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Abstract 9 

The present work investigates the formation and development of cavitation of a multicomponent Diesel fuel surrogate 10 

discharging from a high-pressure fuel injector operating in the range of injection pressures from 60MPa to 450MPa. The 11 

compressible form of the Navier-Stokes equations is numerically solved with a density-based solver employing the 12 

homogeneous mixture model for accounting the presence of liquid and vapour phases, while turbulence is resolved using a 13 

Large Eddy Simulation approximation. Simulations are performed on a tapered heavy-duty Diesel engine injector at a nominal 14 

fully-open needle valve lift of 350μm. To account for the effect of extreme fuel pressurisation, two approaches have been 15 

followed: (i) a barotropic evolution of density as function of pressure, where thermal effects are not considered and (ii) the 16 

inclusion of wall friction-induced and pressurisation thermal effects by solving the energy conservation equation. The PC-17 

SAFT equation of state is utilised to derive thermodynamic property tables for an eight-component surrogate based on a 18 

grade no.2 Diesel emissions-certification fuel as function of pressure, temperature, and fuel vapour volume fraction. 19 

Moreover, the preferential cavitation of the fuel components within the injector’s hole is predicted by Vapour-Liquid 20 

Equilibrium calculations; lighter fuel components are found to cavitate to a greater extent than heavier ones. Results indicate 21 

a significant increase of temperature with increasing pressures due to friction-induced heating, leading to a significant 22 

increase in the mean vapour pressure of the fuel and an increase of the mass of fuel cavitating, but at the same time to an 23 

unprecedented decrease of cavitation volume inside the fuel injector with increasing injection pressure. This has been 24 

attributed to the shift of the pressure drop from the feed to the back pressure inside the injection hole orifice as fuel 25 

discharges; as injection pressure increases, so does the pressure inside the orifice, confining the location of cavitation 26 

formation to a smaller volume attached to the upper part of orifice, thus restricting cavitation growth.  27 

Keywords: cavitation, multicomponent, PC-SAFT, Diesel, thermal effects, preferential vaporisation 28 
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1. Introduction 30 

The United Nations Environment Programme (UNEP) reported in November 2018 mentions that “pathways reflecting current 31 

nationally determined contributions imply global warming of about 3°C by 2100, with warming continuing afterwards” in its 32 

assessment of the Paris Agreement1.  As the transport sector accounts for ~23% of the total Greenhouse Global Emissions2, 33 

attempts have been made to study and find a means to reduce them, including utilisation of Diesel surrogates3, additives in 34 

Diesel and bio-Diesel blends4, multiple injections per power cycle5 and increase in injection pressure6. Modern Diesel engines 35 

operate with upstream pressures of around 200MPa at full load, although the current trend is to increase them up to 300MPa, 36 

in accordance with the latest emission regulations. Experimental studies have been done regarding sprays at extreme 37 

injection pressures, up to 500MPa7, reporting an increase in the spray tip penetration, better mixing, and flame stability, 38 

potentially driving towards a better combustion and less emissions. However, due to the micrometre scales of injectors, high 39 

injection pressures will irremediably cause very high fuel velocities which, combined with the sharp geometric changes in the 40 

injector passages, lead to local depressurisation with significant pressure gradients. If the pressure decreases beyond the 41 

fuel’s saturation point, the fuel cavitates, which in turn, results to injector underperformance8 while it is related to mass flux 42 

choke due to blocking of the free flow9 and possible cavitation erosion. Despite this, cavitation can be beneficial when 43 

managed effectively, as it promotes liquid jet atomisation10-14 increases the spray cone angle15 and thus, mixing and 44 

combustion16 is enhanced.   45 

As cavitation measurements with real-size injectors operating pressures beyond 200MPa17, 18 is not possible up to now, 46 

simulation models can offer further insight into the nozzle flow. Both the Volume of Fluid method (VOF)19, 20 and the 47 

Homogeneous Equilibrium Model (HEM)21 have been used to simulate the presence of the second phase due to cavitation 48 

and validated against relevant experiments at lower pressures22. Such models  can be used to study the formation and 49 

transport of the vapour phase, the turbulent fluctuations in velocity and pressure and the effect of non-condensable gases23. 50 

It has been also possible to look into the effect of liquid and vapour compressibility on supercavitation formation24.  51 

An additional complexity related to the increase of injection pressure in modern fuel injection systems is related to the strong 52 

velocity gradients that induce wall friction, generating an important source of heating25, 26.  Nonetheless, thermal effects are 53 

typically neglected in relevant simulation studies and the flow within the fuel injector is considered isothermal, while the 54 

thermodynamic properties of the fuel are assumed constant. However, as the pressure increases within the injector, 55 

significant changes to fuel physical properties are realised, which are critical in the formation of cavitation27 and affect 56 

combustion and emissions28. With regards to liquid density variation, a barotropic evolution of the liquid density as function 57 

of pressure is frequently utilised29. A barotropic equation has been derived in past studies following Kolev’s Diesel properties 58 

collection30 or single component surrogates using the NIST Refprop31 database. Such simplifications may lead to deviations in 59 

the discharge coefficient and fuel heating predictions with respect to the real fuel, particularly in cases of high pressure 60 

injections25. For the vapour phase, the usual assumption adopted is the ideal gas law behaviour. 61 
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Real Diesel fuels are typically composed of hundreds of components, which cannot be addressed using constant properties 63 

or a simplified equation of state (EoS). Composition effects in Diesel fuel are related to changes in the spray atomisation32 64 

and spray tip penetration33, but the cavitation of each component in the multicomponent fluid during injection has not been 65 

addressed. There is only one related study in which the effect of non-condensable gas on cavitation of a single component 66 

fuel during injection is analysed34, modelled with a cubic EoS. Experiments of Diesel and biodiesel fuel mixtures have shown 67 

that the biodiesel content slows down cavitation due to its higher molar weight35, which was also seen numerically at extreme 68 

temperatures36. Still, most studies regarding preferential cavitation and transport based on the solution of the full Navier-69 

Stokes equations are based on models for fuel droplets in a gaseous environment37-39.  70 

 71 

In an effort to simulate in a more accurate way the effect of fuel property variation at different conditions for multi-72 

component fuels, the PC-SAFT equation of state40 can be used. This is a theoretically derived model, based on the perturbation 73 

theory41-44, that requires only three molecular-based parameters per component for fluid property calculations. There are 74 

several advantages in using the PC-SAFT compared to a cubic equation of state for calculating fluid properties. The PC-SAFT 75 

predicts derivative properties (such as the speed of sound) with satisfactory accuracy, reducing errors by a factor of up to 76 

eight45, 46, as compared to predictions with a cubic equation of state (such as the Peng-Robinson47 or Soave-Redlich-Kwong48). 77 

Density predictions with the PC-SAFT exhibit six times lower error for a widely used surrogate such as dodecane49 and half 78 

the error of those made with improved cubic equations, such as volume-translated versions50. The PC-SAFT provides 79 

satisfactory agreement between calculated and experimental properties of reservoir fluids51 and natural gas52.  80 

 81 

The aim of the current work is to investigate the in-nozzle flow and cavitation forming in heavy-duty Diesel injector at injection 82 

pressures up to 450MPa, using a realistic multicomponent Diesel surrogate. This surrogate is a mixture of eight components 83 

based on the composition of a grade no. 2-D S15 Diesel emissions certification fuel from Chevron-Phillips Chemical Co.53, 84 

already modelled by the authors using the PC-SAFT54. The surrogate mass composition is listed in Table 1. Two different 85 

methodologies have been utilised: one neglecting the thermal effects and one where the energy equation is solved 86 

considering thermal effects due to wall-induced friction and fuel depressurisation. To the best of the author’s knowledge, 87 

this is the first study in the literature where the PC-SAFT is utilised in nozzle flow simulations addressing the preferential 88 

cavitation of the fuel components and their evolution at extreme injection pressures.  89 
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Compound Name 𝑴𝒘 [𝒈/𝒎𝒐𝒍] 𝑻𝒃[𝑲] 𝒛𝒊[% 𝒎𝒂𝒔𝒔] 𝒎𝒊[−] 𝛔[Å] 𝛜/𝒌𝑩[𝑲] 

n-octadecane 254.5 590.0 27.3082 7.438 3.948 254.90 

n-hexadecane 226.4 560.0 3.2477 6.669 3.944 253.59 

heptamethylnonane 226.4 520.0 35.1237 5.603 4.164 266.46 

1-methylnaphthalene 142.2 518.0 10.8772 3.422 3.901 337.14 

n-butylcyclohexane 140.3 456.2 10.8149 3.682 4.036 282.41 

trans-decalin 138.2 460.5 4.0392 3.291 4.067 307.98 

tetralin 132.2 480.9 3.8009 3.088 3.996 337.46 

1,2,4-trimethylbenzene 120.2 442.6 4.7883 3.610 3.749 284.25 
 

Table 1. Mass composition for the Diesel surrogate modelled on this work. Boiling points at 0.1 MPa taken 

from the literature. 

