
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Vol.14, No.3, July 2020, pp. 319~330

ISSN (print): 1978-1520, ISSN (online): 2460-7258

DOI: https://doi.org/10.22146/ijccs.57565 319

Received July 4th,2020; Revised July 18th, 2020; Accepted July 31th, 2020

Optimizing Virtual Resources Management using Docker

on Cloud Applications

Rendra Felani
1
, Moh Noor Al Azam

2
, Derry Pramono Adi

3
, Agung Widodo

4
,

Agustinus Bimo Gumelar
*5

1,2,3,4,5

Fakultas Ilmu Komputer, Universitas Narotama; Surabaya, Indonesia

e-mail:
1
rendra14@fik.narotama.ac.id,

2
noor.azam@narotama.ac.id,

3
derryalbertus@ieee.org,

4
agung.widodo@narotama.ac.id,

*5
bimogumelar@ieee.org

Abstrak

Penelitian ini bertujuan untuk mengoptimalkan server yang memiliki tingkat utilitas

rendah pada perangkat keras menggunakan teknik virtualisasi wadah dari Docker. Fokus

utama dalam penelitian ini adalah memaksimalkan kerja, CPU, RAM dan Hard Drive.

Penerapan teknik virtualisasi adalah untuk membuat banyak wadah karena masing-masing

wadah adalah untuk aplikasi untuk menjalankan sistem penyimpanan cloud dengan konsep

infrastruktur layanan CaaS (Container as a Service). Kontainer pada infrastruktur akan

berinteraksi dengan kontainer lain menggunakan perintah konfigurasi di Docker untuk

membentuk layanan infrastruktur seperti CaaS pada umumnya. Pengujian perangkat keras

dilakukan dengan menjalankan lima aplikasi penyimpanan cloud Nextcloud dan lima aplikasi

basis data MariaDB yang berjalan dalam wadah Docker dan diuji dengan pengujian acak

menggunakan dataset multimedia. Pengujian acak memerintahkan pemrosesan dataset

termasuk mengunggah dan mengunduh dataset secara bersamaan dan memantau sumber daya

CPU, RAM, dan perangkat keras Disk saat memproses dataset menggunakan statistik Docker,

HTOP, dan alat pemantauan Cockpit untuk menentukan kemampuan perangkat keras saat

memproses dataset multimedia.

Kata kunci— CaaS, Container, Docker, Virtualization

Abstract
This study aims to optimize servers with low utility levels on hardware using container

virtualization techniques from Docker. This study's primary focus is to maximize the work of the

CPU, RAM, and Hard Drive. The application of virtualization techniques is to create many

containers as each of the containers is for the application to run a cloud storage system with the

CaaS service infrastructure concept (Container as a Service). Containers on infrastructure will

interact with other containers using configuration commands at Docker to form an

infrastructure service such as CaaS in general. Testing of hardware carried out by running five

Nextcloud cloud storage applications and five MariaDB database applications running in

Docker containers and tested by random testing using a multimedia dataset. Random testing

with datasets includes uploading and downloading datasets simultaneously and CPU

monitoring under load, RAM, and Disk hardware resources. The testing will be done using

Docker stats, HTOP, and Cockpit monitoring tools to determine the hardware capabilities when

processing multimedia datasets.

Keywords— CaaS, Container, Docker, Virtualization

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 3, July 2020 : 319 – 330

320

1. INTRODUCTION

The development of infrastructure technology in cloud systems, especially cloud

storage, has increased significantly along with the emergence of public clouds and private

clouds. Many companies also have shifted workloads to the cloud [1], [2]. In recent years,

virtualization technology to support cloud infrastructure became popular. A common problem

with virtualization is that the required hardware must be above average in terms of performance

(which will also inevitably increase cost on hardware) to run the system, causing servers to

experience many hardware changes. Over time, cloud storage technology relies heavily on

infrastructure to run its operations. With the increasing need to build cloud storage

infrastructure, a system administrator must be able to design infrastructure on an existing server

to run cloud storage optimally. To meet the server's needs while simultaneously reducing cost,

server administrators must "tweak" the technology to replace traditional virtualization

techniques. Docker containers are present to provide solutions to traditional virtualization, such

as full virtualization and paravirtualization, by saving resources on hardware, such as CPUs,

RAMs, and Hard Drives. Chung et al. pointed out that the Docker container technology as a

virtualization management operating system using Docker containers has improved scalability

[3]. Docker can replace the performance of smaller and faster hypervisors to start virtualization.

