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Abstract

In this paper, the elastic and elastic-plastic creep behaviour of cracked structures in the presence of
a residual stress field have been studied, numerically and analytically. A self-equilibrating residual
stress field is introduced by prior mechanical loading. The magnitude of the residual stress field is
varied and the corresponding transient crack tip parameter, C(t), is evaluated in single edge notched
specimens, using the finite element (FE) method. Since the steady state crack tip parameter, C∗,
and redistribution time, tred, are no longer valid for the case of residual stress only (as for this case
C∗ → 0 and thus tred → ∞), new normalising factors of Cnorm and tnorm are introduced and used
to normalise C(t) and time, respectively. Existing analytical solutions are modified based on these
normalising factors, and new expressions are developed to describe creep relaxation in the presence
of a residual stress field. The values of C(t) obtained from FE analysis are compared to those
from the proposed equations. It has been found that the transient C(t) value provides an accurate
characterisation of the crack tip fields under residual stress only.

1. Introduction

Manufacturing, joining processing and service load history may result in stress/strain misfits between
different regions in a structure. Hence, it is essential to evaluate the influence of residual stress
(secondary) field on the creep relaxation behaviour of a structure (see e.g. [1–7]). The influence of
combined mechanical and residual stresses has been evaluated in our earlier work [1].

In this paper, the influence of residual stress on creep relaxation behaviour of cracked specimens
is studied. The paper studies creep under self-equilibrating residual stress distributions introduced by
bending in specimens with a stationary crack under elastic and elastic-plastic conditions. Comparison
is provided with existing reference stress solutions. The creep crack tip parameter, C(t), is evaluated
under different residual stress levels and material properties using existing formulation and newly
developed expressions.
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2. Theoretical Background

2.1. Definition of Parameters for Creep under Combined Stress

The transient crack tip parameter under creep, C(t), around a stationary crack tip during creep,
introduced by mechanical primary loading, is defined as (see e.g. [5])

C(t) =

∫

Γ→0

Ẇ (ε̇c)dy − t
∂u̇

∂x
ds, (1)

where

Ẇ (ε̇c) =

∫

σdε̇c (2)

is the strain energy rate density and ε̇
c is the creep strain rate. C(t) is a path and time dependent

integral, evaluated over paths close to the crack tip (Γ → 0).
During the stationary state creep regime, under constant mechanical load, the value of C(t)

becomes time and path independent, denoted by C∗,

C∗ =

∫

Γ

Ẇ (ε̇c)dy − t
∂u̇

∂x
ds. (3)

The value of C∗ is independent of a secondary (residual) stress field, as a self-equilibrating stress
distributed across the uncracked section of the specimen will relax to zero over long times. The
initial J-integral and redistribution time, J0 and tred respectively, may also be determined by eqs. (4)
and (5) respectively with the corresponding primary and secondary stress intensity factors, Kp and
Ks respectively (see [1] and [8]),

J0 =
(Kp + Ks)2

E′
(4)

and

tred =
J0

C∗
, (5)

where E′ = E/
(

1 − ν2
)

with E and ν as Young’s modulus and the Poisson’s ratio respectively. Note
that eq. (5) is invalid for the case of residual stress only where no mechanical load is applied (C∗ = 0).

Under conditions where primary creep strains are small, the secondary creep regime is assumed
to be the dominant regime [8] and the creep strain is defined by a power law

ε̇c = ε̇0

(

σ

σ0

)n

= Aσn, (6)

where A and n are material constants. The parameters ε̇0 and σ0 are normalising strain and stress
parameters. In this work, a power law elastic-plastic material response has also been assumed, i.e.

εe + εp =

{

σ/E, σ ≤ σy

εy(σ/σy)
N , σ > σy

(7)

where εe and εp are elastic and plastic (rate independent) strains respectively, σy is the yield stress,
εy = σy/E is the yield strain and N is the strain hardening exponent.