 91 

Following the above brief introduction, the next section gives the outline of the case set-up, the geometry and CFD model 92 

used for the simulations. The results are shown including the internal flow, the effects on temperature due to friction and 93 

the preferential vaporisation of the components within the multicomponent mixture. Lastly, the final section gives a summary 94 

and critique of the findings. 95 
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2. Numerical Method 97 

2.1. CFD model 98 

The in-house density-based CFD codes used in this work solves the compressible Navier-Stokes equations utilising the open-99 

access OpenFOAM55 platform. The two-phase flow is assumed to be a homogeneous mixture of vapour and liquid in 100 

mechanical equilibrium, i.e. both phases share the same pressure and velocity fields. This implies that as there is only one 101 

fluid in the entire domain, the discharge is on liquid; this configuration resembles that of injector test benches, where fuel is 102 

squirted for thousands of hours into a liquid-filled collector. The barotropic behaviour of the fluid does not consider the 103 

energy conservation equation. The second thermodynamic closure solves for both the Navier-Stokes system and the energy 104 

conservation equation. Both solvers share a system which consists of the continuity equation: 105 

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒖) = 0 (1) 106 

Where 𝜌 is the mixture density and 𝒖 the velocity vector field, and the momentum equations: 107 

𝜕(𝜌𝒖)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒖 ⊗ 𝒖) = −𝛻𝑝 + 𝛻 ∙ 𝝉 (𝟐) 108 

where 𝑝  is the pressure and 𝝉 is the stress tensor defined as 𝝉 = 𝜇𝑒𝑓𝑓[𝛻 𝒖 + (𝛻 𝒖)𝑇], with 𝜇𝑒𝑓𝑓  defined as the sum of 109 

laminar, 𝜇 given by the thermodynamic table, and turbulent, 𝜇𝑇, dynamic viscosities. Regarding the turbulence model, a Large 110 

Eddy Simulation (LES) model is used56, 57.  In particular, the turbulent viscosity is modelled using the Wall Adaptive Large Eddy 111 

(WALE) model58, by the equation: 112 

𝜇𝑡 = 𝜌𝐿𝑠
2 (𝑆𝑖𝑗

𝑑𝑆𝑖𝑗
𝑑)

3/2

(𝑆𝑖𝑗𝑆𝑖𝑗)
5/4

+ (𝑆𝑖𝑗
𝑑𝑆𝑖𝑗

𝑑)
5/4

(3) 113 

where Sij is the rate of strain tensor and Sij
d

  is the traceless symmetric part of the square of the strain of the velocity gradient 114 

tensor, i.e.: 115 

𝑆𝑖𝑗
𝑑 =

1

2
(𝑔𝑖𝑗

2 + 𝑔𝑗𝑖
2) −

1

3
𝛿𝑖𝑗𝑔𝑘𝑘

2 (4)  116 

With,=
𝜕𝑢𝑖

𝜕𝑥𝑗
 and δij the Kronecker delta. The length scale, Ls, is based on the filter size and the cell to wall distance, dwall, as 117 

follows:  118 

L = 𝑚𝑖𝑛{κ 𝑑𝑤𝑎𝑙𝑙 , 𝐶𝑤  𝑉1/3)   (5) 119 

where the used model constants are: κ the von Karman constant, 0.41, and Cw = 0.325. The energy conservation equation is 120 

also solved: 121 

𝜕(𝜌𝐸)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒖𝐸) = −𝛻 ∙ (𝑝𝒖) + 𝛻 ∙ (𝜏 ∙ 𝒖) − 𝛻 ∙ (𝑘𝑇𝛻𝑇) (6) 122 

where 𝐸 is the specific total energy of the system, defined as internal energy plus the kinetic energy, i.e. 𝐸 = ℎ −
𝑝

𝜌
+

|𝒖|2

2
 123 

where ℎ is the enthalpy,  and 𝑘𝑇  the thermal conductivity of the fluid given by the thermodynamic tables.  124 

Hybrid flux model 125 

Two-phase flows are characterised, among others, by large variations in the speed of sound. While the speed of sound in the 126 

liquid phase is of the order of O(103)m/s and that of gas is O(102)m/s, in the liquid-vapour mixture it drops down to 127 



 

 

O(1)m/s. Therefore, for a typical velocity at the orifice of O(102)m/s, it can be expected a range in the Mach number from 128 

O(10−1) to O(102) m/s. For density-based solvers, low Mach numbers are causing convergence problems and dispersion, so 129 

a hybrid flux is used for accounting for both low and high Mach numbers. That, in terms of the interface pressure within the 130 

approximated Riemann solver scheme is: 131 

𝑝 = [1 − 𝛽(𝑀)]𝑝𝑖𝑛𝑐 + 𝛽(𝑀)𝑝𝑐𝑜𝑚𝑝 (7) 132 

where  133 

𝑝𝑖𝑛𝑐 =
𝐶𝐿𝑝𝑅 + 𝐶𝑅𝑝𝐿

𝐶𝐿 + 𝐶𝑅
(8) 134 

𝑝𝑐𝑜𝑚𝑝 =
𝐶𝐿𝑝𝑅 + 𝐶𝑅𝑝𝐿 + 𝐶𝑅𝐶𝐿(𝑢𝐿 − 𝑢𝑅)

𝐶𝐿 + 𝐶𝑅
(9) 135 

where 𝐶 = ρ𝑐 is the acoustic impedance, 𝑢 is the interface velocity, 𝐿 and 𝑅 refer to the left and right side of the interface 136 

and: 137 

β(𝑀) = 1 − 𝑒−𝑎𝑀 (10) 138 

where a is a blending coefficient, set to 1.5. Thus β(𝑀) → 0  when 𝑀 → 0 , and therefore 𝑝 = 𝑝𝑖𝑛𝑐 . On the other 139 

hand, β(𝑀) → 1 when 𝑀 → ∞, and therefore 𝑝 = 𝑝𝑐𝑜𝑚𝑝.  140 

2.2. Injector geometry and operating conditions 141 

The examined injector geometry was based on a common rail 5-hole tip injector with tapered holes. The most important 142 

dimensions for this injector are shown in Table 2. The nominal mass flow rate at a reference condition of 𝑃𝑖𝑛𝑗=180MPa has 143 

been also included. Although the simulation is transient, the needle valve was assumed to be still at its full lift of 350µm 144 

during the main injection stage. The simulated geometry considers only one fifth of the full injector geometry, as shown in 145 

Figure 1, imposing periodic boundary conditions on the symmetry planes. A hemispherical volume is attached to the nozzle 146 

exit; this volume is added in order to be able to capture the cavitation cloud inside the nozzle and avoid interference with the 147 

outlet boundary. Characteristic volumes of the injector geometry are also pointed out by colour in Figure 1(a); the walls are 148 

assumed to be adiabatic. Constant pressure boundary conditions of 60, 120, 180, 250, 350 and 450MPa at the inlet and 5MPa 149 

at the outlet have been considered. The temperature at the inlet boundary is fixed and corresponds to that of an isentropic 150 

expansion from the reference point set at 5MPa and 324K, shown in Table 3. This reference temperature is chosen based on 151 

the theoretical outlet temperature for operation at a reference injection pressure of 180MPa and a discharge coefficient of 152 

unity, i.e. the ideal case without pressure losses, as calculated in59 using the same geometry. The temperature at the outlet 153 

of the domain is calculated by the solver. Also, in Table 3 the calculated mean exit velocity, speed of sound on the liquid, 154 

Mach number and discharge coefficient for each injection pressure are indicated.  155 

  156 



 

 

Geometrical characteristics 

Needle radius at inlet (mm)  1.711 

Inlet orifice rounding (mm)  0.05 

Orifice length (mm)  1.262 

Orifice diameter (mm) Entrance Din 0.37 

 Exit Dout 0.359 

Sac volume (mm3)  1.19 

k-factor = (Din - Dout), D in µm  1.1 

Nominal mass flow rate at 𝑃𝑖𝑛𝑗 =180MPa (g/s) 41.32 
 

Table 2. Dimension of the injector used for the simulations on this work 

and nominal flow rate at the reference condition of 𝑃_𝑖𝑛𝑗 =180MPa. 