In many other computing environments, where traditional virtualization is still an

eligible option, cloud computing is struggling using this old technology. Cloud servers generally

are used to host multiple virtual machines in the same physical server [4]. However, in Karpoff

and Lake's patented work, it is stated that using virtualization, the virtual disk image is known to

the host computer can be larger than the actual consumed amount of physical storage [5].

Traditional virtualization will take a high toll on physical servers, especially on High-

Performance Computer (HPC). Administrators will find themselves more likely to add new

servers, which is not cost-effective [6], [7].

2. METHODS

In the past, computing operation operated using one physical server, and each server is

running by one application [8], [9]. So, it would be demanding several physical servers if it runs

several applications. Considering these limitations, we used the Docker as the "wrapper" of each

self-managed and separate running application, which will later retrieve the resources needed

[10]. In this section, the whole design of experimental scope settings is presented to determine

the Docker container's performance when processing data with a multimedia dataset.

2.1 Container Virtualization

Docker is a container virtualization technology that behaves similarly to a lightweight

virtual machine; Docker container has emerged as a complement to virtual machine technology;

it also offers slightly less isolation between processes. They are lighter and easier to share with

[11], [12].

Docker container virtualization is a virtualization method for running multiple

applications isolated on the host using the main operating system's kernel sharing technique.

Container virtualization is often called operating-system-level virtualization, which allows

running multiple applications on one host. Figure 1 shows a simple illustration of the

architectural differences between Docker containers and Virtual Machines; it also shows that the

Docker container is more compact in running applications and does not require a guest OS.

Therefore it should have lighter architectural advantages running on the server.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Optimizing Virtual Resources Management Using Docker on Cloud ... (Rendra Felani)

321

Figure 1 Comparison of Docker Container and Virtual Machine Architecture [13]

2.2 Cloud Storage Application

 Nextcloud is a client-server application for creating and operating file hosting services,

meaning its data can be accessed almost everywhere [14]. The use of the Nextcloud serves as a

medium for entering data as a parameter testing the server's strength in serving the requested

multiprocess on the client-side. Besides Nextcloud, there are other cloud storage applications,

but Nextcloud officially supports Docker container technology, which is proven by the

availability of images on Docker hub. In other words, Nextcloud is capable and ready to use in

Docker container architecture [15].

2.3 Flow of The Experiment

The flow of the experiment carried out in this research is depicted in Figure 2. The first

step is to collect multimedia datasets. This dataset contains video files, application files, and

picture files. Further explanation of the dataset used in this research is presented in sub-section

III.B "Multimedia Dataset." The second step is to put the collected dataset into the storage of a

low-spec server. Briefly, the server has 2GB of RAM, Dual-core CPU, and 60GB of storage.

Figure 2 Block Diagram of Experiment’s Flow

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 3, July 2020 : 319 – 330

322

Using Docker, we run configuration for the server for MariaDB and Nextcloud

application [16], [17]. These applications apply as the dataset processing media and monitoring

for each of hardware performance while in different states. This step is done using various

monitoring tools, namely HTOP, Docker stats, df, and Cockpit [18], [19]. Each hardware device

can use the same monitoring tool due to the tool being able to read much information contained

in the server’s hardware.

The primary aim of this experiment is to test low-spec server performance by running

ten cloud applications simultaneously using Docker as an engine to manage several running

applications. This experiment is expected to be used as a reference in selecting hardware in

building a server that will be used to run cloud applications and optimize its hardware

performance.

2.4 Multimedia Dataset

The experiment in this study uses a multimedia dataset of 4.12GB containing video

files, image files, ISO files, and audio files with the testing process carried out by uploading and

downloading simultaneously using the Nextcloud (a cloud storage application) that runs above

the Docker container.

In the experiment session, uploading and downloading datasets from and to the server

will be carried out through the Nextcloud, which results in changes in hardware resources on the

server. These changes will be recorded and reviewed to determine the server's ability to process

the dataset in the experiment. The design of the program for testing is made from a Docker

compose script, which is immediately executed only once. The script settings contain a pair of

applications between the Nextcloud and MariaDB that are interconnected, making it able to be

run all at once as a cloud storage application.

