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Simple Summary: The appearance of histology images stained with H&E can vary a lot as a
consequence of changes in the reagents, staining conditions, preparation procedure and acquisition
system. In this work we investigated whether color preprocessing – specifically color deconvolution
and color normalization – could be used to correct such variability and improve the performance of
automated classification procedures. Experimenting on 11 datasets, 13 image descriptors and eight
color pre-processing methods we found that doing no color preprocessing was the best option in
most cases.

Abstract: Histological evaluation plays a major role in cancer diagnosis and treatment.
The appearance of H&E-stained images can vary significantly as a consequence of differences in
several factors, such as reagents, staining conditions, preparation procedure and image acquisition
system. Such potential sources of noise can all have negative effects on computer-assisted
classification. To minimize such artefacts and their potentially negative effects several color
pre-processing methods have been proposed in the literature—for instance, color augmentation,
color constancy, color deconvolution and color transfer. Still, little work has been done to
investigate the efficacy of these methods on a quantitative basis. In this paper, we evaluated the
effects of color constancy, deconvolution and transfer on automated classification of H&E-stained
images representing different types of cancers—specifically breast, prostate, colorectal cancer and
malignant lymphoma. Our results indicate that in most cases color pre-processing does not
improve the classification accuracy, especially when coupled with color-based image descriptors.
Some pre-processing methods, however, can be beneficial when used with some texture-based
methods like Gabor filters and Local Binary Patterns.

Keywords: histology images; H&E staining; color; texture

1. Introduction

Digital pathology plays a fundamental role in cancer diagnosis, treatment and follow-up [1–9].
This consists of a range of activities such as the acquisition, storage, sharing, analysis and interpretation
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of histological images [10]. In this domain, computer-assisted classification of tissue samples has
attracted considerable research interest in recent years as a means for assisting pathologists in several
tasks, for instance, the classification of specimens into normal or abnormal [11–14], the grading of
neoplastic tissue [15–18], the estimation of tumor proliferation [19] and the identification of tissue
substructures such as epithelium, stroma, lymphocytes, necrosis, etc. [20,21]. With the growing
popularity of whole-slide scanners, and consequently, the increasing availability of digital images,
digital pathology has the potential not only to reduce the workload by automating several repetitive
tasks, but also to increase the reproducibility of human-based evaluations.

Among the problems that so far have limited the adoption of digital pathology on a wide scale are
differences in the protocols, materials and procedures for image acquisition and the little availability
of large datasets of annotated images [22]. Such variations in protocols, materials and procedures
can result in unlike visual appearance of the pathology slides, which can have the undesired effect of
reducing the accuracy, sensibility and specificity of automated, machine-based approaches [23,24]. The
problems related to stain normalization have generated considerable research interest in the last few
years and several methods have been proposed in the literature [22,23,25–31]. However, few studies
investigated the subject on a quantitative basis, and some reported divergent results. Furthermore,
many such studies were based on a limited number of data sets—as few as one in some cases—which
makes it difficult to draw general conclusions. Consequently, the effects of pre-processing
methods on automated classification of H&E-stained images are not entirely clear yet. In [32,33]
the authors reported improved accuracy for patch-based classification based on Convolutional
Neural Networks (CNN), whereas [34] showed that color features lost distinctiveness when color
normalization was applied. More recently, Hameed et al. [35] also reported that their classification
performance deteriorated upon using color-normalized images. Furthermore, the combined effects
color pre-processing/image descriptors (e.g., color descriptor, texture descriptors and/or convolutional
network) have been addressed only in [34,36,37].

This work presents a quantitative evaluation of color deconvolution and color normalization on
automated (patch-based) classification of histology images stained with hematoxylin and eosin from
breast, prostate, colorectal cancer and malignant lymphoma. The present study extends the preliminary
results presented in [38] and the main contribution is to provide a set of guidelines to select the
appropriate combinations color pre-processing/image descriptor for histopathological image analysis.
We found that in most cases color pre-processing did not improve classification accuracy, especially
when coupled with color-based image descriptors convolutional networks. Some pre-processing
methods, however, provided some slight gain when used with texture-based methods like Gabor
filters and Local Binary Patterns. On the whole the best combinations involved the use of pre-trained
networks (ResNet50/101) or color histograms as image descriptors and no color pre-processing at all.