 157 

𝑷𝒊𝒏𝒋[𝑴𝑷𝒂] 𝑻𝒊𝒏𝒍𝒆𝒕 [K] 𝑼𝒆𝒙𝒊𝒕 [m/s] 𝒄𝒍𝒊𝒒𝒖𝒊𝒅[𝒎/𝒔] 𝑴𝒍𝒊𝒒𝒖𝒊𝒅[−] 𝑪𝒅 

60 332 332.39 1128 0.2946 0.842 

120 340 461.02 1066 0.4324 0.819 

180 345 564.69 1057 0.5342 0.813 

250 350 664.77 1045 0.6361 0.812 

350 359 781.67 1012 0.7724 0.807 

450 365 881.74 1001 0.8808 0.804 
 

Table 3. For each injection pressure, inlet temperatures, mean exit velocity, speed of sound on the liquid, Mach number 
and discharge coefficient. Results come from simulations with thermal effects being considered. 
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(a) 

 
(b) 

 
(c) 

 

Figure 1. Simulated geometry (one fifth of the complete injector nozzle). Characteristic volumes are 

colourised, and the boundary conditions are indicated. The transition between the two distinct topologies 

at the orifice and the contour plot at 𝑃𝑖𝑛𝑗=450MPa for the estimated y+ values are also added.   

 159 

Regarding the computational mesh, two topologies have been used. As shown in Figure 1(b), upstream of the orifice entrance, 160 

i.e. inside the nozzle’s sac volume, an unstructured tetrahedral mesh is utilised. For the rest of the computational domain, a 161 

hexahedral block-structured mesh is used. Given the flow conditions inside the injector nozzles, the Reynolds number at the 162 

orifice, where cavitation develops, varies significantly between the cases. For 60MPa, it is ~35000, for 180MPa is ~60000 and 163 

~90000 for 450MPa. This corresponds to Taylor length scales, λ𝑔: 164 

 λ𝑔 = √10𝑅𝑒−0.5𝐷 ∈ (4𝜇𝑚, 6.5𝜇𝑚) (11) 165 

Where D is an indicative length of the geometry; in this case the nozzle hole exit diameter. The resolution in the core of the 166 

orifice is ~5𝜇𝑚, with refinement near the walls down to a minimum cell size of ~2 𝜇𝑚. As also shown in Figure 1(c), for the 167 



 

 

most restrictive case of 450MPa, the maximum y+ was 25. Due to the unfeasible computational effort a domain with a smaller 168 

cell size would entail, the near wall flow was treated with two wall functions: (i) kqRWallFunction60 for the turbulent kinetic 169 

energy and (ii) nutkwallfunction60 for the turbulent viscosity. The timestep was adapted to a fixed acoustic Courant number 170 

of 0.5, thus the timestep varied from 8ps for the 450MPa case to 100ps for the 60MPa case. Table 4 shows integral quantities 171 

of engineering interest, such as the overall mass and energy balance for each injection pressure, with thermal effects being 172 

considered. The last column in Table 4 shows the difference found in the mass flow rate at the exit for the most refined mesh, 173 

decreasing the smallest cell size to 1.06µm and, therefore, increasing the number of cells to 11M. No significant differences 174 

were found and therefore the 1.5M cells mesh was used for all following simulations. 175 

 Mass flow rate [𝒈/𝒔] Energy flow rate [𝒌𝑱/𝒔] %change in �̇�𝒐𝒖𝒕 

after refinement 𝑃𝑖𝑛𝑗[𝑀𝑃𝑎] 𝑰𝒏𝒍𝒆𝒕 𝑶𝒖𝒕𝒍𝒆𝒕 𝑰𝒏𝒍𝒆𝒕 𝑶𝒖𝒕𝒍𝒆𝒕 

60 24.37 24.53 31.97 32.19 - 

120 33.89 34.16 42.08 42.43 - 

180 41.32 41.72 48.19 48.67 0.0528 

250 49.06 49.38 53.91 54.28 0.0785 

350 58.09 58.38 57.74 58.11 0.1169 

450 66.31 66.59 59.17 59.44 0.1542 
 

Table 4. Time-averaged mass and energy flow rates at the inlet and outlet for all cases, with thermal effects 

being considered. The last column shows the percentage change in mass flow rate at the outlet after a 

refinement from 1.5M to 11M cells for cases 180MPa to 450MPa, decreasing thus minimum cell size from 

2.12µm to 1.06µm. 

 176 

2.3. Thermodynamic properties 177 

As already mentioned, the thermodynamic properties of the Diesel surrogate are modelled using the PC-SAFT EoS61 for a 178 

density range of 0.001-1100kg/m3 and an internal energy range of -1.40779-4.7529MJ/kg in a tabulated format. The pure-179 

component and ideal gas parameters can be found in the Tables A.1 and A.2 of the Appendix. The range in internal energy 180 

corresponds to temperatures in range of 280-2000K. These limits allow the correct characterisation of the vaporised and 181 

compressed fuel alike while also capturing the increased temperatures due to friction-induced heating. The structure of the 182 

table consists of 1000x1000 elements separated by constant intervals of the decimal logarithm (log10) of the density and 183 

internal energy. The properties are calculated every 0.006047 log10(kg/m3) and 6.16696kJ/kg. For the barotropic approach, 184 

the properties were calculated maintaining the entropy of the fluid constant to that obtained at 324K and the imposed outlet 185 

pressure of 5MPa. Figure 2 shows the properties that govern the behaviour of the Diesel surrogate with respect to pressure 186 

following different isentropic curves, depending on the assumed reference temperature. While the black line refers to the 187 

one used in the barotropic approach, the other two refer to reference temperatures of: (i) 384K that is the maximum 188 

temperature reached in the liquid-vapor equilibrium phase for Pinj=180MPa considering thermal effects, and (ii) 484K that is 189 

the maximum temperature reached in the liquid-vapor equilibrium regime for Pinj=450MPa when thermal effects were 190 

considered.  191 

 192 

As shown in Figure 2, at higher temperatures the values for density, viscosity and thermal conductivity decrease, while 193 

increasing the heat conductivity. Regarding density, an exponential-like increase can be seen in the liquid phase converging 194 



 

 

at very high pressures for the distinct reference temperatures. It can also be seen a sudden increase in density at the 195 

saturation pressure, as the phase change is almost isobaric. Moreover, this saturation pressure changes significantly for the 196 

different cases, increasing with the reference temperature. This increase can be explained by the temperatures observed in 197 

Figure 2(b). For a higher temperature, the easier it is for the substance to evaporate and therefore its vapour pressure is 198 

enhanced. The change in temperature from vapour to liquid is seen smoother than for density. The vapour volume fraction 199 

shown in Figure 2 (c) highlights that the phase change is almost isobaric at bubble point, i.e. at low vapour volume fraction, 200 

while needing an additional pressure drop to complete the vaporisation.  The dynamic viscosity, shown in Figure 2(d), shows 201 

how dependent it is on pressure, while it is inversely proportional with temperature. Figure 2(e) shows how significantly 202 

smaller the thermal conductivity is in the vapour phase compared to that of the liquid phase (of the order of O(100)), which 203 

will contribute to the vapour heating up more rapidly than the liquid. Similarly, another factor that will contribute to a faster 204 

heating up of the vapour is the heat capacity, shown in Figure 2(f), due to its lower values compared to those of the liquid 205 

phase. 206 

 207 

The calculation of the vapour volume fraction α𝑣 is determined by minimizing the Helmholtz Free Energy, according to the 208 

algorithm recently presented by the authors in62, consisting on a stability analysis followed by a phase equilibrium calculation 209 

in case the mixture is found unstable. For the conditions studied in these isentropic simulations, the vapour pressure for the 210 

isentropic Diesel fuel is predicted to be 230Pa. For the case where the complete thermodynamic range is resolved, the 211 

saturation pressure is not fixed and will depend as well on the internal energy. The speed of sound 𝑐 is calculated for a single 212 

phase directly from its definition: 213 

𝑐 = √(
𝜕𝑝

𝜕𝜌
)