 Table 2 Docker Compose Script

nextcloud:

container_name: nextcloud

image: nextcloud

1 ports: - 80:80

2 volumes:

3 - /mnt/vol/containers/cloud/nextcloud/apps:/var/www/html/apps

4 - /mnt/vol/containers/cloud/nextcloud/config:/var/www/html/config

5 - /mnt/vol/containers/cloud/nextcloud/data:/var/www/html/data

6 depends_on:

7 - db

8 db:

9 container_name: maria-db

10 image: mariadb

11 volumes:

12 - /mnt/vol/containers/cloud/mariadb:/var/lib/mysql

It can also be seen that each Nextcloud will be paired with the MariaDB, which is

located in a different container. In total, there are ten Docker containers with details of five

Nextcloud containers and five Docker containers. The dataset used in testing uses a multimedia

dataset consisting of video files, image files, ISO files, and audio files. The details of the dataset

used in the experiment are shown in Table 2.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Optimizing Virtual Resources Management Using Docker on Cloud ... (Rendra Felani)

323

Figure 3 Architectural design within the Docker Container Scope

Before setting Nextcloud on the Docker, we added the “Docker-compose" tool to run

orchestrate on containers and monitor tools to monitor server activity at idle and when

processing multimedia datasets. To run and monitor CPU performance, we use three standard

monitoring applications, namely Docker Stats, HTOP, and Cockpit monitoring.

Docker Stats is a monitoring tool specifically designed to monitor Docker containers.

HTOP is the default Ubuntu Server monitoring tool, mainly used to monitor hosts or virtual

Operating System resources and run applications. The Docker statistics command provides for

observing running container status, resource memory, and I/O networks. HTOP is the main

system monitor, commonly used on most Linux-based operating systems. With HTOP, we can

see CPU Usage, Memory Usage, and Use of Swap Files, all distinguished in color graphics

format. Performing tasks, the average workload is displayed at the top of the HTOP. Therefore,

HTOP is an easy-to-use system monitoring tool, in a very efficient yet real-time, capable of

displaying a complete list of ongoing processes. The third monitoring application is the Cockpit.

The Cockpit can manage containers through Docker. This functionality is present in the Cockpit

Docker package. Cockpit communicates with Docker daemons via the API via socket

/var/run/docker.sock UNIX [18]. By doing this, we will be able to determine the server's ability

to process multimedia datasets.

2.5 Hardware Specification

The servers used in the experiment with specifications shown in Table 3 and the scope

for Nextcloud to run in the Docker container are shown in Figure 4.

Table 3 Hardware Specification of the Tested Server

Processor Intel (R) Dual-core(R) CPU Dual-Core @2.20GHz

CPU Core (s) 2 Cores

RAM 2 GB

Harddisk 60 GB

Platform Ubuntu Server 16.04.4 LTS, Docker 18.03.0-ce, Docker compose,

Nextcloud, MariaDB

Monitoring Tools Docker stats, HTOP, Cockpit monitoring

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 3, July 2020 : 319 – 330

324

Figure 4 Block Diagram of Nextcloud Configuration on Docker

Optimization in this study focused on testing servers with low specifications to run

multi-service cloud storage applications in Docker containers. The workload, when uploading

and downloading multimedia datasets, certainly impacted the server hardware.

3. RESULTS AND DISCUSSION

The experiment begins by recording the initial condition of the server resource before

running the multimedia dataset. Recording server conditions at idle is needed to determine the

conditions under which the server runs the Docker container and the main operating system

[20].

Figure 5 CPU Condition on Idle

Figure 5 shows the general patterns that occur during initiation or conditions before

conducting experiments with multimedia datasets. The record of these conditions will be used as

a parameter of resource changes when processing the datasets. The CPU resources needed to

run the entire system, including the Docker container. The total resources needed by the server

are around 4% and 9% of the resources that have two cores on the processor. The distribution of

the CPU resource detail for each container will be described in Figure 6, with details of each

running Docker container.