2. Materials

We considered nine datasets of H&E-stained histological images representing different types of
neoplastic diseases as detailed below. Samples images of each dataset are illustrated in Figure 1.

2.1. Agios Pavlos (AP)

Histological images from breast carcinoma collected within the ‘Agios Pavlos’ Department of
Pathology at the General Hospital of Thessaloniki (Thessaloniki, Greece). The dataset includes 300
images (magnification 40×, dimension 1280px × 960px) of invasive ductal carcinoma (grades I, II and
III) from 21 patients.

2.2. BreakHis (BH)

Histological samples of breast carcinoma collected at the Pathological Anatomy and
Cytopathology Laboratory (P&D Lab, Paraná, Brazil) [39]. This collection features 7909 microscopy
images of breast tumor tissue from eight different histological sub-types. The tissue samples were
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collected from 82 patients under four magnifying factors: 40×, 100×, 200× and 400×, of which the
first was the one used in this study. The dimension of the images is 700px × 460px.

2.3. Cedars-Sinai (CS)

Histological images from patients with prostate cancer collected at the Cedars-Sinai Medical
Center (Los Angeles, CA, USA) [40]. The data set features 625 images of dimension 1201px × 1201px
each containing manually annotated regions of either benign tissue, stroma and/or malignant tissue
(Gleason grade from III to V). The spatial resolution is ≈ 0.5µm/px. From this set we randomly
extracted 256px × 256px tiles representing clearly identifiable areas of each grade (100 tiles for
each class).

Dataset Sample images

Agios Pavlos

BreakHis (40×)

Cedars-Sinai

Kather multiclass

Lymphoma

Netherlands Cancer Institute

Vancouver General Hosptital

Warwick-QU

Figure 1. Six representative sample images from the datasets used in the experiments. It should be
noticed the diverse gamut of colors as well as the different magnifications, density and cell density of
the datasets. Cedars-Sinai by courtesy of Cedars-Sinai Medical Center ( c©2020 Cedars-Sinai Medical
Center. All rights reserved).

2.4. HICL

Histological samples from 109 subjects with breast ductal carcinomas who received a biopsy at
the Department of Pathology, University Hospital of Patras, Rio, Greece, between 2000 and 2007 [41].
The dataset comes with a manually defined, ground truth subdivision into grade I (n = 63), II (n = 83)
and III (n = 80). The images were acquired with 40× magnification factor and the final dimension is
1728px × 1296px.
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2.5. Kather Multiclass (KM)

A dataset of histological images of colorectal cancer collected at the University Medical Center
Mannheim, Heidelberg University (Heidelberg, Germany) [21,42]. The data set is composed of 5000
tissue samples (tiles) from 10 patients representing eight different tissue sub-types (see Figure 1 for
details). Each tile has a dimension of 150px × 150px and spatial resolution of ≈ 0.5 µm/px. The images
were acquired under 20× magnification using an Aperio ScanScope (Aperio/Leica biosystems).

2.6. Lymphoma

Histological images of malignant lymphoma from different institutions [43,44]. This data set is
part of the Benchmark Suite for Biological Image Analysis (IICBU 2008). It includes a total of 374
images organized in three classes: chronic lymphocytic leukemia (n = 113), follicular lymphoma
(n = 139) and mantle cell lymphoma (n = 122). The dimension of the images is 1388px × 1040px.
Since the samples come from different centers there is a large amount of staining variation.

2.7. Netherlands Cancer Institute (NKI)

Breast cancer histology images from a population of 248 patients. The images were collected at the
Netherlands Cancer Institute (Amsterdam, Netherlands) [45,46]. From the predefined segmentation
into epithelium and stroma which comes with the dataset we respectively extracted 1106 and 189 tile
images of each class (dimension 100px × 100px).

2.8. Vancouver General Hospital (VGH)

This dataset has the same structure as the one described in Section 2.7, but in this
case the study population comprises 328 subjects enrolled at Vancouver General Hospital
(Vancouver, BC, Canada) [45,46]. With the same procedure and settings described in Section 2.7 we
extracted 226 image samples of epithelium and 47 of stroma.

