
Optimal control and model reduction for
wave energy systems:
A moment-based approach

Nicolás Faedo

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Maynooth University
Faculty of Science and Engineering

Department of Electronic Engineering
Centre for Ocean Energy Research

August 2020

Supervisor Head of Department
Prof. John V. Ringwood Prof. Ronan Farrel





VIVA Committee

Examiners:

Dr. Jørgen Hals Todalshaug
CorPower Ocean & Norwegian University of Science and Technology.

Dr. Oliver Mason
Hamilton Institute, Department of Mathematics and Statistics, Maynooth University.

Independent Chair:

Dr. David Malone
Hamilton Institute, Department of Mathematics and Statistics, Maynooth University.

Written in 2020 by Nicolás Faedo.

Colophon
This thesis was typeset with KOMA-Script and LATEX using the kaobook class, with some
minor modifications. The LATEX editor utilised was GNU Emacs v. 26.1, in combination with
AUCTeX v. 12.2, running on Ubuntu 18.04.4 LTS.

Electronic version
First version – Generated in May 2020.
Second version – Generated in August 2020 (current).

https://sourceforge.net/projects/koma-script/
ttps://www.latex-project.org/
https://github.com/fmarotta/kaobook/




Para mis viejos.
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– A. de Saint-Exupéry.





La ciencia es la expresión de una necesidad inherente al ser humano y,
en todo caso, está ligada a la función superior de su naturaleza

inteligente: la capacidad de crear∗.

– Dr. René Gerónimo Favaloro.

Buenos Aires, Argentina.
(1923 - 2000)

This photograph was taken at a symposium held in
Cleveland, on 12-13 November 1992 to celebrate the 25th

anniversary of Dr. Favaloro’s pioneering coronary artery
bypass graft. Photo courtesy of the authors of [1] and the

Cleveland Clinic Foundation.

∗ Loosely translated as: “Science is the expression of an intrinsic necessity of every human being which,
in any case, is linked to the supreme function of its intelligent nature: the ability to create.”





Abstract

Following the sharp increase in the price of traditional fossil fuels, in combination with issues
of security of supply, and pressure to honor greenhouse gas emission limits, much attention
has turned to renewable energy sources in recent years. Ocean wave energy is a massive and
untapped resource, which can make a valuable contribution towards a sustainable, global,
energy mix. Despite the fact that ocean waves constitute a vast resource, wave energy
converters (WECs) have yet to make significant progress towards commercialisation. One
stepping stone to achieve this objective is the availability of appropriate control technology,
such that energy conversion is performed as economically as possible, minimising the delivered
energy cost, while also maintaining the structural integrity of the device, minimising wear on
WEC components, and operating across a wide range of sea conditions.

Suitable energy-maximising control technology depends upon the availability of two funda-
mental ‘pieces’: A control-oriented dynamical model, describing the motion of the WEC,
and a model-based optimal control framework, able to efficiently compute the corresponding
energy-maximising control law, subject to a set of constraints, defined according to the
physical limitations of the device.

Following the requirements for successful WEC control, and both using and extending key tools
arising from the framework of model reduction by moment-matching, this thesis presents two
main contributions. Firstly, this monograph proposes a comprehensive moment-based model
reduction framework, tailored for WEC systems, addressing linear and nonlinear model reduc-
tion cases, providing a systematic method to compute control-oriented models from complex
target structures. These approximating models inherit steady-state response characteristics of
the target system, via the proposed moment-matching reduction framework.

Secondly, by recognising that, besides being a powerful model reduction tool, the parameter-
isation of the steady-state response of a system in terms of moment-based theory can be
explicitly used to transcribe the energy-maximising control problem to a finite-dimensional
nonlinear program, a comprehensive moment-based optimal control framework, tailored for
WEC systems, is proposed. This framework considers both linear and nonlinear optimal
control cases, while also including robust solutions with respect to both system, and input
uncertainty, providing an efficient method to compute the energy-maximising control law for
WECs, under different modelling assumptions.

Throughout this thesis both model reduction, and optimal control frameworks, are presented
for a general class of WEC devices, and their performance is analysed via multiple case
studies, considering different devices, under different sea state conditions.
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The energy demand of the industrialised world has grown exponen-
tially, naturally increasing concerns about future resource provision.
As a matter of fact, the majority of the current energy consumption
relies on ‘traditional’ fossil fuels, whose scarcity is making its price
rise severely. Following this sharp increase in the price of traditional
fossil fuels, in combination with issues of security of supply, and
pressure to honor greenhouse gas emission limits1 1: As a matter of fact, the Energy

Roadmap 2050 of the European Union
states that EU nations should cut
greenhouse gas emissions to 80% be-
low 1990 levels, by 2050 [2].

(for instance, the
Kyoto protocol [3]), much attention has turned to renewable energy
sources, aiming to fulfill future increasing energy needs. To illus-
trate this fact quantitatively, Figure 1.1 shows global investments
in renewable energy technologies from 2004 to 2015 (measured in
billion USD per year): In 2004, the world invested 47 billion USD;
by 2015, this had increased to 286 billion USD, an increase of more
than 600 percent [4].

Figure 1.1: Investment in renewable
energy technologies per year in billion
USD by region, in the period 2004-
2015. Adapted from [4].

Amongst the available renewable energy sources, ocean wave energy,
once economically viable, can make a valuable contribution towards
a sustainable, global, energy mix. Ocean waves represent a massive
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and untapped source of clean energy: the wave energy resource
has been estimated (worldwide) to be around 3.7 [TW] and about
32000 [TWh/yr] in [5] and [6], which would cover ≈ 20% of the
current global energy consumption (see Figure 1.2 for a detail on
the distribution of the wave energy source worldwide).

Despite being a vast resource, wave energy conversion technology
has not yet reached commercialisation stage. The main reason for
the lack of proliferation of wave energy can be attributed to the fact
that harnessing the irregular reciprocating motion of the sea is not
as straightforward as, for example, extracting energy from the wind.
This is clearly reflected in the striking absence of clear technology
convergence, with over a thousand different concepts and patents
proposed over the years2 2: The first patented wave energy

converter appeared in 1898 (see [7]).
. To date, wave energy converters (WECs)

are commonly grouped depending different properties, including, but
not limited to, their operation principle. A useful overview of the
classification of WECs is offered in, for instance, [8–10].

Figure 1.2: Average annual wave
energy transport [kW/m]. Image
adapted from [11].

Regardless of the type of WEC considered, these all share one com-
mon and fundamental objective: Energy conversion must be per-
formed as economically as possible, aiming to minimise the delivered
energy cost, while also maintaining the structural integrity of the de-
vice, minimising wear on WEC components, and operating effectively
across a wide range of sea conditions.

Dynamic analysis and control system technology can impact many
aspects of WEC design and operation, including device sizing and
configuration, maximising energy extraction from waves, and op-
timising energy conversion in the power take-off (PTO) system.
As a matter of fact, it is already clear (and well-established) that
appropriate control technology has the capability to greatly enhance
the energy extraction from WECs [12, 13]. This technology, together
with the development of so-called WEC arrays (or farms), which
effectively incorporate several devices in a common sea area, con-
stitute key stepping stones towards successful commercialisation of
WEC technology [14].
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Though appropriate energy-maximising control technology can ef-
fectively maximise energy extraction from ocean waves, the control
problem itself does not fit into a ‘traditional’ form, i.e. tracking/reg-
ulation. As a matter of fact, the control problem for WECs naturally
lends itself towards optimal control theory, where the control ob-
jective is, effectively, optimal energy capture, subject to a set of
device-dependent physical limitations (translated as state and input
constraints).

That said, energy-maximising control design for WECs, based on
an optimal control approach, comes with a number of fundamental
drawbacks. These directly motivate the research presented through-
out this thesis, as detailed in Section 1.1.

1.1 Motivation

As discussed previously in the introduction to this chapter, energy-
maximising control of WECs can be cast as an optimal control
problem (OCP), where the control objective is to maximise the
absorbed energy from incoming ocean waves, while respecting the
physical limitations associated with both device, and PTO, character-
istics. The definition of this OCP involves a number of fundamental
‘pieces’, depicted in Figure 1.3, which virtually always include:

(1) A control-oriented dynamical model Σ, describing the motion
of the WEC, obtained by means of physical principles and the
subsequent application of model reduction techniques3

3: The model reduction problem can
be informally formulated as the prob-
lem of finding a simplified description
of a dynamical system in specific op-
erating conditions, preserving at the
same time specific properties, e.g. sta-
bility.

.
(2) A model-based optimal control framework, which computes

the energy-maximising control (PTO) force, subject to a set of
(user-defined) constraints, according to the physical limitations
of the WEC device.

(3) A combination of unknown-input estimation and forecasting
techniques, to provide instantaneous and future values of the
(generally non-measurable) wave excitation force, i.e. the force
exerted in the device as a consequence of the incoming wave
field.

Given that, once a suitable WEC model is determined, item (3)
above can be addressed using ‘relatively’ standard unknown-input
estimation and forecasting techniques4

4: The reader is referred to [15] for a
state-of-the-art review and compari-
son study for different unknown-input
estimation strategies, while [16] dis-
cusses optimal forecasting techniques
for WECs.

, the motivation behind this
thesis is focused on the fundamental challenges involved in obtaining
such a control-oriented model Σ, i.e. model reduction techniques
(item (1) above), and those involved in solving the associated energy-
maximising OCP, subject to constraints (item (2) above). These
central challenges, associated with both (1) and (2), are discussed
in Sections 1.1.1 and 1.1.2, respectively.
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Figure 1.3: Block diagram of the
energy-maximising OCP for WECs.

1.1.1 Towards control-oriented models: Model
reduction

Regardless of the solution method selected to compute the energy-
maximising optimal control law, the definition of the optimal problem
itself depends upon the specification of a suitable WEC model Σ.
This is also true for the unknown-input estimation stage, which
virtually always relies on a model Σ, structured in such a way that
modern estimation theory5

5: Most unknown-input estimation
techniques arise from the field of fault
detection, and virtually always require
a mathematical model of the process
[17].

can be considered.

Not only is the structure of the model relevant for the definition of
the OCP, but also its associated complexity : given that the energy-
maximising control law must be computed in real-time, there is
clearly a limit to the computational complexity of the WEC model
employed in the control design procedure, while there is also a limit
to the (analytical) complexity6

6: For linear systems, this is often
understood simply in terms of the
dimension (order) of the system. For
nonlinear systems, this dimensional
argument may be inappropriate, as
one has to take into consideration
also the complexity of the functions
involved in the representation of the
system.

of mathematical models for which a
globally optimal control solution can be efficiently found, or even
whether it exists (i.e. for which the OCP is well-posed).

That said, even in the most ‘simplistic’ physical modelling scenario,
where linear conditions7

7: In particular, this refers to so-called
linear potential flow theory (see Chap-
ter 2 for further detail).

are assumed, model reduction techniques
are inherently required to provide a control-oriented model: the
equation of motion for a WEC under linearity assumptions is non-
parametric, intrinsically requiring a model reduction procedure, both
to alleviate the computational demand of this non-parametric op-
erator, and to express the dynamical equation in a suitable form
for control/estimation procedures (often in terms of a state-space
representation). Furthermore, any model reduction technique should
compute a control-oriented model which inherits the underlying
physical properties of the WEC process, so that the approximating
structure is effectively representative. This set of properties include,
for instance, internal stability, specific zero dynamics, relative degree,
and passivity. This is specifically important for WEC control proce-
dures, which often rely on these dynamical properties to guarantee
existence and uniqueness of globally optimal solutions.

If linearity assumptions are adopted, a number of studies can be
found in the ‘wider’ marine control/estimation literature, which
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propose model reduction techniques tailored for ocean engineering
applications, often considered in the WEC community. These strate-
gies, which are reviewed in Chapter 2, use different approaches, with
their own advantages and disadvantages. Nevertheless, to the best of
the authors’ knowledge, none of these methods is either specifically
tailored for the WEC application, nor can they systematically satisfy
the underlying physical properties that characterise the behaviour of
the WEC, hence directly compromising their application for WEC
estimation and control design.

Even though linearity assumptions are often adopted, mostly moti-
vated by their simplicity, the importance of having nonlinear control-
oriented models has been stressed in recent years: WECs are, by
nature, prone to show nonlinear effects, since their principal aim,
pursued by the optimal control strategy, is to enhance the amplitude
of motion to maximise power extraction. In other words, the assump-
tions under which the linearisation of WEC models is performed
are challenged by the controller itself, particularly in relation to
small movements around its equilibrium position8 8: This claim is discussed in depth in

Chapter 3.
. This, in turn,

highlights the importance of having systematic nonlinear model
reduction techniques, which can provide control-oriented nonlinear
models, with a level of complexity suitable for the energy-maximising
optimal control application. While the availability of nonlinear model
reduction techniques would represent an extremely valuable tool,
not only for control/estimation procedures, but for a variety of WEC
applications (for instance, geometry optimisation, power assessment,
among others), there is currently no literature addressing this issue
within the WEC community.

1.1.2 Addressing and solving the energy-maximising
OCP

Once a control-oriented model is computed, according to the spec-
ifications of the WEC under analysis, the corresponding energy-
maximising OCP must be solved efficiently, i.e. such that the com-
putation of the control law can be performed in real-time, while
providing globally optimal performance. That said, solving this OCP
entails a number of significant challenges, that must be addressed
properly, to achieve the control objective as efficiently as required
by the WEC application.

First of all, regardless of the characteristics of the control-oriented
WEC model Σ, utilised for design and synthesis, solving the energy-
maximising OCP virtually always requires suitable numerical routines:
Commonly, direct optimal control methods9 9: The reader is referred to Section

3.4.1 for a discussion on direct opti-
mal control methods.

are considered, where



1 Introduction 6

both the control objective and system variables are discretised ap-
propriately, transcribing the energy-maximising OCP into a nonlinear
program (NP). Though the solution of the resulting NP can be (gen-
erally) found by means of numerical routines, the computation of
the energy-maximising control law must be performed efficiently, in
order to have any practical value. This, in turn, strongly depends on
having explicit conditions on the existence and uniqueness of globally
optimal solutions, so that efficient convex optimisation routines can
be applied to solve the resulting NP.

Though, to date, some promising results have been presented in the
WEC literature, a number of deficiencies can be directly identified
in the state-of-the-art of energy-maximising control of WECs10 10: The state-of-the-art of optimal

control for WECs is presented in Chap-
ter 3.

. In
particular, motivated by their analytical simplicity and computational
convenience, the vast majority of the available strategies are based
on linear control-oriented models, even though WECs are, by their
nature, prone to show nonlinear effects under controlled conditions.
Moreover, even in the linear case, not only do the majority of the
available strategies require modification of the energy-maximising
objective by introducing ‘additional’ regularisation terms (which
inherently bias the true optimal solution), to ensure uniqueness of a
globally optimal solution, but most of them obviate any formal proof
or recommendation on how to select these regularisation terms to
achieve a convex control objective (with some notable exceptions).
This is specially true for the case of arrays of devices, where, to
the best of the author’s knowledge, none of the available strategies
reviewed explicitly guarantee existence and uniqueness of globally
optimal energy-maximising solutions.

With respect to nonlinearity, considering nonlinear WEC dynamics
in the formulation of the OCP complicates the nature of the re-
sulting NP: this optimisation problem has to be commonly solved
using ‘generic’ nonlinear programming routines (i.e. without a spe-
cific ‘structure’), which are generally efficient only if conditions for
global optimality are known a-priori. Having knowledge of these
conditions facilitates the reduction of the ‘size’ of the search space,
consequently enhancing the efficiency of the optimisation routine
used. A small number of WEC control strategies, available in the
literature, effectively consider nonlinear dynamics in the formulation
of the OCP. Nevertheless, to the best of the authors’ knowledge,
none of these strategies give explicit conditions for global optimality,
preventing identification of the class of models that can be used,
and limiting the results (and any conclusions) obtained only for the
particular application case presented to illustrate the method11 11: See Section 3.4.2.4 for further

detail.
.

An additional, yet not properly addressed, issue, when solving the
energy-maximising OCP for WECs, is robustness. Modelling errors
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are ubiquitous in hydrodynamics, especially for the case of linear
potential flow theory (see, for instance, [18]). The scarcity of ro-
bust strategies among WEC control methods can be attributed
to the fact that the design of energy-maximising controllers does
not directly fit into a traditional form, unlike the well-known track-
ing/regulation problem. This intrinsically complicates the application
of well-developed robust control strategies, posing an imperative to
find novel approaches for the wave energy application.

Though some progress has been reported in robust energy-maximising
control for WECs by a handful studies, only system uncertainties are
considered, and commonly ignore device limitations (i.e. the OCP
is formulated without state and input constraints). Nonetheless,
system uncertainty is not the only source of error inherently present
in the WEC OCP: Given that the wave excitation force is virtually
always approximated by means of a combination of unknown-input
estimation and forecasting techniques, input uncertainty is also ubiq-
uitous. Though the presence of this type of uncertainty can have a
strong impact in the performance of energy-maximising controllers
(see, for instance, [19]), the issue of robustness with respect to input
uncertainty has not been addressed explicitly in the current OCP
literature for WECs12 12: See Section 3.4.2.1 for further

detail.
, to the best of the author’s knowledge.

1.2 Main objectives, contributions, and
organisation of the thesis

Motivated by the discussion provided in Section 1.1, this thesis
has two core objectives, which, at first glance, can be informally
summarised in the following two key items:

I To propose a comprehensive model reduction framework
tailored for WEC systems, addressing linear and nonlinear
model reduction cases.

I To propose a comprehensive optimal control framework
tailored for WEC systems, addressing linear and nonlinear
optimal control cases, and including robust solutions with
respect to both system, and input, uncertainty.

To achieve these objectives, this thesis both uses and extends key
theoretical results arising from the framework of model reduction
by moment-matching [20, 21]. Moment-matching methods, also
referred to as interpolation methods, are largely based on the math-
ematical notion of moments13 13: See Chapter 4 for an in depth

discussion of moments and their role
in moment-matching methods.

. Moments are intrinsically connected
to the input-output characteristics of the dynamical system under
analysis, and provide a very specific parameterisation of the steady-
state output response (provided it exists) of such a system. That
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said, the model reduction by moment-matching technique consists
of the interpolation of the steady-state response of the output of
the system to be reduced: a model reduced by moment-matching
is such that its steady-state response matches the steady-state re-
sponse of the system to be reduced. Throughout this thesis, the
framework induced by the definition of moments is referred to as
moment-based theory.

A fundamental advantage is that the notion of moments has been
defined both for linear and nonlinear systems, by means of a system-
theoretic approach. For linear differential systems, the computation
of moments depends upon the solution of a Sylvester equation. For
nonlinear differential systems, moments arise as the solution of a
nonlinear partial differential (invariance) equation, which is closely
related to results arising from centre manifold theory14 14: See, for instance, [22, Chapter

8].
. This thesis

recognises that, besides being a powerful model reduction tool, the
parameterisation of the steady-state response of a system in terms of
moments can be explicitly used to transcribe the energy-maximising
control problem to a finite-dimensional nonlinear program. To the
best of the author’s knowledge, this monograph presents the first
application of moments to solve an optimal control problem.

That said, this thesis is divided in four parts:

I Part I: Preliminaries.
I Part II: Moment-based model reduction.
I Part III: Moment-based optimal control.
I Part IV: Conclusions and future work.

Each of these parts is linked to either a complementary, or core,
objective of this thesis, providing a specific set of contributions, as
discussed throughout the following sections.

1.2.1 Part I: Preliminaries

Objective 1.1: To introduce control-oriented WEC modelling, and
critically identify and analyse the existing gaps in the literature of
model reduction for WEC systems.

Contributions: Chapter 2 begins by introducing the fundamentals
behind hydrodynamic WEC modelling, starting from the Navier-
Stokes equations, progressively moving towards control-oriented
models, describing each of the relevant hydrodynamic effects in-
volved in the equation of motion. The intrinsic necessity of model
reduction techniques is formally introduced, including the key physi-
cal properties that should be retained by any reduction technique.
Finally, Chapter 2 includes a critical review of the state-of-the-art
of model reduction techniques considered within the wave energy
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field, explicitly identifying the existing gaps in model reduction for
WEC systems.

Objective 1.2: To introduce energy-maximising control of WECs,
and critically identify and analyse the existing gaps in the literature
of optimal WEC control systems.

Contributions: Chapter 3 introduces the energy-maximising con-
trol problem for WECs, covering, from the fundamentals behind
maximum energy absorption under regular (monochromatic) wave
excitation, towards optimal control techniques utilised to tackle
this control problem. A review of the state-of-the-art of energy-
maximising control techniques is provided, explicitly identifying the
existing gaps in current optimal control techniques for WEC sys-
tems.

Objective 1.3: To introduce and illustrate the fundamental theo-
retical preliminaries characterising moment-based theory.

Contributions: Chapter 4 recalls some of the key concepts behind
moment-based theory, for single-input single-output (SISO) systems.
In particular, special emphasis is placed on the formal (mathematical)
definition of moments, using a system-theoretic approach. The
problem of model reduction by moment-matching is defined and
illustrated for both linear and nonlinear systems, by means of intuitive
examples.

1.2.2 Part II: Moment-based model reduction

Objective 1.4: To introduce a linear model reduction framework
tailored for the WEC application, capable of respecting relevant
physical properties characterising the WEC process.

Contributions: Chapter 5 proposes an approximation framework
for linear SISO WEC systems based on model reduction by moment-
matching techniques. To that end, explicit conditions for the ex-
istence and uniqueness of a moment-based representation for the
non-parametric WEC system are derived. Within this framework,
the transfer function of the approximating model obtained by this
moment-based approach exactly matches the steady-state behavior
of the target WEC system at specific interpolation points (fre-
quencies), which are user-selected. Furthermore, within this system-
theoretic interpolation approach, essential physical properties of
the device can be retained by the reduced model, such as internal
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stability, passivity, and zero dynamics. The use and capabilities of
the framework are illustrated by means of a number of case studies,
using different WEC systems.

Chapter 6 proposes an approximation framework for linear multiple-
input multiple-output (MIMO) WEC systems15 15: This includes both WECs in mul-

tiple degrees-of-freedom, and WEC
arrays.

, based on moment-
matching model reduction techniques. To achieve such an objective,
this chapter proposes a formal extension of the system-theoretic
definition of moments, as provided in Chapter 4, for linear MIMO sys-
tems. In addition, explicit conditions for the existence and uniqueness
of a moment-based representation for the non-parametric equation
of motion are given. With this definition, a family of reduced order
models, achieving moment-matching, is proposed for MIMO WEC
systems. In addition, the existence of an intrinsic connection between
the wave excitation force estimation problem and the moment-based
reduction method is explicitly shown. The use and capabilities of
the framework are illustrated by means of a number of case studies,
using different MIMO WEC systems.

Objective 1.5: To introduce a nonlinear model reduction framework
tailored for the WEC application.

Contributions: Chapter 7 presents a moment-matching model re-
duction framework for nonlinear (SISO and MIMO) WEC systems,
capable of preserving the steady-state response characteristics of a
target nonlinear model. To that end, the existence and uniqueness of
the associated nonlinear moment is discussed, and ensured, for the
case of wave energy systems. Given that the definition of nonlinear
moments depends upon the solution of a nonlinear partial differential
equation, an approximation framework for the computation of the
nonlinear moment is proposed, tailored for the WEC application.
The use and capabilities of the framework are illustrated by means
of case studies, using different WEC systems, under a variety of
wave conditions.

1.2.3 Part III: Moment-based optimal control

Objective 1.6: To introduce a linear energy-maximising optimal
control framework tailored for the WEC application, capable of
efficiently computing a globally optimal control law.

Contributions: Chapter 8 proposes an energy-maximising control
framework for linear SISO WECs explicitly using moment-based
theory. In particular, this chapter shows that, in addition to be-
ing a powerful model reduction tool, the parameterisation of the
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steady-state response of a system, in terms of moments, can be ex-
plicitly used to transcribe the energy-maximising control problem to a
finite-dimensional strictly concave quadratic program (QP). This sys-
tematically guarantees a unique solution for the energy-maximising
control objective, subject to both state and input constraints. This
facilitates the utilisation of state-of-the-art QP solvers, providing a
computationally efficient energy-maximising control framework. The
use and capabilities of the framework are illustrated by means of a
case study, using a particular WEC system.

Chapter 9 extends the SISO energy-maximising framework presented
in Chapter 8, to a MIMO moment-based formulation, capable of
maximising energy absorption for WECs in multiple degrees-of-
freedom, and WEC arrays. Analogously to the SISO case, this chapter
shows that moments can be used to transcribe the MIMO energy-
maximising control problem to a finite-dimensional strictly concave
QP, hence also systematically guaranteeing a unique solution for
the energy-maximising control objective, subject to both state and
input constraints. The use and capabilities of the framework are
illustrated by means of a case study, using a particular WEC array
system, composed of 5 devices.

Objective 1.7: To introduce a robust energy-maximising optimal
control framework, able to articulate both system and input un-
certainty, while being capable of efficiently computing a globally
optimal robust control law.

Contributions: Chapter 10 details an energy-maximising moment-
based framework which explicitly considers system and input uncer-
tainty in the computation of the optimal control law, while system-
atically respecting state and input constraints. This is achieved by
proposing a suitable moment-based characterisation for the uncer-
tainty set. To this end, the concept of moments is combined with
robust optimisation principles, by proposing a worst-case performance
approach. Necessary and sufficient conditions on the definition of
the uncertainty set are explicitly derived, so that this moment-based
robust optimal control framework has always a unique global energy-
maximising solution, preserving all the appealing characteristics of
the (nominal) control strategy developed in Chapters 8 and 9. The
performance of the proposed controller is illustrated and analysed
by means of a case study, considering a WEC subject to system and
input uncertainty.
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Objective 1.8: To introduce a nonlinear energy-maximising optimal
control framework tailored for the WEC application, capable of effi-
ciently computing a globally optimal robust control law efficiently.

Contributions: Chapter 11 proposes an energy-maximising control
strategy for WECs subject to nonlinear dynamics. In particular, a
method to map the objective function (and system variables) to
a finite-dimensional tractable nonlinear program (NP) is proposed.
In addition, by showing that the objective function arising from
the proposed moment-based strategy belongs to a family of ap-
proximately convex/concave mappings, the existence of a global
energy-maximising solution is guaranteed, under mild assumptions.
Analogously to the case of convex/concave functions, where each
local solution is also global, explicit conditions to determine whether
a local energy-maximising solution is, effectively, a global maximiser
for the proposed moment-based OCP, are given, having strong practi-
cal implications when numerically solving the associated NP. Finally,
a case study, based on the energy-maximisation problem for a par-
ticular WEC system, is presented, subject to different sources of
hydrodynamic nonlinearity.

1.2.4 Part IV: Conclusions and future work

Objective 1.9: To provide a critical set of conclusions and outcomes
for this thesis, also identifying potential future research directions.

Contributions: Chapter 12 encompasses the main conclusions of
this thesis, by critically evaluating the results arising from each
different part. Future research directions are offered, both for model
reduction, and optimal control cases.

1.2.5 Connection between parts: a thesis ‘path’

Parts I, II and III of this thesis are inherently interconnected, following
specific ‘paths’. This is illustrated in the block-diagram presented
in Figure 1.4, where the path effectively taken in this thesis is
depicted in solid-blue, while a set of ‘alternative’ paths are given,
using dashed-lines.