Figure 6 Conditions of Each Applications Running on Top of Docker

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Optimizing Virtual Resources Management Using Docker on Cloud ... (Rendra Felani)

325

Figure 6 shows the resource container when idle or is not processing the dataset. Figure

6 shows that the MariaDB database container takes up more CPU resources, while the

Nextcloud container does not consume much of the CPU resources. The use of significant

resources occurs in MariaDB because the dataset is extensive and stored on a single storage

device, which inevitably affects the global server performance conditions. Transfer data and

loading are considered not in the ideal condition since they took too much time in a simple

queuing system. The type of data used in this experiment is a vast set of structured data. In

general, MongoDB is used in many cases to store unstructured documents or data. Data stored

in MongoDB can then be reviewed and analyzed so that more structured information can be

stored in other databases. The database in SQL format has always been a viable choice for big

data architecture services. In MongoDB's internal architecture, relational databases would fail if

the collected data is not standardized and organized into large objects, such as documents and

multimedia clip objects.

Figure 7 RAM Condition on Idle

Resources of RAM are the most significant database element because they help change

the variables of the database program. Additional memory requires bigger keys and table caches

stored in memory to allow disks to navigate; the order of magnitude would be decreased later.

Figure 7 shows a chart of RAM activity on idle. It can be seen that RAM conditions in the

MariaDB database container show a higher usage difference even though it is on idle. This

phenomenon is likely to happen due to the use of memory swaps.

Figure 8 Pie Chart of Hard Drive’s Capacity on Idle

Another feature that is not less important is the HyperThreading (HT) feature. HT

involves two processing units that share cache on one hardware (single-core). If two cores are

put to work on a similar task, then a cache will be quite useful. MySQL-based databases are

lacking excellent performance while incorporating multiple cores. So, if the HT feature is

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 3, July 2020 : 319 – 330

326

disabled, the remaining cores will run a bit faster. Figure 8 shows the sharing of capacity on the

hard drive. Details of sharing capacity in the Docker container are shown in Table IV, recorded

using Docker stats as its monitoring tools.

Table 4 Overall Resource on Docker Container on Idle

Name CPU% Mem.

Usage

Mem% Net I/O Block I/O

nextcloud1 0.00% 86.07MiB 4.30% 2.26MB/ 36.4MB/

 1.96MB 1.6MB

nextcloud5 0.00% 47.14MiB 2.36% 148kB/ 14.3MB/

 658kB 0B

nextcloud3 0.00% 47.23MiB 2.36% 143kB/ 20.5MB/

 556kB 0B

nextcloud2 0.00% 44.38MiB 2.22% 141kB/ 22.7MB/

 556kB 0B

nextcloud4 0.00% 47.09MiB 2.35% 155kB/ 15.7MB/

 663kB 0B

maria-db3 0.13% 99.57MiB 4.98% 31.8kB/ 14.1MB/

 105kB 2.89MB

maria-db5 0.05% 99.52MiB 4.98% 31.3kB/ 22.9MB/

 104kB 2.83MB

maria-db4 0.19% 99.71MiB 4.99% 33.6kB/ 16.5MB/

 111kB 2.74MB

maria-db2 0.21% 99.48MiB 4.97% 32.2kB/ 27.3MB/

 105kB 2.83MB

maria-db1 0.09% 99.48MiB 4.97% 659kB/ 17.5MB/

 2.05MB 30.1MB

Table 4 shows all the resources needed by the Docker container: starting from the CPU,

RAM, and Disk. It is seen in Table 4 is a wasteful container that consumes RAM, the MariaDB

database container. For the Nextcloud container, it does not consume much RAM. Next is the

recording of monitoring when randomly targeted, which starts recording CPU resources on the

Cockpit monitoring.

Figure 9 CPU Resources when Processing Datasets, Recorded by the Cockpit

Figure 9 shows the CPU resource movement when processing the dataset. The chart

from Figure 9 shows that the CPU works around 50% of the available resources. The CPU still

leaves many resources when random testing. In a randomized test, it took five minutes with the

CPU working average at a maximum level of 50 out of 100, recorded by the Cockpit

monitoring. The next step is to divide the resource container in the post-testing phase.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Optimizing Virtual Resources Management Using Docker on Cloud ... (Rendra Felani)

327

Figure 10 Chart of the Division of Labor on Randomized Test of Docker Containers

Figure 10 shows that the Nextcloud resource container has high resource spikes. Not all

of the Nextcloud resource containers have a significant increase. However, from this case, it can

be seen if the container is experiencing a heavy processing load, it will increase the resource

needed by the container.