2.9. Warwick-QU (WR)

This dataset includes a total of 165 images representing colorectal tissue and is organized in two
classes: benign (n = 74) and malignant tissue (n = 91). The samples were collected at the University
Hospitals Coventry and Warwickshire (Coventry and Rugby, United Kingdom) [47,48]. The images
were acquired at 20× magnification factor and spatial resolution of ≈ 0.62 µm/px; the dimension is
variable. The data set was part of the Gland Segmentation Challenge Contest (GlaS) at MICCAI 2015
(Munich, Germany, 5–9 October 2015) [49].

2.10. Combined Datasets (AP+HICL, NKI+VGH)

One important factor that can affect the colors of histological images are the specific conditions
of the acquisition laboratory. To assess the effects of inter-laboratory variability, we generated two
additional datasets by merging Agios Pavlos and HICL (AG+ HICL) and NKI and VGH (NKI +VGH).
These datasets were selected as they consider the same disease type and grades, and have compatible
magnification factor and image resolution.

It should be noted that the images considered in this work are considerably smaller than those
provided by whole-slide scanners [50,51]. Images from whole-slide scanners can span tens or hundreds
of thousands of pixels, and these are typically cropped into smaller tiles and thus very large number
of images can be used for studies. For reproducibility, we used the nine publicly available datasets
described above.
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3. Methods

3.1. Color Pre-Processing

It is convenient to classify color pre-processing methods for histological images into three
categories: color augmentation, color deconvolution and color normalization (Figure 2).

3.1.1. Color Augmentation

Color augmentation is a type of data augmentation whereby new images are generated
by applying some kind of perturbation to the colour distribution of the original ones [23,36].
Color augmentation was not considered in this study as it is intrinsically different from color
deconvolution and color normalization, which were considered. The main difference is the
input/output relationship: in both color deconvolution and color normalization, the relationship
is one-to-one, while in color augmentation it is one-to-many. The number of output images returned
by color augmentation is a parameter to set and depends on the method chosen. Testing color
augmentation would therefore require a rather different set-up than the one used for color
deconvolution and color augmentation.

Colour pre-processing

Colour augmentation

Colour deconvolution

Colour normalisation

Colour constancy

Colour transfer

Figure 2. Color pre-processing for histological images: a taxonomy.

3.1.2. Color Deconvolution

Color deconvolution consists of decomposing the input images into separate channels,
each representing the concentration of each stain used [52]. In H&E-stained images that means
separating the original images into haematoxylin, eosin and background. Please note that in some cases
colour deconvolution is just one step towards colour normalization [22]. In this work we considered
Ruifrok and Johnston’s method [26] (‘decoRJ’ in the remainder) and Macenko’s et al. [25] (‘decoMC’ in
the remainder)—both through the implementation provided in [53]. Figure 3 shows the effects of these
methods on a set of sample images.

3.1.3. Colour Normalization

Color normalization can be further classified into color constancy and color transfer. The first derives
from color constancy in vision theory, the objective of which is to assign a constant color to the same
objects when acquired under different illumination conditions [54,55]. This extends seamlessly to
histological images, even if, in this case, changes in color can be due both to variable illumination
and, to a greater extent, to differences in tissue preparation and staining. The second, color transfer,
modifies the color distribution of the input image to make it match that of a target image [56]. Below
we describe the color constancy and color transfer methods considered in the experiments.
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The colour constancy methods investigated in this work were: (1) chromaticity representation
(‘chroma’ in the remainder), (2) grey-world normalisation (‘gw’) and (3) histogram equalization
(‘heq’) [57,58]. The first simply divides the R, G and B values of each pixel of the input image by their
sum R + G + B. The second works on the assumption that the average color in a scene is grey, and that
deviations of the average color from grey are due to the light source. The input image is corrected
accordingly. The third modifies the marginal distribution (histogram) of each color channel by making
it approximate a uniform one. The implementation was based on the Color Constancy toolbox [59] (for
chroma and gw) and Matlab’s histeq() function histogram equalisation.

For color transfer we considered the methodologies of Khan et al. [22], Macenko et al. [25] and
Reinhard et al. [56], each with four different target images denoted as T1–T4 in the remainder (see also
Figure 4). Three of these images (T2–T4) are histology images, and one (T1) is not. For the latter we
selected a color calibration mask (colour checker), which is an image with a large variation of colors
not related to histology. The rationale was to investigate how widely the colors of the original image
could vary if those of the target image were markedly different. For the implementation we used the
functions available in Warwick’s Stain Normalization Toolbox [53]. Figure 4 illustrates the effects of
each color normalisation methods on a set of sample images.

