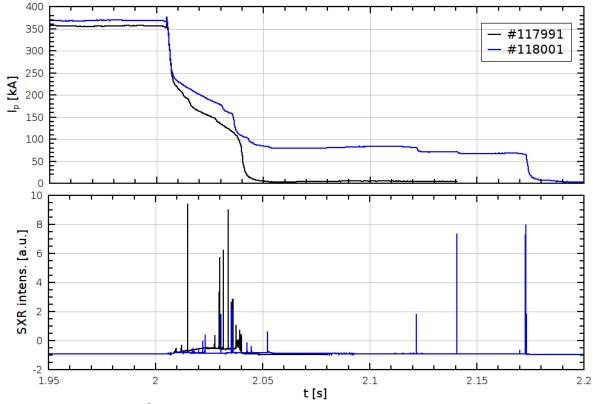
- Investigate and understand dynamics (stability) of RE beam (and thermal plasma which is surrounds REs)
 - Keep plasma control on after disruption
 - Use all available diagnostics to characterise RE plasma
 - Understand MHD stability issues which may influence generation and loss of RE (fast particle driven modes, ideal stability)
- Investigate RE production and loss processes
 - Dreicer, Avalanche, Hot tail RE generation
 - Magnetic turbulence
 - MGI and RMP


Dynamics of RE Beam



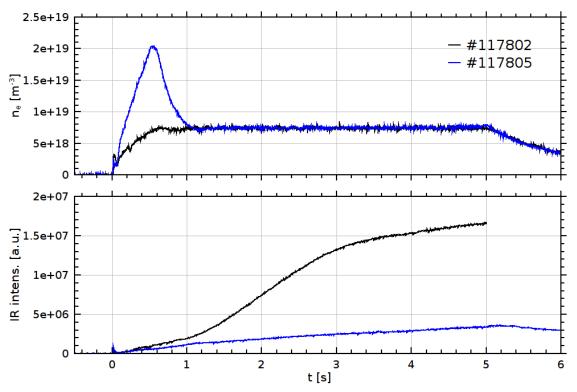
- Control of RE beam difficult because of transients which are clipped in amplifier before integrator
- RT feedback perturbed
- Feed forward approach allows better control of REs
- Synchrotron radiation (emitted by ~25 MeV REs) allows to determine size and position of RE beam

RE Beam Confinement



- During current drop
 - RE beam suddenly moves toward LFS
 - Current drops to (almost) zero
 - After end of current plateau
 - High energy REs survive over a few tens of milliseconds
 - Runaways decay smoothly
 - No change in radial position
- Observed in 23 discharges

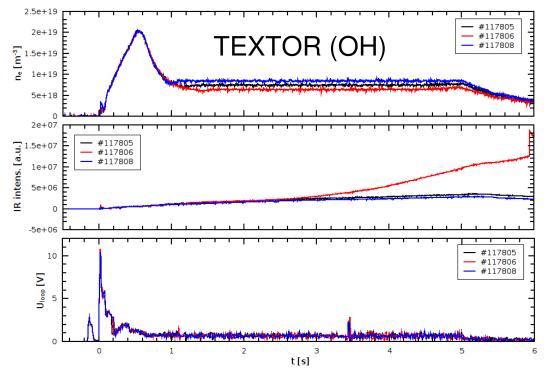
K Wongrach


Optimised Control of REs

- REs are generated by MGI using Ar
- No RE plateau, but no. of REs decays (probaly because of high gas pressure in vessel)
- SXR spikes indicate rapid loss processes (accompanied by decreases in RE content)
- RE currents below some critical value decay quickly to zero (ideal instability?)

2013-04-24

Superthermal Electrons Produced During Plasma Startup

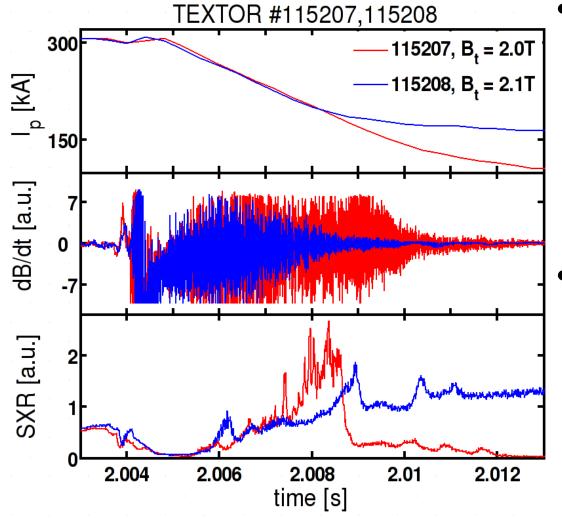


- IR camera detects synchrotron radiation from electrons with 25 MeV
- Plasma startup at high U_{loop} produces high energetic tail of electron energy distribution
- Density pulse strongly suppresses superthermals during startup

2013-04-24

H R Koslowski - ITPA-MHD Topical Group Meeting, Culham

Measure *E*_{crit} under well-controlled conditions (MDC-16)



- Threshold for (high energetic) REs : $n_e \sim 0.7^* \ 10^{19} \ \mathrm{m}^{-3}$
- Temperature (measurement difficult!) : $T_e \sim 2 \text{ keV}$
- $E_{\rm R} \sim 0.0056 \, {\rm V/m} \iff U_{\rm loop}/(2 \, \pi \, R) \sim 0.066 \, {\rm V/m} <<< E_{\rm D} \sim 1.4 \, {\rm V/m}$
- Result suggests that additional loss mechanisms are at work