Figure 11 RAM Condition on Processing the Dataset

Figure 11 shows a chart containing resource RAM, which shows RAM activity

increased significantly in the Nextcloud container. We encountered an increase in RAM when

processing datasets to reach 89% of 100% of existing resources, as recorded by HTOP.

Nevertheless, that did not last long, just a few seconds; then, RAM experienced a 70% to 80%

decrease in the Nextcloud container. From this test, it can be seen that large RAM requirements

are fundamental and inevitable in server building.

Figure 12 CPU Condition when Running the Dataset, Recorded by HTOP

Figure 12 shows the CPU resource change process when processing datasets where the

CPU condition with core number 2 works optimally until it reaches 100%; it also can be seen

that the core processor alternates in processing data when core number 1 runs optimally, the

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 3, July 2020 : 319 – 330

328

core number 2 gives free space to the core processor, up to 40% and alternates continuously

until the testing process is complete.

Figure 13 Pie Chart showing Hard Drive’s Capacity when Processing Datasets

Figure. 13 shows the resource disk described in the form of a pie chart when processing

a dataset. In Figure. 11, it can be seen that the most moving resource is the resource of the

Nextcloud container. To find out the details of all the resources used by the Docker container,

see Figure. 12.

Table 5 Overall Resource on Docker when Processing Dataset
Name CPU% Mem. Usage Mem% Mem. Avail. Block I/O

nextcloud1 8.49% 76.91MiB 3.85% 600MB/

4.2MB

621MB/

1.61MB

nextcloud5 6.47% 80.79MiB 4.04% 1.57GB/

58.6MB

1.73GB/

168kB
nextcloud3 1.91% 12.78MiB 0.64% 11.8MB/

1.98MB

53.6MB/

9.45MB

nextcloud2 1.68% 32.24MiB 1.61% 6.86MB/

1.82MB

63.6MB/

5.13MB
nextcloud4 9.30% 97.28MiB 4.86% 2.31GB/

608MB

2.65GB/

0B

maria-db3 0.15% 38.65MiB 1.93% 672kB/

2.03MB

17.9MB/

47.3MB
maria-db5 0.20% 38.15MiB 1.91% 2.44MB/

7MB

26.2MB/

123MB

maria-db4 0.12% 40.59MiB 2.03% 3.24MB/

9.45MB

20MB/

139MB
maria-db2 24.39% 24.26MiB 1.21% 576kB/

1.79MB

36.3MB/

35MB

maria-db1 0.42% 25.15MiB 1.26% 1.79MB/

5.53MB

23.3MB/

92.7MB

Table 5 shows the resource containers recorded from Docker stats. In Table 5, it can be

seen that the performance of the Nextcloud container consumes the most RAM resources. While

the disk and CPU, resources do not experience many increases. For details on disk resource

performance, see Figure. 14.

IJCCS ISSN (print): 1978-1520, ISSN (online): 2460-7258

Optimizing Virtual Resources Management Using Docker on Cloud ... (Rendra Felani)

329

Figure 14 Chart of Disk trends during Random Testing using datasets

Figure 14 shows the resource movement on the Disk when processing the dataset. In

Figure 14, it can be seen that there is an increase in the disk with a maximum number of 64% of

100% of the available disks. In the chart, it can be seen that there is a time window for 5

minutes when the resource processes the dataset; resources experienced a significant increase.

Then, the resource conditions are gradually back to idle.

4. CONCLUSIONS

The test results show that optimization means the server can run multiple applications

all at once. It takes about five servers with the traditional infrastructure to build cloud storage

compared to the optimized one. Servers with Virtual Machines require high-end hardware.

Contradicted and proved with this experiment's result, the Docker container virtualization can

tackle this high-cost hardware. These are proven by resource monitoring of CPU, showing a

randomized dataset test resulting in 15.5% and 18.8% percentage of performance, respective to

its cores. For RAM, it shows 1.3GB is in use while processing the dataset, with 61.8% of total

usage. The remaining Hard Drive capacity is around 46GB of a total of 56GB. The test takes up

to 14% of hard drive resources, including the main operating system (Ubuntu Server 16.04

LTS), Docker, monitoring tools, and Docker’s image application.

Future work is expected to use SSD or NVMe-based storage for faster response time

and a bigger memory size. We also planned to utilize load balancing and scaling to coordinate

and manage their execution and handle issues related. Furthermore, this model is beneficial for

the development in swarm and orchestration mode.