For a power law creeping material tred defined via eq. (5) may also be used to provide an estimate
of C(t) during the redistribution period (see e.g. [8]),

C(t)

C∗
=

(1 + t/tred)
n+1

(1 + t/tred)
n+1 − φ

, (8)
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where, as proposed in [6]

φ = 1 −
CNC∗

AJ0

. (9)

The constant CN in eq. (9) depends on the elastic-plastic response of the material. For a power
law material response, CN is given as

CN =
1

E′σN−1
y

. (10)

For the case of residual stress only C∗ → 0, and the value of J decreases with time, due to stress
relaxation.

The parameter φ in eq. (8) depends on the degree of initial plasticity and has the value of unity for
elastic-creep behaviour and is zero under widespread plasticity i.e., in the latter case, eq. (8) predicts
C(t) = C∗ for all time, t.

In R6 [4] the magnitude of the residual stress field is quantified using the dimensionless parameter
β,

β =
Ks

Kp/Lr
, (11)

where Lr denotes the ratio of P/PL as a measure of the mechanical (primary) load with P as the
primary and PL as the collapse (limit) load. It should be noted that in eq. (11), Kp is a linear function
of Lr and therefore β is not dependent on Kp or primary load. In other words, β depends only on
the value of Ks, yield stress,

√
a and the specimen geometry. Thus, eq. (11) is valid for the case of

residual stress only. A simplified expression of this equation for single edge notched tension, SEN(T),
specimen was derived in [1],

β = Ks/

(

σy

√
af(a/W )γ

(

1 −
a

W
− 1.232

( a

W

)2

+
( a

W

)3
))

, (12)

where γ = 2/
√

3 and f(a/W ) is a non-dimensional function of the crack size ratio [3].

2.2. Definition of Parameters for Creep under Secondary Stress Only

Equation (8) cannot be used to obtain C(t) for the case of residual stress only as in this case C∗ = 0.
We therefore examine the general solution. The general solution for C(t) as a function of J may be
written as [5, 6]

J(t)n+1/C(t) = (n + 1)

∫ t

0

J(t)ndt + CA. (13)

The constant CA = 0 for an elastic material, and CA = CNJn
0 /A under elastic-plastic conditions (see

[6] for details). Thus, under elastic conditions:

C(t) =
J(t)n+1

(n + 1)
∫ t

0
J(t)ndt

, (14)

and under elastic-plastic conditions

C(t) =
J(t)n+1

(

(n + 1)
∫ t

0
J(t)ndt

)

+ CNJn
0 /A

(15)

from which eq. (8) has been derived using an approximation for J as a function of time,

J(t) = J0 + C∗t, (16)
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where J0 may be obtained from eq. (4). Equation (16), found to provide accurate results at short and
over long times [5, 6], has been obtained by simply adding the J terms for the short-time solution (the
initial J , J0) to the long-time solution when dJ/dt = C∗ [5]. For the case of secondary stress only
C∗ = 0 and J(t) = J0, with J0 substituted from eq. (4), i.e.

J = J0 = (Ks)2 /E′, (17)

where the value of J relates only to the initial residual stress field, Ks, and is not a function of time.
Substituting the J expression, J = J0, from eq. (17) into eq. (15) for an elastic-plastic material:

C(t) =
Jn+1

0
(

(n + 1)
∫ t

0
Jn

0 dt
)

+ CNJn
0 /A

(18)

Integrating the denominator,

C(t) =
Jn+1

0

(n + 1)Jn
0 t + CNJn

0 /A
=

J0

(n + 1)t + CN/A
. (19)

Under elastic conditions eq. (14) is used, and a similar derivation method from eq. (16) to (19)
leads to

C(t) =
J0

(n + 1)t
. (20)

A normalising factor is introduced analogous to the reference stress estimation for C∗ [8], to
present creep relaxation curves (normalised C(t) values),

Cnorm = σ0
ref ε̇0

refR (21)

where σ0
ref and ε̇0

ref are an initial reference stress and strain rate, respectively, and R is a crack size
dependent factor for secondary stress [8],

R =

(

Ks

σ0
ref

)2

. (22)

Using the power law relation, eq. (6) for ε̇0
ref in eq. (21), a normalising value of C(t) is then defined

as
Cnorm = A

(

σ0
ref

)n−1
(Ks)2 . (23)

In this work for an equilibrating residual stress field, σ0
ref is taken as an estimation of initial refer-

ence stress near the crack tip, and is defined as [3]

σ0
ref = σp

ref

(

Kp + Ks

Kp

)

= σp
ref + Ks

(

σp
ref

Kp

)

, (24)

where σp
ref is the reference stress due to the primary stress.