To be precise, Part I provides the fundamentals behind modelling and
control for WECs, and recalls key results and tools from moment-
based theory. Using (and extending) the results of Part I, Part II
proposes a moment-based model reduction framework for WECs,
producing tractable models, tailored for the WEC estimation/con-
trol application. In this thesis, these models are used for the wave
excitation force estimation and forecasting stage, rather than to
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Figure 1.4: Block diagram illustrating the interconnection between parts of this thesis.

formulate the optimal control procedure: as demonstrated in Part
III, moment-based theory can be directly used (and extended) to pa-
rameterise and solve the energy-maximising OCP for WECs, without
explicitly going through the model reduction block first.

Nonetheless, different alternative paths could be taken, depicted
in Figure 1.4 using a dashed-line. For instance, one could use
the moment-based model reduction framework to produce control-
oriented models, which are suitable for a large class of optimal control
procedures, according to the user’s preference/experience. An addi-
tional path (almost naturally) arises from the following argument:
if the control problem can be directly solved using moment-based
theory, i.e. without the need of explicitly going through a model
reduction stage, one should be able to solve the estimation problem
(which can be effectively seen as the dual of the control procedure)
by applying similar concepts. Though beyond the scope of this thesis,
a step has been taken in this direction, in [23].

1.2.6 List of publications

This section contains a list of peer-reviewed publications (in chrono-
logical order), which either constitute key material for the thesis, or
are a product of work on the moment-based framework proposed.
The following shorthand notation is used to denote the status of
the publication: (P) published, (Pr) in press, (A) accepted, (CA)
conditionally accepted, (UR) under review, (IP) in preparation. In
addition, if a publication is directly linked to thesis contents, i.e.
it contains key material presented in this thesis, this is clarified by
pointing to a specific/s chapter/s.
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Journal publications

Status Publication Chapter/s

(P) N. Faedo, S. Olaya and J. V. Ringwood, Optimal Control, MPC and MPC-like algorithms for
wave energy systems: An overview, IFAC Journal of Systems and Control, 1, 37–56, 2017.

2, 3

(P) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Finite-order hydrodynamic model determina-
tion for wave energy applications using moment-matching, Ocean Engineering, 163, 251–263,
2018.

5

(P) N. Faedo, G. Scarciotti, A. Astolfi and J. V. Ringwood, Energy-maximising control of wave
energy converters using a moment-domain representation, Control Engineering in Practice,
81, 85–96, 2018.

8

(P) J. V. Ringwood, A. Merigaud, N. Faedo and F. Fusco, An analytical and numerical sensitivity
and robustness analysis of wave energy control systems, IEEE Transactions on Control Systems
Technology, 28(4), 1337–1348. 2019.

–

(P) C. Windt, J. Davidson, D. Chandar, N. Faedo and J. V. Ringwood, Evaluation of the overset
grid method for control studies of wave energy converters in OpenFOAM-based numerical
wave tanks, Journal of Ocean Engineering and Marine Energy, 6, 55–70, 2020.

–

(P) D. García-Violini, Y. Peña-Sanchez, N. Faedo and J. V. Ringwood, An energy-maximising
Linear Time Invariant Controller (LiTe-Con) for wave energy devices, IEEE Transactions on
Sustainable Energy (Early access available), 1–9, 2020.

–

(P) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Parametric representation of arrays of wave
energy converters for motion simulation and unknown input estimation: a moment-based
approach, Applied Ocean Research, 98, 102055, 2020.

6

(P) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Receding-horizon energy-maximising optimal
control of wave energy systems based on moments, IEEE Transactions on Sustainable Energy
(Early access available), 1–9, 2020.

8

(P) C. Windt, N. Faedo, D. García-Violini, Y. Peña-Sanchez, J. Davidson, F. Ferri and J. V.
Ringwood, Validation of a CFD-based numerical wave tank model of the 1/20th scale
Wavestar wave energy converter, Fluids, 5(3), 112–132, 2020.

–

(Pr) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Parameterisation of radiation forces for
a multiple degree-of-freedom wave energy converter using moment-matching, International
Journal of Ocean and Polar Engineering (IJOPE), 2020.

6

(CA) N. Faedo, G. Scarciotti, A. Astolfi and J. V. Ringwood, On the approximation of nonlinear
moments, IEEE Transactions on Automatic Control, 2020.

7, 11

(UR) N. Faedo, G. Scarciotti, A. Astolfi and J. V. Ringwood, Energy-maximising moment-based
constrained optimal control of ocean wave energy farms, Renewable Energy.

9

(UR) N. Faedo, G. Scarciotti, A. Astolfi and J. V. Ringwood, Nonlinear energy-maximising control
for wave energy systems: A moment-based approach, IEEE Transactions on Control Systems
Technology.

11

(UR) D. García-Violini, Y. Peña-Sanchez, N. Faedo, C. Windt, F. Ferri and J. V. Ringwood.
Experimental implementation and validation of a broadband LTI energy-maximising control
strategy for the Wavestar device, IEEE Transactions on Control Systems Technology.

–

(UR) C. Windt, N. Faedo, M. Penalba, F. Dias and J. V. Ringwood. Reactive control of wave
energy devices – the modelling paradox, Applied Ocean Research.

–

(UR) N. Faedo, F. Dores, G. Giorgi and J. V. Ringwood, Nonlinear model reduction for wave energy
systems: A moment-matching-based approach, Nonlinear Dynamics.

7
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Status Publication Chapter/s

(IP) N. Faedo, G. Scarciotti, A. Astolfi and J. V. Ringwood, Robust energy-maximising control for
wave energy systems using a moment-domain representation, IEEE Transactions on Control
Systems Technology.

10

(IP) D. García-Violini, N. Faedo and J. V. Ringwood, Simple controllers for wave energy devices:
Compared, Journal of Marine Science and Engineering.

–

Conference publications

Status Publication Chapter/s

(P) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Passivity preserving moment-based finite-
order hydrodynamic model identification for wave energy applications, Advances in Renewable
Energies Offshore: Proceedings of the 3rd International Conference on Renewable Energies
Offshore (RENEW), Lisbon, 351–359, 2018.

5

(P) J. V. Ringwood, A. Merigaud, N. Faedo and F. Fusco, Wave energy control systems:
Robustness issues, IFAC conference on Control Applications in Marine Systems, Robotics and
Vehicles (CAMS), Opatija, 62–67, 2018.

–

(P) N. Faedo and J. V. Ringwood, Moment-based constrained optimal control of wave energy
converters: A flap-type device, IFAC conference on Control Applications in Marine Systems,
Robotics and Vehicles (CAMS), Opatija, 50–55, 2018.

8

(P) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Moment-matching-based identification
for wave energy converters: the ISWEC device, IFAC conference on Control Applications in
Marine Systems, Robotics and Vehicles (CAMS), Opatija, 189–194, 2018.

5

(P) Y. Peña-Sanchez, N. Faedo and J. V. Ringwood, Finite-order hydrodynamic model fitting
for wave energy applications using moment-matching: A case study, The 28th International
Ocean and Polar Engineering Conference (ISOPE), Sapporo, 641–648, 2018.

5

(P) J. V. Ringwood, F. Ferri, N. Tom, K. Ruehl, N. Faedo, G. Bacelli, Y. Yu and R. G.Coe, The
WECCCOMP wave energy control competition – overview, ASME 2019 38th International
Conference on Ocean, Offshore and Arctic Engineering (OMAE), Glasgow, V010T09A035,
2019.

–

(P) Y. Peña-Sanchez, N. Faedo and J. V. Ringwood, A Critical Comparison Between Parametric
Approximation Methods for Radiation Forces in Wave Energy Systems, 29th International
Ocean and Polar Engineering Conference (ISOPE), Honolulu, 174–174, 2019.

–

(P) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Parameterisation of radiation forces for a
multiple degree-of-freedom wave energy converter using moment-matching, 29th International
Ocean and Polar Engineering Conference (ISOPE), Honolulu, 166–173, 2019.

6

(P) Y. Peña-Sanchez, N. Faedo, M. Penalba, G. Giorgi, A. Merigaud, C. Windt, D. García-Violini, L.
Wang and J. V. Ringwood, Finite-Order hydrodynamic Approximation by Moment-Matching
(FOAMM) toolbox for wave energy applications, European Wave and Tidal Energy Conference
(EWTEC), Naples, 1448-1 – 1448-9, 2019.

–

(P) J. Cunningham, N. Faedo and J. V. Ringwood, Excitation force estimation for wave energy
systems using a moment-domain representation, European Wave and Tidal Energy Conference
(EWTEC), Naples, 1418-1 – 1418-8, 2019.

–

(P) N. Faedo, Y. Peña-Sanchez and J. V. Ringwood, Moment-matching-based input-output
parametric approximation for a multi-DoF WEC including hydrodynamic nonlinearities,
European Wave and Tidal Energy Conference (EWTEC), Naples, 1449-1 – 1449-10, 2019.

–
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(P) C. Windt, N. Faedo, M. Penalba and J. V. Ringwood, Assessment of the evaluation framework
for energy maximising control systems for the Wavestar wave energy converter, American
Control Conference (ACC), Philadelphia, 4791–4796, 2019.

–

(P) Y. Peña-Sanchez, N. Faedo and J. V. Ringwood, Moment-based parametric identification
of arrays of wave energy converters, American Control Conference (ACC), Philadelphia,
4785–4790, 2019.

6

(P) N. Faedo, G. Scarciotti, A. Astolfi and J. V. Ringwood, Moment-based constrained opti-
mal control of an array of wave energy converters, American Control Conference (ACC),
Philadelphia, 4797–4802, 2019.

9

(P) N. Faedo, G. Scarciotti, A. Astolfi and J. V. Ringwood, Robust moment-based energy-
maximising optimal control of wave energy converters, IEEE Control and Decision Conference
(CDC), Nice, 4286–4219, 2019.

10

(P) N. Faedo, D. García-Violini, Y. Peña-Sanchez and J. V. Ringwood, Optimisation- vs. non-
optimisation- based energy-maximising control for wave energy converters: A case study,
European Control Conference (ECC), Saint Petersburg, 843–848, 2020.

–

(P) D. García-Violini, Y. Peña-Sanchez, N. Faedo and J. V. Ringwood, LTI energy-maximising
control for the Wave Star wave energy converter: Identification, design, and implementation,
21st IFAC World Congress (IFAC 2020), Berlin, 2020.

–

(A) A. Astolfi, G. Scarciotti, J. Simard, N. Faedo and J. V. Ringwood, Model Reduction by
Moment Matching: Beyond Linearity - A Review of the Last 10 Years, 59th IEEE Conference
in Decision and Control, Jeju Island.

–

1.3 Notation & conventions

Standard notation is considered throughout this thesis, most of
which is defined in this section. If additional notation (not included
in this section) is introduced, this is defined in the relevant parts of
the dissertation.

Sets

R+ (R−) denotes the set of non-negative (non-positive) real num-
bers. C0 denotes the set of pure-imaginary complex numbers, and
C<0 denotes the set of complex numbers with negative real part. The
notation Nq indicates the set of all positive natural numbers up to q,
i.e. Nq = {1, 2, . . . , q}, while N≥q is reserved for the set of natural
numbers {q, q+1, . . .} ⊂ N. The span of the set X = {xi}ki=1 ⊂ Z ,
where Z is a vector space over a field F, is denoted as span{X }.
The closed ball contained in Rn, with center z ∈ Rn and radius
r ∈ R+, is defined as B(z, r) = {y ∈ Rn | ‖y − z‖2 ≤ r}. The
convex hull of a set of points X = {x1, . . . , xn} ⊂X , where X is
a finite-dimensional Euclidean space, is denoted as conv{X}. Finally,
∅ denotes the empty set.
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Scalars, vectors and matrices

The symbol 0 stands for any zero element, dimensioned according
to the context. The symbol In denotes the identity matrix of the
space Cn×n. The notation 1n×m is used to denote a Hadamard
identity matrix, i.e. a n × m matrix with all its entries equal to
1. The notations Ā and A?, with A ∈ Cn×n, denote the complex
conjugate, and the Hermitian transpose of the matrix A, respectively.
The spectrum of a matrix A ∈ Rn×n, i.e. the set of its eigenvalues,
is denoted as λ(A). The Frobenius norm of a matrix is denoted as
‖A‖F. The symbol

⊕
denotes the direct sum of n (square) matrices,

i.e.
⊕n
i=1Ai = diag(A1, A2, . . . , An). The notation <{z} and ={z},

with z ∈ C, stands for the real-part and the imaginary-part of z,
respectively. The symmetric-part of a matrix A ∈ Rn×n is defined
(and denoted) as H {A} = (A + Aᵀ)/2. The Kronecker product
between two matrices M1 ∈ Rn×m and M2 ∈ Rp×q is denoted by
M1 ⊗M2 ∈ Rnp×mq. The symbol eqij ∈ Rq×q denote a matrix with
1 in the ij entry and 0 elsewhere. Likewise, eqi ∈ Rq denotes a vector
with 1 in the i entry and 0 elsewhere. Finally, the symbol εn ∈ Rn

denotes a vector with odd entries equal to 1 and even entries equal
to 0.

Functions

Given two functions, f : Y → Z and g : X → Y , the com-
posite function (f ◦ g)(x) = f(g(x)), which maps all x ∈ X

to f(g(x)) ∈ Z , is denoted with f ◦ g. The convolution be-
tween two functions f and g, with {f, g} ⊂ L2(R), over the
set R, i.e.

∫
R
f(τ)g(t − τ)dτ is denoted as f ∗ g, and where

L2(R) = {f : R → R |
∫
R
|f(τ)|2dτ < +∞} is the Hilbert space

of square-integrable functions in R. Let f and g be functions in
L2(T ), with T ⊆ R. Then, the standard inner-product between
f and g is defined (and denoted) as 〈f, g〉 =

∫
T f(t)g(t)dt. The

Laplace transform of a function f (provided it exists), is denoted as
F (s), s ∈ C. With some abuse of notation16 16: The use of the capitalised letter

for Laplace or Fourier transforms is
always clear from the context.

, the same is used for
the Fourier transform of f , written as F (ω), ω ∈ R. The Kronecker
delta function is denoted as ijδ. The generalised Dirac-δ function,
shifted by tj ∈ R+ , is denoted as δtj = δ(t− tj).

Additional definitions

This section introduces two important operators, since their definition
in the literature can often be ambiguous.
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Definition 1.3.1 (Kronecker sum [24]) The Kronecker sum of
two matrices P1 and P2, with P1 ∈ Rn×n and P2 ∈ Rk×k, is
defined (and denoted) as

P1⊕̂P2 , P1 ⊗ Ik + In ⊗ P2. (1.1)

Definition 1.3.2 (Vec operator [24]) Given a matrix P defined
column-wise, i.e. P = [p1, p2, . . . , pm] ∈ Rn×m, where pj ∈ Rn,
j ∈ Nm, the vector valued operator vec is defined as

vec{P} ,


p1
p2
...
pm

 ∈ Rnm. (1.2)

Finally, a useful property of the vec operator is recalled.

Property 1.3.1 [24] Let P3 ∈ Rn×m and P4 ∈ Rm×q. Then

vec{P3P4} = (Iq ⊗ P3)vec{P4} = (P ᵀ4 ⊗ In)vec{P3}. (1.3)
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This chapter presents the basics behind WEC hydrodynamic mod-
elling, starting with a description of the mathematical representation
of ocean waves, and the intrinsic dynamics associated with fluid-
structure interactions. Special emphasis is given to the assumptions
required to arrive at the so-called Cummins’ equation [25], which
constitutes the most well-known and widely utilised dynamic descrip-
tion in the literature of WEC control. Though linear with respect to
the device internal (motion) variables, the non-parametric nature
of this Cummins’ operator virtually always requires the utilisation
of model reduction techniques, which aim to describe Cummins’
equation in a state-space representation, i.e. a set of first-order dif-
ferential equations, suitable for modern control and state-estimation
design procedures. Nonlinear extensions of Cummins’ formulation
are also discussed, where ‘additional’ dynamics are included, aiming
to alleviate the underlying linearity assumptions that normally char-
acterise this equation, which can be potentially restricting under
certain operating conditions1 1: For instance, when a device is un-

der energy-maximising control condi-
tions, its motion is often exaggerated
[12], and nonlinear effects begin to
have a significant impact on its dy-
namic behaviour (see Chapter 3 for
further detail).

.

In particular, Section 2.1 discusses the mathematical representation
of ocean waves, while Section 2.2 recalls the basic dynamical princi-
ples of fluid-structure interaction. Section 2.3 states the hypotheses
adopted to linearly describe the motion of a floating body, discussing
each one of the hydrodynamic effects (i.e. forces and/or torques)
involved in such a representation. Section 2.4 formally introduces
Cummins’ equation, and discusses different alternatives to compute
a state-space representation of this non-parametric operator, by the
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use of model reduction techniques. The most common nonlinear
extensions of Cummins’ formulation are discussed in Section 2.5.
Finally, Section 2.6 provides a review of the state-of-the-art of model
reduction techniques applied to the wave energy conversion field,
while Section 2.7 encompasses the main conclusions of this chapter,
which motivate Part II of this thesis.

Remark 2.0.1 Note that this chapter is not based on a particular
book/dissertation on hydrodynamics or fluid mechanics, but rather
compiles results from well-known literature, such as, for instance,
[26–30], and presents these from a control-oriented perspective,
where both notation and conventions commonly adopted in the
field of control theory, are used. Additionally, dynamical properties
of interest, in accordance with well-known terminology from system
dynamics, are highlighted.

2.1 Ocean waves: Linear theory

Attempts to capture the underlying physics of ocean waves, in terms
of mathematical models, involve well-known scientists who have
contributed to this vast field. Among these personalities, we can
find Newton, Lagrange, Laplace, Green, Cauchy, and Poisson (see
[28, Chapter 20]). Given the mathematical complexity involved in
obtaining an accurate description of waves, numerous theories, with
different scopes of application, have been proposed in the literature
of ocean engineering. This section focuses on first-order waves, i.e.
waves exhibiting linear behaviour. The theory associated with this
type of waves is attributed to the English mathematician George
Airy2 2: Besides providing a stepping stone

towards the fundamental understand-
ing of ocean waves, Sir Airy (1801-
1892) established the prime meridian
in Greenwich, which is still in use as
the reference for longitude [31].

, hence known as Airy’s wave theory.

Linear wave theory is the most commonly applied description for
wind-generated surface gravity waves. It constitutes a fundamental
mathematical framework, used in a plethora of ocean engineering
applications, varying from seakeeping analysis and probabilistic pre-
diction of short and long term behaviour of marine vessels [28, 29],
to wave energy conversion dynamics and power extraction assess-
ment. Though it is limited to waves with small wave height to
wavelength ratios, i.e Hw/Lw � 1, Airy’s wave theory provides im-
portant insight into the behaviour of ocean waves and, consequently,
of floating bodies subject to their effect. To represent these waves
in a precise manner, we recall a set of well-known (key) definitions,
in the next paragraphs. These can be found in, for instance, [28,
Chapter 20], [27, Chapter 1] and [30, Chapter 4],

Let x ∈ R3, x = [x1, x2, x3]ᵀ, be a point in space, and let the
mapping η : R ×R ×R+ → R, (x1, x2, t) 7→ η(x1, x2, t) be the
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Figure 2.1: Definition of coordinate
system and domain boundaries for
long-crested waves.

Figure 2.2: Linear (a) and overturn-
ing (or breaking) waves (b). Given
a fixed location in space, the free-
surface elevation in (a) is uniquely
determined by the function η. Note
that this is clearly not the case in
overturning waves (b).

fluid’s free-surface elevation, i.e. the elevation of the free-surface
from the still water level (SWL), as in Figure 2.1. Aiming to simplify
the description of waves in terms of a two-dimensional mathematical
model, it is virtually always assumed that their crests and troughs
stretch in the x2-direction, with x2 ∈ R (see Figure 2.1). This type
of waves are commonly known as long-crested waves [30, Chapter
4]. Such an assumption renders η independent of the x2-coordinate,
i.e. from now on we can write η : R×R+ → R, (x1, t) 7→ η(x1, t).
The x1-axis points in the direction of wave propagation, and the
still water level (SWL), is placed at x3 = 0.

Remark 2.1.1 Within this formulation, the free-surface elevation
is uniquely determined by the mapping η. More precisely, the
function η is assumed to be analytic. This automatically excludes
overturning or breaking waves from this analysis (see Figure 2.2).
The reader is referred to [30, Chapter 6] and [32], for a discussion
on mathematical models employed to describe nonlinear waves.

2.1.1 Regular waves

At this point, a clear distinction needs to be made with respect to
the nature of the mapping η, i.e. the definition of the free-surface
elevation. If the wave is composed of a single frequency component
ω ∈ R+ (or alternatively a fixed period Tw = 2π/ω) the free-surface
elevation can be compactly described as

η(x1, t) = Hw

2 cos(ωt+ ψw(x1, ω)), (2.1)
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where ψw : R → R defines a phase shift, depending on the x1
spatial coordinate. In this dissertation, this type of waves is referred
to as regular waves.

Remark 2.1.2 Note that, for a fixed point in space x∗, and a
fixed frequency ω∗, the free-surface elevation described in equation
(2.2) depends only on t, i.e. we can write

η(t) = Hw

2 cos(ω∗t+ ψ∗w), (2.2)

where ψ∗w = ψw(x∗1, ω∗) is the phase shift associated with the
spatial location x∗1, for ω = ω∗.

Though the simplistic nature behind regular waves effectively misrep-
resents a realistic sea-state, this type of waves are useful to derive
results of theoretical interest, providing valuable insight into the
dynamics of a floating body3 3: As a matter of fact, this monochro-

matic representation (together with a
set of additional assumptions) gives
origin to the principle of impedance-
matching, which is one of the funda-
mental theoretical foundations for the
development of energy-maximising con-
trollers for wave energy devices, as
discussed in Chapter 3.

.

2.1.2 Irregular waves

Aiming to overcome the misrepresentation inherent to the nature of
regular waves, an alternative definition can be made, which relies on a
stochastic description of waves. To be precise, given a fixed location
in space, the time series of the free-surface elevation, i.e. η(t),
corresponds with a spectral density function (SDF) Sw : R → R,
ω 7→ Sw(ω), characterising (stochastically) the behaviour of ocean
waves at this specific location (provided the Fourier transform of
η is well-defined). Examples of widely-used (semi-empirical) SDFs
are the JONSWAP spectrum [33], for wind-generated seas with
fetch limitations, the Bretschneider spectrum [34] for developing
seas, and the Pierson-Moskowitz spectrum [35], for fully-developed
seas. From now on, these waves are referred to as irregular waves
(independently on the particular mapping Sw).

To fully describe these waves, one has to substitute the notions
of wave height Hw and wave period Tw, which naturally only hold
for regular waves (i.e. time-traces fully characterised by a single
frequency component), for those of significant wave height, H̄w,
and peak wave period, T̄w. The significant wave height is commonly
defined as the mean wave height (trough to crest) of the highest
third of the waves. The peak wave period is defined as the wave
period associated with the most energetic waves, in the total wave
(power) spectrum (at a specific point in space). The interested
reader is referred to [27] for a thorough discussion on spectral
characterisations of ocean waves.
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From now on, aiming to achieve consistency in both Parts II and
III of this thesis, a JONSWAP SDF characterisation, with different
parameter values, is always utilised. In particular, this representation
requires three parameters: H̄w and T̄w, as defined in the previous
paragraph, and the so-called peak-shape parameter γ ∈ R+ (also
referred to as peak-enhancement parameter)4 4: After analysing data collected dur-

ing the Joint North Sea Wave Ob-
servation Project JONSWAP, the au-
thors of [33] found that the corre-
sponding wave spectrum was never
fully developed, but it rather contin-
ues to develop even for long times
and distances. This factor γ is added
to the Pierson-Moskowitz spectrum,
aiming to improve the fit with respect
to their measurements.

. The corresponding
SDF can be written [33] as

Sw(ω) = αg2

ω5 exp
[
−β ω̄

4
w

ω4

]
γa(ω), (2.3)

where g is the acceleration of gravity, {α, β} ⊂ R+ are constant
values, ω̄w = 2π/T̄w ∈ R+ is the peak-frequency, and the function
a : R+ → R+ (i.e. the exponent of the peak-shape parameter γ)
depends on the frequency ω. The reader is referred to [33] for further
detail on the definition of α, β and a. Figure 2.3 illustrates different
spectral density functions Sw, corresponding with JONSWAP spec-
trums with: varying T̄w ∈ [7, 12] [s] (a), H̄w ∈ [0.5, 3] [m] (b), and
γ ∈ [1, 3.5] (c).

Figure 2.3: Different characterisation of ocean waves in terms of a JONSWAP SDF. Figure (a): H̄w = 2 [m], γ = 3 and
T̄w ∈ [7, 12] [s]. Figure (b): T̄w = 8 [s], γ = 3 and H̄w ∈ [0.5, 3] [m]. Figure (c): H̄w = 2 [m], T̄w = 8 [s] and γ ∈ [1, 3.5].
The arrows indicate the increasing direction of the corresponding parameter.

Remark 2.1.3 A well-known hypothesis, utilised in the numerical
generation of ocean waves (which are described by a given SDF
Sw), is to assume that, for a fixed point in space x∗, the free-
surface elevation can be described as a finite sum of harmonics
of a (sufficiently small) fundamental frequency ω0 ∈ R+. More
precisely, we can write

η(t) =
P∑
p=1

αp cos(pω0t) + βp sin(pω0t), (2.4)

where P ∈ N≥1, and the set of amplitudes {αp, βp}Pp=1 ⊂ R is
determined randomly5 5: The reader is referred to [36] for

further detail on methods to numer-
ically generate a physically represen-
tative description of η(t).

, in accordance to the stochastic process
described by Sw. This procedure is schematically illustrated in
Figure 2.4.
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Figure 2.4: Generation of numerical
waves as superposition of harmonics,
i.e. superposition of regular waves.

To finalise this section on ocean waves, and aiming to illustrate the
difference between regular and irregular representations, Figure 2.5
shows time-traces of the free-surface elevation for a regular wave
(generated as in Remark 2.1.2), with Hw = 2 [m] and Tw = 8 [s],
and an irregular wave, generated from a JONSWAP spectrum (as
in Remark 2.1.3), with H̄w = 2 [m], T̄w = 8 [s] and γ = 3.

Figure 2.5: Time-traces of the free-
surface elevation for a regular wave
(dashed-grey) with Hw = 2 [m] and
Tw = 8 [s], and an irregular wave
(solid-black) generated from a JON-
SWAP spectrum, with H̄w = 2 [m],
T̄w = 8 [s] and γ = 3.

2.2 Conservation of mass and momentum:
the Navier-Stokes equations

The Navier-Stokes equations arise from the conservation of mass and
momentum laws, and describe the motion of a fluid (or interaction
between fluid and a solid structure) in space, i.e. in R3. This set of
equations is solved for an unknown velocity mapping v : R3×R+ →
R3, (x, t) 7→ v(x, t) and pressure p : R3×R+ → R, (x, t) 7→ p(x, t),
defined for position in space x ∈ R3 and t ∈ R+. In particular, for
an incompressible fluid, these equations [37] are

∂vi
∂t

+
3∑
j=1

vj
∂vi
∂xj

= ν∆vi −
∂p

∂xi
+ fi(x, t),

div{v} =
3∑
i=1

∂vi
∂xi

= 0,

(2.5)
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with initial condition v(x, 0) = v0(x), where v0 is a given C∞
divergence-free vector field on R3, fi(x, t) are the components of
the (total) externally applied force (e.g. gravity), ν ∈ R+ is the
kinematic viscosity, and the operator ∆ : R3 → R denotes the
Laplacian in the space variables.

Remark 2.2.1 The first equation in (2.5) is Newton’s second
law for a fluid element subject to the external force f , and to
the forces arising from both pressure and friction. The second
equation in (2.5) arises from the conservation of mass principle
for an incompressible fluid.