3.2. Image Descriptors

The image descriptors that can be used for histological image analysis fall into two main categories:
the traditional, ‘hand-designed’ methods on the one hand and the convolutional networks (CNN) on
the other [60]. The first group can be further subdivided into spatial (texture), spectral (color) and
hybrid methods [61] (Figure 5). For this study we considered eight ‘hand-designed’ descriptors and
five pre-trained convolutional networks as detailed below.

3.2.1. Hand-Designed Methods (Spectral)

Three-Dimensional Color Histogram (FullHist)

The three-dimensional probability distribution in the color space as described in [62]. We used
ten bins for each color channel giving a total of 103 = 1000 features.

One-Dimensional Marginal Color Histograms (MargHists)

The concatenation of the three one-dimensional probability distributions of the intensity level in
each color channel [63]. We used 256 bins for each color channel giving a total of 256 × 3 = 768 features.
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Original images

Images after colour deconvolution
(Ruifrok and Johnston)

Images after colour deconvolution
(Macenko et al.)

Figure 3. Effects of colour deconvolution through Ruifrok and Johnston’s [26], and Macenko et al.’s
method [25]. The top row shows the original images, then each box below reports the deconvolved
haematoxylin channel (first row), the deconvolved eosin channel (second row) and the background
channel (third row). The haematoxylin, eosin and background channels are rendered in pseudo-colors.
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Original images

Images after colour normalisation Method Target img.

Chromaticity repr. None

Grey-world norm. None

Histogram equalisation None

Colour transfer
(Khan et al.)

Colour transfer
(Macenko et al.)

Colour transfer
(Reinhard et al.)

Figure 4. Illustration of the effects of color constancy and color transfer on a series of representative
images with four different target images. Three targets are histological images, and one is a color
checker mask used to investigate the impact caused by an image with a large and distant color variation.
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Image descriptors

Hand-designed

Spatial (texture)

Spectral (colour)

HybridCNN-based

Figure 5. Taxonomy of the image descriptors used in this study.

3.2.2. Hand-Designed Methods (Spatial)

Grey-Level Co-Occurrence Matrices (GLCM)

Texture features from 12 co-occurrence matrices computed using three distances (1px, 2px and
3px) and four orientations (0◦, 45◦, 90◦ and 135◦). From each matrix we extracted five statistical
parameters: contrast, correlation, energy, entropy and homogeneity [64] for a total of 12 × 5 = 60
features. We finally applied Discrete Fourier Transform (DFT) normalization to obtain rotationally
invariant features [65].

Gabor Filters (Gabor)

Texture features from a bank of 24 Gabor filters with four frequencies and six orientations.
From the absolute value of each Gabor-transformed image we computed the mean and standard
deviation giving a total 2 × 4 × 6 = 48 features. Again, rotationally invariant features were finally
obtained via DFT normalization [66]

Local Binary Patterns (LBP)

Histograms of rotation-invariant (‘ri’) Local Binary Patterns [67] computed using non-interpolated
circular neighborhoods of eight-pixels each and resolution 1px, 2px and 3px (see also [68] for details).
This configuration produces 36 features for each resolution, therefore a total of 36 × 3 = 108 features.

3.2.3. Hand-Designed Methods (Hybrid)

From the grey-scale texture descriptors described in Section 3.2.2 we derived marginal color
versions by applying the grey-scale methods to each color channel separately and concatenating the
resulting feature vectors. Consequently, the marginal color versions of Gabor, GLCM and LBP (which
we indicate as ‘MargGabor’, ‘MargGLCM’ and ‘MargLBP’ henceforth) have feature vectors that are
three times longer than those of the grey-scale counterparts.

3.2.4. Pre-Trained Convolutional Networks

We used five pre-trained convolutional networks ‘off-the-shelf’—i.e., without any further
re-training or fine-tuning (see also [60,69] for details on this approach). For all the models the imaging
features were the L2-normalized output of the layer indicated in Table 1. The number of features
generated by each configuration is also reported in the table.
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Table 1. Round-up table of the pre-trained convolutional models considered in the study.