In eq. (24), σp
ref = 0 and σp

ref/Kp is a geometry dependent factor [1]. Thus, eq. (24) is simplified
to

σ0
ref =

(

Ks

√
a

)(

1

f(a/W )h(a/W )γ

)

, (25)

where (see section 2.1)

h(a/W ) = 1 −
a

W
− 1.232

( a

W

)2

+
( a

W

)3

. (26)
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A linear relation between σ0
ref and β can be made for creep under residual stress only. From

eq. (11)
β

Ks
=

Lr

Kp
. (27)

Using eq. (24), σ0
ref can be written as

σ0
ref = Ks

(

σp
ref

Kp

)

= Ks

(

σyLr

Kp

)

, (28)

where σp
ref = σyLr [8]. Lr/Kp is substituted from eq. (27) in eq. (28),

σ0
ref = βσy. (29)

Equation (29) demonstrates a linear relation between σ0
ref and β, and is equivalent to eq. (25).

Note that in [3], eq. (24) is used only for an elastic-creep material. Here, it is also used for an
elastic-plastic creep material. An alternative approach for the evaluation of σ0

ref for an elastic-plastic
creep material has been proposed in [9], and used in [1] for creep under combined stress. Our
investigations showed that the alternative approach and eq. (24) provide an almost identical value for
σ0

ref for the case of residual stress only.
A normalising time is also needed in this work. Note that eq. (5) can not be used to define an

appropriate tred for creep under residual stress only. Thus, C∗ is replaced by Cnorm in eq. (5), and a
normalizing time, tnorm, is provided by

tnorm =
J0

Cnorm
. (30)

Equation (19) can then be normalised using Cnorm and tnorm and rewritten as

C(t)

Cnorm
=

1

(n + 1)t/tnorm + φ′
. (31)

In eq. (31)

φ′ =
CNCnorm

AJ0

. (32)

Under elastic-creep conditions φ′ = 0 in eq. (31). It may be noted that eq. (31) under elastic-creep
conditions has the same form as the equation developed for primary loading by Riedel [10], under
elastic conditions at short times, with C∗ replaced by Cnorm. The accuracy of eq. (31) in the prediction
of creep relaxation in the presence of residual stress is examined in sections 4.3 and 4.4.

2.3. C(t) approximations using the reference stress

An alternative approach to the evaluation of C(t), based on the reference stress approach has been
proposed in [7], for the general case of combined primary and secondary stress, as

C(t)

Cnorm
=

(

σref (t)/σp
ref

)n+1 (

εref (t)/ε0
ref

)n+1

Ψ(t)

(

(

εref (t)/ε0
ref

)n+1

− 1

)

+
(

1 − σ0
ref/E′ε0

ref

)

, (33)

where σref is the total reference stress, εref and ε0
ref are the total and initial reference strains, re-

spectively, and σp
ref is the reference stress due to the primary stress. In our equation, C∗ which is the

normalising value in [7] is replaced by Cnorm for the case of residual stress only. The total reference
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stress, σref , is time dependent and its relaxation from the initial value, σ0
ref , can be evaluated by

integration [3]

σ̇ref = −
E′

Z

(

ε̇ref − ε̇p
ref

)

, (34)

where ε̇ref and ε̇p
ref are the creep strain rates due to total and primary reference stresses respectively,

and Z ≥ 1 is the elastic follow-up factor. Using eq. (6) ε̇p
ref = 0 as σp

ref = 0. Equation (34) is then
further simplified to

σ̇ref = −
E′

Z
ε̇ref = −

AE′

Z
σn

ref . (35)