Remark 2.2.2 A set of solution mappings {v, p} is said to
be physically reasonable [37] if {v, p} ⊂ C∞(R3 × R+) and∫
R3 |v(x, t)|2 < +∞, ∀t ∈ R+ (bounded energy).

Though equation (2.5) provides a consistent physical and math-
ematical description of the motion of a fluid (or fluid-structure
interaction), there is no closed-form expression for the solution
mappings v and p (perhaps unsurprisingly, given the nature and
complexity of such a partial differential equation). As a matter of
fact, although these equations were written down in the 19th century,
the formal understanding of them remains close to minimal: The
problem of existence and smoothness of Navier-Stokes solutions is
still an open mathematical problem, gathering much of the attention
of the pure mathematics research community6 6: Existence and smoothness of (phys-

ically reasonable) Navier-Stokes solu-
tions on R3 is currently one of the
seven Millennium problems [38] listed
by the Clay Mathematics Institute on
May 24th, 2000.

.

A significant effort has been put in providing consistent numerical
methods which directly attempt to numerically approximate the
solutions of Navier-Stokes equation (2.5). As a matter of fact, this
gave rise to the field of Computational Fluid Dynamics (CFD), where
equations (2.5) are discretised both in space and time, using a variety
of techniques [39, 40]. In particular, CFD can be utilised to simulate
(at great computational expense) the hydrodynamic force acting on
an object floating in water, allowing fully nonlinear hydrodynamic
calculations, including effects neglected by traditional linear velocity
potential theory (as described in Section 2.3), such as viscosity, large
wave amplitude, large body motion, and vortex shedding.

Remark 2.2.3 Note that, although CFD can be a highly valuable
tool for high-fidelity motion simulation of WECs, the computa-
tional expense of these methods, which is in the order of thousands
of seconds per second of simulation [40], automatically prohibits
their use in control synthesis and design procedures.
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2.3 Towards control-oriented models

Having presented both linear ocean wave theory, in Section 2.1, and
Navier-Stokes equations, in Section 2.2, this section addresses control
(or state-estimation)-oriented modelling of fluid-body interaction,
i.e. the dynamics of a body subject to ocean waves. Given the theo-
retical (and practical) complexity behind Navier-Stokes equations
(2.5), it is perhaps straightforward to realise that this mathematical
description is far from being tractable for any implementable control
design/state-estimation purposes (see Remark 2.2.3). In the light of
this, some standing assumptions are virtually always adopted in the
WEC control literature, aiming to provide a tractable7 7: Tractable both in a theoretical (ex-

istence of unique solutions) and in a
computational sense (real-time capa-
bilities).

dynamical
operator to describe the motion of a body in a fluid, as depicted in
Figure 2.6. In particular, these assumptions give rise to the so-called
Cummins’ equation [25], which constitutes a key operator for this
thesis.

This set of assumptions is listed and discussed (to some extent) in
the following paragraphs. Note that the aim of this section is not
to provide a thorough derivation of Cummins’ equation, but rather
to establish the underlying mathematical and physical assumptions
required to arrive at such a representation, aiming to provide a
discussion of both its advantages and potential limitations. The
interested reader can find a full (step-by-step) formal derivation
elsewhere, in a plethora of books and dissertations. This includes,
for instance, [26, 28, 41–43].

Remark 2.3.1 Note that an alternative path towards control-
oriented models relies on tools from system identification [44]:
Either CFD codes or real experimentation could be used to con-
struct a set of (sufficiently representative) system outputs, for a
specific class of inputs, to later construct control-oriented repre-
sentations which describe the dynamics of a given WEC, using
suitable model structures. This path is not pursued in this thesis,
where underlying physical laws are always considered, which (virtu-
ally always) render the set of solutions proposed in Parts II and III
independent of the particular device and input descriptions. The
interested reader is referred to [41] for an extensive discussion on
linear and nonlinear model structures for WECs, constructed from
recorded data.

2.3.1 Linear potential flow theory

Motivated by the discussion provided in the previous paragraph, the
following standing assumptions are considered from now on. These
give origin to so-called linear potential flow theory.
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Assumption 2.3.1 The flow is frictionless (inviscid), i.e. ν = 0
in (2.5), and irrotational, i.e. flows with no vorticity.

Assumption 2.3.2 The amplitude of the body motion is signifi-
cantly smaller than the dimension of the body.

Assumption 2.3.3 Linear wave theory (as described in Section
2.1) holds.

Assumption 2.3.1 guarantees that potential flow theory holds: The
velocity mapping v, defined in (2.5), can always be described in terms
of a potential function (or potential mapping) φ : R3 ×R+ → R,
(x, t) 7→ φ(x, t) such that v = ∇φ, where ∇ : R3 → R3 denotes
the gradient operator. Moreover, this potential mapping φ obeys the
Laplace equation, i.e. ∆φ = 0, as a consequence of the conservation
of mass principle (see (2.5)). Naturally, under these assumptions,
the velocity mapping v is completely characterised in terms of the
potential function φ.

Figure 2.6: Graphical representation
of linear potential flow theory.

Solving for φ requires the imposition of a set of appropriate boundary
conditions on the solution. These are recalled here, for the linear8

8: The nonlinear counterparts of the
boundary conditions recalled in this
section can be found in, for instance,
[28, Chapter 20].

potential flow theory case, i.e. under Assumptions 2.3.2 and 2.3.3.

I Linear dynamic boundary condition: At the undisturbed free-
surface elevation, i.e. x3 = η(x1, t) = 0 the fluid pressure
has to be equal to atmospheric pressure. Mathematically, the
velocity potential has to satisfy

∂φ

∂t
+ gη = 0, (2.6)

at x3 = 0, ∀t ∈ R+.
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I Linear kinematic boundary condition: The fluid particles on
the free-surface are assumed to stay in the free-surface for
all t ∈ R+, i.e. the component of the fluid velocity normal
to the surface must equal the surface velocity. This linearised
condition can be expressed mathematically as

∂φ

∂x3
− ∂η

∂t
= 0, (2.7)

at x3 = 0, ∀t ∈ R+.
I Impermeability (body): The component of the fluid velocity

normal to the body surface, ∂φ/∂n, has to be equal to the
body velocity normal to the body surface, un. To be precise,
the velocity potential must verify

∂φ

∂n
− un = 0, (2.8)

for every normal vector n defined on the surface S.
I Impermeability and flatness of the ocean bottom: At a depth
x3 = −h, impermeability and flatness of the ocean bottom
can be translated to the following boundary condition:

∂φ

∂x3
= 0, (2.9)

at x3 = −h, ∀t ∈ R+.
I Decaying amplitude of the wave field: As the distance from

the body increases, the following condition

lim
x1→−∞

∇φ(x1, t) = lim
x1→+∞

∇φ(x1, t) = 0, (2.10)

holds ∀t ∈ R+.

The set of boundary conditions discussed above is illustrated, for both
reference and clarity, in Figure 2.6. In particular, these conditions,
together with the Laplace equation v = ∆φ, form the basis for a
family of methods that numerically solve for the potential flow φ:
the so-called boundary element methods (BEMs)9 9: The reader is referred to, for ex-

ample, [45], for a discussion on the
mathematical foundations and range
of applicability of BEMs.

.

Remark 2.3.2 Within the ocean engineering community (includ-
ing the field of wave energy theory and applications), a number
of BEM codes have been developed to solve for φ, both in the
time- and frequency-domains. The most common working codes
are WAMIT [46], AQWA [47] (both commercial software), and
NEMOH [48] (open-source software), which characterise the po-
tential flow φ in the frequency-domain.
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Figure 2.7: Body-fixed (local) coor-
dinate system, in terms of z ∈ R6.
The symbol denotes the center of
mass of the body.

Remark 2.3.3 Throughout this thesis, NEMOH is always utilised,
motivated by its open-source characteristics.

2.3.2 Hydrodynamic effects in linear potential flow
theory

Let the so-called body-fixed (local) frame of reference be defined by
a coordinate vector z ∈ R6 (as in Figure 2.7), where z1, z2 and z3
represent body translations (surge, sway and heave), and z4, z5 and
z6 body rotations (roll, pitch and yaw). From now on, it is assumed
that the origin of this local frame is located at the center of mass
of the system. Each one of these modes of motion are traditionally
called degrees-of-freedom (DoF) of the system (which are six in the
case of Figure 2.7).

Remark 2.3.4 Though the dynamic effects described in the fol-
lowing paragraphs are always derived considering 6 DoFs, one can
straightforwardly “reduce” the formulation to a lower-dimensional
space, to consider a smaller number of modes of motion10 10: This can be especially useful in

wave energy control, where the domi-
nant dynamics potentially take place
at a single mode of motion, i.e. the
DoF from where energy is extracted,
and the control law is applied.

.

Remark 2.3.5 Modelling arrays of bodies, i.e. multiple devices
interacting in the water, can be done analogously to the multiple-
DoF case discussed in this section, in an (almost) straightforward
manner [49]. Though arrays are not specifically treated in the
following paragraphs, a more detailed discussion on this topic is
provided in Chapters 6 and 9 of this thesis, where wave energy
arrays are effectively considered, both for moment-based model
reduction, and optimal control procedures, respectively.

Let M ∈ R6×6 be the generalised mass-inertia matrix defined as

M = (m⊗ I3)⊕ I, (2.11)

where m ∈ R+ is the mass of the floating body, and the matrix
I ∈ R3×3 contains the corresponding moments of inertia associated
with the rotational modes of motion of the system. Under the
same set of assumptions considered in Section 2.3.1, i.e. within the
framework of linear potential flow theory (schematically illustrated
in Figure 2.6), one can write the equation of motion for a floating
body, following Newton’s second law, as11 11: From now on, the dependence on

t is dropped when it is clear from the
context.Mz̈ = fe(η) + fr(ż) + fre(z) + fext(z, ż, t), (2.12)

where z : R+ → R6, t 7→ z(t), denotes the displacement vector of
the body as a function of time, fe : R → R6 the wave excitation
effect, fr : R6 → R6 the radiation effect, fre : R6 → R6 the
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hydrostatic restoring effect, and finally fext : R6 × R6 × R+ →
R6 represents the sum of additional external loads, in the more
general case (e.g. mooring effects and control input). Over the next
paragraphs, the hydrodynamic effects listed above, i.e. fe, fr and
fre, are discussed in detail.

Remark 2.3.6 From now on, and aiming to simplify the notation
used throughout this thesis, the term force is used to denote
hydrodynamic effects taking place in either translational (i.e.
forces), or rotational (i.e. torques) DoFs.

2.3.2.1 Wave excitation effects

The wave excitation, fe, is defined as the force acting on the body
when it is held fixed in the presence of waves. In the context of
linear potential flow theory (i.e. under the set of assumptions of
Section 2.3.1), the excitation force is the superposition of the so-
called Froude-Krylov force12 12: In this thesis, the excitation force

only takes into account the so-called
dynamic part of the Froude-Krylov
force: The excitation fe is zero in the
absence of incident waves. The reader
is referred to [42] for a thorough dis-
cussion on Froude-Krylov effects.

, and diffraction effects [42], where the
Froude-Krylov force is obtained by integrating the pressure, due to
the undisturbed incident wave field, over the mean wetted surface of
the fixed body. Therefore, the Froude-Krylov effect can be considered
as the result of the interaction between waves and a “ghost” body,
which feels and reacts to the incident wave field, but does not alter
it [42].

Under the effects of Assumption 2.3.2, the diffraction force is not
significant compared to the Froude-Krylov effect [42], indicating
that the latter effectively constitutes a reasonable approximation of
the incident wave excitation [41]. The mapping that characterises
fe, can be formally written, as a function of time, as

fe(t) =
∫
R

ke(τ)η(t− τ)dτ, (2.13)

where the vector ke(t) =
∑6
i=1 e

6
i ⊗kei(t) ∈ R6, with each mapping

kei : R → R, ki ∈ L2(R), ∀i ∈ N6, is the excitation impulse
response function, and η is the free-surface elevation (according to
Airy’s wave theory) at the location of the centre of mass of the
device.

Remark 2.3.7 A direct interpretation of equation (2.13) yields
that the excitation force, fe, is essentially a filtered version of the
free-surface elevation η, i.e. is the output of a linear dynamical
system completely characterised by the impulse response function
ke, with η as its input.
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Remark 2.3.8 The mapping ke is geometry-dependent, i.e. the
excitation force experienced by the device naturally depends on
the device shape itself.

Though the excitation effect, defined as in (2.13), is conveniently
expressed as a linear operator, the impulse response function ke has
one main peculiarity: it is, in general, a non-causal function of t. In
other words, future knowledge of the free-surface elevation is required
to compute the corresponding wave excitation exerted on the device,
for each of the modes of motion (DoFs) involved.

Remark 2.3.9 The non-causal relation η 7→ fe can be intuitively
understood in the case where the impulse response mapping is
defined with respect to a point placed at the centre of the body
(as in Figure 2.7): The system will effectively experience a force,
even before the wave crest has arrived to the body centre [42]13 13: This holds also true if η is con-

sidered in a location on the upstream
side, or even outside of the body itself.
The interested reader is referred to
[50] for further detail on the nature
of this non-causal behaviour.

.

Remark 2.3.10 The computation of the impulse response map-
ping ke can be readily performed using BEM codes, as a function
of the potential flow φ. If frequency-domain BEMs are utilised
(such as WAMIT or NEMOH), the frequency-domain equivalent
of ke is available, i.e. Ke : R → C6, ω 7→ Ke(ω). To show a
specific example of this frequency-domain characterisation, Figure
2.8 illustrates real and imaginary parts of Ke(ω) (centre), for a
1-DoF sphere of radius r = 2.5 [m], constrained to move in heave
(translational motion z3).

2.3.2.2 Radiation effects

The hydrodynamic force applied from the fluid to the body in the
absence of incident waves, is called the radiation force. Under the
framework of linear potential flow theory, the body motion generates
a time-changing fluid pressure, which is integrated over a constant
surface (S in Figure 2.6), creating a time-dependent radiation force
fr, given, for t ∈ R+, by the expression

fr(t) = −m∞z̈(t)−
∫
R+

kr(τ)ż(t− τ)dτ, (2.14)

where the matrix kr(t) =
∑6
i=1

∑6
j=1 e

6
ij ⊗ krij (t) ∈ R6×6, with

each mapping krij : R+ → R, krij ∈ L2(R), ∀{i, j} ⊂ N6, is
the (causal) radiation impulse response function, containing the
memory effects associated with the fluid response, and m∞ =
limω→+∞Ar(ω) ∈ R6×6, where Ar : R → R6×6 is the radiation
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Property 1 limt→+∞ kr(t) = 0
Property 2 ż 7→ kr∗ ż is passive
Property 3 limω→0Kr(ω) = 0
Property 4 limω→+∞Kr(ω) = 0

Table 2.1: Dynamical properties as-
sociated with the radiation impulse
response kr.

added-mass (also called radiation reactance), defined as

Ar(ω) = m∞ −
1
ω

∫
R+

kr(t) sin(ωt)dt. (2.15)

Remark 2.3.11 Note that the impulse response function kr ef-
fectively constitutes a hydrodynamic coupling between different
modes of motion. In other words, the waves radiated by each DoF
affect the overall dynamics of both translational and rotational
motions of the device.

The non-parametric term Ar(ω), together with the so-called radi-
ation damping (also called radiation resistance) Br : R → R6×6,
given by

Br(ω) =
∫
R+

kr(t) cos(ωt)dt, (2.16)

fully characterise the (well-defined) Fourier transform of kr, i.e. we
can write Kr : R→ C6×6 as

Kr(ω) = Br(ω) + jω [Ar(ω)−m∞] . (2.17)

In particular, radiation damping describes the dissipative effect of the
energy transmitted from the oscillating body to the waves (i.e. the
waves propagate away from the body). The radiation added-mass
represents the additional inertial effect due to the acceleration of the
water, which moves together with the body. Equations (2.15) and
(2.16) are commonly referred to as Ogilvie’s relations [51], and they
stem from the definition of the Fourier transform.

Remark 2.3.12 As in the case of the wave excitation impulse
response ke, the mapping kr is effectively geometry-dependent.
The computation of kr is also performed, using BEM codes, in the
frequency-domain, where the hydrodynamic coefficients Ar(ω) and
Br(ω) are fully-characterised by the potential flow φ. To show a
specific example of this frequency-domain characterisation, Figure
2.8 illustrates Br(ω) and Ar(ω) (right), for a 1-DoF sphere of
radius r = 2.5 [m], constrained to move in heave (translational
motion z3).

Remark 2.3.13 The radiation impulse response function, kr, has
a set of well-known properties, which have a direct impact on
the definition, formulation, and computation of control-oriented
models. These are recalled in Table 2.1, and discussed in detail
in Section 2.4, together with an assessment of their impact in
control-oriented modelling.



2 Hydrodynamic WEC modelling and model reduction 34

Figure 2.8: Hydrodynamic characterisation of a 1-DoF sphere with r = 2.5 [m], constrained to move in heave (translational
motion z3). This figure includes: Body geometry (left), frequency-domain excitation effects (centre) and frequency-domain
radiation effects (right). The totality of these frequency-dependent parameters have been computed with the open-source
software NEMOH.

2.3.2.3 Restoring effects

The hydrostatic restoring force, fre, arises from the mismatch be-
tween the gravitational and buoyancy forces. To be precise, given a
motionless floating body, the latter represents the hydrostatic force
applied from the water to the body, by integration of the static
pressure over the wetted surface S (see Figure 2.6). For this linear
potential theory case, it follows that:

fre(t) = −shz(t), (2.18)

where sh ∈ R6×6 is a constant matrix, commonly referred to as the
restoring coefficient matrix.

2.4 Cummins’ equation and state-space
modelling

Recall equation (2.12), and each one of the hydrodynamic forces
described in Section 2.3.2. The motion of a floating body, i.e. a
WEC for the case of this thesis, under the assumptions of linear
potential theory, can be expressed in terms of a system Σ, described
by the set of equations

Σ :
{
z̈ = (M +m∞)−1 (−kr∗ ż − shz + ke∗ η + fext) ,
y = ż,

(2.19)

where the impulse response mappings kr and ke are fully characterised
using BEM codes. This non-parametric equation is widely known
as Cummins’ equation [25], and belongs to the family of Volterra
integro-differential equations of the convolution class14 14: The interested reader is referred

to [52] for a thorough discussion on
this type of operator.

.
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Figure 2.9: Hydrodynamic input-
output structure adopted throughout
this thesis.

Remark 2.4.1 Note that, without any loss of generality, the
output y is set to be the velocity vector associated with the
motion of the device ż, in line with the energy-maximising optimal
control problem for WECs, defined in Chapter 3.

Aiming to describe the hydrodynamic effects involved in equation
(2.19), let fext = 0, ∀t ∈ R+, for the remainder of this section. In
addition, note that the term describing the wave excitation effect in
equation (2.19), i.e. fe = ke∗ η, does not depend on the internal
variables describing the motion of the device (displacement, velocity
and acceleration). From a system dynamics perspective, the exci-
tation force can be considered as an external input to the system,
as depicted in Figure 2.9, and only depends on the free-surface
elevation η. Summarising, from now on, one can write

Σ :
{
z̈ =M (−kr∗ ż − shz + fe) ,
y = ż,

(2.20)

where M = (M + m∞)−1 is the inverse of the generalised mass
matrix of the device. Note that 0 /∈ λ(M) [53] so that the inverse
of the mass matrix is always well-defined.

Remark 2.4.2 The numerical generation of wave excitation can
be simply performed by applying a filtering action to the generated
free-surface elevation η. To be precise, η is generated according
to a spectral density function Sw (as in Section 2.1.2), to then
compute the corresponding convolution operation with the impulse
response function ke, directly obtaining fe.

Remark 2.4.3 From now on, we refer to the system Σ, defined
in (2.20), as the non-parametric force-to-motion representation
of the device.

Remark 2.4.4 The internal stability of (2.20) is guaranteed, in
the Lyapunov sense, for any physically meaningful parameters
and impulse response mapping kr involved. The proof of this
statement can be found in [53], and relies on the passivity property
of radiation effects, i.e. the passivity of the mapping ż 7→ kr∗ ż
(see Table 2.1).

Equation (2.20) still contains one non-parametric operator, char-
acterising the radiation forces associated with the fluid memory
effects. The mere existence of this non-parametric convolution term
represents a drawback for most wave energy applications, including
motion simulation, optimal control, and wave excitation force esti-
mation theory perspectives. From a pure simulation point of view,
it is well-known that the explicit computation of the convolution
operator is computationally inefficient, often worsened both by the
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necessity of a small (time) discretisation step to obtain accurate
numerical integration15 15: Even though several algorithms

have been proposed to alleviate the
computational complexity associated
to convolution operations, this still
remains as an active area of research
and is an open topic [54].

, and the number of degrees-of-freedom
considered. Concerning modern control/state-estimation techniques,
their design is virtually always based on the availability of a state-
space description (i.e. a set of first-order differential equations) of
the system under analysis. As a matter of fact, the vast majority
of the optimal control/state-estimation techniques considered in
wave energy, which are utilised to maximise the energy absorption
of WECs, require a state-space representation for the differential
operator describing the motion of the device (see Chapter 3).

The most-widely considered solution path, which aims to construct
a state-space representation of the input-output system Σ in (2.20),
involves the computation of an approximation Σ̃r of the radiation
linear-time invariant system Σr, fully characterised by the impulse
response mapping kr, i.e. a system with input ż (velocity) and output
yr = kr∗ ż.
Remark 2.4.5 Though Σr naturally exists, its exact representa-
tion is unknown, given the non-parametric nature of the impulse
response function kr, computed with BEM codes. In other words,
the relationship between the solution of the linear potential flow
boundary value problem (described in Section 2.3.1), and radiation
effects, is always non-parametric.

The underpinning idea is then to compute an approximating system
Σ̃r in terms of a continuous-time, finite-dimensional state-space
system, using the information provided by BEM codes, either in the
frequency- or the time-domain16 16: This naturally involves the def-

inition of an error criterion, which
attempts to quantify the difference
between the non-parametric system
defined by kr, and the approximating
state-space representation Σ̃r. This is
discussed further in Section 2.6

.

Remark 2.4.6 Throughout this thesis, the process of determining
a finite-order dynamical model from either time- or frequency-
domain data points, is termed model order reduction (or simply
model reduction). This is motivated by the fact that the target
non-parametric terms involved, fully arise as a direct biproduct
of linear potential flow theory, i.e. they specifically respond to a
physical law with origins in Navier-Stokes theory, and there is no
‘experimentation’ involved in their determination. In other words,
one starts with a defined operator (i.e. equation (2.20)), and at-
tempts to ‘reduce it’ by parameterising this model into a tractable
form. Nevertheless, note that, if the physical origin of these terms
is ignored, this process can be alternatively referred to as data-
driven model reduction17 17: Where the starting model ‘order’

is effectively the number of frequen-
cy/time domain data points available.

or system identification, depending on
the context [44] (see also Remark 2.3.1).



2 Hydrodynamic WEC modelling and model reduction 37

To be precise, let Σ̃r be an approximation of the radiation system of
dimension (order) nr ∈ N≥1, given in state-space form, for t ∈ R+,
as

Σ̃r :
{

Θ̇ = FΘ +Gż,

ỹr = QΘ + Eż ≈ kr∗ ż, (2.21)

where the matrices (F,G,Q,E) are such that F ∈ Rnr×nr , G ∈
Rnr×n, Q ∈ Rn×nr and E ∈ Rn×n, and n is the number of DoF
considered for the device under analysis.

To be physically consistent, any system Σ̃r approximating the ra-
diation convolution operator, should fulfil the dynamical properties
listed in Table 2.1. A discussion on the specific impact of each prop-
erty in the nature of the state-space formulation (2.21), is provided
below (listed in the same order as in Table 2.1). These properties
are specifically considered in both Parts II and III of this thesis.

I Property 1: Let K̃r : C→ Cn×n, s 7→ K̃r(s), be the transfer
function associated with the approximating system Σ̃r. Then,
the set of poles of K̃r(s) is always contained in C<0, i.e.
system Σ̃r is bounded-input bounded-output (BIBO) stable.

I Property 2: The complex (transfer) function K̃r is positive-
real. For LTI systems, K̃r is positive-real if and only if

• Property 1 holds and
• The matrix K̃r(ω) + K̃?

r (ω) is positive-definite, ∀ω ∈
R/0.

I Property 3: K̃r(s) has zeros at s = 0.
I Property 4: Σ̃r is strictly proper, i.e. the feed-through matrix
E in (2.21) is identically zero.

Finally, once this suitable approximation is found, obtaining a state-
space representation of (2.20) becomes straightforward. Generally
speaking, suppose one considers a device moving in n degrees-of-
freedom. Equation (2.20) can be approximately represented, for
t ∈ R+, by a linear time-invariant (LTI) system Σ̃ described in
state-space as,

Σ̃ :



[
ẇ

Θ̇

]
=
[
A −BQ
GC F

] [
w

Θ

]
+
[
B

0

]
fe,

ỹ =
[
C 0

] [w
Θ

]
≈ ż,

(2.22)

where the state-vector w =
∑n
i=1 e

n
i ⊗

[
zi żi

]ᵀ
∈ R2n contains

displacement and velocities for each DoF involved, and the matrices
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A ∈ R2n×2n, B ∈ R2n and Cᵀ ∈ R2n are defined as

A =
n∑
i=1

n∑
j=1

enij ⊗

 0 i
jδ

−Mijshi 0

 ,
B =

n∑
i=1

n∑
j=1

enij ⊗
[

0
Mij

]
,

C = In ⊗ [0 1],

(2.23)

whereMij is the ij-th entry of the inverse generalised mass-inertia
matrixM = (M +m∞)−1. Note that the radiation state-vector Θ,
and the set of matrices (F,G,Q), are defined as in (2.21).

An alternative route consists of attempting to parameterise system Σ,
defined in (2.20), by a reduced model Σ̃ directly, i.e. from an input-
output (force-to-motion) perspective. In this case, the physical notion
of each component of the state vector is somewhat lost, though,
naturally, the outputs still represent physical variables. Even though
this approach is usually not considered in the wave energy control
literature (ostensibly because the model becomes more ‘abstract’),
it indeed provides some advantages, as discussed in Section 2.6.

2.5 Nonlinear extensions to Cummins’
formulation

Cummins’ equation (2.20), which is a direct product of linear poten-
tial flow theory, can lose fidelity when Assumptions 2.3.2 or 2.3.3
do not hold, i.e. either the wave amplitude or body displacement
increase significantly. The violation of these assumptions introduce
nonlinear hydrodynamic effects, and the linear behaviour described
by (2.20) can potentially lose fidelity.

Remark 2.5.1 This is specifically relevant for devices under con-
trolled conditions, where the energy-maximising control objective
normally requires large displacements and velocities to increase
power absorption, as discussed in Chapter 3.

Aiming to alleviate the impact of Assumptions 2.3.2 and 2.3.3,
and recognising the essential suitability of the structure provided
by Cummins, researchers often ‘extend’ the operational space of
equation (2.20), by the incorporation of a number of nonlinear func-
tions, which attempt to narrow the gap between linear potential
flow theory and the ‘realistic’ behaviour of the floating body (i.e.
Navier-Stokes equations (2.5)). The most-utilised nonlinear map-
pings, within the wave energy control community, are discussed in
the following paragraphs18

18: Note that other nonlinear hydro-
dynamic effects have also been consid-
ered outside the scope of optimal con-
trol applications, including, for exam-
ple, nonlinear Froude-Krylov effects
[42], and nonlinear radiation represen-
tations [55].

.