2013-04-24

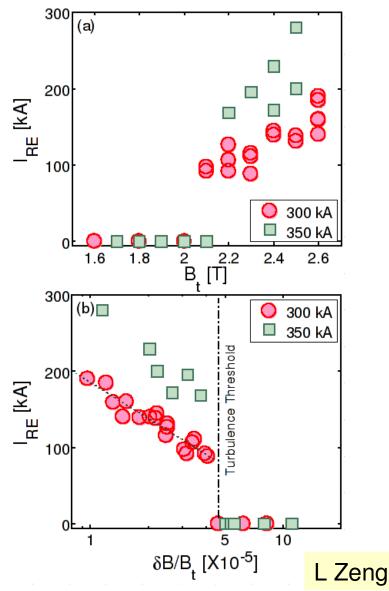
H R Koslowski - ITPA-MHD Topical Group Meeting, Culham

Magnetic Fluctuations during current quench

- #115207
 - without RE

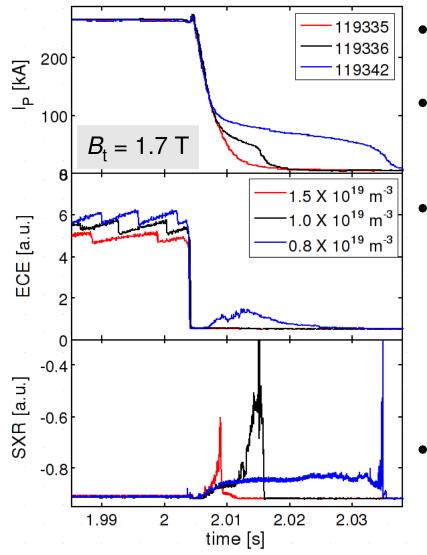
$$- B_{t} = 2.0 T$$

- sudden decrease in SXR signal
- amplitude of magnetic fluctuations is large

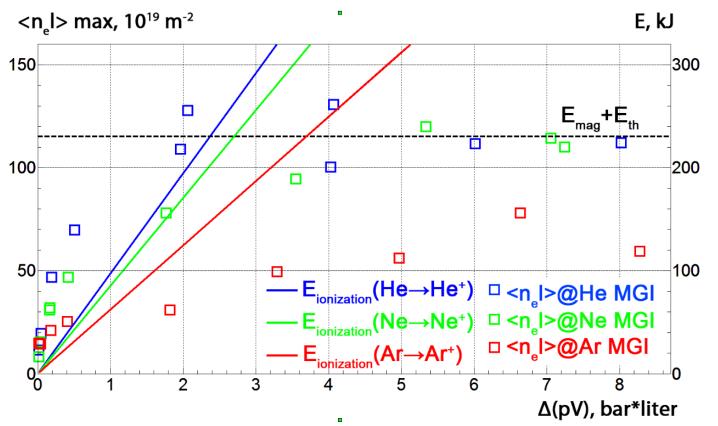

- with RE
- *B*_t=2.1 T
- SXR signal increases gradually
- magnetic fluctuations disapear

2013-04-24

L Zeng


TF Threshold for RE Generation

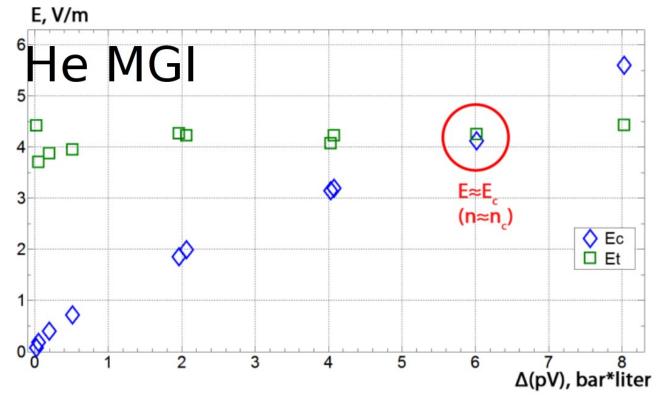
- Runaway electrons in most situations are only observed with Bt >2 T
- This observation does not depend on machine size (JET, JT-60, Tore Supra, TEXTOR, etc.)
- TEXTOR experiments shown a threshold in magnetic turbulence
- The magnetic turbulence during the current quench decreases with increasing B_t
- Magnetic fluctuations originate mainly from background plasma


2013-04-24

Hot Tail RE Generation

- Different plasma temperature before the disruption yields different amount of REs
- Primary generation due to the Dreicer field and the loss due to the magnetic turbulence are almost similar
- Hot tail runaway electron generation is caused by incomplete thermalization of the electron velocity distribution during rapid plasma cooling
 - Important RE production mechanism in tokamak disruptions if the thermal quench phase is sufficiently fast
- MHD modes during the thermal quench cause high energetic electron losses

Measured Free Electron Density after MGI


- Saturation in free electron density due to limited energy content of plasma
- Ar yields lower density than expected
 - Caused by with radiation losses (?)

2013-04-24

H R Koslowski - ITPA-MHD Topical Group Meeting, Culham

A Lvovskiy

Critical Density for RE Suppression

- (Preliminary) data suggest that the Connor-Hastie-Rosenbluth density could be achieved if
 - It is assumed that "missing" particles after injection are neutral and fill the vacuum vessel
 - Bound electrons are taken into account

2013-04-24

H R Koslowski - ITPA-MHD Topical Group Meeting, Culham

A Lvovskiy

Summary

- Runaway electron beams show rather complex dynamic behaviour
- Control of runaway beam possible but still rapid loss events
- Measured critical electric field for high energy runaway electron generation about 10 times larger than given by relativistic collisional theory
- Connor-Hastie-Rosenbluth density can possibly be reached by massive gas injection