A very low relaxation rate of σref is obtained from this equation for the case of residual stress only
i.e. σref slightly decreases with time from its initial value, σ0

ref .
Equation (34) has been solved in this work using a code written in MATLAB [11] with the initial

condition σref = σ0
ref at t = 0. Consequently, εref may be obtained by

εref = ε0
ref + εc

ref = ε0
ref + A

∫

σn
refdt, (36)

with the initial condition εref = ε0
ref at t = 0. ε0

ref is calculated from the strain-stress relationship of
the material, i.e. eq. (7) with σ replaced by σ0

ref .
To evaluate Z in eq. (34), following [7], [9] and [12], the evolution of J as a function of time,

obtained from FE solutions, is matched to the equation below when primary stress is zero, with Z as
the only unknown in the equation

J(t)

J0

=

(

σref (t)

σ0
ref

)(

1 +
ε̇p
ref

ε0
ref

t − (Z − 1)
σref (t) − σ0

ref

E′ε0
ref

)

, (37)

which can be simplified, as ε̇p
ref = 0, to

J(t)

J0

=

(

σref (t)

σ0
ref

)(

1 − (Z − 1)
σref (t) − σ0

ref

E′ε0
ref

)

. (38)

For the case of residual stress only, the parameter Ψ(t) in eq. (33) is defined by

Ψ(t) =
Z

(

σp
ref/σref (t)

)n

+ (Z − 1)
, (39)

which can be simplified to

Ψ(t) =
Z

Z − 1
, (40)

for the case of residual stress only.
The accuracy of eqs. (31) and (33) for the prediction of C(t) under secondary stress only will be

examined in section 4.

3. Computational Approach

The modelling framework is described schematically in Fig. 1: a stress distribution is first introduced
by elastic-plastic bending of the uncracked specimen (step 1). Unloading of the specimen introduces
a residual (secondary) stress distribution (step 2). In this work, both elastic-plastic creep and elastic-
creep analyses have been carried out. In the latter case, the elastic-plastic residual stress distribution
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obtained in step 2, is introduced as an initial stress to an elastic specimen in step 3 (before introducing
the crack), using the initial stress allocation method in ABAQUS [13]. The residual stress field taken
from the elastic-plastic model needs to be equilibrated consistently with the elastic material in the
new model. Following the approach in [14], a linear iterative equilibrating procedure is used to obtain
the desired residual stresses in the elastic specimen (initially stress-free).

In step 3, a sharp crack is introduced to the body by releasing the nodal constraints up to a
distance a, where a is the crack length. Crack face nodes were released simultaneously using small
time increments. Residual stress redistribution is then allowed to occur due to creep.

The level of residual stress is varied by loading the uncracked specimen up to Lr = 1.0 (P = PL),
2.0 (P = 2PL) and 3.0 (P = 3PL) and a subsequent unloading. Corresponding β values at different
material response are tabulated in table 1.

3.1. Finite Element Model

The FE mesh used in the analysis is illustrated in Fig. 2, which has also been used in previous
work [1]. Concentric elements provide an accurate extraction of crack tip parameters, with five rings
of elements adjacent to the crack tip (shaded elements), from which an average value of the creep
characterising parameter is extracted (Fig. 2b), excluding the first ring. Two dimensional 4-node
quadratic elements discretise the model. Linear ‘hybrid’ plane strain (CPE4H in ABAQUS [13]) and
plane stress (CPS4) elements have been used. Half of the specimen has been modelled to reduce
the number of calculations. The mesh consists of 2415 elements and 2552 nodes for each model.
The focused mesh consists of 46 rings spanning a radial distance 0 < r/a < 0.9 with r the radial
distance from the crack tip. Each ring consists of 30 elements spanning the crack tip. Internal element
rings from which C(t) values are extracted typically span a radial distance 0 < r/a < 3×10−4 (Fig. 2b).
The mesh sensitivity of the characterising parameters was examined to determine the appropriate
crack tip element size (discussed in detail in [1]). It was shown that with increasing mesh resolution,
the evolution of C(t) converges to a single distribution. The suitable element size (d) adjacent to the
crack tip was found to be d/a = 3 × 10−5.