Model Ref. Layer (Name/No.) No. of Features

InceptionV3 [70] 313 2048
ResNet50 [71] ‘pool5’ 2048
ResNet101 [71] ‘pool5’ 2048
Vgg16 [72] ‘FC-4096’ 4096
Vgg19 [72] ‘FC-4096’ 4096

3.3. Further Pre-Processing Steps

Convolutional networks have input fields of fixed shape and size, which requires the input images
to be resized accordingly. To this end we cropped non-square images to a maximal centered square,
then linearly resized the resulting crop to the networks’ input field. Since all the networks considered
here feature a square input field, the first step was required to avoid distortion. For fair play the crop
was applied in any case, even though the hand-designed descriptors can cope with input images of
any shape and size. Linear resize after crop was used with the networks only.

4. Experiments

To test the effectiveness of each combination of color pre-processing/image descriptor (Section 3)
we conducted a series of supervised image classification experiments, each of them using the data sets
previously described in Section 2. We estimated the accuracy through split-sample validation with
stratified sampling; that is, for each data set analyzed, we considered a fraction ( f ) of the samples
of each class (i.e., the train set) to construct the classifier, and then, the remaining samples (i.e., the
test set) were used to calculate the accuracy. Thus, the accuracy was the percentage of samples of the
test set classified as correct. To obtain a stable estimation, we repeated the random subdivision of
the train and test sets hundred times and the results were averaged. We repeated the experiments
using f = 1/4 and f = 1/8. The classification was based on the rule of nearest-neighbor with the L1

(‘cityblock’) distance.
The experiments were implemented using Matlab R© (The MathworksTM, Natick, USA) and carried

out on a laptop PC equipped with Intel R© coreTM i5-3230M CPU@ 2.60GHz, 8 GB RAM and Windows
7 Professional 64-bit. Feature extraction was based on the freely available Color And Texture Analysis
Toolbox for Matlab (CATAcOMB) [73] for the hand-designed descriptors, on MatConvNet [74] for the
ResNet and VGG models and on Matlab’s dedicated plug-in for InceptionV3.

5. Results and Discussion

5.1. Accuracy

The results for the best and second-best combinations of image descriptor and color pre-processing
method for each data set are presented in Table 2. It can be observed that out of the 11 best combinations,
7 cases corresponded to the pre-trained ResNet50 and ResNet101, three cases to the joint and marginal
color histograms and one to co-occurrence matrices. When considering the best and second-best cases,
these corresponded to the pre-trained ResNet50 and ResNet101 in 12 cases out of 22. Regarding color
pre-processing, doing nothing provided the best or second-best option in ten cases out of 22, followed
by deconvolution (five) and chromaticity representation (three).
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Table 2. Best (rank = 1) and second-best (rank = 2) combinations color pre-processing/image descriptor
by dataset. Figures indicate accuracy, also reflected in the ball size and color (blue = low, brown = high).
Values are filtered on f = 1/4.

Dataset Rank Accuracy (%) Descriptor Pre-Processing

AP 1 81.79 MargGLCM decoMC
2 81.70 FullHist heq

AP+HICL 1 68.97 ResNet50 decoRJ
2 67.61 FullHist Reinhard (T1)

BH 1 90.67 ResNet101 none
2 90.07 ResNet50 none

CS 1 87.59 FullHist none
2 86.39 ResNet50 none

HICL 1 51.58 ResNet101 decoMC
2 51.51 InceptionV3 decoRJ

KM 1 92.18 FullHist none
2 89.03 MargHists chroma

Lymphoma 1 85.98 MargHists chroma
2 84.53 FullHist none

NKI 1 98.87 ResNet50 none
2 98.86 ResNet50 chroma

NKI+VGH 1 98.39 ResNet50 none
2 98.33 ResNet101 gw

VGH 1 96.10 ResNet101 none
2 96.00 MargHists decoRJ

WR 1 94.37 ResNet50 none
2 94.11 ResNet50 Khan (CC140)

Figure 6 shows the accuracy for each descriptor and data set, while color indicates the
pre-processing methodology. As can be observed, the performance of the color-based descriptors
(i.e.: color histograms and pre-trained networks) varied significantly depending on the pre-processing
method used. By contrast, the texture-based descriptors were markedly more resilient, as one would
reasonably expect. Also, it should be noted that the marginal versions of the texture descriptors
(MargGabor, MargGLCM and MargLBP) outperformed their grey-scale counterparts (Gabor, GLCM
and LBP).