2 Hydrodynamic WEC modelling and model reduction 39

Remark 2.5.2 Depending on the shape of the WEC, the sea
conditions, and the external inputs considered (e.g. control law),
not all the nonlinear terms listed in this section may be significant
and, hence, necessary in the modelling process. Therefore, it is
convenient to use caution in introducing nonlinearities, since a
significant increase in both theoretical and computational complex-
ity may be added to the dynamical model, potentially rendering
control strategies ill-posed/unsuitable for realistic applications.

Remark 2.5.3 Additional (nonlinear) external forces, such as
mooring effects and non-ideal PTO behaviour, can also be added
to Cummins’ equation, via the mapping fext defined in (2.19).
These are discussed, within the framework of energy-maximising
control strategies, in Chapter 3.

2.5.1 Nonlinear restoring effects

The linearity of the restoring term, expressed in equation (2.18), can
cease to be a representative expression for the restoring effect, under
large (amplitude) body oscillations. To be precise, if the device has a
constant cross-sectional area with respect to the displacement of the
body, the restoring force is always linear, and can be expressed as in
(2.18). If this is not the case, and the cross-sectional area changes
with the corresponding displacement, the relationship between fre
and z is effectively nonlinear, i.e. it can be expressed as

fre(z) = −shz + fnlre (z), (2.24)

where fnlre is a static nonlinear mapping, and its definition always
depends on the geometry of the body (WEC). Example cases of
control studies, that consider this type of nonlinear effect, are [56]
and [57].

2.5.2 Nonlinear viscous drag effects

The viscous force, generated by shear stress, is not present in Cum-
mins’ equation (2.20). Omitting these effects may lead to unrealistic
prediction of the device response, i.e. excessive displacement am-
plitudes and velocities. Commonly, an additional viscous term, fv,
is added to (2.20), in terms of the so-called Morison-like equation
[58], which describes the force applied to a submerged body by an
oscillatory flow. Mathematically, the mapping fv is given by

fv(ż) = 1
2ρCdAcż|ż|, (2.25)
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where ρ denotes the fluid density, Cd is the so-called viscous drag
coefficient, and Ac is the characteristic area of the body. This
characterisation of viscous effects has been used within the frame-
work of energy-maximising control studies in, for instance, [59] and
[57].

Remark 2.5.4 The determination of the coefficient Cd in (2.25)
is far from being trivial: Much inconsistency and uncertainty
can be found in the literature, both concerning the value itself,
and the identification methods considered to compute such a
value. Indeed, drag identification for wave energy applications is
particularly challenging, mainly due to the dependence on device
dimensions, characteristic flow regimes and large motions. The
reader is referred to [42, Chapter 7] and [18] for further discussion
on this topic.

2.6 Model reduction: state-of-the-art

After introducing control-oriented modelling, and the intrinsic neces-
sity of suitable model reduction strategies, this section provides a
review of the state-of-the-art model reduction techniques considered
within the wave energy field19 19: Note that this section does not

constitute a review in the theory of
(general) model reduction, but rather
reviews the type of techniques cur-
rently employed in WEC control/state-
estimation applications. The reader
is referred to [60] for a discussion on
the state-of-the-art of model reduc-
tion techniques, for a generic type of
differential operator.

. To do this in a precise manner,
a clear distinction has to be made at this point, in terms of the
nature of the non-parametric system involved. In particular, this
section is divided in two different parts: Linear and nonlinear model
reduction.

The former involves the parameterisation of the linear Cummins’
equation (2.20), i.e. expressing the input-output dynamics of the
device under analysis in a suitable state-space representation. The
latter refers to nonlinear model reduction, both in terms of model
order and model complexity : In other words, techniques aiming
not only to express Cummins’ equation in state-space form, but
also to simplify the nonlinear operator used to describe the device
dynamics.

Remark 2.6.1 Note that Jacobian linearisation is excluded from
this latter section, i.e. the reduced representation is still assumed
to be of a nonlinear nature.

2.6.1 Linear strategies

For the linear model reduction case, i.e. expressing equation (2.20)
in state-space form, several methods have been proposed in the
literature, to approximate the radiation convolution term in terms of
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a LTI state-space representation (as described in Section 2.4). This
section reviews the most-used strategies within the wave energy field
(mostly which are adopted from the marine engineering community).
Note that studies that also provide a review on these multiple
approximation methods include [61] and [62] (exclusive to the marine
and ocean engineering areas), and [63] (wave energy field). These
methodologies can be clearly divided into two broad categories:
time-domain and frequency-domain methods. A discussion on both
approaches is given in the following.

Remark 2.6.2 Normally, the use of either time- or frequency-
domain based methods is strongly linked to the nature of the BEM
code utilised to compute the hydrodynamic characteristics of the
device (see Remark 2.3.2). In other words, the computation of
the hydrodynamic parameters, and the model reduction process,
are normally performed in the same domain.

2.6.1.1 Time-domain methods

Time-domain methods directly use the impulse response data kr,
which is usually generated either via time-domain BEMs or via inverse
Fourier transformation of the frequency-domain data computed
by frequency-domain based BEMs20 20: This methodology is considered

mainly due to the computational ef-
fort required to compute the time-
domain response directly [63].

. Key studies in this field,
that propose a time-domain formulation to obtain a state-space
representation of the radiation convolution term, include [50], [64]
and [65].

The pioneering study [50] proposes an approximation method for a
vertical cylinder, constrained to oscillate in heave, i.e. single DoF
device (SISO system). The method is based on a weighted least-
squares fitting of the impulse response function kr, where a set of
fixed parameters, describing the state-space matrices (F,G,Q) (see
equation (2.21)) in an observer canonical form, is involved in the
optimisation process. Neither stability nor passivity of the radiation
system are guaranteed by this method, though, naturally, for the
application case provided, the computed model is effectively stable
(passivity is not discussed).

[64] also uses a least-squares impulse response fitting, but adding
some features to the original formulation presented by [50]. In
particular, stability is enforced by ‘flipping’ any unstable poles in
the complex plane (i.e symmetrising poles with positive real part
with respect to the imaginary axis). This practice is, in general, not
acceptable within wave energy control applications: Though the
radiation damping Br(ω) of the ‘flipped’ system (i.e. the real part
of the frequency-response) stays the same, the added-mass (i.e. the
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imaginary-part) is effectively altered, which results in a significant
change in phase response21 21: Having an accurate representa-

tion of the phase characteristics of
Cummins’ equation is fundamental
for maximum energy extraction, as
discussed in Chapter 3.

. Passivity is also enforced in [64], using
a perturbation approach, i.e. introducing minor modifications to the
identified system, until a passive system is obtained. Though its
simplicity might be appealing at a first glance, this method relies on
having minor passivity violations in the first place, which is naturally
not guaranteed by the impulse response fitting method, so that
it is not clear under which conditions this perturbation approach
works.

The authors of [65] propose the use of the method initially introduced
by [66]. In particular, this method is based on a singular value
decomposition (SVD) of the Hankel matrix22 22: The reader is referred to [67], for

further detail on the properties of the
Hankel matrix, and its relation to the
(extended) controllability and observ-
ability matrices of the system under
analysis.

associated with the
(discrete-time) impulse response data kr(tj), with j ∈ NJ , where J
is the number of available samples of kr (i.e. the Markov parameters
of the system). Once the parameters of the discrete-time model have
been obtained, the continuous-time equivalent is normally computed
using the bilinear transformation [68]. Though the method proposed
in [65] can effectively enforce stability, the models computed are, in
general, not passive. In addition, the system obtained is biproper
(as a consequence of the bilinear transformation), which violates
Property 4 in Table 2.1.

This section is finalised by noting that time-domain approximation
methods do not have (in general) a direct handle on the frequency-
response of the computed models. Given the oscillatory nature of
ocean waves (see Section 2.1), frequency-domain analysis constitutes
a key tool in the development of dynamical models and energy-
maximising control strategies for WECs. Hence, emphasis should be
put in producing accurate (and physically representative) frequency-
domain characterisations.

2.6.1.2 Frequency-domain methods

Frequency-domain-based model reduction methods are the most
well-established strategies in the wave energy field, and attempt to
compute a parametric model directly from the frequency-domain
data calculated by frequency-domain-based BEMs, i.e. Br(ω) and
Ar(ω). Generally speaking, two different methodologies are usually
adopted: Independent fitting of the hydrodynamic coefficients Br
and Ar, or the frequency-response Kr directly (as in equation (2.17)).
Studies applying the former approach are [69] and [70], while the
latter has been considered by [71], [72], and [73]. These studies (and
approaches) are discussed in the following paragraphs.
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Remark 2.6.3 As discussed in Section 2.4, a further approach
consists of computing a force-to-motion (input-output) state-space
representation of system Σ in (2.20). This has been proposed, in
the frequency-domain, by [74], and it is also discussed below.

The authors of [69], which compute a parametric form for each
hydrodynamic parameter, i.e. added mass Ar and radiation damping
Br, separately, use as model structure a (rational) partial fraction
expansion, whose coefficients are obtained based on a least-squares
process, i.e. in an Euclidian norm sense. No mention of stability nor
passivity (or even relative degree) can be found in this study, so
that it is not clear when (if ever) the strategy effectively fulfills the
radiation properties. The study proposed in [70] relies on the same
set of tools as [69], though each coefficient is approximated by a
constant value (i.e. the approximation is independent of ω).

The most well-known (and perhaps more widely considered) approach
is that presented in [71], where the model reduction process is
defined in the frequency-domain, using raw data representing Kr(ω),
obtained from BEM codes. This method is essentially a least-squares
curve fitting process, where the structure of the proposed parametric
model is a rational polynomial function, with constant coefficients
(these coefficients effectively constitute the optimisation variables
involved). Stability cannot be ensured per se, so that the authors
propose to ‘flip’ any set of unstable poles. Note that this is indeed
analogous to the time-domain method [64] discussed in Section
2.6.1.1, and has the exact same issue with the phase of the obtained
frequency-response, which can be detrimental for wave energy control
applications. Passivity is not ensured by the technique, though the
authors suggest that the computed models are, in general, passive.

Both [72] and [73] use a very similar approach to that of [71].
In particular, [72] first defines the model structure in the time-
domain, using an observable canonical form, in terms of a set of
parameters which define both the characteristic polynomial and
the zero-dynamics of the proposed parametric structure. These
parameters are computed using a least-squares approach, which
is constrained for stability using the well-known Routh-Hurwitz
(polynomial) conditions [75]. The issue of passivity is not discussed in
this study. Similarly to [71], [73] uses rational functions, the stability
is also ensured by a ‘flipping’ process, and passivity is obtained by
a perturbation approach (analogously to the time-domain case of
[64]), which relies on assuming minor violations of passivity of the
parametric structure obtained.

Lastly, and as mentioned earlier in Section 2.4, a further alternative
approach, considered in [74], is to compute a state-space repre-
sentation of the complete force-to-motion dynamics Σ, instead of
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finding a parameterisation of the radiation convolution term sep-
arately. The methodology is again very similar to that of [71], so
that it is not discussed in detail herein. Nevertheless, note that,
in this case, the physical notion of each component of the state
vector characterising Σ is somewhat lost, though the outputs still
represent physical variables. With this overall formulation, the order
of the state-space representation obtained is usually lower (for equal
fidelity of the overall model) than first computing a parametric form
for the convolution term separately, and then embedding it into
Cummins’ equation (2.20)23 23: The reason behind this behaviour

is discussed in depth in Chapter 5.
. As a matter of fact, the latter always

requires two additional elements in the state-space representation to
describe the force-to-motion dynamics, i.e. position and velocity, for
each DoF considered (the state-vector w defined in equation (2.22)).
The difference between both methodologies can be of particular
importance, for example, in either model-based state-estimation, or
optimal control design for WECs, where an excessive number of
model states can render an energy-maximising optimal controller
unsuitable for real-time applications.

2.6.2 Nonlinear strategies

To the best of the author’s knowledge, there is currently no literature
on systematic24 24: Studies that produce simpler mod-

els by selectively ‘ignoring’ or ‘discard-
ing’ nonlinear effects, such as, for in-
stance, [76, 77], are out of the scope
of this section, which only deals with
techniques that can systematically re-
duce both order and complexity of a
given dynamical operator.

methods of nonlinear model reduction applied in the
wave energy field, even though this would represent an extremely
valuable tool for a variety of applications, including, but not limited
to, state-estimation and control design for WECs. This is ostensibly
related to the fact that linear dynamics (i.e. equation (2.20)) are
virtually always considered when designing optimal controllers for
WECs (see Chapter 3), motivated by both their theoretical simplicity,
and their associated computational convenience. In other words,
there is currently little appetite to extend these models to include
nonlinear effects, despite that the linearity assumption is challenged
by the controller itself, as discussed herein in Section 2.4. It is worth
mentioning though, that some effort has been done recently in [78],
to provide a mathematically consistent measure of the impact of
each nonlinear effects, and assess which of these significantly affects,
for example, power absorption calculations.

2.7 Conclusions

This chapter presents the underlying principles behind control-
oriented hydrodynamic modelling of WECs, including the mathemat-
ical representation of ocean waves, stating each of the assumptions
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required to arrive at the well-known non-parametric Cummins’ equa-
tion, which describes the dynamics of a floating device. In particular,
this equation is an integro-differential equation of the convolution
class, where the convolution operations involved characterise the
radiation effects.

Model reduction is introduced as the main tool to compute para-
metric forms of Cummins’ formulation, in terms of state-space
representations, which are suitable for modern state-estimation and
control applications, also avoiding computationally expensive simu-
lations. The underlying physical properties of Cummins’ formulation
are linked to well-known dynamical properties of systems described
in state-space, introducing a set of requirements that should be
fulfilled by any approximating structure. In addition, the most-widely
considered nonlinear extensions of Cummins’ theory are also dis-
cussed, aiming to alleviate the inherent limitations of linear potential
flow theory.

Finally, a literature review is provided, which addresses the state-
of-the-art of both linear and nonlinear model reduction techniques
applied in the marine and, particularly, the wave energy field. Though
several strategies have been introduced in the linear model reduction
case, i.e. the parameterisation of equation (2.20) in terms of an
approximating state-space model, none of the strategies can sys-
tematically fulfil the underlying physical properties that characterise
the behaviour of the device. Additionally, given that this set of
techniques has been usually developed outside the scope of wave
energy control literature, none of the parametric structures seem
to fit the energy-maximising control problem itself, which requires,
for example, a highly accurate frequency-domain representation for
particular key input frequencies, such as the resonant frequency of
the device (i.e. the frequency characterising the H∞-norm of the
system). For the case of nonlinear model reduction, despite the
importance of having systematic techniques to simplify complex
multi-DoF and multi-body (array) nonlinear models, no attempts
can be found in the current literature.

Having identified the current issues in model reduction for wave
energy applications, Part II of this thesis proposes a model reduc-
tion framework for wave energy applications, composed of a set of
systematic reduction techniques, based on the concept of moments
and moment-matching (discussed in Chapter 4), for both linear
and nonlinear systems. These techniques proposed in Part II, which
are effectively able to fulfil the discussed physical properties in the
linear case, and deal with complex nonlinear mappings, are designed
to be informed by the state-estimation and control process, being
especially suitable for the WEC control application.



Energy-maximising control of
WECs 3
Contents of this chapter

3.1 The impedance-matching principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Optimal control problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Estimation and forecasting of wave excitation . . . . . . . . . . . . . . . . . . . . . 53
3.3 Impedance-matching-based controllers: state-of-the-art . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Latching control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Causal stochastic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Optimisation-based controllers: state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Numerical solution methods for optimal control . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Direct optimal control in wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.3 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Recall, from Section 2.3.2, that the equation of motion for a WEC,
under potential flow theory, can be generally written in terms of a
system Σ, given by the set of equations

Σ :
{
Mz̈ = fr + fre + fe + fext − u,
y = ż,

(3.1)

where z is the displacement vector of the body as a function of time,
y = ż is chosen as the output of Σ, the set of mappings {fr, fre, fe}
denote the radiation, (hydrostatic) restoring, and wave excitation
effects, respectively, and where fext are possible external forces (e.g.
mooring effects).

The control input u, supplied by means of a power take-off (PTO)
system, plays a key role in the optimisation of the operation of wave
energy devices: Ultimately, energy conversion must be performed as
economically as possible, to minimise the delivered energy cost, while
also maintaining the structural integrity of the device, minimising
wear on WEC components, and operating across a wide range of sea
conditions. This is virtually always written in terms of an energy-
maximising criterion, so that the control problem for WECs can be
informally posed [12] as:

Design the PTO force (control input) such that:

Maximises Energy absorption from incoming waves.

Subject to WEC dynamics Σ (3.1).
Device and actuator physical limitations.



3 Energy-maximising control of WECs 47

Pioneering studies, tackling this energy-maximising optimal control
problem, can be traced back to Kjell Budal and Johannes Falnes∗
[79–81], David Evans† [82, 83], and Stephen Salter‡ [84]. These
studies mostly rely on a frequency-domain analysis of the WEC
dynamics, heavily inspired by the harmonic nature of waves. During
recent years, wave energy control researchers moved towards optimal
control techniques, where the energy-maximisation design is written
in terms of an appropriate optimal control problem (OCP), and
well-developed techniques (mainly originated within the theory of
calculus of variations [85]) can be considered.

The main objective of this chapter is to introduce the energy-
maximising control problem for WECs, covering, from the fundamen-
tals behind maximum energy absorption under regular (monochro-
matic) wave excitation, towards the set of optimal control techniques
utilised to tackle this control problem. In particular, Section 3.1
describes the principle of impedance-matching, for optimal (uncon-
strained) energy absorption under monochromatic excitation, while
Section 3.2 introduces the energy-maximising control problem within
an OCP formulation. Section 3.3 provides a review of the state-of-
the-art of WEC control techniques based on the impedance-matching
principle, denoted here as impedance-matching-based controllers,
while Section 3.4 provides a review on optimal control techniques
applied for the WEC control case, i.e. optimisation-based controllers.
In the case of both impedance-matching- and optimisation-based
controllers, the advantages and disadvantages of each family of
control strategies are highlighted and discussed. Finally, Section 3.5
encompasses the main conclusions of this chapter, which directly
motivate the moment-based control framework proposed in Part III
of this thesis.

3.1 The impedance-matching principle

One of the first and fundamental results applied within the wave
energy control literature relies on a rather simplistic approach to the
energy-maximising problem, where device and actuator constraints
are completely neglected. In particular, this principle heavily relies on
a frequency-domain analysis of the WEC dynamics, and is detailed
and discussed in the following paragraphs1 1: From now on, for the remainder

of this chapter, a single DoF device is
considered, unless otherwise stated.

. The reader is also
referred to [53] for a treatment of this topic.

Consider the linear Cummins’ formulation, defined in equation (2.20).
A direct application of the Fourier transform, together with the

∗ Budal & Falnes - NTNU (NTH before 1996), Trondheim, Norway.
† University of Bristol, Bristol, United Kingdom.
‡ University of Edinburgh, Edinburgh, United Kingdom.
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Figure 3.1: Impedance-matching
principle. (a) Equivalent circuit for
the frequency-domain analysis of
Cummins’ equation (3.2). (b) Closed-
loop impedance-matching formula-
tion.

radiation force frequency-domain equivalent introduced in equation
(2.17), yields

jω(M+m∞)Ż(ω)+Kr(ω)Ż(ω)+ sh
jω
Ż(ω) = Fe(ω)−U(ω), (3.2)

where U : R→ C represents the Fourier transform of the controller
input u : R+ → R. From (3.2), it follows directly that

Ż(ω) = 1
I(ω) [Fe(ω)− U(ω)] , (3.3)

where the mapping I : R→ C, ω 7→ I(ω), defined as

I(ω) = Br(ω) + jω

[
Ar(ω) +M − sh

ω2

]
, (3.4)

denotes the equivalent (intrinsic) impedance of the WEC.

Remark 3.1.1 Naturally, Equation (3.3) resembles well-known
representations in the field of electronic engineering and circuits
theory: the WEC dynamics (3.2) can be equivalently represented
by the analogue circuit depicted in Figure 3.1 (a).

Following Remark 3.1.1, the control input U(ω) can be ‘seen’ as
a load, which has to be designed so that maximum power transfer
is achieved from the source, i.e. the wave excitation input Fe(ω).
From this particular point of view, this problem can be directly
addressed using the so-called impedance-matching (or maximum
power transfer) theorem [86]2 2: This result was initially known as

Jacobi’s law, and it was derived by
Moritz von Jacobi. Moritz, the el-
der brother from one of the most ac-
complished mathematicians in history,
Carl Gustav Jacob Jacobi [87], was
a German and Russian engineer, and
proposed the impedance-matching prin-
ciple around 1840, for the (purely)
resistive load case.

, which is a well-established result
within the electronic engineering community. This theorem states
that the load impedance, Iu, should be designed such that it exactly
coincides with the complex-conjugate of the source impedance, I.
In other words, the control input that maximises power transfer, for
the WEC case, is given by

U(ω) = Iu(ω)Ż(ω) = I?(ω)Ż(ω). (3.5)

The result posed in (3.5) is indeed appealing, mainly due to its
intrinsic simplicity, and its direct link to fundamental and well-
established theory in the field of analogue circuits. Nevertheless,
there are several issues associated with the control specifications
given in (3.5), which prohibits the ‘smooth’ application of what
could potentially be an extremely appealing principle. These are
listed and discussed in the following paragraphs.

To begin this discussion, note that the Laplace-transform analogous
of equation (3.2), considering zero initial conditions, directly yields,

Ż(s) = G(s) [Fe(s)− U(s)] , (3.6)
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where the mapping G : C→ C, defining the input-output dynamics
fe − u 7→ ż, is given by

G(s) = KD
r (s)s

(M +m∞)KD
r (s)s2 +KN

r (s)s+KD
r (s)sh

, (3.7)

where the Laplace transform of the radiation impulse response, Kr,
has been written3 3: This is a direct consequence of the

fact that system Σr, characterising
radiation effects, is LTI (see Section
2.3.2.2).

, without any loss of generality, as Kr(s) =
KN

r (s)/KD
r (s). Given the causality property of the radiation force

system Σr, and the fact that Σr is always strictly proper (see Table
2.1), the following relation

deg
{
KN

r (s)
}
< deg

{
KD

r (s)
}
, (3.8)

where deg{p}, s 7→ p(s), denotes the degree of the polynomial p
(defined over the field R), holds.

Remark 3.1.2 The statement provided in the previous paragraph
automatically implies the following properties:

I G(s) is a strictly proper transfer function.
I G(s) has relative degree 1.
I The zeros of G(s) are always contained in C−, as a con-

sequence of the BIBO stability of the radiation system Σr,
i.e. KD

r (s) is always a Hurwitz polynomial.

Direct observation of equations (3.3) and (3.6) yields that, in the
frequency-domain, the relation I(ω) = 1/G(ω), holds. In other
words, the dynamical system associated with the frequency-response
I(ω) is inherently non-causal, as a direct consequence of the fact
that the transfer function G(s) is strictly proper (see Remark
3.1.2).

Remark 3.1.3 This poses a major issue with respect to the
applicability of result (3.5): the dynamical system associated with
the control law (3.5) cannot be practically implemented, due to
its intrinsic non-causality.

In addition to this non-causality issue, the following additional impli-
cations associated with the matching-principle can be identified:

I The optimal control law (3.5) implies a different matching-
condition for each input-frequency ω.

I Neither device nor actuator limitations are observed by the
matching condition (3.5). As a matter of fact, this control
strategy often requires unrealistic displacement, velocity and
control input values, to successfully achieve maximum power
absorption. This is illustrated in Figure 3.2, where, for example,
the displacement of the device, z, is in the range z ∈ [−15, 15]
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Figure 3.2: Device (sphere r = 2.5 [m]) motion under impedance-matching control. The input wave is assumed to be
regular, with Hw = 2 [m] and Tw = 8 [s]. Figure (a), left-axis, shows displacement (solid-black) and velocity (dashed-black).
Figure (b), left-axis, illustrates the impedance-matching control input (solid-black). The right-axis in both (a) and (b)
shows the excitation input (dotted-grey).

[m], for a sphere of r = 2.5 [m], which is (very) far from being
practically viable4

4: Note that the device is effectively
‘jumping’ out of the water in Figure
3.2. This is a direct product of the
linearising assumptions under which
equation (3.1) is derived. In reality,
the excitation force fe is zero once
the device clears the water, though
this is clearly not accounted for in the
dynamical model.

. Note that the input wave (regular), has a
height of 2 [m].

I The sensitivity and robustness properties of the control loop
associated with the impedance-matching principle (3.5), de-
picted in Figure 3.1 (b), have been recently questioned in
[88]. In particular, [88] shows that any modelling errors can
be detrimental in the impedance-matching condition, given
that a very specific zero-pole cancellation takes place when u
is selected as in (3.5).

Remark 3.1.4 Note that, the force-to-motion (force-to-velocity
in this case) frequency-response mapping, under the impedance-
matching condition (3.5), can be readily computed as

Ż(ω) = G(ω)
1 +G(ω)I?(ω)Fe(ω) = 1

2Br(ω)Fe(ω), (3.9)

where Br is the radiation damping, as defined in Section 2.3.2.

Remark 3.1.4 facilitates an interesting path to analyse the ‘effect’ of
the impedance-matching controller (3.5), on the frequency-domain
properties of the system. An optimal condition, for maximum-energy
extraction, can be clearly extracted from (3.9):

The velocity of the device, under unconstrained optimal energy
absorption, is a scaled version of the excitation input fe.

In particular, the following conditions simultaneously hold:

(C.1) The velocity of the device, under optimal energy absorption is
in-phase with the excitation input fe.
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Figure 3.3: Bode plot for the optimal
force-to-velocity frequency-response
T (ω), under impedance-matching
control conditions.

(C.2) There exists an optimal real-valued scaling function T : R→
R+, which is given by

T (ω) = 1
2Br(ω) . (3.10)

Note that the image of T is effectively contained in R+, as a
consequence of the passivity property of the radiation force,
i.e. Br(ω) > 0, ∀ω ∈ R/0 (see Section 2.4). Figure 3.3 shows
the Bode plot of T (ω), for a sphere of r = 2.5 [m].

Condition (C.1), listed above, can be clearly appreciated in Figure
3.2 (a), where the velocity of the device is locked in phase with the
excitation input.

Though impedance-matching, as in (3.5), is far from being applicable
(for the reasons discussed above), it effectively describes the under-
lying dynamics behind maximum energy absorption, in an intuitive
approach. As a matter of fact, the two conditions listed above, i.e.
(C.1) and (C.2), gave origin to several impedance-matching-based
techniques, which attempt to provide implementable approximations
of the control law derived in (3.5). These are discussed in detail in
Section 3.3.

3.2 Optimal control problem formulation

As discussed in the opening paragraphs of this chapter, WEC optimal
control design entails an energy-maximisation criterion, where the
objective is to maximise the absorbed energy from ocean waves
over a finite time interval5 5: Note that there is no loss of gen-

erality in considering 0 as initial time.
T = [0, T ] ⊂ R+. To be precise, the

useful energy absorbed from incoming waves is converted in the
PTO system, and can be directly computed as the time integral of
converted (instantaneous) power, i.e. this energy-maximising control
procedure can be cast as an optimal control problem, with objective
function J : R→ R defined as

J (u) = 1
T

∫
T
u(τ)ż(τ)dτ, (3.11)

where u : T → R denotes the control (PTO) force, to be optimally
designed.