Equations (6) and (7), are used with power law creep and strain hardening exponents, n and
N (= 3 and 10). In the case of an elastic-plastic creep material, the case of N = n is examined.
Isotropic strain hardening is assumed.

4. Results

4.1. Residual Stress Distributions

Three typical residual stress profiles, characterised by β or Ks, along the crack direction introduced
by different levels of mechanical loads are examined (see table 1) with the crack to be inserted in the
region 0 < x/W < 0.2 where the residual stress is positive (see Fig. 3). As in [1], the crack sizes are
a/W = 0.07 and 0.15 in this work which are consistent with these values.

When transferring the residual stress distribution from the elastic-plastic analysis to the elastic
creep analysis, stresses are extracted from the elastic-plastic model in the region 0 < y < W/5, with
W the width of specimen (see Fig. 2a) and introduced to the identical element set along the crack
path in the elastic model (steps 2 and 3 in Fig. 1a).

4.2. Evaluation of J-integral

The value of J0 has been obtained from the FE analysis using the modified J expression, introduced
in [14, 15], which provides a path independent J value in the presence of residual stress.
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Figure 4 compares the residual J values from ABAQUS and the modified J expression [15] at
three residual stress levels (β = 0.13, 0.33 and 0.41, see table 1). It is seen in Fig. 4 that the value
of J from ABAQUS shows significant path dependence while the value obtained using the method
in [15] is positive and path independent over 30 contours. It may also be noted that J0 obtained from
the FE analysis is consistent with the small scale yielding relationship, eq. (4), where Ks is evaluated
using a Green’s function approach and Kp = 0 (see also [15]).

4.3. Elastic-Creep Analysis

4.3.1. Estimate of C(t) based on J0

Figure 5 shows the FE results under elastic-creep conditions for two creep exponents and two a/W
ratios. The solid line represents the analytical result from eq. (31). Note that eq. (31) is independent
of crack geometry though the FE analysis predicts some dependence on a/W .

As seen in Fig. 5 for n = 3, eq. (31) overestimates the value of C(t) compared to the FE solution
and thus provides conservative predictions. For n = 10 and a/W = 0.15 good agreement is obtained
for t/tnorm > 0.1. For n = 10 and a/W = 0.07 slightly non-conservative predictions are obtained for
β = 0.18 and 0.45 but the overall agreement with the FE prediction is good. It is also seen that the
normalising factors, tnorm and Cnorm, provide a near unique interpretation for the C(t) results i.e. the
result is weakly dependent on the amplitude of the residual stress field, β.

Figure 6 compares the FE prediction of the evolution of J for n = 3 and n = 10. Though J is
almost constant with time for t/tnorm > 20, for n = 10 it significantly deviates from J0 initially. This
may explain the overestimation of C(t) at short times for n = 3.

4.3.2. Estimate of C(t) based on reference stress method

Figure 7 shows the dependency of J(t)/J0 on Z values for two values of β. As seen, the most
suitable value of Z for this case (n = 3, secondary stress only, SENB) is 1.01. Figure 8 compares
the numerical and analytical C(t) solutions from eqs. (31) and (33). Here attention is focused on the
region C(t)/Cnorm < 1 to allow clear comparison of the estimation procedures (compare Fig. 5).

Figure 8(a) shows that the results from eq. (31) are conservative and in reasonable agreement
with the FE results. However, eq. (33), the full reference stress solution shows a rapid relaxation for
t/tnorm << 1 providing a non-conservative prediction. Figure 8(b) shows that for n = 10, eq. (33)
again provides a non-conservative prediction. The results from eq. (31) are conservative, except
slightly non-conservative for β = 0.18, and in good agreement with the FE results.

4.4. Elastic-Plastic Creep Analysis

Figure 9 presents the evolution of C(t) values under elastic-plastic creep conditions. Under elastic-
creep conditions a near unique representation of the C(t) values has been obtained from the FE
analysis (see Fig. 5). Thus a representative elastic result is presented for the case of elastic-plastic in
Fig. 9 (shaded symbols). As seen in the figure, the effect of plasticity is to reduce C(t), relative to this
elastic-creep solution, with the effect increasing with an increase in secondary stress, as quantified
by β. (Note that the value of Cnorm is not the same for each value of β). For N = n = 3, Fig. 9(a), the
normalised C(t) reduces rapidly to zero for β > 0.3, a trend not observed for N = n = 10, Fig. 9(b).