Table 3 reports the difference to the baseline (i.e., no color pre-processing) divided by descriptor
and color pre-processing methodology. These values are averaged over all the data sets. The box
plots of Figures 7 and 8 break down the difference by color pre-processing method, while color and
shape of the markers respectively show details about the descriptor and data set. On the whole,
color pre-processing caused a loss of accuracy in most cases. This was particularly true when pure
color descriptors and convolutional networks were involved (Figure 8); moreover, we can see that in
some cases the decrease in accuracy was very sharp. Those methodologies which rely heavily on color
responded negatively to color pre-processing, which is in line with the results reported in [34]. The
results also show that the outcome of color transfer methodologies (Khan’s, Macenko’s and Reinhard’s)
was pretty much independent on the target image used, regardless this being a histology image (T2–T4)
or not (T1). In fact, it is quite surprising that on average T1 performed slightly better than the others
(Table 3). We believe this is an important finding, because it suggests that despite the color-transformed
images obtained using T2–T4 as target images ‘look better’ than those obtained using T1, this does
not translate into a better performance of the automatic classification. A comparison among the three



Cancers 2020, 12, 3337 12 of 20

methods show that Khan’s and Macenko’s had a similar performance, whereas that of Reinhard’s
was markedly worse. Regarding color deconvolution, we observe (Table 3) that on average this was
generally beneficial only when coupled with texture descriptors, but not in the other cases (i.e., color
descriptors and pre-trained CNN).

The methods based on texture proved fairly resilient to color pre-processing (Figure 6), as it
would reasonably expected. In these cases, there was even a noticeable improvement of the accuracy
in some combinations of the descriptor and the pre-processing methodology. Specifically, the marginal
color texture descriptors (i.e., MargGabor, MargGLCM and MargLBP) seemed to provide a positive
response both to ‘chroma’ normalization and color deconvolution. The latter results looked particularly
interesting, i.e., it suggests that the texture features can provide complementary information when
applied to each of the channels separately, i.e., haematoxylin, eosin and background.

To reduce potential sources of bias related to the samples distribution in the training and test sets,
we repeated the classification experiments using a lower train ration ( f = 1/8). The complete results
show that no significant difference was observed with the trend with f = 1/4.

5.2. Computational Demand

Table 4 illustrates the average feature extraction time by descriptor and color pre-processing
methods. On the whole the results indicate that there was some additional overhead, as one would
reasonably expect. This was more noticeable for the color transfer methods—particularly Khan’s—than
for the color constancy ones, which is consistent with the higher complexity of the first group
compared with the second. Surprisingly, there was a gain in speed in some cases, as for instance
with the combinations chroma normalization/GLCM and MargGLCM. A possible explanation is that
by definition, chroma normalization projects the color distribution onto a plane, therefore effectively
reducing the dimensionality of the color space from three to two. As for the image descriptors, it can
be seen that MargHists was the quickest method, followed by FullHist, LBP and the ResNet and VGG
pre-trained models. The other texture descriptors were significantly slower, as was InceptionV3.

Table 3. Difference to the baseline by image descriptor and pre-processing method. The values are
averaged over the eight data set and filtered on f = 4. Baseline is the condition where no color
pre-processing is applied.
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-6.44
-6.34
-5.61
-3.98
-0.07
-2.18
-0.88
-0.10
-2.31
-1.66
-8.22
-9.44