𝑠

(12) 214 

Where the subscript 𝑠 indicates that the derivative is computed at constant entropy. When the fluid is in the two-phase 215 

region, the speed of sound follows the Wallis’ rule63: 216 

1

𝜌𝑐2 =
𝛼𝑣

𝜌𝑣𝑐𝑣
2 +

1 − 𝛼𝑣

𝜌𝑙𝑐𝑙
2

(13) 217 

where the subscripts 𝑣 and 𝑙 stand for vapour and liquid phase. 218 

The dynamic viscosity, 𝜇, is calculated by using an entropy scaling method64, while the mixing rule is taken from the author’s 219 

previous work62. The parameters used for the calculation of viscosity are found in Table A.3 of the Appendix. In the case of 220 

the two-phase region, the homogeneous viscosity is calculated with the expression65: 221 

𝜇 = (1 − 𝛼𝑣) (1 +
5

2
) 𝜇𝑙 + 𝛼𝑣𝜇𝑣 (14) 222 

Regarding the thermal conductivity, it is also calculated using the entropy scaling method66. The parameters used for its 223 

calculation can be also found in the Appendix, on Table A.4. A simple weighted mixing rule with the vapour volume fraction 224 

is used: 225 

𝑘𝑇   =  (1 − 𝛼𝑣) 𝑘𝑇,𝑙   +  𝛼𝑣 𝑘𝑇,𝑣 (15)  226 



 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Thermodynamic data following an isentropic expansion of the Diesel surrogate. Three cases are shown depending 

on the reference temperature at 5MPa: (i) 324K for the barotropic method used in this work, (ii) 384K as the maximum 

temperature reached in the liquid-vapor equilibrium phase for Pinj=180MPa considering thermal effects, and (iii) 484K as the 

maximum temperature reached in the liquid-vapor equilibrium phase for Pinj=450MPa considering thermal effects. 

 227 

2.4. Limitations, link to previous works and present contribution 228 

 229 

Limitations arising from both the validity of the models themselves utilised and the selection of the specific conditions 230 

investigated, include: (1) the lack of detailed validation against experimental data for the extreme pressure values tests; (2) 231 

the dependency/accuracy of the simulations on the equations describing the fuel properties as function of pressure and 232 

temperature; (3) the assumption of local mechanical and thermal equilibrium, i.e. vapour and liquid have, locally, the same 233 

velocity (no slip) and same temperature, utilised in order to predict the amount of fuel that cavitates; and (4) the omission of 234 

transient effects ought to the movement of the injector’s needle valve as well as the dependency of the obtained results on 235 

the specific geometry investigated here. A short evaluation of those factors is provided below before the presentation of the 236 

results obtained.  237 

 238 

(1) With regards to the lack of experimental validation for the conditions tested, several comments and reference to prior 239 

studies can be made. For injection pressures up to 500MPa only spray formation results have been reported7, but without 240 

information about the in-nozzle flow. As stated in the introduction, cavitation measurements in real-size injectors operating 241 

pressures beyond 200MPa17 has not been possible up to now, due to transparent material constrains. Even for lower pressure 242 

conditions, only qualitative images have been obtained but not quantitative data for the cavitation volume fraction or the 243 

velocity field. Nevertheless, validation works have been thoroughly reported at lower injection pressures utilising similar 244 

models to those reported here. More specifically, homogeneous mixture models (either barotropic or mass transfer) have 245 

been found to have very similar performance57, 67 in the limit of large mass transfer rates of the former. Also, such models 246 

have been validated for predicting the 3D distribution of vapor fraction within the validation uncertainty (±7%, including both 247 

numerical and experimental uncertainties). Further validation has been obtained for the flow field distribution, cavitation 248 



 

 

shedding frequency and turbulent velocities in the same single-hole injector against high energy X-ray phase contrast imaging 249 

(XPCI) measurements for conditions covering a range of cavitation regimes (incipient, fully developed and vortex/string 250 

cavitation)68, 69. Additionally, validation against Laser Doppler Velocimetry (LDV) measurements have been also reported in57, 251 

70 utilising the WALE LES model for turbulence, suggest that it can reproduce the turbulent structures found in Diesel nozzles. 252 

These studies suggest that the model can capture both incipient and developed cavitation features. In the present study, the 253 

Reynolds number is ~[35000-90000] and thus, it is within the range of applicability of the selected model. As the vaporous 254 

core of cavitating vortices has been found to be in the order of 20μm71, the smallest cell size of ~2μm used suggests that 255 

there are no under-resolved vortical structures that may cavitate and significantly influence the obtained results. For injection 256 

pressures in the range of 180MPa, the same simulated injector geometry was previously validated for predicting cavitation 257 

erosion damage59 utilising the barotropic model. Cavitation erosion predictions have been also validated recently against 258 

measurements in a fuel pump72. These studies give confidence that the barotropic model is performing relatively well for 259 

similar cases as those studied here. Turning to thermal effects, there are no experiments available that can be used for 260 

validation. The earlier studies73-76 from the authors performed also under both fixed needle valve conditions and including 261 

the movement of the injector’s needle valve77 have been compared results against 0-D predictions of the mean fuel heating 262 

up as it discharges through the fuel injector up to 300MPa, with very good accuracy25, 26.   263 

 264 

(2) A critical question relative to this study is related to the dependency/accuracy of the simulations on the equations 265 

describing the fuel properties as function of pressure and temperature. As mentioned, the simulations carried out have 266 

utilised properties derived by the PC-SAFT EoS. This EoS has been previously used with the Diesel surrogate of this work and 267 

compared with experimental results up to 500MPa and 600K for density, viscosity and volatility78 with an accuracy of 1.7% 268 

for density, 2.9% in volatility and 8.3% in viscosity. Diesel fuels with different compositions have been also modelled at 269 

pressures up to 300MPa and temperatures up to 532K79 and the obtained accuracy against those measurements was ~2% for 270 

density and ~10% for viscosity. Other Diesel properties, such as thermal conductivity, at extreme conditions up to 450MPa 271 

and 360K can also be found accurately predicted by PC-SAFT80, 81 with an accuracy of 3%. It can thus be claimed that the 272 

selected EoS is a good compromise for studying such effects in high pressure injectors.  273 

 274 

(3) One of the main assumptions in the described methodology is the mechanical and thermodynamic equilibrium between 275 

the liquid and the vapour phases. With regards to the mechanical equilibrium assumption, the recent study from the authors 276 

using a two-fluid model has confirmed that differences between liquid and vapour velocities are less than 10% and only in 277 

localised locations of the flow82, 83; they have been found not to affect the overall growth rate and production of vapour. The 278 

assumption of thermodynamic equilibrium is more significant. A metastable, i.e. non-thermodynamic equilibrium, state 279 

occurs when the pressure of the liquid drops below the saturation pressure and no vapour is formed due to the rapid 280 

expansion of the liquid84, 85. In the literature, non-thermodynamic equilibrium models, such as the well-known mass transfer 281 

models of Schnerr and Sauer86, Singhal et al.87 and Zwart et al.88 are used. Predictions utilising such mass transfer models 282 



 

 

tend towards equilibrium by increasing the evaporation/condensation coefficients67, 89.  Apart from mass transfer models, in 283 

the literature there are models relying on the solution of the full Rayleigh-Plesset equation, commonly done in a Lagrangian 284 

reference frame, thus incorporating second order effects and the influence of surface tension. However, such models 285 

inherently assume a spherical bubble shape, the interaction between bubbles (break-up, coalescence) is not easy to describe 286 

and the coupling with the continuous phase (liquid) is difficult in areas of large void fractions90-94. The relaxation time of the 287 

tensile stresses, i.e. those acting in the metastable state, was numerically estimated to be of the order of 10ns in a flow 288 

configuration where a vertical tube filled with liquid was impacted vertically, leading to an expansion wave of 30MPa95. 289 

However, the nuclei concentration used in this study was infinitesimally small, which is not applicable to real systems and 290 

thus its result is a significant overprediction. Nevertheless, it is possible to use this time-scale to estimate that, as the 291 

residence time of the fluid in the injection hole has a minimum value of the order of 1µs, that for the 450MPa case, the time 292 

to reach equilibrium would be, at least, 100 times faster.  293 

 294 

(4) Finally, the present work omits transient effects related to the motion of the needle valve96, while it refers to only one 295 

injector geometry utilised with heavy-duty diesel engines featuring hole tapering. It has been reported in the literature that 296 

cavitation reduces the mixing uniformity within circular, sharp-edged orifices97 while tapered nozzles reduce its  297 

appearance98.  Thus, although the studied geometry is representative for such application, it can be expected that different 298 

cavitation volume fraction will be developing for other nozzle geometries. With regards to the needle valve motion, it is well 299 

documented in the literature that depending on the nozzle geometry and needle valve position, cavitation may appear to the 300 

bottom part of the injection hole as well as the needle seat area and inside the nozzle’s sac volume at low needle lifts99-101. 301 