The solid and dash lines in Fig. 9 illustrate the elastic-plastic predictions, eq. (31). Equation (33)
provides a non-conservative prediction in all cases, and is not shown. In Fig. 9(a), when φ′ > 0.1,
eq. (31) predicts that C(t) ≃ 0 for all values of t. It may be seen that for n = 3, very good agreement
is obtained between the FE solution and eq. (31).
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For n = 10, Fig. 9(b), the estimate from eq. (31) is in very good agreement with the FE results
for all β values. For β = 0.18 and 0.45, φ′ < 0.01, eq. (31) provides results close to the result of
elastic-creep expression. Slightly non-conservative results is provided when β = 0.18.

The results in Fig. 9 may be interpreted physically in terms of typical conditions for a component
operating at high temperature. The FE analysis predicts that for n = 10 the value of C(t), and
hence crack tip stresses and creep strain rates, will be negligible for t > tnorm. From section 2.2,
taking typical values, A = 5.813 × 10−30 (stress in MPa, time in hr.) [8], E′ = 200 GPa, a = 1 cm,
Ks = 20 MPa

√
m, we find tnorm ≈ 1700 hrs.

5. Conclusion

Creep relaxation in the presence of residual stress only was examined. It was found that the effect of
plasticity is to reduce the magnitude of C(t) compared to an elastic-creep material.

These investigations led to the definition of a normalising factor Cnorm and a normalising time,
tnorm. It was found that the simple estimation scheme proposed, eq. (31), provides a conservative
result in good agreement with the FE solution. Equation (33) based on the existing reference stress
method, generally provides a non-conservative prediction. As was seen for creep under the combined
stress in [1], it is evident here that care must be taken in the use of the C(t) estimation schemes in
structural analysis, with any non-conservatism in these estimates accounted for elsewhere within the
procedure.
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6. Tables

Table 1: variation of β at different loading level for a/W = 0.07
Lr n = 3 n = 10

1.0 0.13 0.18
2.0 0.33 0.45
3.0 0.41 0.50
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7. Figures

(a)

(b)

Figure 1: Combined loading strategy for elastic-plastic analysis; (a) schematic loaded model, (b)
loading steps including primary and secondary loads
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symmetric constraints in normal direction
(a)

(b)

Figure 2: FE model; (a) typical mesh used in analysis (element rows in the region of W/5 are selected
to extract and introduce the stress values), (b) five rings of elements adjacent to the crack tip (shaded
elements) to extract creep characterising parameters (first ring excluded). here d is the size of the
crack tip element.
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Figure 3: Residual stress (σ22) distribution for SEN(B) and N = 3 after unloading the specimen (step
2 in Fig. 1)

5 10 15 20 25 30

0

1

2

3

4

5

results by the method in [15]
results by ABAQUS

β = 0.41

β = 0.33

β = 0.13

a/W = 0.07
SEN(B)
N = 3

1
−0.5

Domain around crack tip

J
/(

a
ε y

σ
y
)
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Figure 5: Comparison of evolution of C(t) for elastic-creep conditions under residual stress only at
different β values for a/W = 0.07 and a/W = 0.15 for; (a) n = 3, (b) n = 10
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Figure 7: Comparison of predicted normalised J values with the FE results under secondary stress
only for a/W = 0.07 and n = 3; (a) β = 0.13, (b) β = 0.33
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Figure 8: Comparison of evolution of C(t) for elastic-creep conditions under residual stress only at
different β values for a/W = 0.07; (a) n = 3, (b) n = 10
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Figure 9: Comparison of evolution of C(t) under elastic-plastic creep conditions under residual stress
only at different β values for a/W = 0.07; (a) n = 3, (b) n = 10; elastic-creep results are also included
in each case.
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