In addition, as demonstrated in Section 3.1 for the impedance-
matching control solution, the unconstrained energy-maximising
optimal control law, i.e. maximiser of J in (3.11), often implies
unrealistic device motion and excessively high PTO (control) forces,
which consign this optimal unconstrained solution to the academic
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realm, far from being practically viable. Aiming to derive an im-
plementable solution, constraints on both the displacement and
velocity of the WEC, z and ż, and the exerted control force u, have
to be considered within the optimal control design. This guarantees
that the physical limits associated with device and actuator (PTO)
dynamics are consistently respected, while effectively maximising,
at the same time, absorbed energy from incoming waves. This set
of constraints can be compactly written as

C :


|z(t)| ≤ Zmax,

|ż(t)| ≤ Żmax,

|u(t)| ≤ Umax,

(3.12)

with t ∈ T , and where
{
Zmax, Żmax, Umax

}
⊂ R+.

Given the control objective function defined in (3.11), and the set
of state and input constraints defined in (3.12), the constrained
energy-maximising OCP can be posed as

uopt = arg max
u∈U

J (u),

subject to:WEC dynamics Σ,
state and input constraints C ,

(3.13)

where U denotes the set of admissible inputs, and the system Σ
describes the dynamic motion of the device, i.e. Cummins’ equation
(2.20), potentially with additional nonlinear effects, as described in
Section 2.4.

Remark 3.2.1 The optimal control formulation (3.13), which
directly aims to maximise time-averaged power extraction from
ocean waves, virtually always requires numerical routines to com-
pute a suitable solution. As a matter of fact, this OCP has been
solved using a variety of strategies, mostly inspired by model pre-
dictive control (MPC). A review on these techniques is provided
in Section 3.4.

An immediate advantage of this optimal-control-based approach
is that constraint handling becomes straightforward, i.e. one can
translate physical limits on device motion and PTO force into state
and input constraints in (3.13), as long as these limitations are rep-
resented in terms of a feasible set6 6: The reader is referred to [89] for

a discussion on the feasibility of the
set of constraints for the WEC case,
as a function of the excitation input.

. A clear disadvantage is that
the real-time capabilities of problem (3.13) depend on a number
of factors, primarily the discretisation technique utilised to param-
eterise the state and input variables, and the hardware available
for its implementation. Both advantages and disadvantages of this
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Figure 3.4: Estimation (dotted) and
forecasting (dashed) of wave excita-
tion effects. The target fe is depicted
in a solid gray line. The symbol t∗
denotes the current time instant.

approach, are discussed in detail in Section 3.4.

Remark 3.2.2 Note that the non-causal behaviour that charac-
terises the impedance-matching principle of Section 3.1, is also
present in this OCP formulation: In order to solve the OCP defined
in (3.13), full knowledge of the excitation fe is required for the
time-interval T , i.e. solving (3.13) implicitly requires instanta-
neous and future values of fe. This is further discussed in Section
3.2.1.

Remark 3.2.3 Naturally, if the wave excitation force is com-
posed of a single frequency component and the OCP (3.13) is
considered to be state-and-input unconstrained, then the control
solution computed from (3.13) coincides with that provided by
the impedance-matching approach described in Section 3.1.

3.2.1 Estimation and forecasting of wave excitation

The energy-maximising OCP, described in equation (3.13), not only
has to be solved efficiently in computational terms, but energy-
maximisation can only be achieved by having full (instantaneous
and future) knowledge of the wave excitation force, i.e. the external
input. In other words, fe has to be known over the time period T , in
which energy absorption is being optimised. This is clearly necessary
for the WEC dynamics equality constraint imposed on the OCP
(3.13), i.e. fe is required to predict the motion of the device based on
the system of differential equations Σ. Unfortunately, for the WEC
case, i.e. a moving body, fe is, in general, an immeasurable quantity
[90]. Consequently, unknown-input7

7: The problem of unknown-input es-
timation is commonly realised through
observers that simultaneously estimate
state and exogenous inputs. These
techniques are commonly used within
the field of fault-tolerant control. The
reader is referred to, for instance, [17,
91], for further detail on this class of
observers.

state-estimation strategies are
required to provide instantaneous values of fe. A comprehensive
review of these strategies, applied to the wave energy field, can be
found in [15]. Based on these estimates, a number of forecasting
techniques have also been proposed to predict future wave excitation
force within a certain time interval [16]. Naturally, the uncertainty
of such a prediction increases with longer time horizons, offering a
relatively precise prediction (in realistic sea state conditions) for no
more than 3 ∼ 10 [s].

Motivated by both the real-time requirements, and the intrinsic
estimation and forecasting needs associated with this OCP, receding-
horizon approaches to WEC control became popular over the last
decade, where a number of solutions emerged, stemming from the
basic principles of MPC. These strategies are reviewed here, together
with a discussion on the basic principles behind receding-horizon
control, in Section 3.4.2.
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3.3 Impedance-matching-based controllers:
state-of-the-art

Though simplistic by nature, the energy-maximising control law
derived in (3.5) inspired a set of techniques that aim to approximate
such a non-causal and frequency-dependent condition, in terms of
an implementable control strategy. Though these controllers are
suboptimal by design, their main advantage relies on their simplicity
of implementation, which makes this family of strategies appealing
for practical applications. In particular, they do not require potentially
complex numerical routines to achieve the control objective. This
section provides, in the following, a literature review of the state-
of-the-art of impedance-matching-based controllers, including so-
called latching control, in Section 3.3.1, and stochastic strategies, in
Section 3.3.2. Finally, advantages and disadvantages of this family
of controllers are discussed in Section 3.3.3.

The most commonly used approach, within this set of controllers, is
to attempt to compute a causal transfer function that effectively
approximates the ideal non-realisable impedance-matching condition
(3.5) in the frequency interval containing most of the wave energy,
according to its stochastic characterisation in terms of a (assumed
known) SDF8 8: See Section 2.1.2 for the definition

of Sw.
Sw. Pioneering studies following this approach can be

found in [92–95]. In particular, [95] proposes (almost) implementable
solutions, where three different causal approximations are consid-
ered for a (geometrically simple) WEC, and compared with ideal
absorption under an impedance-matching non-causal controller (3.5)
(computed in the frequency-domain, with perfect knowledge of the
state variables). Note that constraints are not observed in [92, 93,
95]. More contemporary attempts to realise the impedance-matching
controller (3.5) subject to motion constraints, include, for instance,
[96–102].

One of the most established controllers in the literature, based
on the impedance-matching condition (3.5), is that proposed in
[103]. The underlying architecture of this controller is depicted in
Figure 3.5, and can be clearly divided into two different steps. Using
motion measurements, a detection block computes estimates of the
instantaneous values of amplitude, phase and frequency, Ai, φi and
ωi, respectively, that characterises the excitation input fe. These
values are utilised to compute an approximation of the excitation
force, f̃e, from which an optimal velocity reference can be obtained
directly from equation (3.9). Finally, in a second stage, a tracking
control strategy is designed to follow this optimal velocity reference
asymptotically9 9: The tracking controller proposed

in [103] is based on the Youla-Kŭcera
parameterisation [104].

.
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Figure 3.5: Controller architecture
proposed in [103], based on the
impedance-matching principle.

The detection block, showed in Figure 3.5, is realised through an ex-
tended Kalman filter (EKF) in [103]. Suboptimal constraint handling
can be imposed for the motion variables either in the tracking control
stage, or when computing the velocity reference żref. Note that the
success of this suboptimal controller relies on an appropriate detec-
tion of Ai, φi and ωi. This naturally requires the assumption that
the excitation force is characterised by a stochastic narrowbanded
process10 10: This limitation is explicitly de-

clared by the authors in [103].
.

Attempting to substitute the EKF utilised in [103] (to further sim-
plify the computational complexity of the control loop of Figure
3.5), [105] proposes a detection block based on the Hilbert-Huang
transform11 11: The Hilbert-Huang transform is

the result of a combination between
empirical mode decomposition and
Hilbert spectral analysis. The method
was proposed by Norden E. Huang
(NASA) et. al. in [106].

. Nevertheless, the performance of the controller is still
highly dependent on an instantaneous narrowbanded assumption for
the excitation input.

Finally, a noteworthy study, aiming to provide a broadband realisation
of the impedance-matching condition, has been recently presented
in [107]. This study is based on two main ideas: Firstly, the feedback
control law associated with (3.5) is expressed in an equivalent (non-
causal) feedforward structure, in the frequency-domain. Secondly,
and once the ideal feedforward frequency-response mapping is es-
tablished, system identification techniques are employed to compute
a causal linear time-invariant (LTI) system approximating such a
response in a frequency range of interest. The latter is naturally di-
rectly linked with the specific SDF characterising the sea-state under
analysis. In contrast to [103, 105], the controller developed in [107]
dispenses with the narrowbanded assumption, and provides a solu-
tion for broadbanded sea-states. The constraint handling mechanism,
which is intrinsically suboptimal, can only handle displacement and
control force limitations by means of a single (constant) gain. Figure
3.6 shows results extracted from [107, Fig. 8], where unconstrained
(a) and constrained (b) power-absorption results are presented, for
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Figure 3.6: (a) Unconstrained
and (b) constrained (displacement)
power absorption for the impedance-
matching-based strategies [103]
(dotted) and [107] (dashed), and a
spectral-based OCP method [108]
(discussed in Section 3.4). Results
extracted from [107, Fig. 8].

a spherical heaving WEC (radius 2.5 [m]), for different realisations
of a JONSWAP spectrum, with significant wave height H̄w = 2
[m], peak period T̄w ∈ [5, 12] [s], and peak enhancement factor of
γ = 3.3. The constraint, considered for the results of Figure 3.6 (b),
is a displacement limitation, set to 1.5 [m]. In particular, the solution
of [103] (dotted) is compared to that of [107] (dashed), showing im-
proved performance as a consequence of the broadbanded nature of
the controller. The solid line in Figure 3.6 represents the performance
of an energy-maximising spectral-based controller [108], which be-
longs to the family of optimisation-based controllers discussed in
Section 3.4, providing a surrogate measure of the theoretical op-
timum. Note that both impedance-matching-based strategies are
always suboptimal with respect to the optimisation-based control
law, especially under constrained conditions.

3.3.1 Latching control

Recall, from Section 3.1, that two different optimal conditions can
be directly extracted from the impedance-matching strategy, i.e.
Conditions (C.1) and (C.2). The former refers to a phase condition
while the latter refers to an optimal motion amplitude condition.
Naturally, both are required to ensure optimal energy extraction, un-
der the assumptions of impedance-matching control. During the late
’70s, several researchers [79, 109, 110], independently developed a
(suboptimal) control strategy termed latching, which aims to satisfy
the phase condition only, i.e. Condition (C.1). To be precise, the
velocity of the device is kept in-phase with the wave excitation input,
by locking the wave absorber in a fixed position for an appropriate
time interval [12]. This process is schematically represented here
in Figure 3.7 (a), while the precise effect of the controller, with
respect to device motion, is shown in Figure 3.8.

Referring to Figure 3.8, and starting from t = t0, the device is
locked at time t1, at the extrema of the displacement (when the
velocity is effectively zero), and released at time t2, after a latching
duration tL. This process is repeated for all t ∈ R+. If the wave is
regular, then there exists a closed-form expression for the optimal
latching duration tL, which only depends on the natural period of
the device (in the DoF analysed), and the period of the incoming
wave [111]. Note that the control input, required to perform such
an optimal policy, is inherently discrete, and often requires a fast
response from the PTO to effectively lock the device in a specific
position throughout the latching duration.
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Figure 3.7: Schematic diagram of
latching (a) and declutching (b)
strategies for a heaving point absorber
WEC.

Figure 3.8: Latching control oper-
ating principle. The left axis shows
displacement (solid) and velocity
(dashed), under latching control con-
ditions. The corresponding wave exci-
tation is shown in the right-axis (dot-
ted).

Remark 3.3.1 As a matter of fact, though originally developed
outside the framework of optimal control theory, latching control
belongs to the family of bang-bang controllers [112], and can be
directly derived from the OCP (3.13) using Pontryagin’s maximum
principle (PMP) [85], under certain specific conditions. The reader
is referred to [13, Chapter 9], for a thorough discussion on this
topic.

Similarly to the impedance-matching control solution discussed in
Section 3.1, latching techniques also suffer from non-causality, and
their implementation virtually always requires knowledge of the wave
excitation input, both for regular and irregular sea-states [113]. In
particular, an extra difficulty arises in realistic sea conditions, where
the incident wave is effectively composed of an infinite number of
frequency components, and the concept of ‘phase’ between excitation
input and device velocity is no longer well-defined, in which case the
optimal latching interval is not unique [114], and its determination
often relies on numerical routines. A comparison of several latching
control strategies in regular (semi-analytical solution) and irregular
(numerical solution) seas can be found in [114, 115].

A counterpoint to latching, termed declutching (also referred to as
unlatching [12]), is developed in [116] and [117], where the device
is unloaded at specific time instants during the cycle (as opposed
to the “locking” action of latching). This process is schematically
represented here in Figure 3.7 (b). Some recent studies in derivative-
free optimisation have been performed for latching [118], declutching
[119] and combined latching/declutching [120].

Remark 3.3.2 The issue of choosing between either latching or
declutching has been discussed in, for instance, [121], which gen-
erally concludes that, for regular seas and linear models, latching
is optimal when the device resonant period is shorter than the
wave period, while declutching is optimal in the exact opposite
situation.

3.3.2 Causal stochastic control

A further approach, considered in the literature, is to analyse the
energy-maximising (impedance-matching) condition from a (causal)
stochastic approach. In [122] and [123], a linear quadratic Gaussian
(LQG) controller is designed for a 3-DoF WEC, subject to state
constraints (displacement and velocity). An extension of [123] can
be found in [124], where a particular class of nonlinear effects
can be accommodated in the final design of the controller. Causal
optimal stochastic control is implemented in [125], directly based
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on the spectral characterisation of the sea-state Sw. This approach
is designed to be optimal under monochromatic wave excitation,
though results under irregular wave force are also presented and
discussed.

Remark 3.3.3 Addressing the energy-conversion problem from
a stochastic perspective somewhat simplifies the optimality con-
ditions, in the sense that only the SDF Sw, characterising the
excitation input, is required to compute an optimal control policy
(as opposed to instantaneous and future values of fe). Neverthe-
less, this approach, in general, can guarantee motion constraint
satisfaction only in an average sense, and its performance is sub-
optimal with respect to the set of techniques described in Section
3.4, if sufficiently accurate knowledge of fe is available.

3.3.3 Advantages and disadvantages

In particular, two main advantages for the family of impedance-
matching-based control strategies, can be directly identified, from
the studies reviewed in this section:

I Simplicity of implementation and intuitive appeal : the vast
majority of the strategies reviewed in this section are realised
through ‘simple’ systems, mostly characterised by well-known
techniques from linear time-invariant theory. This simplicity is
naturally appealing at the implementation stage.

I No requirement for optimisation routines12
12: With the exception of latching
control for irregular waves, which re-
quires numerical routines to solve for
the optimal latching interval tL.

: These techniques
have mild computational requirements, and their actual im-
plementation of can be performed in real-time with almost
any physical hardware platform, including commercial low cost
microcontrollers.

These advantages led researchers to consider impedance-matching-
based controllers in many WEC applications, including, but not
limited to, fatigue analysis [126], design and geometry optimisation
[127, 128], and grid integration [129, 130].

Naturally, there exists a clear set of disadvantages in this family of
controllers:

I Suboptimal energy absorption: Though ‘simple’ to implement,
the performance of these controllers is inherently suboptimal,
leading to a significant drop in energy absorption, when com-
pared to the set of optimisation-based strategies, discussed in
Section 3.4.

I Suboptimal constraint handling : Constraint handling is virtu-
ally always performed by means of simple gains, which do not
take into account optimality with respect to power absorption.
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In other words, the limitation mechanisms are designed inde-
pendently from the energy-maximising objective, effectively
providing constrained optimal solutions, rather than optimal
constrained solutions. This naturally implies a significant loss
of energy absorption under constrained conditions.

I Linearity : Linearity is a standing assumption for their design,
which, as discussed in Section 2.4, can be a limiting hypothesis
for WECs under controlled conditions, though some effort has
been done to accommodate nonlinear effects within this family
of controllers (see, for instance, [124]).

3.4 Optimisation-based controllers:
state-of-the-art

The inherent suboptimal performance of impedance-matching-based
controllers, discussed in Section 3.3, motivated the wave energy con-
trol community to approach the energy-maximising optimal control
problem from an optimal control perspective. In particular, solving
the OCP defined in equation (3.13), became a central topic in the
literature of WEC control.

The OCP (3.13) is essentially an optimisation problem defined
over an infinite-dimensional function space of admissible inputs U .
Even using well-known techniques from the calculus of variations
and optimal control theory, to derive the necessary and sufficient
conditions for optimality, the problem of finding the optimal control
policy uopt is difficult (if not often impossible) to solve analytically.
Thus, naturally, the solution of the OCP (3.13) is approximated
using numerical techniques, which can be generally categorised into
two families (see, for instance, [131]): Direct and indirect methods.
Indirect methods, often known as “first optimise then discretise”,
are based on the derivation of the necessary conditions for optimality,
and to then numerically finding a solution satisfying such conditions.
Direct methods, also called “first discretise then optimise”, discretise
the variables involved in (3.13), and attempt the maximisation of
the resulting nonlinear program (NP) directly.

A discussion on both direct and indirect methods is provided in
Section 3.4.1, along with fundamental aspects of the most popular
strategies in the wave energy control field. Section 3.4.2 effectively
provides a review on the state-of-the-art of optimisation-based strate-
gies, specifically based on direct methods, for the WEC control case,
discussing fundamental differences between the control techniques
reviewed. Finally, Section 3.4.3 encompasses the main advantages
and disadvantages of optimisation-based controllers for WECs.
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3.4.1 Numerical solution methods for optimal control

Numerical solutions of optimal control problems can be categorised
into two main approaches: Direct and indirect methods. Indirect
methods attempt to numerically solve for a multi-point boundary
value problem involving both the state and adjoint variables, by
exploiting PMP [132–135]. This approach leads to highly accurate
numerical solutions but often requires (deep) knowledge on the
necessary and sufficient conditions to set up the optimality system,
which have to be derived analytically and are problem-dependent.
In addition, a good initial guess for the approximate solution (i.e.
a trial solution sufficiently close to the target solution) is needed
in order to guarantee convergence of the numerical routine [136,
137]. In other words, indirect methods require prior knowledge of the
structure of the solution for their successful implementation, which
is virtually always far from being trivial.

Motivated by all these drawbacks, virtually all the literature related to
energy-maximising control solutions can be enclosed within the family
of direct methods, where the state and input variables, involved in
(3.13), are discretised using different families of functions (possibly
defined on different function spaces), effectively transcribing the
original OCP into a nonlinear program. Nevertheless, some notable
exceptions, applying indirect methods, can be found in [138], [139]
and [140].

In the light of the discussion provided in this section, the main
objective is now to review the state-of-the-art of optimisation-based
control strategies applied to the energy-maximisation problem for
WECs, directly linked to the family of direct methods13 13: The interested reader is referred

to, for instance, [141], for a general
treatment of direct optimal control
methods.

. Two
different direct optimal control approaches have been adopted and
gained popularity in the wave energy field, to numerically solve the
energy-maximising OCP (3.13): Model predictive control (MPC),
and Spectral and Pseudospectral methods, abbreviated as SPM and
PSM, respectively. To keep this review as self-contained as possible,
the fundamentals behind each of these optimal control methods are
discussed in the following paragraphs14 14: Note that SPM and PSM share

the same theoretical framework, with
mild differences, detailed in the fol-
lowing paragraphs.

.

3.4.1.1 Model predictive control

The origins of MPC can be traced back to the late 70’s, due to
Richalet et al. [142] and [143], presenting model predictive heuris-
tic control (MPHC), and Cutler and Ramaker [144], with dynamic
matrix control (DMC). The main difference between these two, i.e.
MPHC and DMC, concerns the class of operators used to describe
type of dynamics of the system to control: MPHC uses impulse
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response models, while DMC characterises the dynamics of the
system under analysis in terms of its step response. In 1987, gen-
eralised predictive control (GPC) [145] made its first appearance,
based on the controlled auto-regressive moving average (CARIMA)
input-output model. More contemporary efforts aimed to develop
MPC within a state-space framework, i.e. within a modern control
approach, with pioneering results published in [146]. Significant
development has subsequently taken place in the field of MPC, and
the reader is referred to, for instance, [147–149], for further detail
on state-of-the-art advances in MPC.

In general, the term MPC is used to refer to a wide family of model-
based control strategies, which rely on a mathematical model of
the system to predict its future evolution, and optimises (minimises
or maximises) a given objective function, over a prescribed sliding
prediction horizon: Only the first control value in the optimal se-
quence is implemented and, at subsequent sampling times, a new
control policy is computed, based on the latest available state es-
timate. Given its nature as a digital controller, MPC is typically
analysed within a discrete framework, even though it is often applied
to continuous-time systems, via model discretisation15 15: In this context, the connection to

direct optimal control becomes auto-
matically evident.

.

To summarise, and put this technique in perspective, the unifying
features of MPC in discrete-time [148] can be identified as:

I A mathematical model of the process, to predict the output
at future time instants (the prediction horizon). Typically,
a discrete-time model is used, so that the continuous-time
problem must be discretised with a chosen technique16

16: Typically a zero-order-hold (ZOH)
equivalent is considered.

.
I An objective function, defining the control objective within

the corresponding optimisation window. Obtaining such an op-
timal control policy involves either a constrained or an uncon-
strained maximisation (or minimisation) procedure, which can
be solved with a variety of optimisation algorithms, depending
on the nature of the objective function, and its transcription
as a nonlinear program via discretisation.

I A receding strategy where, at each time instant, the finite
horizon is displaced towards the future, and only the first
control signal of the optimal sequence calculated is applied at
each step.

Remark 3.4.1 Note that the objective function traditionally de-
fined in MPC is directly related to a tracking control objective,
i.e. the objective function penalises the deviation of the state
variables from a given reference trajectory, with a given set of
transient specifications. This principle behind MPC is illustrated
in Figure 3.9.
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Figure 3.9: Illustration of the MPC
principle for reference tracking. The
symbol t∗ denotes the current time
instant.

Unlike the traditional MPC objective, described in Remark 3.4.1, the
OCP for WECs, defined in (3.13), does not have reference tracking
as the control objective: the objective function for the wave energy
control problem effectively reflects a maximum energy absorption
optimality criterion. In other words, even though a vast literature on
MPC is available, many important results, such as those related to
uniqueness of control solutions, are objective function dependent,
which complicate their direct application in the wave energy control
field. This motivated a number of ‘modifications’ to the energy-
maximising objective function (3.11), such that the control objective
‘resembles’ that defined in traditional MPC. This mainly includes the
incorporation of regularisation terms17 17: These regularisation terms are

discretisation dependent, i.e. they de-
pend on the set of functions used to
parameterise the system variables.

, aiming to ensure concavity
(or convexity) of the objective function. This is discussed further in
Section 3.4.2.

3.4.1.2 Spectral and pseudospectral techniques

Spectral and pseudospectral techniques belong to the family of mean
weighted residual (MWR) methods [150], which aim to compute
approximate solutions of differential equations by ‘expanding’ the
system variables onto a set of basis functions, to then minimise a
particular (approximation) error function termed the residual. Unlike
MPC, which is a much more established control solution, the use of
SPM and PSM techniques to discretise optimal control problems
gained popularity fairly recently, mostly within the aerospace research
community, where they originally arose [151–153]. This section
(informally) summarises the key features of these strategies18 18: A formal treatment of spectral

and pseudospectral methods can be
found elsewhere in, for instance, [151,
154, 155].

.

The main idea of optimal control based on SPM and PSM, can
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be outlined as follows. Suppose the WEC dynamics are given by
the differential equation ż = f(z, u), with f a known (typically
sufficiently smooth) mapping.

I The state and input variables, z and u, are assumed to belong
to a given function space H . Typically, H is either a Hilbert
or a Sobolev space19

19: Informally, Hilbert spaces, named
after the German mathematician David
Hilbert (1862-1943), are complete infinite-
dimensional spaces in which distances
and angles can be measured. Sobolev
spaces are attributed to the Russian
mathematician Sergei Sobolev (1908-
1989), and include functions for which
all the derivatives up to a certain or-
der, in the distributional sense, belong
to L2.

. Naturally, one uses knowledge of the
mapping f to determine the nature of the space H .

I Let HN be a finite set of N orthogonal functions such that
HN ⊂H . Then, the series expansion of x and u in terms of
the N elements of the set HN , are denoted as zN and uN .

I A residual mapping R is now constructed, in terms of the
corresponding differential operator, and the expansions zN
and uN , i.e. R 7→̇zN − f(zN , uN ).

I The residual function is forced to be orthogonal (using the
corresponding inner product) to a finite set of functions H̃N ⊂
H̃ , where H̃ is a function space, potentially different to that
used to expand the state and input variables. The functions
in the set H̃N are commonly known as test functions20

20: The name test function is inher-
ited from the theory of distributions
(see [156]).

.
This projection operation ‘transforms’ the differential equation
characterising the residual R, in a set of algebraic equations
R̃ in the coefficients of the expansions zN and uN .

I The set of algebraic equations R̃, together with the expansions
zN and uN , are directly used to parameterise the optimal
control problem to be solved (equation (3.13) for the WEC
case), which is now a finite-dimensional nonlinear program21

21: Depending on the nature of the
objective function, an additional pro-
jection on the space H̃N may be re-
quired. See [152] for further detail.

.

If the test functions are elements of the same set as the basis
functions approximating the state and input variables, that is HN =
H̃N , then the method is known as spectral (or Galerkin) method. If
the test functions are a set of translated Dirac-delta functions, i.e.
H̃N = {δ(t− tj)}Nj=1 then the method is known as pseudospectral
(or collocation) method, and the time instants tj are known as
collocation points. The procedure detailed above is schematically
depicted, for SPM (dotted) and PSM (dashed), in Figure 3.10.

In contrast to MPC, SPM/PSM-based controllers can ‘adapt’ the
discretisation process, such that it’s tailored for the particular optimal
control application. For instance, in the WEC control case, one may
be tempted to use trigonometric functions to describe the WEC
dynamics, given the harmonic nature of the wave energy process.
This is, in fact, exploited in the literature, and a discussion on
possible selections for the space H , adopted in the wave energy
field, is given in Section 3.4.2.
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Figure 3.10: Diagrammatic illustra-
tion of spectral (dotted) and pseu-
dospectral (dashed) methods for op-
timal control.

3.4.2 Direct optimal control in wave energy

This section discusses the state-of-the-art of MPC and SPM/PSM
methods in wave energy conversion. Despite the fact that MPC and
SPM/PSM methods have ‘technical’ differences, these controllers,
applied in the wave energy field, can be characterised using a number
of distinguishing features, which ultimately relate to the:

I Dynamical model considered,
I discretisation method,
I objective function and,
I nature of the resulting nonlinear program.

In the light of this, this section reviews and analyses how each of
these key items, listed above, have been tackled in the wave energy
optimal control case. Note that a comprehensive list of the studies
reviewed in this section can be found in Table 3.2, placed at the
end of this chapter22 22: Note that Table 3.1, which can

also be found at the end of this chap-
ter, contains a explicit description of
each column of Table 3.2.

.

Remark 3.4.2 Though not listed above, state and input con-
straints also play an important role in the definition of the OCP
(3.13). Nevertheless, direct methods can inherently handle the
set of displacement, velocity and control constraints, defined in
equation (3.12), as long as they represent a feasible set (see Sec-
tion 3.2). In the light of this, state and input constraints are not
discussed in the remainder of this section. The interested reader
is referred to [12, 13] for further detail on the consideration of
additional constraints (to those defined in the set C in (3.12)),
in the wave energy control field.