More recent studies have shown that the initial air/liquid distribution inside the nozzle volume prior to the start of injection 302 

are also complex, with large air bubbles been present99, 101-103; these are formed during the needle valve closure that induces 303 

back flow to the injector. However, such effects and flow regimes are not realised when the needle valve is at its nominal full 304 

lift position. At the same time, the needle remains still for a relatively large duration, typically more than 10times longer 305 

compared to the opening/closing time. Transient effects although important for cavitation erosion104, nozzle wall wetting and 306 

formation of non-well atomised liquid fragments that can affect emissions are out of scope of the present work.  307 

 308 

Despite those limitations, the present work aims to make the following contributions: To the best of the author’s knowledge, 309 

this is the first study in the literature where the PC-SAFT is utilised in nozzle flow simulations addressing the preferential 310 

cavitation of the fuel components and their evolution at injection pressures up to 450MPa. For this, an 8-component Diesel 311 

surrogate105 is modelled using the PC-SAFT EoS, considering the effects of variable thermal conductivity, heat capacity and 312 

viscosity due to extreme pressurisation. The authors also take advantage of PC-SAFT to calculate the individual vaporisation 313 

of each component within the vapour cloud during cavitation, as each component vaporises at a distinct rhythm, different to 314 

that of the mixture and to that of the other components. 315 

  316 



 

 

3. Results 317 

In this section, the results obtained for the range of injection pressures from 60MPa and up to 450MPa are presented. If not 318 

stated otherwise, all results consider thermal effects. Firstly, the internal flow through the injector is inspected. Secondly, the 319 

changes in temperature and vapour pressure are investigated and compared with the case where thermal effects are 320 

neglected. Thirdly, the formation of cavitation inside the nozzle orifice is analysed. Lastly, due to the multicomponent nature 321 

of the fuel, the preferential cavitation of its components is examined. 322 

3.1. Flow field  323 

Figures 3 through 5 show predictions of three time-averaged (i) magnitude of the vorticity on a logarithmic scale, (ii) density 324 

and (ii) viscosity at three injection pressures; results are presented in two sets of slices: one longitudinal to the injector 325 

geometry and four transversals to the nozzle hole. Thin solid black lines are added for clarity; all plots on each Figure share 326 

the same colour scale. Vorticity indicates locations where thermal effects become significant due to shearing. Lower values, 327 

of the order of 105/s or smaller, are seen in the core of the flow as it travels through the sac volume as well as into the orifice. 328 

Close to the walls, vorticity is generated reaching values up to 108/s, due to the large shear induced from the no-slip wall 329 

velocity boundary condition. High values of ~107/s are also found on a relatively wide region located on the top half of the 330 

orifice volume, where separation of the flow occurs, and cavitation is forming. Density and viscosity show similar behaviour 331 

throughout the injector. Inside the nozzle’s sac volume, densities take values from 845 kg/m3 for injection pressure of 60MPa, 332 

900.342 kg/m3 for 180MPa and up to 982.345 kg/m3 for 450MPa. This density decreases as the fuel expands through the 333 

orifice down to ~720kg/m3 at the exit of the orifice where the pressure is set to 50MPa. As the flow separates at the entrance 334 

of the injector orifice and the fuel cavitates, densities decrease locally 3 orders of magnitude, to ~10-3 kg/m3, inducing strong 335 

density gradients. It can be also clearly seen that as injection pressure increases, the extend of low-density values for the 336 

valour-liquid mixture is significantly reduced, due to the gradual condensation of vapour caused by the increased pressures 337 

present inside the injection hole. The iso-surface of 50% vapour volume fraction is also depicted, showing for the 180 and 338 

450MPa cases two coherent structures separated at the symmetry midplane; thorough discussion of the cavitation formation 339 

and development will be given in the following subsections. Regarding viscosity, the increase with injection pressure in the 340 

nozzle’s sac volume is significantly higher than that for density. At 60MPa, the viscosity of the fuel is 2.66mPa·s, doubling to 341 

5.2mPa·s at 180MPa and then quadrupling up to 19.64mPa·s at 450MPa. Average values at the nozzle exit are ~1.3mPa·s. 342 

Minimum values of 7·10-3mPa·s are found again at the entrance of the orifice where the flow separates. 343 

  344 



 

 

   

 

(a) 60MPa (b) 180MPa (c) 450MPa 
Figure 3. Predicted time-averaged vorticity, in logarithmic scale, on different slices at the sac volume and orifice for three 
injection pressures. Thermal effects are considered. 
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(a) 60MPa (b) 180MPa (c) 450MPa 
Figure 4. Predicted time-averaged density on different slices at the sac volume and orifice for three injection pressures. 
Thermal effects are considered. The iso-surface for vapour volume fraction of 50% is included, which shows two coherent 
structures separated at the midplane for (b) and (c).  

 346 

   

 

(a) 60MPa (b) 180MPa (c) 450MPa 
Figure 5. Predicted time-averaged dynamic viscosity on different slices at the sac volume and orifice for three injection 
pressures. Thermal effects are considered. 

 347 

Figure 6 shows the mass flow rate as function of the pressure drop for all cases, comparing the barotropic approach with that 348 

considering thermal effects. As expected, the mass flow rate increases linearly with the square root of the difference between 349 

the injection and back pressure. This shows that in neither of the two approaches the flow gets chocked with increasing 350 

injection pressure. Moreover, the values for the thermal and the barotropic cases are found to be very close. Due to the 351 

temperature increase, the density of the fluid drops for the thermal case, but so does the viscosity, enhancing the velocity of 352 

the flow. For instance, at 180MPa the density of the thermal case is 2.9% smaller than that for the barotropic case, while the 353 



 

 

velocities are 2.1% greater, while at 450MPa these differences are 2.1% and 1.63%, respectively. As a result, these two effects 354 

offset each other, and the predicted mass flow rate does not vary significantly between the two cases considered.  355 

 
Figure 6.  Mass flow rate at the orifice exit for both the barotropic and thermal cases. 

 356 

 357 

3.2. Changes in temperature and vapor pressure due to thermal effects induced by wall friction and depressurisation  358 
 359 

Figure 7 shows the relative temperature change with respect to the injection temperature, defined as: 360 

𝑇 − 𝑇𝑖𝑛𝑗

𝑇𝑖𝑛𝑗
∗ 100 (16) 361 

Results are shown for the 60MPa, 180MPa and 450MPa cases, for which the injection temperature is indicated in Table 3. A 362 

solid line in the longitudinal slice shows where 𝑇 = 𝑇𝑖𝑛𝑗; thus, all points inside this iso-line show cooling and those outside 363 

show heating. Several observations can be made. First, as the injection pressure increases, temperature gradients increase 364 

accordingly, i.e. both lower and higher relative temperatures are found. Liquid fuel is heated up due to friction with the walls, 365 

but its temperature gradually drops towards the centre of the orifice. However, in the locations of cavitation formation inside 366 

the orifice, heating dissipation is not observed due to the vapour’s significantly lower thermal conductivity and heat capacity, 367 

in addition to the significantly lower velocities observed in this region. The highest temperatures are found close to the 368 

entrance to the injection hole where the fuel fully cavitates. With respect to the injection temperature, values in this region 369 

are found to be ~5% overall higher with a local peak of 50% higher for 60MPa case; at 180MPa, the fuels heats up ~10% with 370 

a local maximum of 70%; lastly, for the 450MPa case, the highest heating of 25% is estimated, reaching a 80% local maximum. 371 

On the other hand, cooling is also enhanced with injection pressure due to liquid expansion, as seen in the core of the flow. 372 

The cooling observed is 5%, 7.5% and 10% for 60MPa, 180MPa and 450MPa, respectively. 373 
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(a) 60MPa (b) 180MPa (c) 450MPa 
Figure 7. Predicted time-averaged temperature change with respect to the injection temperature, defined as 

(𝑇 − 𝑇𝑖𝑛𝑗)/𝑇𝑖𝑛𝑗 ∗ 100 , when thermal effects are considered. The injection temperature for each case is shown in Table 

3. A solid thick black line is plotted in the longitudinal slice where 𝑇 = 𝑇𝑖𝑛𝑗 , thus all points inside this iso-line show cooling 

and those outside show heating.  Results are shown on different slices at the sac volume and orifice for three injection 
pressures. 