REFERENCES

[1] J. Kumar and A. K. Singh, “Workload Prediction in Cloud using Artificial Neural

Network and Adaptive Differential Evolution,” Futur. Gener. Comput. Syst., vol. 81, pp.

41–52, Apr. 2018.

[2] M. Attaran and J. Woods, “Cloud Computing Technology: Improving Small Business

Performance using the Internet,” J. Small Bus. Entrep., vol. 31, no. 6, pp. 495–519, Nov.

2019.

[3] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai, “Using Docker in high

performance computing applications,” in 2016 IEEE Sixth International Conference on

Communications and Electronics (ICCE), 2016, pp. 52–57.

[4] F. Sabahi, “Secure Virtualization for Cloud Environment Using Hypervisor-based

Technology,” Int. J. Mach. Learn. Comput., vol. 2, no. 1, pp. 39–45, 2012.

[5] W. Karpoff and B. Lake, “Storage virtualization system and methods.” Google Patents,

2009.

 ISSN (print): 1978-1520, ISSN (online): 2460-7258

IJCCS Vol. 14, No. 3, July 2020 : 319 – 330

330

[6] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and P. Reynolds, “Cloud

Computing: A New Business Paradigm for Biomedical Information Sharing,” J. Biomed.

Inform., vol. 43, no. 2, pp. 342–353, Apr. 2010.

[7] J.-H. Huh, “Server Operation and Virtualization to Save Energy and Cost in Future

Sustainable Computing,” Sustainability, vol. 10, no. 6, p. 1919, Jun. 2018.

[8] I. Mohiuddin and A. Almogren, “Workload Aware VM Consolidation Method in

Edge/Cloud Computing for IoT Applications,” J. Parallel Distrib. Comput., vol. 123, pp.

204–214, Jan. 2019.

[9] W. Wu, W. Lin, and Z. Peng, “An Intelligent Power Consumption Model for Virtual

Machines under CPU-intensive Workload in Cloud Environment,” Soft Comput., vol. 21,

no. 19, pp. 5755–5764, Oct. 2017.

[10] J. Turnbull, The Docker Book. Turnbull Press, 2014.

[11] M. Nardelli, C. Hochreiner, and S. Schulte, “Elastic Provisioning of Virtual Machines

for Container Deployment,” in Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering Companion - ICPE ’17 Companion, 2017, pp.

5–10.

[12] I. Mavridis and H. Karatza, “Performance and Overhead Study of Containers Running

on Top of Virtual Machines,” in 2017 IEEE 19th Conference on Business Informatics

(CBI), 2017, pp. 32–38.

[13] L.-H. Hung, D. Kristiyanto, S. B. Lee, and K. Y. Yeung, “GUIdock: Using Docker

Containers with a Common Graphics User Interface to Address the Reproducibility of

Research,” PLoS One, vol. 11, no. 4, p. e0152686, Apr. 2016.

[14] T. Ngo, “Cloud Security: Private Cloud Solution with End-to-end Encryption,” Search

Results Web result with site links Haaga-Helia University of Applied Sciences, 2018.

[15] R. Yasrab, “Platform-as-a-Service (PaaS): The Next Hype of Cloud Computing,” CoRR,

vol. abs/1804.1, 2018.

[16] S. Kariyattin, S. Marru, and M. Pierce, “Evaluating NextCloud as a File Storage for

Apache Airavata,” in Proceedings of the Practice and Experience on Advanced

Research Computing, 2018, pp. 1–4.

[17] W. Wood, “MariaDB Solution,” in Migrating to MariaDB, Berkeley, CA: Apress, 2019,

pp. 59–71.

[18] A. B. Gumelar, D. A. Lusia, A. Widodo, and R. Felani, “Using Neural Networks on

Cloud Container’s Performance Comparison By R on Docker (ROCKER),” 2018 Int.

Symp. Adv. Intell. Informatics, p. 5, 2018.

[19] L. Huang, K. Milfeld, and S. Liu, “Tools for Monitoring CPU Usage and Affinity in

Multicore Supercomputers,” 2020, pp. 69–86.

[20] A. B. Gumelar, “An Anatomy of Machine Learning Data Visualization,” in 2019

International Seminar on Application for Technology of Information and

Communication (iSemantic), 2019, pp. 1–6.