3.4.2.1 Dynamical models

The vast majority of the studies applying either MPC, or SPM/PSM,
in the wave energy field, use a linear hydrodynamic formulation based
on Cummins’ equation (see Section 2.4) to describe the motion of
the WEC. A number of exceptions can be observed in the literature
though, which include either external forces (e.g. mooring effects),
or nonlinear hydrodynamic extensions of Cummins’ formulation (as
discussed in Section 2.5). These are reviewed in the following.

Linear variations

Variations in Cummins’ linear formulation, can be found both across
MPC and SPM/PSM studies. These include the addition of further
linear terms, or variations in the parametric approximation of the
radiation force (see Section 2.4). In both [138] and [157], a linearised
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viscous force, which directly arises from a Morison-like equation
(2.25), is considered in combination with Cummins’ formulation23

23: This practice is, in general, not
recommended, since the determina-
tion of a linearised viscous force is not
trivial, and has been the subject of
several studies, such as, for instance,
[158, 159].

. In [160], an MPC strategy for a two-body WEC is proposed,
with additional linear mooring effects, characterised in terms of a
spring with a given (fixed) stiffness. [161] parameterises the PTO
force, which is a permanent magnet generator, in terms of a linear
time-varying damping term, proportional to the device velocity. An
alternative approach can be found in [140], where an energetic model
of the buoy is employed, i.e. a port-Hamiltonian representation (see,
for instance, [162]).

MPC, as applied in the wave energy case, relies on having a state-
space representation of the system under analysis, as derived in
Section 2.4. Recall that, to arrive to such a representation, model
reduction techniques are required to compute a parametric approx-
imation of the radiation effects. While most of the MPC studies
reviewed in this section effectively consider suitable model reduction
techniques24 24: Note that the most considered

techniques for the parameterisation
of radiation effects are reviewed, in
this thesis, in Section 2.6.

, some exceptions can be found, that either simply
approximate the radiation effect with a constant coefficient, or di-
rectly neglect their contribution to the dynamical model. Studies
that consider the radiation force as a simple (constant) damping
term are [160], [163] and [164]. [138] directly neglects the radiation
effects in the model, although that changed in later studies from
the same author, namely [165] and [56]. A similar practice can be
found in [157, 166], where radiation is also neglected, under the
justification that these effects are small (in a Euclidean norm sense)
compared to other external forces.

Remark 3.4.3 Note that having an accurate parametric form for
the radiation effects naturally results in an increase in computa-
tional burden for the MPC strategy, which can lead to requirements
that preclude real-time application [131]. This can partially explain
the necessity of neglecting such effects in the MPC-based studies
reviewed above. This is especially true for those studies that also
incorporate nonlinear effects, namely [56, 157, 166], which effec-
tively complicate the nature of the transcribed nonlinear program,
and more ‘complex’ (and less efficient) optimisation routines are
often required.

SPM/PSM-based controllers do not, in general, require a state-space
representation of the system, to solve the corresponding OCP; rather,
the methods can deal with Cummins’ equation in its non-parametric
form, as a biproduct of the projection25 25: In other words, the non-parametric

convolution term is approximated in
terms of the specific basis functions
considered within SPM/PSM.

scheme (see Section 3.4.1.2).
In particular, for certain sets of basis functions, the computation
involving the numerical integration of the convolution integral can be
carried out offline, which reduces the computational load associated
with these strategies (see, for instance, [108]). Nonetheless, some SP-
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M/PSM studies, do use an approximating state-space representation
for radiation effects. This include both [56], and [167].

Nonlinear effects

The main sources of nonlinear hydrodynamic effects, considered in
the WEC control literature reviewed in this section, are effectively
those introduced earlier in Section 2.5: Viscous effects, and nonlinear
restoring forces. In particular, [57, 59, 168–170], consider nonlinear
viscous forces, based on the Morison-like equation (2.25). The con-
trollers proposed in [56], [57] and [168] consider nonlinear restoring
forces, accounting for non-uniform cross-sectional areas, for each of
their corresponding devices.

Other nonlinearities are also included in the design of optimal control
algorithms for WECs, which are outside the hydrodynamic ‘world’:
in particular, mooring forces and non-ideal PTO systems are also
covered in the reviewed literature, as discussed in the remainder
of this paragraph. Acknowledging that the linear mooring model
considered in [160] was not appropriate for the analysed device under
energy-maximising control conditions, the authors of [157] develop
a nonlinear MPC for the same device considered in [160], where now
the mooring forces, configured as in [171], are considered to be of
a nonlinear nature. [166] also presents a nonlinear mooring term,
resulting in a nonlinear MPC formulation, which is based on the
same mooring configuration presented in [157]. Finally, a non-ideal
nonlinear PTO system has been explicitly considered in [59, 172].

Arrays

As discussed in Chapter 1, the roadmap to successful commercial-
isation of WECs naturally embodies the development of so-called
WEC arrays or farms, which effectively incorporate several devices
in a common sea area, potentially reducing the levelised cost of
energy through an economy of scale [14]. Hence, any realistic effort
to commercialise a novel WEC technology requires both a single
WEC, and a WEC farm, development process.

This naturally motivated researchers in the WEC control commu-
nity to develop optimal control strategies for WEC arrays, virtually
always relying on linear hydrodynamic models. In particular, studies
applying MPC to the WEC array case are [165, 169, 173, 174],
while SPM/PSM methods for WEC farms can be found in [175–
177].
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Figure 3.11: Distribution (in percent-
age) of linear and nonlinear WEC
models considered in the literature,
for MPC and SPM/PSM methods.

Remark 3.4.4 As it has been reported in the literature, modelling
the hydrodynamic interactions between devices in a WEC array
(which can be included within the non-parametric radiation force
description) can compromise the real-time capabilities of MPC
[165, 173]. This motivated researchers to explore decentralised
techniques, though these have been shown to be suboptimal in
[176], both in terms of energy absorption, and consistent satisfac-
tion of state and input constraints.

Linear vs. nonlinear

As shown in Figure 3.11 (data extracted from Table 3.2), linear
dynamics are virtually always considered in the literature reviewed:
82% of the optimisation-based control studies reviewed, indepen-
dently of the strategy (i.e either MPC or SPM/PSM), utilise linear
models. This is ostensibly motivated by both their simplicity (in
terms of formulation and solution of the corresponding OCP), and
their associated computational convenience. In other words, these
model-based control strategies must compute in real-time, therefore
limiting the computational complexity of the hydrodynamic models
employed, while there is also a limit to the complexity of mathemat-
ical models for which an optimal control solution can be effectively
found, either algebraically or numerically.

Nevertheless, despite the list of motives described above, the lin-
earity assumption has been recently questioned (see, for instance,
[178, 179] and Section 2.5): WECs are, by nature, prone to show
nonlinear effects, since their principal aim, pursued by the optimal
control strategy, is to enhance the amplitude of motion to maximise
power extraction. In other words, the assumptions under which the
linearisation of WEC models is performed are challenged by the
controller itself, particularly in relation to small movements around
the equilibrium position26 26: Note that this effectively contrasts

with traditional set-point tracking con-
trol systems, where the control sys-
tem ensures that the system oper-
ation is around the setpoint and ac-
tively attempts to reduce the variance
around this point.

. This may, in certain conditions, return
poor results, both in terms of accuracy of motion prediction, and
power production assessment [178], which are the key variables
involved in any energy-maximising OCP. In conclusion, any energy-
maximising control framework, aiming to successfully improve the
performance of the WEC in terms of energy absorption, should be
able to incorporate (at least to certain extent) nonlinear effects in
the OCP.

Towards robust solutions

Modelling errors are ubiquitous in hydrodynamics, even for the
case of linear potential flow theory (see, for instance, [18]). The
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Figure 3.12: Family of models, for
a heaving sphere WEC with r = 2.5
[m], in the frequency-domain. Figure
adapted from [182, Figure 8]. See
[182] for more detail on the definition
and computation of the uncertainty.

issue of robustness, in this energy-maximising control problem, has
been recently addressed by a few studies belonging to the family of
optimisation-based approaches, namely [180, 181] (MPC) and [182,
183] (SPM).

The scarcity of robust strategies among WEC control methods can
be attributed to the fact that the design of energy-maximising
controllers does not directly fit into a traditional form, unlike the
well-known reference tracking problem. This intrinsically compli-
cates the application of well-developed robust control strategies,
posing an imperative to find novel approaches for the wave energy
application.

To briefly summarise, [180] takes into account possible deviations
from the design model by proposing a nominal MPC strategy with
an additional correction term in the exerted PTO force, as a function
of the (defined) uncertainty. This is intrinsically suboptimal, since
the knowledge of the uncertainty is not present in the computation
of the energy-maximising optimal control input, but it is rather a
correction term to avoid state constraint violation. The authors of
[181] propose an uncertainty estimator in the energy-maximising
control design procedure, to later solve the optimal control problem
using approximate dynamic programming techniques. Finally, the
studies performed in [182, 183] re-formulate the resulting WEC
optimal control problem using a robust optimisation approach [184],
where (structured) modelling uncertainty is explicitly considered in
the frequency-domain. This is illustrated in Figure 3.12, where a
family of models is considered in [182], in the frequency-domain, for
a heaving sphere of radius r = 2.5 [m].

Remark 3.4.5 Though some progress has been reported in ro-
bust approaches for optimisation-based controllers, only system
uncertainties are considered. Robust control synthesis with respect
to errors in the estimation and forecasting of the excitation effect,
which have a strong impact in the performance of this type of
controllers (see, for instance, [19]), has not been addressed in the
current literature.

3.4.2.2 Model discretisation

As discussed in Section 3.4.1.1, MPC strategies intrinsically require a
discrete-time dynamical system, to map the corresponding OCP into
a finite-dimensional NP. As detailed throughout Chapter 2, hydrody-
namic modelling of WECs is naturally performed in continuous-time,
so that suitable discretisation techniques are required for this energy-
maximising control application.
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As can be directly appreciated from Table 3.2, the most popular
discretisation procedure for MPC, applied to the energy-maximising
control problem for WECs, is the standard zero-order-hold (ZOH),
which is also commonly used in traditional reference tracking pre-
dictive control [148]. Some exceptions can be found though, which
either use a first-order-hold (FOH)27 27: The first-order-hold is also com-

monly known as triangular hold, in
reference to locally supported ‘trian-
gular’ (linear) functions [185]

, namely [169, 186–188], or a
second-order-hold (SOH), considered in [157, 166]. With respect to
the use of FOH, in [186], the authors claim that such a discretisation
yields improved performance (i.e. in terms of absorbed energy) than
those obtained with a ZOH. These steps were followed by [169,
187, 188]. For the SOH case, which is considered in [157, 166], the
authors claim neither a ZOH nor a FOH are appropriate for the non-
linear mooring dynamics considered within their MPC formulation,
so that a higher-order-hold (second order in this case) is required.
Another variation, for the MPC-based controllers reviewed in this
section, can be found in [161, 189, 190], where the WEC dynamics
are discretised using Tustin’s method28 28: Tustin’s method is also known

as bilinear transform, and is a special
case of a Möbius transformation. The
reader is referred to [191] for further
detail on this type of mapping.

. Note that this method
effectively preserves stability, though a non-zero feed-through matrix
is added to the discrete-time state-space representation obtained.

The case of SPM/PSM methods is substantially different, and there
is generally no ‘standard’ method to select the functions used to
approximate the state and input variables, i.e. the set HN defined
in Section 3.4.1.2. In other words, the selection of this set has to
be made according to the specifications of the differential equation
involved, and the specific OCP to be solved.

Remark 3.4.6 Note that, unlike MPC, spectral and pseudospec-
tral methods are (generally) based on functions defined over the
complete control horizon, i.e. have global, rather than local, sup-
port.

Direct appreciation of Table 3.2 shows that Fourier-type of functions,
i.e. periodic trigonometric polynomials, are the most common choice
among the studies reviewed for the WEC control case. This is clearly
motivated by the fact that waves, as described in Section 2.1, are
essentially assumed to be composed of a linear superposition of
trigonometric functions, so that such polynomials ‘fit’ the particular
WEC application. Effectively, given the strong connection between
Fourier functions, and the very nature of the dynamical process
of WECs, a small number of trigonometric polynomials is usually
enough to successfully approximate the corresponding OCP to a
reasonable degree of accuracy, which is naturally appealing from
a computational perspective29

29: In addition, and differently from
most of the studies reviewed both in
MPC and SPM/PSM, some results in
the theoretical analysis of existence
and uniqueness of energy-maximising
solutions has be achieved using this
set of functions, which is closely re-
lated to their representativeness of
the process (see Section 3.4.2.3).

. Though efficient at a first glimpse,
these functions come with one specific drawback: they are periodic,
which directly complicates the application of this SPM/PSM con-
trollers in a receding-horizon fashion, and limits their potential in
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Figure 3.13: Plot of the first five
HRCF polynomials of the first (a)
and second (b) kind. The reader is
referred to [200] for further detail.

a real-time implementation scenario. Nevertheless, this periodicity
issue has been solved in [57], where the trigonometric functions are
forced to be compactly supported by the use of windowing [192]
techniques30

30: Windowing, also referred to as
apodisation (in the mathematics com-
munity), is commonly used in the so-
called short-term Fourier transform,
for the spectral analysis of non sta-
tionary signals [193].

. This effectively avoids Gibbs phenomenon, which arises
as a function of the ‘artificial’ discontinuities introduced from ap-
proximating state and input variables over a short time-window, i.e.
truncation effects.

Other studies, namely [56, 164], use PSM with Legendre polyno-
mials31

31: Legendre functions, attributed to
the French mathematician Adrien-Marie
Legendre (1752-1833), are polynomi-
als in C([−1, 1]) which are orthogonal
under the inner product of L2, and
solutions of the Legendre differential
equation [194].

, analogously to the pseudospectral methods developed in
the aerospace research community [151]. One more variation can
be found in [195–198], where half-range Chebyshev-Fourier (HRCF)
functions are considered, depicted herein in Figure 3.13. This set
of functions, originally termed half-range Chebyshev mappings, was
introduced recently in 2010 [199], and arise as the solution of the
extension of the concept of Fourier series for non-periodic functions.
In contrast to the case of trigonometric polynomials, HRCF functions
can effectively deal with truncation effects, hence being appropriate
for receding-horizon control, while showing real-time capabilities (see
[195]). Nevertheless, this set of functions lose the direct theoretical
connection to the harmonic nature of the wave energy process, which
has an impact in the formulation of the optimisation problem, as
discussed in Section 3.4.2.3.

In summary, despite the fact that the most common discretisa-
tion approach, for MPC, is the standard ZOH, some variation can
be found in the literature, driven by the intrinsic WEC dynamics
considered by each study. Naturally, each discretisation technique
captures the dynamic of the system differently, having an impact
on the performance of the controller, the structure of the resulting
nonlinear program, and the computational burden associated with
the optimisation procedure (see also Section 3.4.2.3). Nevertheless,
note that all the discretisation techniques considered among the
MPC formulations in the WEC control case, can be considered as
relatively ‘standard’, in the sense that they are well-known within
the control community. In contrast, SPM/PSM techniques use a
different parameterisation of the state and input variables, which is
mostly driven by the specifics of the control problem, potentially di-
minishing the computational effort required for the receding-horizon
control formulation [197]. Nevertheless, the solution method be-
comes highly dependent on the choice of the set HN , which affects
both the performance and complexity behind deriving existence and
uniqueness results for global optimisers (see Section 3.4.2.3).
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Figure 3.14: Distribution (in percent-
age) of MPC WEC studies consider-
ing either a purely energy-maximising
control objective (grey) or a modi-
fied objective function (green). Data
extracted from Table 3.2.

3.4.2.3 Objective function

As described in Section 3.2, and in contrast to traditional regulation
and tracking control objectives, the optimal control problem for
WECs involves the maximisation of absorbed energy from incoming
waves, as compactly expressed in equation (3.13), and recalled below,
for convenience:

uopt = arg max
u∈U

1
T

∫
T
u(τ)ż(τ)dτ,

subject to:WEC dynamics Σ,
state and input constraints C .

Naturally, the objective function (3.13) (recalled above) differs signif-
icantly from the standard MPC formulation: in traditional MPC, the
nonlinear program, resulting from the discretisation of the (linear)
system dynamics, always results in a quadratic program (QP), which
has a unique global optimum [148] (i.e. it is concave or convex,
depending if the optimisation seeks for a maximum or a minimum,
respectively). This motivated the incorporation of ‘additional’ terms
in the objective function defined in (3.13), aiming to resemble the
concave quadratic objective of traditional MPC. The use of these
terms, which are effectively regularisation terms to ensure concavity,
has been justified (and applied) in the vast majority of the MPC
studies reviewed, in different ways, as discussed in the following
paragraphs. In particular, 74% of the MPC studies reviewed consid-
ered a control objective which departs from the energy-maximisation
criterion, incorporating additional terms to the energy objective
function (3.13), denoted herein as J ∗. A complete list can be found
in Table 3.2 in column “Objective function - Energy + J ∗”.

To be precise, the majority of the MPC studies reviewed incorporate
a term proportional to the square of the control input, i.e. J ∗ ∝ u2.
This includes, for instance, [160, 166, 169, 173, 187, 188, 201–
205]. Though some of these studies explicitly declare that these are,
effectively, regularisation terms to ensure convergence towards a
unique global maximiser, some authors, such as, for instance, [169,
187, 188, 204], either classify these terms as losses for the entire PTO
system considered, or suggest that ‘limiting’ control energy should
be an additional objective. Note that, within this same MPC WEC
application case, [170] debates on the suitability of using J ∗ ∝ u2

as a loss model for the PTO, and proposes a more comprehensive
mathematical representation in terms of a higher-order polynomial in
the control input. Some authors also add a term proportional to the
square of the device displacement, i.e. J ∗ ∝ u2 + z2. This includes
the references [163, 165, 203, 205]. Finally, [186, 206] consider an
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Figure 3.15: Distribution (in per-
centage) of SPM/PSM WEC stud-
ies considering either a purely energy-
maximising control objective (grey) or
a modified objective function (green).
Data extracted from Table 3.2.

additional term proportional to the slew rate of the control input,
i.e. J ∗ ∝ max(du/dt)2, while [189, 190] considers PTO efficiency
in the objective function, in terms of a signum-like function, adding
a discontinuity to the control objective32 32: The authors of [189, 190] explic-

itly declare that their MPC formula-
tion requires a smooth approximation
of this discontinuous efficiency term,
which is obtained in terms of an hy-
perbolic tangent function.

.

In contrast to MPC-based control strategies, SPM/PSM formulations
virtually always consider a purely energy-maximising control strategy,
with 90% of the studies agreeing with the target control objective
defined in (3.13) (see Figure 3.15). The reasons behind such a
success in handling the target energy-maximising objective function
is directly related to the specific discretisation utilised, as further
discussed in Section 3.4.2.4. Some exceptions can be found in [164,
198], where, similar to MPC, a term proportional to the square of
the control input is added. For the case of [198], and as declared by
the authors, this term is explicitly added to ensure uniqueness of a
global energy-maximising solution for the OCP.

3.4.2.4 Nonlinear programs and globally optimal solutions

Depending on both the nature of the discretisation process, and the
mathematical model used to describe the system dynamics, i.e. linear
or nonlinear, the resulting nonlinear program has a certain complexity,
both in theoretical and computational terms, for the same objective
function [131]. This naturally implies that the properties of the
optimisation process required to compute an optimal solution are
substantially different for MPC, compared to SPM/PSM methods
(and even between SPM/PSM depending on the set HN ).

In particular, starting with a linear model for the WEC, the non-
linear program arising from MPC, as applied in the wave energy
case, is always of a quadratic nature (i.e. QP). This allows for a
computationally efficient solution as long as the problem is concave.
If that is the case, then state-of-the-art QP solvers, such as those
extensively reported in [207], can be readily utilised. This is exactly
what motivates researchers, applying MPC in the wave energy field,
to add regularisation terms to the objective function, as it has been
reported that, without these terms, unique solutions are, in general,
not achievable, for any of the discretisations considered.

Remark 3.4.7 What is somewhat concerning is the fact that the
vast majority of the studies adding regularisation terms to obtain
a unique solution, i.e. modifying the energy-maximising control
objective, do not formally analyse either existence nor uniqueness
of globally optimal solutions, with some noteworthy exceptions,
as detailed in Table 3.2 under the column “Is ∃! analysed?”. As a
matter of fact, no indication is given in general on how to tune
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the ‘additional’ terms to achieve a global maximiser, hindering
the class of dynamical models, i.e. WEC devices, that can be
considered within the strategy without losing global optimality.

Similarly to MPC, SPM/PSM methods also result in a QP problem
for the linear model case, although there is a significant difference
with respect to MPC: solutions found with SPM/PSM are, in general,
reported to be globally optimal, for the purely energy-maximising
control objective. This directly explains why 90% of the reviewed
literature does not require modifications of the objective function in-
volved in the OCP (3.13). For the particular case of Fourier functions,
the authors of [108] have shown that this particular discretisation
always renders a concave QP problem, as a direct consequence of
the passivity of the WEC model (see Section 2.4). In other words,
global optimality is indeed achieved by a suitable selection of the
basis functions, for the single WEC case analysed in [108]. This nice
property is effectively lost when using HRCF functions, as detailed
in [198], where regularisation terms are required to ensure optimal-
ity. Note that, differently from the majority of MPC studies, the
authors of [198] do formally provide explicit ‘tuning’ conditions to
systematically obtain a concave QP.

Remark 3.4.8 Though [108] provides a proof of uniqueness of
global solutions for Fourier basis functions, this only holds for the
single WEC case (SISO system), and has not been extended to
the array case (MIMO system) in [175–177].

Independently if it’s MPC or SPM/PSM-based control, the QP
nature of the problem is clearly lost if a nonlinear model for the
WEC is considered. The resulting nonlinear program can be solved
using ‘generic’ NP routines, based on, for example, interior-point
methods (IPM) [208, 209] and sequential quadratic programming
(SQP) [210]. Nevertheless, different computational properties have
been reported for MPC and SPM/PSM methods. In particular, as
reported in [157, 166, 189], real-time implementation is difficult
to achieve for the MPC case, though there is definitely room for
improvement if any compiled language (rather than Matlab R©) is
utilised to code the corresponding control algorithms. On the other
hand, efficient nonlinear solutions have been reported for SPM/PSM-
based controllers in [57, 168], achieving real-time performance even
running on (interpreted) Matlab R©.

Remark 3.4.9 Though some of the reviewed studies do consider
nonlinear effects, none of them give formal and explicit conditions
for existence of globally optimal energy-maximising control so-
lutions, as reported in Table 3.2. As a matter of fact, even if a
control solution is found, it is not clear under which conditions
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this energy-maximising control law is effectively a globally opti-
mal solution. This naturally generates a great deal of uncertainty,
specifically in which class of models can be actually used within
the available nonlinear formulations, and even if the reported
performance corresponds with a global solution at all.

3.4.3 Advantages and disadvantages

As per the case of impedance-matching based controllers, in Section
3.3.3, a set of advantages and disadvantages can be clearly identified
for the optimisation-based controllers reviewed in this section. In
particular, there are three key advantages of optimisation-based
control:

I Optimal performance: Facilitated by a suitable definition of
an energy-maximising objective function.

I Systematic optimal handling of state and input constraints:
Device safety can be directly addressed by adding a (feasible)
set of constraints to the optimisation problem.

I Nonlinearity: Though yet not fully exploited, a general class of
nonlinear models can be considered within this optimisation-
based approach, overcoming the inherent limitations of models
arising from linear potential theory.

These advantages are indeed appealing in terms of performance
and design freedom, which is much more limited for the case of
impedance-matching-based controllers reviewed in Section 3.3.

Naturally, there is also a set of disadvantages in this family of
controllers:

I Computational expense: Depending on the discretisation utilised,
optimisation-based controllers may or may not be suitable for
a real-time implementation scenario. This is especially true if
nonlinearities are considered.

I Globally optimal solutions: It is key to provide conditions
where the optimisation can be solved efficiently, which is
directly connected with deriving explicit conditions for ex-
istence and uniqueness of globally optimal solutions to the
energy-maximising nonlinear program, associated with the dis-
cretisation selected. This has not been done consistently in
the literature, as discussed previously in Section 3.4.2.4.
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3.5 Conclusions

This chapter introduces the key concepts behind energy-maximisation
control of WECs, starting from the fundamental theory of impedance-
matching, from which the control law (3.5) can be readily obtained.
Though simplistic by nature, the energy-maximising control law
derived in equation (3.5) inspired a set of techniques that aim to
approximate such a non-causal and frequency-dependent condition.
These controllers are suboptimal by design, and their main advantage
relies on their simplicity of implementation, which makes this family
of strategies appealing for practical implementation. Nevertheless,
their performance is severely affected both by the approximation
of the condition of equation (3.5), and the suboptimal handling of
state and input constraints, which often tends to be ‘rudimentary’.

Aiming to optimally handle maximum energy-absorption under state
and input constraints, a large number researchers utilise optimal con-
trol theory, where the energy-maximising objective is formulated as
an OCP, detailed in (3.13). This OCP is characterised by an objective
function, which reflects maximisation of absorbed energy from incom-
ing waves, and a set of state and input constraints, which guarantee
safety limitations for the device and actuator components.

The vast majority of the studies available in the literature utilise either
MPC or SPM/PSM techniques to discretise the infinite-dimensional
OCP (3.13), describing the energy-maximising control problem as a
nonlinear program. Though promising results have been presented, a
number of issues can be directly identified from the literature review
provided in this chapter. In particular, motivated by their simplicity
and computational convenience, the current state-of-the-art is mainly
based on linear strategies, even though WECs are, by nature, prone
to show nonlinear effects under controlled conditions (as discussed
in Section 3.4.2). Moreover, even in the linear case, not only the
majority of the studies require modification of the energy-maximising
objective to ensure uniqueness of a globally optimal solution, but
most of them obviate any formal proof or recommendation on how to
select these regularisation terms (with some notable exceptions).

On the other hand, few studies are effectively considering nonlinear
dynamics, with some promising results in the area of SPM/PSM-
based controllers, specifically in terms of computational efficiency.
Nevertheless, none of the reviewed studies, which consider nonlinear
effects in the equation of motion, give explicit conditions for global
optimality, preventing identification of the class of models that can
be used, and limiting the results (and any conclusions) obtained
only for the particular application case analysed in each paper.
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Some robust approaches can be found in the literature, somewhat
aiming to ‘fill the gap’ between linear and nonlinear modelling. Ro-
bustness with respect to system uncertainty has been tackled, to
some extent, in both MPC and SPM/PSM formulations. Never-
theless, to date, there are no optimisation-based control strategies
effectively taking into account errors in the estimation and fore-
casting of excitation forces process (i.e. input uncertainty), which
naturally arise in this energy-maximising application.

Motivated by the discussion provided in this section, and the specific
issues found in the state-of-the-art of WEC control, Part III of this
thesis presents a moment-based framework for energy-maximising
optimal control of WECs, addressing linear (SISO and MIMO) con-
trol design, robust control with respect to both input and system
uncertainties, and, finally, nonlinear optimal control of WECs. Con-
ditions for global optimality of solutions are given for each of the
scenarios listed above, hence providing computationally efficient
solutions that deliver a globally optimal performance, for a generic
class of WEC devices.
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Table 3.1: Reference guide to read Table 3.2

Column Brief description

Reference List of studies reviewed.
Type Type of control strategy, i.e. MPC/SPM/PSM.
Model Class of dynamical WEC model considered, i.e linear or nonlinear.
Objective function Studies that consider an objective function related to: Energy-maximisation (• in column “Energy”)

or energy-maximisation with additional terms (• in column “Energy + J ∗”).
Is ∃! analysed? Studies that analyse existence and uniqueness of globally optimal solutions •.
Discretisation Type of discretisation used. For the case of SPM/PSM-based controllers, this column reflects the

basis functions chosen for the set HN .