 375 

Figure 8 (a) shows the temperature range for the liquid, vapour and vapour-liquid equilibrium (VLE) phases; the boiling and 376 

injection temperatures are added as a reference. The range on the vapour phase is significantly higher than that for the liquid 377 

phase. Maximum vapour temperatures take values of 510K, 570K and up to 640K for the 60MPa, 180MPa and 450MPa 378 

pressures, respectively. For the liquid phase, heating effects are more contained: at 60MPa the liquid fuel gets heated up to 379 

360K, while for 180MPa it is 410K and 504K for 450MPa; the slope of temperature increase is around 28K per 100MPa. 380 

Regarding cooling, a rough correlation of a 7K of temperature decrease per 100MPa is calculated. Where the liquid and vapor 381 

coexist, the temperature range is lower than for the liquid phase. The temperatures found are 325-350K for 60 MPa, 335-382 

400K for 180MPa and 355-485K for 450MPa, thus reaching a maximum temperature range of up to 130K. Figure 8 (b) shows 383 

the average temperature at the orifice inlet and outlet slices. As observed, the temperature at both extremes of the orifice 384 

increase with the injection pressure, due to the enhancing of the friction-induced heating. The difference in temperature 385 

between these two zones also increase with the injection pressure. While the difference is of 2.3K at 60MPa, it is found to be 386 

5.6K at 180MPa and 8.8K at 450MPa.  387 

 
(a) 

 
(b) 

Figure 8. (a) Variation in temperature for the liquid, vapor and vapor-liquid equilibrium (VLE) phases versus the square 

root of pressure drop. As a reference, both the injection temperature and the reference temperature used in the 

barotropic approach are included. (b) Average temperatures at the orifice inlet and outlet slices.  
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Figure 9 shows on the density-temperature thermodynamic diagram the distribution of predicted values in the whole 389 

computational domain; the saturation curve of the Diesel surrogate and the isentropic evolution used in the barotropic 390 

approach are also indicated. The colour of the plotted points helps identifying their location within the computational 391 

domain, i.e. in the injector inlet upstream the needle seat passage, along the needle seat passage, sac volume and inside the 392 

injector hole. For all injection pressure cases investigated, it can be clearly seen that the process is not isothermal; as shown 393 

before, the range in temperatures increases with increasing injection pressure. The flow upstream of the nozzle hole (on the 394 

right of the saturation curve) shows a smaller range in temperatures than that through the orifice, mostly following the 395 

isentropic curve with the corresponding cooling effect due to the expansion of the liquid. There are points that diverge from 396 

this isentropic curve both in the needle seat and more clearly in the sac volume, due to thermal effects. This can be clearly 397 

seen in the plot for 450MPa: the flow in the sac volume splits into two legs, one corresponding to the core of the flow cooling 398 

down due to the liquid expansion and following the isentropic curve, while the other one its heated up because of wall 399 

friction. 400 

 401 

   
(a) 60MPa (b) 180MPa (c) 450MPa 

Figure 9. Predicted time-averaged density-temperature values over the whole computational domain for three injection 
pressures. The saturation curve for the multicomponent Diesel surrogate (solid line) and the isentropic approach (dashed 
line) are indicated. The colour of the symbols distinguishes the zone in the injector they correspond to. As an inset, the 
distribution of point close to the saturation curve is added. 

 402 

Another interesting result from the comparison between the barotropic approach and the consideration of thermal effects 403 

is shown in Figure 10. This figure shows, for a single-time instance, both the isentropic curve, and the results corresponding 404 

to thermal effects being considered. The symbols are coloured according to the value of vapor volume fraction. In all cases, 405 

the liquid phase follows the isentropic curve reasonably well at high pressures (corresponding to zones before the orifice) 406 

while diverging from it as the pressure falls during the discharge of fuel through the nozzle hole. This divergence is significantly 407 

enhanced as the injection pressure increases and therefore thermal effects become more pronounced. The distribution of 408 

points become progressively wider and shifted to higher pressures, potentially driving towards greater pressure gradients 409 

where vapour is found. As the vapour phase distribution is shifted towards greater pressures, so does the vapour pressure, 410 

shown in Figure 11 for all cases investigated; it increases with injection pressure to a substantial degree, diverging significantly 411 

from the barotropic assumption due to thermal effects. The minimum vapour pressure increases from 290Pa for 60MPa, to 412 

523.5Pa at 180MPa and up to 1259Pa at 450MPa. 413 



 

 

   
(a) 60MPa (b) 180MPa (c) 450MPa 

Figure 10. Predicted single-time instance of logarithm of pressure versus density values over the whole computational 
domain for three injection pressures; the curve for the barotropic evolution (dashed line) is indicated. The colour of the 
symbols shows their value of the vapor volume fraction within different ranges. 

 414 

 
Figure 11. Predicted saturation pressure versus the square root of the pressure difference when 
thermal effects are considered. 

 415 

3.3. Effect of injection pressure on cavitation 416 
Figure 12 shows the time-averaged pressure distribution, in logarithmic scale, for three injection pressures on a longitudinal 417 

slice of the injector. The 50% vapour volume fraction iso-surface and the 5MPa iso-line, i.e. the back pressure value, are 418 

illustrated. As shown, the main difference between the cases is found inside the sac volume, where pressures take values of 419 

55MPa, 162MPa and 405MPA for the 60MPa, 180MPa and 450MPa injection pressure cases, respectively. As the injection 420 

pressure increases, so does the pressure distribution inside the orifice, as indicated by the increased extent of the 5MPa iso-421 

line within the orifice. Regarding cavitation, the iso-surface of the vaporised fuel appears to reach just slightly the orifice exit 422 

for 60MPa and vortex cavitation is produced as a detached cloud. For 180MPa and 450MPa, cavitation completely reaches 423 

the orifice exit and no vortex cavitation is observed. Moreover, the cavitation cloud for 450MPa appears to be thinner than 424 

that the 180MPa case.  425 

    

(a) 60MPa (b) 180MPa (c) 450MPa  

Figure 12. Predicted time-averaged pressure on a longitudinal slice of the injector. A solid black iso-line at 5MPa, the back 
pressure, and the iso-surface for 50% vapour volume fraction have been included. The colour map is in logarithmic scale 
and thermal effects are considered.  



 

 

 426 

These observations of the cavitating cloud are quantified in Figure 13(a), which shows the time-averaged vapor volume 427 

fraction inside the injector orifice versus the square root of the pressure drop. Results correspond to both the barotropic and 428 

thermal cases. As shown, the barotropic and complete formulation approaches follow similar trends. Due to the higher 429 

average temperatures and consequently higher vapour pressures found when considering thermal effects, cavitation growth 430 

is enhanced and thus found to be greater than in the barotropic approach. For both cases the volume of vapour formed inside 431 

the orifice first increases up to 120MPa and then decreases as the injection pressure increases. This is an unexpected result, 432 

as it is commonly believed that increasing the injection pressure results to higher velocities, which induce a greater boundary 433 

layer separation inside the orifice. In turn, flow separation would lead to an enhanced contraction of the flow and thus, a 434 

greater reduction in the static pressure; if this is below the local vapour pressure, more cavitation would be expected. 435 

However, the trend observed does not follow this reasoning. Figure 13(b) quantifies the % distribution of the orifice volume 436 

having pressure in three intervals: the first one for pressures above the 5MPa value of the back pressure, the second in the 437 

range [5MPa, Pv] and the last one for pressure below Pv, where cavitation is present. As seen, pressures greater than the back 438 

pressure occupy ~20% of the volume orifice at 60MPa while this percentage increases to ~55% for 450MPa. The opposite 439 

trend is observed for the other two pressure ranges; the volume with pressures below 5MPa but above the vapor pressure 440 

decreases from 65% at 60MPa down to 35% for 450MPa, while the volume occupied by pressures lower than the vapor 441 

pressure exhibits the same trend.  442 

 443 

  
(a) (b) 

Figure 13. (a) Time-averaged vapor volume fraction inside the injector orifice versus the square root of the pressure drop 
estimated utilising both the barotropic and thermal models. (b) Orifice volume fraction histogram for different pressure 
ranges inside the orifice volume when thermal effects are considered. 

