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Disruption Physics at TEXTOR

* TEXTOR is well suited to study disruption physics
(especially REs)
— Carbon walls / limiter

* Two DMVs
— 50 ml; 3.5 MPa; 10 mm; 40 mm tube; 1.5 m from LCFS
— 110 ml; 10 MPa; 30 mm; no tube; 0.1 m from LCFS

* |R camera measuring the synchrotron radiation from
REs (Wqe ~ 25 MeV)

* Dispersion interferometer
— CO, laser

— Able to measure extremely high densities after MGl
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Runaway Electron Suppression

* One possible option for the DMS on ITER is MG

— Mitigation of heat loads (ok), reduction of forces (0k),
suppression of runaway electrons (?)

* Deliberate RE generation on present machines uses

MGl

— MGl below critical density may make things worse!

— Little experimental proof of achievement of critical density in
present machines up to now

— Parameter range of present machines may not allow to
show that collisional RE generation is suppressed

* Alternative option:
— Control RE beam for sufficient time to allow actions for
controlled (slow) de-confinement of RE
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TEXTOR Experiments

* Investigate and understand dynamics (stability) of RE
beam (and thermal plasma which is surrounds RES)
— Keep plasma control on after disruption
— Use all available diagnostics to characterise RE plasma

— Understand MHD stability issues which may influence
generation and loss of RE (fast particle driven modes, ideal
stability)

* Investigate RE production and loss processes
— Dreicer, Avalanche, Hot tail RE generation

— Magnetic turbulence
— MGl and RMP
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Dynamics of RE Beam
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RE Beam Confinement
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Optimised Control of REs
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REs are generated by MGI using Ar
No RE plateau, but no. of REs decays (probaly because of high gas pressure in

vessel)
SXR spikes indicate rapid loss processes (accompanied by decreases in RE

content)
RE currents below some critical value decay quickly to zero (ideal instability?)
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Superthermal Electrons Produced During
Plasma Startup
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IR camera detects synchrotron radiation from electrons with 25 MeV
Plasma startup at high U, produces high energetic tail of electron energy
distribution

Density pulse strongly suppresses superthermals during startup

2013-04-24 H R Koslowski - ITPA-MHD Topical Group Meeting, Culham



Threshold for (high energetic) REs : n, ~ 0.7* 10" m™
Temperature (measurement difficult!) : T, ~ 2 keV
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Result suggests that additional loss mechanisms are at work
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Magnetic Fluctuations during current quench
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TF Threshold for RE Generation
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Hot Tail RE Generation
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Different plasma temperature before the
disruption yields different amount of REs

Primary generation due to the Dreicer
field and the loss due to the magnetic
turbulence are almost similar

Hot tail runaway electron generation is
caused by incomplete thermalization of
the electron velocity distribution during
rapid plasma cooling

— Important RE production mechanism
in tokamak disruptions if the thermal
quench phase is sufficiently fast

MHD modes during the thermal quench
cause high energetic electron losses

L Zeng
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Measured Free Electron Density after MGl
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* Saturation in free electron densr[y due to limited energy content of
plasma
* Aryields lower density than expected

— Caused by with radiation losses (?) 2 Ll
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Critical Density for RE Suppression
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* (Preliminary) data suggest that the Connor-Hastie-Rosenbluth
density could be achieved if

— It is assumed that “missing” particles after injection are neutral and fill the
vacuum vessel

— Bound electrons are taken into account A Lvovskiy

2013-04-24 H R Koslowski - ITPA-MHD Topical Group Meeting, Culham 14



Summary

Runaway electron beams show rather complex
dynamic behaviour

Control of runaway beam possible but still rapid loss
events

* Measured critical electric field for high energy
runaway electron generation about 10 times larger
than given by relativistic collisional theory

* Connor-Hastie-Rosenbluth density can possibly be
reached by massive gas injection
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