Table 3.2: Optimisation-based control strategies (MPC and SPM/PSM) reviewed in this chapter.

Reference Type Model Objective function Is ∃!
analysed? Discretisation

Linear Nonlinear Energy Energy + J ∗

[138] MPC • • ZOH
[160] MPC • • • ZOH
[157] MPC • • SOH
[163] MPC • • • ZOH
[165] MPC • • ZOH
[201] MPC • • ZOH
[211] MPC • • ZOH
[161] MPC • • Tustin
[166] MPC • • SOH
[173] MPC • • ZOH
[202] MPC • • ZOH
[189] MPC • • Tustin
[190] MPC • • Tustin
[212] MPC • • ZOH
[187] MPC • • FOH
[213] MPC • • • ZOH
[206] MPC • • ZOH
[186] MPC • • FOH
[188] MPC • • FOH
[214] MPC • • • ZOH
[215] MPC • • ZOH
[169] MPC • • • FOH
[203] MPC • • ZOH
[170] MPC • • ZOH
[216] MPC • • • ZOH
[205] MPC • • • ZOH
[217] MPC • • • ZOH
[204] MPC • • • ZOH
[174] MPC • • ZOH
[180] MPC • • • ZOH

[56] PSM • • Legendre
[218] SPM • • • Fourier
[195] PSM • • HRFC
[164] PSM • • Legendre
[175] SPM • • Fourier
[219] SPM • • Fourier
[176] SPM • • Fourier
[172] PSM • • Fourier
[167] SPM • • Fourier
[108] SPM • • • Fourier
[59] PSM • • Fourier
[177] SPM • • Fourier
[196] PSM • • HRFC
[197] PSM • • HRFC
[220] PSM • • Fourier
[198] PSM • • • HRFC
[168] SPM • • Fourier
[57] SPM • • Fourier
[182] SPM • • • Fourier
[183] SPM • • • Fourier



Moment-based theory 4
Contents of this chapter

4.1 The notion of moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.1 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.2 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Model reduction by moment-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

This chapter briefly recalls some of the key concepts behind moment-
based theory (also often referred to as moment-matching frame-
work throughout this thesis), as developed and discussed in key
studies such as, for instance, [20, 21, 221], for single-input single-
output systems. In particular, special emphasis is made on the formal
(mathematical) definition of moment, using a system-theoretic ap-
proach. Though originally defined for linear systems only, this system-
theoretic approach allows for a natural extension of the concept of
moments to nonlinear systems, among other benefits, which are high-
lighted as this chapter evolves. Note that the concepts, definitions,
and theoretical results discussed in this chapter, are fundamental
preliminaries for both Part II and III of this manuscript.

In particular, Section 4.1 discusses the mathematical notion of
moments for finite-dimensional linear systems, to later recall the
corresponding extension to nonlinear dynamical objects, presenting,
for each case, the corresponding definition of moment. Using the
definitions introduced in Section 4.1, Section 4.2 discusses the
model reduction by moment-matching framework, both for linear
and nonlinear dynamical systems, including illustrative example
cases.

4.1 The notion of moments

4.1.1 Linear systems

Consider a deterministic, finite-dimensional, SISO, continuous-time
system, described, for t ∈ R+, by the following set of equations1 1: From now on, the dependence on

t is dropped when clear from the con-
text.ẋ = Ax+Bu,

y = Cx,
(4.1)
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with x(t) ∈ Rn, u(t) ∈ R and y(t) ∈ R. The (constant) matrices
composing (4.1) are such that A ∈ Rn×n, and {B,Cᵀ} ⊂ Rn. From
now on, it is assumed that system (4.1) is minimal, i.e. controllable
and observable.

Remark 4.1.1 Equation (4.1) implicitly assumes that the system
is strictly proper, i.e. there is no (input) direct feed-through matrix
in (4.1). This simplification is done in line with the variety of WEC
models utilised throughout this manuscript, which, indeed, share
this property. Though outside the scope of this thesis, note that
analogous results, to those recalled in this chapter, can be easily
derived for biproper systems, by introducing minor modifications
(see, for example, [21]).

Let W : C → C, s 7→ W (s), be the transfer function associated
with system (4.1). The following fundamental definition of moments
is recalled from [222].

Definition 4.1.1 [222] The 0-moment of system (4.1) at si ∈
C\λ(A) is the complex number η0(si) = C (siIn −A)−1B. The
k-moment of system (4.1) at si is the complex number

ηk(si) = (−1)k

k!

[
dk

dsk
W (s)

]
s=si

, (4.2)

with k ∈ N≥1.

Remark 4.1.2 Note that moments, as in Definition 4.1.1, are
the coefficients of the Laurent expansion2 2: Loosely speaking, the Laurent ex-

pansion of a function f : C→ C is a
generalisation of the well-known Tay-
lor expansion for the case where f is
non-holomorphic, i.e. f has isolated
singularities.

of the transfer function
W (s) about the complex point si.

Remark 4.1.3 Though the minimality assumption on system (4.1)
does not pose any loss of generality with respect to Definition 4.1.1,
it guarantees that the input-output equation (4.2) completely
characterises the dynamical behaviour of (4.1).

Motivated by both the lack of a system-theoretic understanding
of the concept of moments as defined above and the fact that
Definition 4.1.1 is heavily based on the underlying linearity property
of system (4.1), i.e. it cannot be directly extended to nonlinear
systems, a novel characterisation of moments has been presented
in [20], aiming to solve these limitations. Before going further with
this system-theoretic definition of moments, the following remark is
introduced.

Remark 4.1.4 From now on, the theoretical results are limited
to the case of 0-moments, for two fundamental reasons, detailed
in the following. Firstly, for both the model reduction and optimal
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control part of this thesis, it is shown throughout this manuscript
that 0-moments are intrinsically connected with the physical pro-
cess behind wave energy absorption, which is indeed the main
concern of this thesis. Secondly, the concept of a moment for
nonlinear systems is not necessarily well-posed for higher-order
moments, as further discussed in Section 4.1.2.

To be precise in the meaning behind a system-theoretic characteri-
sation of Definition 4.1.1, note that the moments of system (4.1)
have been shown to be in a one-to-one relation with the steady-state
response (provided it exists) of the output of the interconnection
between a signal generator (sometimes referred to as exogenous
system [22]) and system (4.1) itself. A precise description of this
signal generator is given in the following.

Consider a signal generator described, for t ∈ R+, by the set of
differential equations

ξ̇ = Sξ,

u = Lξ,
(4.3)

with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν . Consider now the
interconnected (or composite) system

ξ̇ = Sξ,

ẋ = Ax+BLξ,

y = Cx.

(4.4)

Following [20, 21], a relevant set of assumptions is considered, to
later formalise the definition of moments using a system-theoretic
approach.

Assumption 4.1.1 The triple of matrices (L, S, ξ(0)) is minimal.

Remark 4.1.5 The minimality of the triple (L, S, ξ(0)) implies ob-
servability of the pair (S,L) and excitability of the pair (S, ξ(0)).
Excitability refers (with additional technical assumptions, see
[223]) to a geometric characterisation of the property that all
signals generated by (4.3) are persistently exciting.

Remark 4.1.6 For linear systems excitability is equivalent to
reachability, i.e. with ξ(0) playing the role of the input matrix,
see [223].

Assumption 4.1.1 stems from the fact that the signal generator
defined (4.3) does not have any input. As a matter of fact, given
that this signal generator characterises inputs to the system under
analysis, i.e. system (4.1), it is rather natural to construct (4.3) in
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Figure 4.1: Diagrammatic illustra-
tion of Lemma 4.1.1.

such a way that all the modes of motion described by the dynamic
matrix S are excited, and that the inputs generated are effectively
observable.

Assumption 4.1.2 The signal generator (4.3) is such that λ(S) ⊂
C0 with simple eigenvalues3 3: Let A ∈ R

n×n. An eigenvalue
a ∈ λ(A) is said to be simple if its
algebraic multiplicity is equal to 1.

.

Assumption 4.1.2 guarantees that the signal generator (4.1) gen-
erates bounded trajectories. Note that this automatically implies
that the output signal u(t), i.e. the input to system (4.1), is also
bounded. The following main lemma can now be introduced.

Lemma 4.1.1 [20, 21] Suppose Assumptions 4.1.1 and 4.1.2
hold, and that system (4.1) is asymptotically stable in the Lya-
punov sense, i.e. λ(A) ⊂ C<0. Then, there is a unique matrix
Π ∈ Rn×ν which solves the Sylvester equation

ΠS = AΠ +BL, (4.5)

and the steady-state response of the interconnected system (4.1)-
(4.3) is xss(t) = Πξ(t), for any x(0) and ξ(0).

Moreover, under the same set of assumptions, there exists a one-
to-one4 4: One-to-one implies that moments

are uniquely determined by the steady-
state output response yss and vice-
versa.

relation between the moments η0(s1), η0(s2), . . . , η0(sν),
with si ∈ λ(S), ∀ i ∈ Nν , and the steady-state output response
yss(t) = CΠξ(t) (as depicted in Figure 4.1). In fact, the moments
are uniquely determined by the matrix CΠ.

Definition 4.1.2 Suppose the assumptions of Lemma 4.1.1 are
fulfilled. The matrix CΠ is the moment of system (4.1) at (S,L).

Remark 4.1.7 For this linear moment-based analysis case, the
matrix CΠ ≡ Y is equivalently referred to as the moment-domain
equivalent of the output y of system (4.1).

Clearly, the fundamental result of Lemma 4.1.1 is the relation be-
tween moments (which are purely mathematical objects), and the
steady-state response of the composite system (4.1)-(4.3), which is
completely characterised by the Sylvester invariance equation (4.5).
In particular, this connection can be exploited to provide a definition
of moments for the nonlinear case, where Definition 4.1.1 is far from
being applicable. This is discussed in the following section.
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4.1.2 Nonlinear systems

Consider now a nonlinear, deterministic, finite-dimensional, SISO,
continuous-time system, described, for t ∈ R+, by the following set
of equations

ẋ = f(x, u),
y = h(x),

(4.6)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, and f and h sufficiently
smooth mappings defined in the neighborhood of the origin of Rn.
Assume system (4.6) is minimal, i.e. observable and accessible (see
[21, Chapter 2]), and suppose that f(0, 0) = 0 and h(0) = 0.
Similarly to the linear case discussed in Section 4.1.1, consider now
the interconnected system

ξ̇ = Sξ,

ẋ = f(x, Lξ),
y = h(x),

(4.7)

where S and L are as in (4.3). Following the steady-state notion of
moments given in Definition 4.1.2, a nonlinear counterpart of Lemma
4.1.1 can be given in terms of a particular invariance equation, under
a similar set of assumptions. This is summarised in the following
key result.

Lemma 4.1.2 [20, 21] Suppose Assumptions 4.1.1 and 4.1.2
hold, and that the zero equilibrium of the system (4.6) is locally
exponentially stable in the Lyapunov sense. Then, there exists a
unique mapping π, locally5 5: All statements are local, although

global versions can be straightforwardly
derived.

defined in a neighborhood Ξ of ξ = 0,
with π(0) = 0, which is the solution of the differential equation

∂π(ξ)
∂ξ

Sξ = f(π(ξ), Lξ), (4.8)

for all ξ ∈ Ξ, and the steady-state response of the interconnected
system (4.6)-(4.3) is xss(t) = π(ξ(t)), for any x(0) and ξ(0)
sufficiently small.

Definition 4.1.3 Suppose the assumptions of Lemma 4.1.2 are
fulfilled. The mapping h ◦ π is the moment of system (4.6) at
(S,L).

Remark 4.1.8 Note that the result of Lemma 4.1.2, and the no-
tion of moments stated in Definition 4.1.3, imply that the moment
of system (4.6) at (S,L) computed along a particular trajectory
ξ(t) coincides with the (well-defined) steady-state response of the
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Figure 4.2: Diagrammatic illustra-
tion of Lemma 4.1.2.

output of the interconnected system (4.7) (as depicted in Figure
4.2), i.e. yss(t) = h(π(ξ(t))).

The result of Lemma 4.1.2 and, specifically, the requirement of
Assumption 4.1.2, is closely related to the nonlinear output regulation
problem in control theory, and the so-called centre manifold theory.
The reader is referred to [22, Chapter 8] for a thorough discussion
on the topic.

Remark 4.1.9 While, for linear systems, it is possible to define
k-moments for every si ∈ C (see Definition 4.1.1), for nonlinear
systems it is virtually impossible to provide general statements as
to whether the signal u(t), generated by the signal generator (4.3),
is unbounded. This motivates the necessity of Assumption 4.1.2
in Lemma 4.1.2, so that Definition 4.1.3 is well-posed. In other
words, both existence and uniqueness of the mapping π, and its
connection with the (well-defined) steady-state output response
of the corresponding interconnected system, can be guaranteed
under the considered set of assumptions.

4.2 Model reduction by moment-matching

Moments, as in Definitions 4.1.2 and 4.1.3, not only provide a very
specific parameterisation of the steady-state output response of
systems (4.1) and (4.6), respectively, but are also key elements for a
powerful state-of-the-art model reduction framework: the family of
so-called moment-matching-based model reduction techniques.

The reduction technique based on this notion of moments consists
of the interpolation of the steady-state response of the output of the
system to be reduced6 6: Throughout this manuscript, if a

given system Σ is reduced by moment-
matching to a system Σ̃, Σ and Σ̃ are
referred to as the target and approxi-
mating systems, respectively.

: a reduced order model by moment-matching
is such that its steady-state response matches the steady-state
response of either system (4.1) or (4.6), depending on the nature
of the target system, i.e. linear or nonlinear, respectively. In the
following sections, key results associated with this set of tools are
recalled, which constitute fundamental preliminaries for Part II of
this thesis, both for linear and nonlinear systems.

4.2.1 Linear systems

Based on the steady-state definition of moments discussed in Section
4.1.1, the notion of a reduced order model by moment-matching
for linear systems can be now recalled, starting with the following
definition.
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Definition 4.2.1 [20, 21] Consider the signal generator (4.3).
The system described by the equations

Θ̇ = FΘ + ∆u,
θ = QΘ,

(4.9)

with Θ(t) ∈ Rν , θ(t) ∈ R, F ∈ Rν×ν and {∆, Qᵀ} ⊂ Rν , is
a model of system (4.1) at (S,L), if system (4.9) has the same
moments at (S,L) as system (4.1). In addition, system (4.9) is
a reduced order model of system (4.1) at (S,L) if ν < n.

Lemma 4.2.1 [20, 21] Consider system (4.1) and the signal gen-
erator (4.3). Suppose Assumptions 4.1.1 and 4.1.2 hold, and that
system (4.1) is asymptotically stable, i.e. λ(A) ⊂ C<0. Then, sys-
tem (4.9) is a model of system (4.1) at S if λ(F ) ∩ λ(S) = ∅
and

CΠ = QP, (4.10)

where CΠ = Y is the moment-domain equivalent of the output of
system (4.1), computed from (4.5), and P is the unique solution
of the Sylvester equation

PS = FP + ∆L. (4.11)

Remark 4.2.1 The steady-state output of the reduced order
model (4.9) exactly matches the steady-state output of the system
resulting from the interconnection of system (4.1) and the signal
generator (4.3). As a matter of fact, for this linear case, the family
of models (4.9) effectively interpolates the transfer function W (s)
of system (4.1) at the complex points si ∈ λ(S), ∀i ∈ Nν (see
Definition 4.1.1).

Note that the computation of the Sylvester equation (4.11) can be
avoided, if required. As a matter of fact, as discussed and shown in
[20, 21], the family of systems

Θ̇ = (S −∆L)Θ +Gu,

θ = CΠΘ,
(4.12)

where ∆ is any matrix such that λ(S) ∩ λ(S −∆L) = ∅, belongs
to the family (4.9) and contains all the models of dimension ν

interpolating the moments of system (4.1) at (S,L).

The family of models (4.12) is conveniently parameterised in terms
of the matrix ∆. This provides an additional degree-of-freedom
to enforce specific properties in the reduced order model, such as
matching with a prescribed set of eigenvalues Λ, i.e. to guarantee
that λ(S − ∆L) = Λ. In other words, one has full control over
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Figure 4.3: Output y of the linear sys-
tem (4.13) (dashed), and the reduced
order model by moment-matching
(4.15) θ (solid), for a constant input
u = 1.

the internal dynamics of the reduced system (4.12)7 7: Note that this does not imply one
can fully preserve the transient re-
sponse characteristics of the system.
It rather means some dynamic charac-
teristics of interest can be preserved,
by selecting, for instance, the slow
(dominant) eigenvalues of system (4.1)
when computing the corresponding
reduced order model.

. Naturally,
if Λ ⊂ C<0, then the obtained reduced order model is internally
stable.

Remark 4.2.2 Note that the spectrum of the matrix (S −∆L),
i.e. the set λ(S − ∆L) ⊂ C, defined in the family of systems
(4.12), can always be assigned arbitrarily, as a direct consequence
of the observability of the pair (S,L) (which is guaranteed under
Assumption 4.1.1).

To illustrate the result of Lemma 4.2.1 and, consequently, the
practical use of the family of models described in equation (4.12),
the following example case is introduced. Consider a linear system
described, for t ∈ R+, by the set of equations

ẋ =
[
−1 1
0 −2

]
x+

[
0
1

]
u,

y =
[
1 0

]
x.

(4.13)

Note that system (4.13) is written in Jordan canonical form [224],
i.e. it is straightforward to check that both minimality and stability
conditions hold. Suppose the system is subject to a constant input
u with a given amplitude, which can be realised in terms of a signal
generator described by the set of equations

ξ̇ = 0ξ,
u = lξ,

(4.14)

where {l, ξ(0)} ⊂ R are such that the triple (l, 0, ξ(0)) is minimal.
Then, Assumptions 4.1.1 and 4.1.2 hold, and a reduced order model
of dimension ν = 1 achieving moment-matching at (0, l) can be
constructed directly from (4.12) as

Θ̇ = −∆lΘ + ∆u,

θ =
[
1 0

]
ΠΘ,

(4.15)

where Π is the solution of the Sylvester equation associated with
system (4.13) and the signal generator (4.14) (analogously to equa-
tion (4.5)). Note that, as discussed previously in this section, ∆ ∈ R
can always be chosen such that system (4.13) has a prescribed set
of eigenvalues (see Remark 4.2.2).

Figure 4.3 illustrates the output of the target system (4.13) for an
input u = 1, where the signal generator (4.14) is such that l = 1
and ξ(0) = 1, and the output of a reduced order model (4.15)
with ∆ = 1, so that λ(−∆l) = −1, and the slowest (dominant)
eigenvalue of system (4.13) is effectively preserved. To be precise,
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the explicit expression of this reduced order model is given by

Θ̇ = −Θ + u,

θ = 1
2Θ.

(4.16)

The steady-state response matching between target system and
reduced model, i.e. the moment-matching feature, can be clearly
appreciated in Figure 4.3.

4.2.2 Nonlinear systems

Following the moment-based theory of Section 4.1.2, the notion of
a reduced order model by moment-matching for nonlinear systems
can now be introduced.

Definition 4.2.2 [20, 21] Consider the signal generator (4.3).
The system described by the equations

Θ̇ = φ(Θ, u),
θ = κ(Θ),

(4.17)

with Θ(t) ∈ Rν and θ(t) ∈ R, is a model of system (4.6) at
(S,L), if system (4.17) has the same moments at (S,L) as system
(4.6). In addition, system (4.17) is a reduced order model of
system (4.6) at (S,L) if ν < n.

Lemma 4.2.2 [20, 21] Consider system (4.6) and the signal gen-
erator (4.3). Suppose Assumptions 4.1.1 and 4.1.2 hold, and that
the zero equilibrium of system (4.6) is locally exponentially sta-
ble. Then, system (4.17) matches the moments of system (4.6)
at (S,L) if the equation

∂p

∂ξ
Sξ = φ(p(ξ), Lξ), (4.18)

has a unique solution p such that

h(π(ξ)) = κ(p(ξ)), (4.19)

where the mapping π is the unique solution of equation (4.8).

Following the result of Lemma 4.2.2, and analogously to the lin-
ear case of Section 4.2.1, a family of systems achieving moment-
matching at (S,L) [20, 21] can be defined as

Θ̇ = (S − ρ(Θ)L)Θ + ρ(Θ)u,
θ = h(π(Θ)),

(4.20)
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Parameter Value

L1 10 [mH]
C2 22 [µF]
L3 10 [mH]
C4 22 [µF]
E 20 [V]
R 0.04 [S]

Table 4.1: Parameters of the example
case for nonlinear model reduction.

with ρ : Rν → Rν a free mapping. A particularly interesting sim-
plification can be achieved with the selection ρ(Θ) = ∆, for any
constant matrix ∆. This choice produces a family of reduced order
models described by a linear differential equation with a nonlinear
output map, i.e. by a Wiener model.

Remark 4.2.3 Two advantages of the selection of the mapping
ρ in the family of models (4.20) as ρ(Θ) = ∆, can be clearly
identified: the matrix ∆ can be selected to enforce additional
properties to (4.20) such as a set of prescribed eigenvalues, and
the determination of the reduced order model achieving moment-
matching at (S,L) boils down to the computation of the mapping
h ◦ π.

Similarly to the case of Section 4.2.1, an illustrative example is now
presented, where explicit use of the family of reduced order models
(4.20) is made. Consider a nonlinear system given by the set of
equations

L1ẋ1 = −(1− u)x2 + E,

C2ẋ2 = (1− u)x1 + x3u,

L3ẋ3 = −x2u− x4,

C4ẋ4 = x3 −Rx4,

y = x4,

(4.21)

where x1(t) ∈ R+ and x3(t) ∈ R− describe8 8: The mathematical model repre-
sented with equation (4.21) corresponds
to the averaged DC-to-DC Ćuk con-
verter. The reader is referred to [225]
for further detail.

currents, x3(t) ∈ R+

and x4(t) ∈ R− describe voltages, {L1, C2, L3, C4, E,R} ⊂ R+

and u(t) ∈ (0, 1) a continuous (constant) input. Note that this
input can be effectively realised using the signal generator described
by equations (4.14). The moment of system (4.21) at (0, l) is given
[20] by h(π(ξ)) = E(ξ/(ξ − 1)) and a locally asymptotically stable
reduced order model of dimension ν = 1 achieving moment-matching
at (0, l) is

Θ̇ = −ρ(Θ)l + ρ(Θ)u,

θ = E
Θ

Θ− 1 ,
(4.22)

where ρ(0) > 0, which is well-defined if ξ 6= 1, ∀t ∈ R+. The
parameters of the system are selected as described in Table 4.1
(extracted from [225]). Following Remark 4.2.3, ρ(Θ) = ∆ is chosen,
i.e. the reduced order model (4.22) is linear, with a nonlinear output
map. In particular, ∆ = 100 is selected, which (approximately)
preserves the real part of the slowest eigenvalue of the Jacobian
linearisation of (4.21) about the origin.
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Figure 4.4: Output y of the non-
linear system (4.21) (dashed), and
the reduced order model by moment-
matching (4.22) θ (solid), for a con-
stant input u = 0.7.

Figure 4.4 shows the output of the target system (4.21), and the
output of the reduced order model (4.22), for a constant input of
amplitude 0.7. It can be clearly appreciated that there is a perfect
match between both the steady-state response of system (4.21),
and the moment-matching-based reduced order system (4.22).

Remark 4.2.4 Note that the example case, provided and discussed
above, heavily relies on the availability of an analytical expression
for the mapping h ◦ π. Clearly, this example is very specific, and
the mapping can be deduced with a (relatively) mild algebraic
effort. In the more general case, where both the mapping f and
the signal generator (S,L) can be much more complex than those
employed in this example (for instance, the wave energy case
discussed throughout this manuscript), it is virtually impossible
to compute an analytic expression for the moment h ◦ π. In other
words, without a proper approximation framework, the theory
recalled in both Sections 4.1.2 and 4.2.2, is far from having any
practical value. Note that, in light of this applicability limitation,
different approximation techniques are proposed in this thesis,
discussed in both Parts II and III of the manuscript.
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Recall, from Section 2.4, that the equation of motion for a WEC,
under the assumptions of linear potential flow theory (see Section
2.3.1), can be expressed in terms of Cummins’ equation (2.20). This
equation is recalled below, for a 1-DoF WEC device, for convenience:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe) ,
y = ż,

(5.1)

where z : R+ → R is the displacement, kr : R+ → R, kr ∈ L2(R),
the radiation impulse response function, fe : R+ → R, the wave
excitation, and M ∈ R>0 is the inverse of the generalised mass
matrix of the device (which is simply a scalar in this case).

As discussed in Section 2.4, the presence of the non-parametric
convolution operation, related to radiation effects, represents both
a representative and a computational drawback for a variety of
applications (including WEC control and state-estimation). Model
reduction techniques can be used to parameterise this non-parametric
operator, commonly defined in terms of a state-space representation,
which should ideally retain the underlying physical properties that
characterise the WEC dynamical process.

Considering the ideal characteristics described above (and in Section
2.4), this chapter proposes an approximation framework based on
model order reduction by moment-matching techniques, using a
system-theoretic interpretation ofmoments, as introduced in Chapter
4. Recall that moment-based methods, for linear systems, interpolate
a certain number of points on the complex plane, i.e. the so-called
moments, which are directly related to the frequency response of
the target dynamical system under analysis. In fact, the transfer
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function of the approximating model obtained by this moment-based
approach exactly matches the steady-state behavior of the target
system at these specific interpolation points, which are user-selected.
Furthermore, within this system-theoretic interpolation approach,
essential physical properties of the device can be retained by the
reduced order model, such as internal stability, passivity, and zero
dynamics.

This moment-based approximation framework is presented in two
different modalities: input-output (force-to-motion), and radiation
effects model reduction. The former deals with producing (paramet-
ric) reduced order models from an input-output perspective, i.e.
system Σ defined in equation (5.1), while the latter approximates
the radiation subsystem Σr (defined in Section 2.4), to later ‘embed’
into Cummins’ equations (see (2.22)).

The remainder of this chapter is organised as follows. Section 5.1 pro-
poses a moment-based formulation for WECs, to explicitly compute
the moment-domain equivalent associated with the non-parametric
system (5.1). Using these theoretical results, Section 5.2 outlines
the methodology behind the computation of moment-based reduced
order models, both for the input-output system Σ, and the radia-
tion dynamics, defined by Σr. Section 5.3 illustrates the framework
proposed, by considering the model reduction problem for a specific
WEC device. In the light of the discussion provided on the physical
properties of radiation effects, Section 5.4 assesses the capabilities
of this moment-based approach in retaining the underlying dynamics
of Σr, proposing specific methods to ensure1 1: As discussed in Section 5.4, moment-

based methods virtually always re-
spect the inherent properties of ra-
diation effects, without needing to
‘impose’ such characteristics. Never-
theless, if required by the application,
this thesis also proposes methods to
specifically guarantee each of the dy-
namical properties for radiation ef-
fects listed in Table 2.1.

passivity and zero
dynamics properties. Finally, the main conclusions of this chapter
are encompassed in Section 5.5.