 444 

Various parametric studies have been performed to disprove these results as a numerical artefact; the relevant results are 445 

summarised in Figure 14 and have included injection into gas, constant fuel viscosity, non-tapering of the nozzle hole and 446 

different turbulence models such as the k-omega SST RANS model with the Reboud correction106. Although the absolute 447 

values of cavitation volume fraction are not the same, as cavitation is significantly dependant on the model and properties 448 

used, a similar reduction trend of cavitation volume fraction with the pressure drop is observed for all cases.  449 

 450 



 

 

 
Figure 14. Effect of boundary conditions and simulation parameters on calculated vapour volume 

fraction as function of pressure drop. 

 451 

The increased pressures found overall also affect the amount of vapour mass within the orifice, as shown in Figure 15, along 452 

the orifice length for all injection pressures; results from both the barotropic and the thermal cases are indicated. Two insets 453 

of the temperature distribution are added to the thermal case, corresponding to locations of high vapour mass flow rate at 454 

450MPa. On the slices, an iso-line showing the location of vapour is also included. The density of the vapour fuel 𝜌𝑣  is 455 

calculated by the PC-SAFT EoS during the VLE calculations. As seen, as the injection pressure increases so does the flow rate 456 

of vapour mass along the orifice. For instance, at 20% of the orifice length and for the thermal case, the vapour mass flow 457 

rate is 0.06mg/s for 60MPa, 0.22mg/s for 180MPa and 1.02mg/s for 450MPa. However, the results for the barotropic case 458 

are significantly lower. This difference can be explained because, when in vapour-liquid equilibrium, the vapour density 459 

increases with temperature. For instance, at 350K the saturated vapour density is 2.5*10-3kg/m3, at 360K it increases to 460 

5.03*10-3kg/m3, i.e. a 200% difference, and at 370K it doubles again to 9.9*10-3kg/m3. This can be also observed on the two 461 

peaks found at approximately 40 and 75% of the orifice length, for the thermal case. In these locations, as shown by the 462 

insets, a significant increase in temperature is found, which produce also an increase in the vapour density.  463 

  
(a) Barotropic (b) Thermal 

Figure 15. Time-averaged vapour mass flow rate along the orifice length for both (a) barotropic and (b) thermal cases, for 

all injection pressures simulated. Two insets of the temperature distribution are added to the thermal case, corresponding 

to locations of high vapour mass flow rate at 450MPa. On the slices, an iso-line showing the location of vapour is also 

depicted.  

 464 

Figure 16 shows the slope of the vapour mass flow rate along the orifice length, thus presenting the locations of net 465 

evaporation (positive values) and condensation (negative values) per meter of the orifice length as the fuel cavitates within 466 

the nozzle hole. As already seen in Figure 15, overall values are higher in the thermal case due to the dependence of the 467 



 

 

vapour density on temperature, particularly at 40% and 75% of the orifice length. Nevertheless, both values for evaporation 468 

and condensation are seen to increase with injection pressure for both the barotropic and the thermal cases. This is clearly 469 

shown in the thermal case by the amplitude of the observed positive and negative peaks. For instance, at the hole entrance 470 

the value for evaporation rate is 0.6g/s·m for 60MPa, 2.7g/s·m for 180MPa and 13g/s·m for 450MPa, while at ~45% of the 471 

orifice length the corresponding values for condensation are 0.07g/s·m for 60MPa, 0.62g/s·m for 180MPa and 6g/s·m for 472 

450MPa.  Moreover, while for the barotropic case most of the evaporation (values for the 450MPa case) is observed at the 473 

beginning of the orifice, with a value of 1.2g/s·m, followed by small positive values at 40% of 0.1g/s·m and of 0.01g/s·m at 474 

60%, for the thermal case the peak in evaporation occurs at 40% of the orifice length, with a significantly higher value of 475 

32g/s·m, followed by a smaller value of 13g/s·m at the entrance and of 7g/s·m at 60% of the orifice length. 476 

  
(a) Barotropic (b) Thermal 

Figure 16. Slope of the vapour mass flow rate along the orifice length, showing locations of net evaporation 

(positive) and condensation (negative), for both the barotropic and the thermal cases. A dashed horizontal line 

is added at value 0, for reference. 

 477 

An additional interesting finding is related to the influence of varying simultaneously the injection and back pressures on 478 

cavitation vapour volume fraction107 but keeping the cavitation number fixed; this is defined as: 479 

𝐶𝑁 =
𝑃𝑖𝑛𝑗 − 𝑃𝑏

𝑃𝑏 − 𝑃𝑠𝑎𝑡

(17) 480 

The cavitation number chosen is 35, which corresponds to the boundary conditions of the 180MPa case. For keeping constant 481 

cavitation number, increasing the injection pressure results to increasing the back pressure and, on the other hand, 482 

decreasing the injection pressure results to decreasing back pressure. Figure 17 shows that the vapour volume fraction still 483 

decreases inside the orifice as the injection pressure increases, even by keeping constant the cavitation number. Thus, for 484 

the same injector and fluid, these results show that a constant cavitation number does not indicate a similar cavity size, but 485 

it strongly depends on the absolute value of the injection and back pressure values used. 486 



 

 

 
Figure 17. Time-averaged vapour volume fraction inside the injector orifice versus the square root of 
the pressure drop, considering thermal effects. All cases have the same cavitation number, CN=35. 

 487 

3.4. Preferential cavitation 488 

One of the benefits of using the PC-SAFT EoS coupled with a VLE algorithm is that it allows the calculation of the vaporised 489 

amount of each individual fuel component. As an example, Figure 18 shows the vapour mass fraction at 350K of the Diesel 490 

surrogate (dashed line) and of four representative components (the heaviest, lightest and two intermediates, in solid lines), 491 

as a function of the specific volume. As shown, the mixture vaporises at a variable rate as it expands, while each component 492 

vaporises as well at their distinct rhythm. The lightest component, i.e. 1,2,4-trimethylbenzene, is seen to vaporise at a higher 493 

rate than the mixture and vaporises completely considerably sooner. The heaviest one, i.e. n-octadecane, vaporises much 494 

slower than the mixture, but reaches the complete vaporisation at the same time. The intermediate components vaporise at 495 

rates in between the previous ones. 496 

 
Figure 18. Vapour mass fraction of representative components of the fuel surrogate (the heaviest, 
lightest and two intermediate) as a function of specific volume for a 0D expansion of the fuel at 350K. 

 497 

As the volume fraction per component cannot be retrieved from the equation of state, mass fractions are presented. The 498 

vaporised mass fraction of every component 𝑣𝑖, is calculated using the mass vapour fraction of the mixture θ, the composition 499 

of the vapour phase 𝒙 and the composition of the total mixture 𝒛 by: 500 

𝑣𝑖 = θ ∗ 𝑥𝑖/𝑧𝑖 (18) 501 

Figure 19 shows iso-surfaces of the mass vapour fraction for selected components. The plotted vapour mass fraction is 502 

selected so that the iso-surface for trimethylbenzene coincides to that of the mixture 50% vapor volume fraction. As shown, 503 

trimethylbenzene is the maximum cavitating component and the heaviest one, i.e. octadecane, cavitates significantly less 504 

and mostly at the entrance of the orifice, where the flow separates, and cavitation is stronger. No significant amount of the 505 



 

 

5 heavier components are found in the vortex cavitation cloud found at 60MPa. Moreover, as the injection pressure increases, 506 

every component is seen to cavitate further inside the cavitating cloud, observable on the iso-surface for octadecane, due to 507 

both the higher pressures and temperatures occurring in the orifice. 508 

 509 

 
 

 

 

 

 
 

(a) 60MPa (b) 180MPa (c) 450MPa 
Figure 19. Effect of the injection pressure on partial vaporisation of selected components of the Diesel surrogate 
simulated. Results are time-averaged and thermal effects are considered.  

 510 

Figure 20 shows the mass composition of the cavitating cloud inside the orifice for all injection pressures studied while Table 511 

5 shows the actual values. The lighter components are the ones found to be in greater amount due to their higher volatility. 512 

As seen, in all cases the 4 lightest components compose more than 75% of the vapour mass. The compound most present in 513 

the total mass of the Diesel surrogate, heptamethylnonane with 35% in mass fraction, is not the one having the highest 514 

amount of vapour phase, as it is less volatile; it’s relative percentage in the vapour composition is just 3.44% at 60MPa and 515 

up to 12.5% at 450MPa. Similar observations can be drawn from octadecane, which consists 27% of the total mass of the fuel 516 

surrogate, but in the vapor cloud it is just above 1%. On the other hand, the lighter butylcyclohexane with a 11% of the total 517 

fuel mass, provides 23% and ~24% of the mass of vapor at 60MPa and 450MPa, respectively. The lightest component in the 518 

surrogate, 1,2,4-trimethylbenzene, which 5% of the initial fuel mass, when vaporises provides 23% of the total mass of vapor 519 

at 450MPa. As seen previously in Figure 16, the total mass of vapour, and as a result the mass of vapour of all components, 520 

increases with injection pressure.  521 

 
Figure 20. Time-averaged predictions for the vaporised mass composition of the vapor cloud, in a stacked fashion, for all 
injection pressures. 