-5.42
-11.37
-9.22
-11.40
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-2.92
-20.94
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Figure 6. Accuracy by data set and descriptor; color indicates the pre-processing method. The values
reported are for f = 4. This chart shows interesting things. First, texture-based image descriptors
(e.g., LBP) are much more insensitive to color pre-processing than the other methods (e.g., FullHist).
This is important when analyzing the reproducibility of the methodologies. Second, the cases where
there was large variation seemed to have results on the extremes (i.e., KM / FullHist) and not a uniform
distribution. Third, and perhaps the most important, the accuracy obtained in different datasets is
considerably different. Compare for instance NKI which is very close to 100% with LM where most
cases are around 50%. This highlights the importance of testing on more than one dataset, as the choice
of dataset can result in higher or lower values of accuracy.
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Figure 7. Difference to the baseline for each of the color pre-processing methodologies (texture and
hybrid hand-designed descriptors). Color shows details about descriptor, shape about data set. The data
are filtered on f = 4. The zero line represents the condition where no color pre-processing was applied.
The use of color pre-processing caused loss of accuracy in the majority of the cases: the median of 12 of
the 17 methodologies was below the baseline, and the upper quartile of 11 of the 17 was close or below
the baseline. It should be noted that for both Macenko and Reinhard, the best results were recorded
when T1—i.e., the non-histological target—was used. Ruifrok and Johnston’s (decoRJ) was among the
highest results, together with the relatively simpler chroma and gw.

Table 4. Feature extraction time (sec/image). The values were recorded on the HICL dataset. Please
note that for efficiency reasons, the color-preprocessed images were cached after the first calculation,
which was carried out during the extraction of ‘Gabor’ features. Therefore, the figures in the ‘Gabor’
row include both the color pre-processing time and the feature extraction time.
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Figure 8. Difference to the baseline for each color pre-processing method (color hand-designed
descriptors and convolutional networks). Color shows details about descriptor, shape about data set.
The data are filtered on f = 4. The zero line represents the condition where no color pre-processing
was applied. It should be noticed the considerable decrease of accuracy of Reinhard’s methodology,
irrespective of the target image. This is due to the reliance of the methodology on color. On the other
hand, results for T1 were slightly higher than T2-T4 for both Reinhard and Macencko. This is surprising
as T1 is not histological and the colors are considerably different from the images to normalize. Note the
presence of outliers both above and below the zero line, respectively InceptionV3/AP and FullHist/KM.

6. Conclusions

Digital pathology is a rapidly developing discipline with important implications, for instance,
the management of those patients who present neoplastic disorders. Potential applications include
disease classification, identification of blood vessels, mitosis detection and tissue segmentation.
Crucial to all them is the classification of tissue areas into homogeneous and clinically significant
regions. As a result of immuno-staining, color plays a significant role in this process, for it enables the
differential visualization of tissue micro-structures such as nuclei, ribosome and cytoplasm. However,
variations in tissue preparation, reagents, image acquisition settings and other factors can easily
lead to significant differences between whole-slide images. To circumvent these problems several
pre-processing methodologies have been investigated. Although such procedures can produce
appealing results on a qualitative basis, their effects on automatic patch-based classification of
histological slides are not clear.

In this work we found that color pre-processing resulted in a noticeable reduction of the accuracy
in most cases, especially when coupled with image descriptors that rely heavily on the color of the
image. This agrees with the results presented in [34], but differ from those appeared in [33]. In [35,36]
the authors achieved the top performance without the use of color normalization, which is again
consistent with the results found here. Our findings also conform with those reported by Cusano et
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al. [55] for the recognition of color textures under variable lighting conditions—a problem conceptually
equivalent to the one investigated here. Interestingly, some pre-processing methods (i.e., chroma
and decoRJ) provided positive effects when joined with certain texture descriptors, i.e., MargGabor,
MargGLCM and MargLBP. We consider that this is a novel finding that could pave the way to new
investigations in future studies.

We speculate that the most interesting new investigations would be those that follow the impact
of color pre-processing and pass the classification stage towards the correlation with clinical outcome.
Currently, there are several reports that correlate clinical outcome with bio-markers derived from
histological images [50,51,75–78], and while these studies provide promising results, it would be
interesting to test if these could be affected by color pre-processing.

In conclusion, the results suggest that the application of color pre-processing methodologies for
patch-based classification of H&E-stained images should be considered with care. Although our results
show some dependence on the dataset used, on the whole our findings indicate that in the absence of
enough data for domain-specific tuning, (1) doing nothing (no color pre-processing) is likely to be a
good option in most cases (primum non nocere) and (2) pre-trained CNN from the ResNet family are the
descriptor of choice. Otherwise, if there are enough data enough to carry out some domain-specific
tuning, we recommend the color pre-processing method(s) be always evaluated along with the image
descriptor(s) used.
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