 522 



 

 

  𝑷𝒊𝒏𝒋 [MPa] 

Component z [% mass] 60 120 180 250 350 450 

n-octadecane 27.308 0.2416 0.2575 0.3487 0.5068 0.8566 1.3300 

n-hexadecane 3.2477 0.1050 0.1338 0.1822 0.2517 0.3784 0.5209 

heptamethylnonane 35.124 3.4426 4.2924 5.3811 6.7659 8.9891 11.152 

1-methylnaphthalene 10.877 8.1457 9.0432 9.8387 10.675 11.723 12.463 

n-butylcyclohexane 10.815 22.619 23.278 23.589 23.805 23.807 23.550 

trans-decalin 4.0392 15.721 15.431 15.051 14.601 13.894 13.232 

tetralin 3.8009 18.597 18.028 17.437 16.743 15.733 14.834 

1,2,4-trimethylbenzene 4.7883 31.128 29.537 28.174 26.652 24.619 22.918 
 

Table 5. Time-averaged predictions for the vaporised mass composition of the vapor cloud, for all injection pressures. The 
initial surrogate mass composition is also indicated. 

  523 



 

 

4. Summary and Conclusions 524 

The present study is the first work reporting simulations of cavitation in a Diesel fuel injection at extreme injection pressures 525 

up to 450MPa. Additionally, it is the first work to report results using the molecular-based PC-SAFT equation of state for the 526 

modelling of the Diesel fuel properties, while has allowed for predictions of the preferential cavitation of the components in 527 

a Diesel injector to be reported for the first time. To assess the method against the common assumption of isothermal flow 528 

typically considered up to now in nozzle flow simulations, simulations considering an isentropic expansion of the fuel, and 529 

thus neglecting friction-induced thermal effects, have been also presented. Two major findings emerge from this study: (i) in-530 

nozzle cavitation volume fraction decreases with injection pressure, although the mass of fuel cavitating increases, and (ii) 531 

each component in the surrogate cavitates at a distinct rhythm, different to that of the mixture and to that of the other 532 

components. The trend in cavitation has been explained by observing the pressure distribution within the nozzle orifice, 533 

which increase significantly with injection pressure and effectively decrease the growth of cavitation. The composition of the 534 

fuel vapour shows that the lighter components cavitate at a significantly greater amount than the heavy ones. With increasing 535 

injection pressure, all fuel components cavitate in higher mass quantities due to the higher densities of the fuel at the 536 

pressures and temperatures developing in the nozzle orifice. As a result, the mass of the total vapour fuel also increases. 537 
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Nomenclature 543 

English symbols 

a blending coefficient �̇� Mass flow rate [kg/s] 

C Acoustic impedance 𝑚 chain segment number [-] 

𝑪𝒅 Discharge Coefficient 𝑀 Mach number [-] 

𝐶𝑤 LES model constant 𝑀𝑤 molar weight [g/mol] 

𝑐 Speed of sound [m/s] P/p Pressure [Pa] 

D diameter R universal gas constant [J/(kg K)] 

dwall wall distance Re Reynolds number 

E Total energy  [J/kg] S strain tensor 

𝑔𝑖𝑗  abbreviation 
𝜕𝑢𝑖

𝜕𝑥𝑗
 T Temperature  [K] 

h Enthalpy  [J/kg] 𝑡 Time [s] 

kB Boltzmann constant u Velocity [m/s] 

kij binary interaction parameter [-] 𝑉 cell volume 

𝑘𝑇 Thermal conductivity [W/(m K)] x Vapour mass composition 

κ von Karman constant 𝑧 Total mass composition 

L WALE LES model length scale   

    

Greek symbols 

𝛼𝑣 Volume vapour fraction ρ Mixture density [kg/m3] 

β function for the hybrid flux 𝜎 segment diameter [Å] 

λ𝑔 Taylor length scale τ Stress tensor [Pa] 

μ Dynamic viscosity [Pa.s] θ Mass vapour fraction [-] 

    

Subscripts 

b Downstream conditions/boiling point j Coordinate direction 

eff effective, i.e. laminar plus turbulent l Liquid 

i component i/coordinate direction v Vapour 

inj At inlet conditions t turbulent 

    

Superscripts    

comp compressible L Left side 

inc incompressible R Right side 



 

 

    

Abbreviations 

CN Cavitation Number PC-SAFT perturbed chain statistical associating fluids theory 

EoS equation of state VLE Vapour-Liquid Equilibrium 

LES Large Eddy Simulation WALE Wall Adapted Large Eddy 

nc number of components   

 544 

545 



 

 

Appendix. PC-SAFT parameters for thermodynamic and thermophysical properties 546 

PC-SAFT parameters 547 

 m (-) σ (Å) ε/kB (K) 

n-octadecane 7.438 3.948 254.90 

n-hexadecane 6.669 3.944 253.59 

heptamethylnonane 5.603 4.164 266.46 

1-methylnaphthalene 3.422 3.901 337.14 

1,2,3,4-tetrahydronaphthalene 3.088 3.996 337.46 

trans-decalin 3.291 4.067 307.98 

n-butylcyclohexane 3.682 4.036 282.41 

1,2,4-trimethylbenzene 3.610 3.749 284.25 

Table A.1. PC-SAFT parameters used in this study 548 

Ideal gas coefficients 549 

 A B C D ΔHref [kJ/kg] 

n-octadecane -13.474 1.71384 -9.554*10-4 2.03*10-7 -414.83 

n-hexadecane -11.656 1.52384 -8.466*10-4 1.792*10-7 -373.59 

heptamethylnonane -86.757 1.90728 -1.3652 *10-3 3.944*10-7 -405.10 

1-methylnaphthalene -58.16 0.90672 -6.7548*10-4 2.014*10-7 116.94 

1,2,3,4-tetrahydronaphthalene -87.11 0.9832 -7.1356*10-4 2.06*10-7 27.63 

trans-decalin -127.17 1.2172 - 7.75*10-4 1.868*10-7 -182.42 

n-butylcyclohexane -71.807 1.07592 - 6.012*10-4 1.174*10-7 -213.32 

1,2,4-trimethylbenzene -10.6 0.66096 - 3.6292*10-4 7.16*10-8 -13.94 

Table A.2. Ideal gas parameters used during the calculation of properties 550 

 551 

Entropy scaling parameters for viscosity 552 

 Aμ Bμ Cμ Dμ 

n-octadecane -0.94240 -4.2086 -0.92723 -0.2241 

n-hexadecane -0.89303 -3.9704 -0.84192 -0.1992 

heptamethylnonane -0.57516 -3.2643 -0.75823 -0.1992 

1-methylnaphthalene -0.59115 -2.7895 -0.58370 -0.1370 

1,2,3,4-tetrahydronaphthalene -0.50055 -2.6232 -0.44389 -0.1245 

trans-decalin -0.29640 -2.5604 -0.24863 -0.1245 

n-butylcyclohexane -0.58564 -2.8879 -0.41966 -0.1245 

1,2,4-trimethylbenzene -0.72078 -2.6213 -0.56599 -0.1121 

Table A.3. Entropy Scaling parameters used for the calculation of viscosity. 553 

 554 

Entropy scaling parameters for thermal conductivity 555 

 Aλ Bλ Cλ Dλ 

n-octadecane 0 -0.40156 1.98005 0 

n-hexadecane 0.36701 -0.52738 1.15300 0 

heptamethylnonane 0.36701 -0.52738 1.15300 0 

1-methylnaphthalene 0.51308 -0.57468 0.67839 -0.06761 

1,2,3,4-tetrahydronaphthalene 0.51308 -0.57468 0.67839 -0.06761 

trans-decalin 0.51308 -0.57468 0.67839 -0.06761 

n-butylcyclohexane 0.51308 -0.57468 0.67839 -0.06761 

1,2,4-trimethylbenzene 0 -0.45935 1.44014 0 

Table A.4. Entropy Scaling parameters used for the calculation of thermal conductivity. 556 

 557 
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