5.1 Moment-based WEC formulation for
model reduction

Note that moment-based theory, as recalled in Chapter 4, is inher-
ently based on the knowledge of a state-space representation of the
system to be reduced, which is clearly not the case for Cummins’
formulation2 2: This is, in fact, exactly the main

objective of this chapter.
, recalled in equation (5.1). In other words, to con-

sider the theoretical results discussed in Section 4.2 for this 1-DoF
WEC case, the equation of motion characterised by Σ needs to be
re-written in a more suitable structure. The following equivalent
representation, for system Σ in equation (5.1), is proposed:

Σ :
{
ẇ = Aw +Bυ,

y = Cw,
(5.2)
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Figure 5.1: Radiation system Σr as
a feedback term.

for t ∈ R+, where w(t) =
[
z(t) ż(t)

]ᵀ
∈ R2 contains displacement

and velocity for the (single) DoF involved in the equation of motion,
and the matrices A ∈ R2×2, B ∈ R2 and Cᵀ ∈ R2 are defined as

A =
[

0 1
−Msh 0

]
, B =

[
0
M

]
, C =

[
0
1

]ᵀ
. (5.3)

The ‘input’ function υ : R+ → R, is defined as

υ = fe − kr∗ ż = fe − kr∗Cw, (5.4)

where the radiation force, i.e. the system Σr defined in Section 2.4,
is ‘decoupled’ as an output feedback term. This is schematically
illustrated in Figure 5.1.

Remark 5.1.1 The radiation force convolution term is included
as a feedback term in υ, only as an algebraic manipulation to
develop a ‘compatible’ representation of (5.1), with respect to
the moment-based theory recalled in Chapter 4. Note that the
meaningful external input is still the wave excitation force fe.

Within the moment-based formulation of Chapter 4, the mapping
corresponding with the external input fe is written in terms of an
autonomous single-output signal generator (analogously to the case
of equation (4.3)), i.e. the set of differential equations

ξ̇ = Sξ,

fe = Lξ,
(5.5)

for t ∈ R+, with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν . Recall that a
set of standing assumptions on the nature of the signal generator
(i.e. Assumptions 4.1.1 and 4.1.2), are required to have a well-posed
system-theoretic definition of moments. These are discussed, for the
WEC case, in the following paragraphs.

With respect to Assumption 4.1.2, which poses a set of charac-
teristics3 3: Assumption 4.1.2: The matrix S

is such that λ(S) ⊂ C0 with simple
eigenvalues.

for λ(S), the following finite-set F = {ωp}fp=1 ⊂ R+ is
considered, and the dynamic matrix S is written in a block-diagonal
form as,

S =
f⊕
p=1

[
0 ωp
−ωp 0

]
, (5.6)

where ν = 2f , f ∈ N≥1, and hence λ(S) = (jF )∪(−jF ) ⊂ C0.

With respect to Assumption 4.1.14 4: Assumption 4.1.1: The triple (L, S, ξ(0))
is minimal.

, and without any loss of gen-
erality, the initial condition of the signal generator is chosen as
ξ(0) = εν , so that it is straightforward to check that the minimality
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Figure 5.2: Moment-based analysis
of the WEC system Σ.

condition on the triple (L, S, εν) holds as long as the pair (S,L) is
observable.

Remark 5.1.2 Note that each ωp in (5.6) effectively represents
a desired interpolation point for the model reduction process, i.e.
a frequency where the frequency response of the reduced order
model matches the frequency response of the target system. In
other words, the objective now is to use the representation given
by the signal generator (5.6) to interpolate the f frequencies
defined in the (user-selected) set F .

To accomplish the model reduction by a moment-matching objective,
the key theoretical step is to compute the moments of system Σ
(defined in equation (5.2)) driven by the signal generator (5.6),
characterised by the pair (S,L). In other words, the aim is to compute
the moment-domain equivalent of the velocity of the device, i.e. Ż.
Under the representation presented in (5.2), these moments can be
computed by solving a specific equation (analogously5 5: Note that direct application of Lemma

4.1.1 is not possible due to the non-
parametric structure of Σ.

to Lemma
4.1.1). Such an equation can be specialised for the WEC case as

AΠ +B (L−Kr) = ΠS, (5.7)

where Π ∈ R2×ν and Kᵀr ∈ Rν is the moment-domain equivalent
of the radiation force (i.e. the output of Σr).

Remark 5.1.3 The moment-domain equivalent of the velocity can
be expressed in terms of the solution of (5.7) (provided it exists)
straightforwardly as Ż = CΠ. This is schematically illustrated in
Figure 5.2

The term Kr clearly depends6 6: Note the convolution operator de-
pends on the output of system Σ.

on Π, hence one cannot yet solve
(5.7), until it is properly defined. In the following, the quantity Kr is
explicitly derived, to then provide sufficient conditions for existence
and uniqueness of the solution of (5.7).

Proposition 5.1.1 The moment-domain equivalent of the con-
volution integral in (5.1) can be computed as

Kr = ŻR, (5.8)

where the operator R ∈ Rν×ν is a block-diagonal matrix, defined
as

R =
f⊕
p=1

[
rωp mωp
−mωp rωp

]
, (5.9)

with

rωp = Br(ωp), mωp = ωp [Ar(ωp)−m∞] , (5.10)
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where Ar(ω) is the radiation added-mass, and Br(ω) is the radi-
ation damping of the device (see Section 2.3.2.2), evaluated at
each specific frequency induced by the eigenvalues of S.

Proof. The steady-state response of the velocity can be written in
terms of its moment-domain equivalent (provided it exists), i.e. żss =
Żξ. Direct replacement into the radiation convolution operation
yields,∫

R+
kr(τ)żss(t− τ)dτ = Ż

∫
R+

kr(τ)ξ(t− τ)dτ. (5.11)

Note now that that the vector ξ(t) ∈ Rν can be conveniently
expanded as

ξ(t) = eStεν =
f∑
p=1

efp ⊗
[
pξ+(t)
pξ−(t)

]
, (5.12)

where, for this particular initial condition ξ(0), the mappings pξ :
R+ → R are given by pξ+(t) = cos(ωpt) and pξ−(t) = − sin(ωpt),
for all p ∈ Nf .

Analysing equation (5.11) in ‘blocks’, i.e. for a particular frequency
ωp, with p ∈ Nf , it is possible to directly recognise two different
convolution operations: kr∗ pξ+ and kr∗ pξ−. Expanding the for-
mer expression, and considering well-known trigonometric identities,
yields (

kr∗ pξ+
)

(t) = cos(ωpt)
∫
R+

kr(t) cos(ωpt)dt+

sin(ωpt)
∫
R+

kr(t) sin(ωpt)dt.
(5.13)

Using Oglivie’s relationships, defined in Section 2.3.2.2, the integral
operations involved in (5.13) can be evaluated explicitly, using the
frequency-dependent parameters Br(ω) and Ar(ω), i.e.∫

R+
kr(t) cos(ωpt)dt = Br(ωp) = rωp ,∫

R+
kr(t) sin(ωpt)dt = −ωp [Ar(ωp)−m∞] = −mωp .

(5.14)

Performing similar operations on k∗ pξ−, the expression[
kr∗ pξ+

kr∗ pξ−
]

=
[

rωp mωp
−mωp rωp

] [
pξ+

pξ−

]
, (5.15)

holds. Finally, the claim of this proposition, i.e. Kr = ŻR, follows
from simply repeating the same analysis for each p ∈ Nf . �
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Remark 5.1.4 The statement of Proposition 5.1.1 can be proved
straightforwardly for any initial condition ξ(0), i.e. the definition
of the moment-based representation of the radiation force is
independent of the initial condition of the signal generator7 7: Clearly, this assertion is directly re-

lated to the underlying linearity prop-
erty of the radiation force system Σr.

. The
objective behind the selection of ξ(0) = εν is twofold: Firstly, to
illustrate a suitable selection of the initial condition ξ(0) such that
the pair (S, ξ(0)) is excitable (given that the geometric definition
of excitability is not ‘standard’ in the control literature); and
secondly, to simplify the notation used throughout the proof of
Proposition 5.1.1.

Using the analytical definition of the moment-domain equivalent of
the radiation convolution term in (5.8), the following two proposi-
tions, that address the uniqueness of the solution of the Sylvester
equation (5.7), and the explicit computation of the moment equiva-
lent Ż, are now stated.

Proposition 5.1.2 The solution of the Sylvester equation (5.7)
is unique if and only if

λ

 f⊕
p=1

[
Tp 0
0 Tp

] ∩ λ(S) = ∅, (5.16)

where the matrix Tp is defined as

Tp = A−B(rωp + jmωp)C. (5.17)

Proof. A direct application of the vec operator to equation (5.7)
(and considering Property 1.3.1 and the bilinearity and associativity
property of the Kronecker product) yields the equivalent linear system
of equations

Φ vec{Π} = vec {−BL} , (5.18)

where the matrix Φ ∈ R2ν×2ν is defined as

Φ =
(
S ⊕̂A

)
+ Rᵀ ⊗−BC. (5.19)

It is straightforward to conclude from (5.18) that the solution of
the Sylvester equation (5.7) is unique if and only if 0 /∈ λ(Φ). As a
consequence of the block-structure of each of the matrices involved
in (5.19), the matrix Φ can be always written in a block-diagonal
structure, i.e. Φ =

⊕f
p=1 Φp. Therefore, the matrix Φ is invertible if

and only if each block Φp is invertible.

After algebraic manipulation of (5.19), each block composing Φ can
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be expressed as

Φp =
[

A−BrωpC ωpI2 +BmωpC
−ωpI2 −BmωpC A−BrωpC

]
. (5.20)

Consider now the (invertible) matrix

W =
[
I2 jI2
I2 −jI2

]
, (5.21)

and the similarity transformation WΦp = WΦpW
−1, which yields

WΦp = −
[
jωpI2 − Tp 0

0 jωpI2 − Tp

]
. (5.22)

Since the spectrum of a matrix remains invariant under a coordinate
transformation, one can conclude from (5.22) that Φp is invertible
if and only if8 8: Note that, the following equality

λ(αI+A) = α+M λ(A), for any ma-
trix A ∈ Cn×n, holds, where the no-
tation +M is used for the Minkowski
sum of two sets (see, for instance,
[226]).

λ

([
Tp 0
0 Tp

])
∩ λ(S) = ∅. (5.23)

Finally, the claim follows repeating the same analysis for each block
of Φp with p ∈ Nf . �

Proposition 5.1.3 Suppose (5.16) holds. Then, the moment-
domain equivalent of the output y of system (5.2) (the velocity
of the device ż) can be uniquely determined as

Ż = LΦᵀR , (5.24)

where the matrix ΦR ∈ Rν×ν is defined as

ΦR = (Iν ⊗ C)Φ−1(Iν ⊗−B),
Φ =

(
S ⊕̂A

)
+ Rᵀ ⊗−BC,

(5.25)

with Φ ∈ R2ν×2ν .

Proof. Recall that Ż = CΠ. Then equation (5.24) follows directly
from (5.18), noting that vec{Ż} = Ż

ᵀ and vec{L} = Lᵀ. �

Remark 5.1.5 Equation (5.16) always holds for the WEC device
case: it follows from the internal stability of (5.2) (see Section
2.4) that λ(Tp) ⊂ C<0 for all p ∈ Nf , where the matrices Tp are
as in Proposition 5.1.2.

With the results provided in Propositions 5.1.2 and 5.1.3, it is possible
to define a suitable family of reduced order models achieving moment-
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matching both for the input-output system Σ, and the radiation
dynamics Σr. This is directly addressed in Section 5.2.

5.2 Reduced models achieving
moment-matching

With the theoretical results proposed in Section 5.1, it is possible
to compute reduced order models both for the input-output (force-
to-motion) dynamics, i.e. a system Σ̃ approximating Σ in (5.2),
and the radiation system, i.e. a system Σ̃r approximating Σr. Both
approaches are discussed in the following subsections, starting from
the input-output model reduction case, in Section 5.2.1, following
with the radiation dynamics case, in Section 5.2.2.

5.2.1 Input-output dynamics

Propositions 5.1.2 and 5.1.3 explicitly show how to compute the
(unique) moment-domain equivalent of the output of system (5.2),
i.e. the moment-based representation of the velocity of the WEC.
This, together with Definition 4.2.1 and Lemma 4.2.1, allow for the
computation of a reduced order model of system (5.2), from an
input-output (force-to-motion) perspective, i.e. fe 7→ ż, achieving
moment-matching at (S,L). Explicitly:

Σ ≈ Σ̃F :
{

Θ̇ = (S −∆L)Θ + ∆fe,

ỹ = ŻΘ,
(5.26)

is the family of reduced order models, for t ∈ R+, parameterised in
∆ ∈ Rν , containing all the models of dimension ν achieving moment-
matching at (S,L), i.e. interpolating the moments of system (5.2)
at the eigenvalues of the matrix S (which are fully characterised by
the set of user-selected frequencies F ), and where Ż = LΦᵀR (as in
Proposition 5.1.3).

Remark 5.2.1 The reduced order model (5.26) has dimension
(order) ν = 2f , where f is the number of (user-selected) inter-
polation points (frequencies in this case). This is a consequence
of the fact that, for each frequency ωi, both ±jωi are chosen as
eigenvalues of the real-valued9 9: One could select only +ωp or −ωp,

instead of ±ωp. This, in turn, results
in a reduced order model of dimension
f rather than 2f , but defined over the
field C. In other words, the matrix S
has necessarily complex entries. Note
that Cf×f is effectively isomorphic
to R2f×2f , so that no ‘real’ compu-
tational saving is achieved.

matrix S.

Remark 5.2.2 The notation Σ̃F refers to an approximated time-
domain model of the force-to-motion dynamics of the device
under analysis, by matching the frequencies selected in λ(S), fully
characterised by the set F .
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As highlighted previously in Remark 4.2.2, the additional degree of
freedom provided by the matrix ∆ can be exploited to assign the
eigenvalues of the reduced order model (5.26): Given the observability
condition of the pair (S,L), the set λ(S −∆L) can be arbitrarily
assigned.

In this particular case, the set of desired eigenvalues is chosen within
a particular optimisation-based formulation, which aims to minimise
the Euclidean distance between the device frequency response G(ω)
(see Section 3.1), constructed with data obtained with hydrodynamic
codes, and the reduced order model (achieving moment-matching at
the frequencies induced by the set F ) frequency response G̃F (ω).
The complete procedure is summarised in the following steps, listed
below.

Procedure 1: SISO model reduction procedure for WECs

1 Select a set of f interpolation points (frequencies) F = {ωp}fp=1 ⊂
R+ to achieve moment-matching.

2 Compute the matrix S following (5.6) and select any L such
that the pair (S,L) is observable.

3 Calculate the moment-domain equivalent of the output of system
(5.2), i.e. Ż, using the result of Proposition 5.1.3.

4 Consider the frequency response of (5.26) as a function of ∆
i.e. the mapping G̃F : R×Rν → C given by

G̃F (ω,∆) = Ż (jωIν − S + ∆L)−1 ∆. (5.27)

5 Let Ω = {ωi}Mi=1 ⊂ W be the (finite) frequency set utilised
to compute the hydrodynamic coefficients Br(ω) and Ar(ω),
in the frequency range10

10: The selection of this frequency
range is strongly linked both with
the application for which the reduced
model is computed for, and the SDF
characterising the external input fe.

W = [ωl, ωu] ⊂ R+. Then, compute
the input matrix ∆opt with the following optimisation-based
procedure:

∆opt = arg min
∆∈D

M∑
i=1

∣∣∣G̃F (ωi,∆)−G(ωi)
∣∣∣2 , (5.28)

where D is defined as D = {∆ ∈ Rν | λ(S −∆L) ⊂ C<0}.
6 Compute a ν-dimensional input-output WEC time-domain model

achieving moment-matching at (S,L) from (5.26) as

Σ ≈ Σ̃F :
{

Θ̇ = (S −∆optL)Θ + ∆optfe,

ỹ = ŻΘ.
(5.29)

Briefly summarising, the procedure proposed above is based on the
idea of building the parametric model Σ̃F , matching the f (user-
defined) frequencies of the set F , exploiting the system structure



5 Reduced models for linear SISO WECs 99

of (5.26), and solving for an optimisation problem on ∆. This
optimisation process aims to compute the input matrix ∆opt which
minimises the difference between the target frequency response and
that of (5.26) (in terms of the Euclidean norm) while guaranteeing
internal stability of the parametric model.

Remark 5.2.3 The optimisation problem described in Step 5
above can be solved using a variety of techniques, including, for
example, interior-point methods [209]. Numerical convergence
towards a global minimiser can be performed using local optimisa-
tion routines (with multiple starting points), or global optimisation
routines (see, for instance, [227]) directly11 11: Though the latter family of tech-

niques can be computationally de-
manding, that does not constitute
an issue for the model reduction case,
which has to be run only once to com-
pute the approximating model Σ̃F .

.

5.2.1.1 Force-to-displacement dynamics

Section 5.2.1 describes the theoretical framework to compute an
input-output reduced model, i.e. a parametric form of Cummins’
equation in (5.2), for the force-to-velocity dynamics, where the
output of Σ is ż. As discussed throughout Chapters 3 and 4, the
selection of the output as y = ż is motivated by the specifics of the
energy-maximising optimal control problem for WECs, which directly
depends on the velocity of the device. Nevertheless, if a force-to-
displacement parametric form is required, one could either change
the vector C in (5.2) accordingly (to select ż as the output of system
Σ), or consider the following procedure, which further exploits the
properties of the moment-based formulation.

Proposition 5.2.1 Consider a dynamical system given, for t ∈
R+, by the differential equation

ẇ = u. (5.30)

Suppose u is described by a signal generator characterised by the
pair (S,L), and that Assumptions 4.1.1 and 4.1.2 hold. LetW be
the moment-domain equivalent of w. Then, the moment-domain
equivalent of ẇ isWS. In an analogous form, the moment-domain
equivalent of

∫
w(τ)dτ is given by WS−1.

Proof. The proof of this proposition stems directly from [228, Corol-
lary 1] and, hence, is omitted. �

The result of Proposition 5.2.1 allows for the computation of a
reduced model for the force-to-displacement dynamics, by using the
exact same results computed for the force-to-velocity response. In
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particular, one can compute the moment-domain equivalent of the
displacement z directly from equation (5.24) as

Z = ŻS−1 = LΦᵀRS
−1. (5.31)

Remark 5.2.4 The same procedure proposed to compute ∆opt

for the force-to-velocity case, i.e. Procedure 1, can be directly
adapted to the force-to-displacement dynamics, by simply changing
Ż by Z, and the force-to-velocity frequency response G(ω) by
P (ω) = G(ω)/jω.

5.2.2 Radiation dynamics

As discussed previously, in Section 2.4, the radiation impulse response
function kr completely characterises a LTI dynamical system Σr,
describing the mapping ż 7→ yr = kr∗ ż.
A reduced order model can be obtained following an analogous pro-
cedure to that considered for the force-to-motion case. In particular,
let the velocity ż be expressed as a signal generator, in the same
fashion as equation (5.5), i.e.

ξ̇ = Sξ,

ż = Lξ,
(5.32)

where the structure of S is as in equation (5.6), and any L such
that the pair (S,L) is observable. Then, recalling the result posed
in Proposition 5.1.1, the moment-domain equivalent of system Σr,
i.e. yr, can be directly computed as Y r = LR. Analogously to
equation (5.26), the family of reduced order models, parameterised by
∆ ∈ Rν , containing all the models of dimension ν achieving moment-
matching at (S,L), i.e. interpolating the moments of system Σr at
the eigenvalues of the matrix S, can be directly written as

Σr ≈ Σ̃rF :
{

Θ̇ = (S −∆L)Θ + ∆ż,
ỹr = Y rΘ.

(5.33)

Remark 5.2.5 Similarly to the force-to-velocity (or force-to-
displacement) case, Procedure 1 (described in Section 5.2.1) can
be directly adapted to a family of models for the radiation system
(6.37), by simply replacing Ż by Y r, and the device frequency
response G(ω) by that of the radiation force, i.e. Kr(ω) (defined
in Section 2.3.2.2).
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5.3 Case study: a toroidal geometry

The case study, selected to illustrate the moment-based reduction
strategy proposed in this chapter, is based on a toroidal geometry12

12: The selection of this geometry is
motivated by the underlying complex-
ity of its associated (multi-modal) fre-
quency response, aiming to fully illus-
trate the capabilities of the moment-
based approach.

(floater), which constitutes one of the main components of devices
such as, for instance, the Ocean Power Technologies (OPT) point
absorber WEC [229], and Wavebob [230]. The specific geometry
considered is depicted in Figure 5.3 (dimensions are in metres),
and is assumed to be constrained to move in heave (translational
motion), which is effectively the DoF from where energy is absorbed
in [229].

Figure 5.3: Schematic of the toroidal device analysed in this section. Dimensions are in metres.

Aiming to fully characterise this device, Figure 5.4 presents the
hydrodynamic characteristics of this WEC, in terms of the follow-
ing frequency-domain key quantities: (a) radiation damping and
radiation added-mass, i.e. Br(ω) and Ar(ω), respectively; (b) fre-
quency response of the radiation dynamics Σr, i.e. Kr(ω); (c) and
the input-output (force-to-velocity) frequency response of the device,
i.e. G(ω).

Figure 5.4: Frequency-domain characteristics of the toroidal device analysed in this section. In particular, (a) presents the
hydrodynamic coefficients Br(ω) and Ar(ω), while (b) and (c) illustrate the frequency response of the radiation system
Kr(ω) and that of the input-output system G(ω), respectively.
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Figure 5.5: SDF Sw corresponding
with the JONSWAP spectrum utilised
to generate the wave input.

Remark 5.3.1 Note that ocean wave peak periods typically lie
between 3 [s] and 16 [s], which directly implies that the frequency
range that characterises the significant dynamics for the wave
excitation force is always approximately [0.4, 2.1] [rad/s]. This
phenomenon is consistent across different geographical locations,
as discussed in [231].

In the light of Remark 5.3.1, a more conservative frequency range
W = [0.3, 3] [rad/s] is considered here, to solve for the model
reduction problem, as described in Section 5.2. This effectively
ensures that the reduced models, computed with the presented
moment-based strategy, represent the target system in the frequency
range characterising the wave input.

For the time-domain numerical simulation cases provided in this
section, a JONSWAP spectrum (see Section 2.1.2) is considered,
characterised by a significant wave height H̄w = 2 [m], a peak wave
period T̄w = 8 [s], and a peak enhancement factor of γ = 3.3.
The SDF Sw, corresponding with such a stochastic description of
ocean waves, is illustrated in Figure 5.5. The total duration of each
generated wave and, hence, each simulation, is set to 200 [s].

In order to obtain statistically meaningful and consistent results for
the time-domain scenario, and since the waves are generated from
sets of random amplitudes [36], it is found that the mean of 15
simulations is necessary to obtain a 95% confidence interval with a
half-width of 0.2% of the mean, computed as in [90].

5.3.1 Input-output model reduction

This section discusses the performance of the moment-based re-
duced models, for the input-output dynamics (force-to-velocity) case,
following the theoretical results developed in Section 5.1, and the
methodology proposed in Section 5.2.1. Recall that a key feature of
this moment-based strategy is that the user is allowed to select a set
of frequencies F to guarantee frequency-domain interpolation, i.e.
a set where the approximating reduced model Σ̃F exactly matches
the steady-state response of Σ in (5.2).

A sensible selection of this set of interpolation points can be per-
formed by analysing the gain of the target frequency response G(ω)
in Figure 5.4 (c), and selecting points that characterise dynamically
important features of the WEC. By way of example, a sensible
selection normally includes the resonant frequency of the device
under analysis (in the DoF) considered. Note that this is, effectively,
the frequency where the maximum amplification occurs, i.e. the
frequency characterising the H∞-norm of the WEC system. Based
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on the previous discussion, different sets of interpolation frequencies
are chosen as follows:

I F1 = {2.3},
I F2 = {1, 2.3},
I F3 = {1, 1.8, 2.3},
I F4 = {1, 1.6, 1.8, 2.3}.

Note that Fi ⊂ Fj for i < j, with {i, j} ⊂ N4. As can be appreci-
ated from Figure 5.4 (c), the set F1 includes a key interpolation
point, which explicitly characterises the H∞-norm of the WEC sys-
tem, i.e. the resonant frequency associated with the DoF under
analysis (heave for this case study).

Remark 5.3.2 The presented moment-based strategy is able to
preserve the H∞-norm of the target system by simply including
the corresponding frequency, characterising such a norm, in the
interpolation set.

The set F2 additionally includes a low-frequency component, while
the sets F3 and F4 further expand F2 by including different mid-
frequency components.

Figure 5.6: Frequency-domain performance of the moment-based reduced models for the toroidal device. In particular, (a),
(b) and (c), show the frequency response of the moment-based systems (solid) Σ̃F1 , Σ̃F2 and Σ̃F3 , i.e. G̃F1 , G̃F2 and
G̃F3 , respectively. The target frequency response G(ω) is depicted in all plots with a dashed line.

The performance of these moment-based reduced models is now
discussed and illustrated for the first three interpolation sets, i.e. F1,
F2 and F3. Figure 5.6 presents the Bode plot, for both the target
frequency response G(ω) (dashed), and the approximating frequency
response mappings13 13: Note that the notation G̃F is

used for the frequency response of
the input-output reduced model by
moment-matching Σ̃F , as in equa-
tion (5.27).

(solid) G̃F1(ω) in (a), G̃F2(ω) in (b), and
G̃F3(ω) in (c). The interpolation points selected for the computation
of each approximating parametric structure are denoted by an empty
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Model Dim NRMSEF NRMSET

Σ̃F1 2 13.90% 26.76%
Σ̃F2 4 9.09% 4.09%
Σ̃F3 6 0.20% 0.19%
Σ̃F4 8 0.15% 0.13%

Table 5.1: Performance of the input-
output (force-to-velocity) moment-
based reduced models for the toroidal
device.

black circle. Note that, as expected by the theoretical foundations
of this moment-based strategy, the approximating models have
exactly the same frequency-domain behaviour as the target model
G(ω) of the WEC system, for each element of the corresponding
interpolation set F . In addition, it can be readily appreciated that,
by a sensible selection of the interpolation frequency set F1, the
model G̃F1 , i.e. a parametric description computed using a single
interpolation point, already provides a reasonably accurate frequency-
domain characterisation when compared with the target steady-state
response of the toroidal WEC under study. Though considering F1
as an interpolation set provides quite accurate results, the decrease
in the overall approximation error from system G̃F1 towards G̃F3

can be clearly appreciated (see also Table 5.1).

Aiming to provide a precise (and more detailed) measure of the
performance of the moment-based reduced models for the toroidal
WEC device considered in this case study, Table 5.1 offers a numerical
comparison in terms of the following key performance indicators:

Dim Dimension (order) of the approximating parametric model.
NRMSEF Normalised Root Mean Square Error (NRMSE) computed

against the target WEC frequency response G(ω), with
ω ∈W .

NRMSET NRMSE computed (in steady-state) against the target
time-domain response of the WEC system obtained di-
rectly from Σ (i.e. explicitly solving the corresponding
convolution integral associated with radiation effects).
The wave excitation input is computed from the (JON-
SWAP) SDF Sw of Figure 5.5.

Note that, for this case study, little improvement can be observed
when considering more than three frequencies in the moment-based
interpolation framework, as can be directly appreciated from Table
5.1. The increase in approximation quality, when considering the
different interpolation sets in time-domain simulations, is consistent
with the previously discussed frequency-domain results, though it
can be appreciated that the approximating model Σ̃F1 presents quite
different behavior in the time-domain compared to the frequency-
domain. This is due to the fact that the waves generated as inputs
for this simulation scenario correspond to a JONSWAP spectrum
with T̄w = 8[s], i.e. a peak SDF frequency of ≈ 0.84 [rad/s]. As can
be appreciated from Figure 5.6 (a), the fit between the frequency
response of Σ̃F1 and the target response of the WEC is relatively poor
in the neighborhood of 0.84 [rad/s], hence directly implying a loss
of performance in this particular time-domain scenario. Finally, and
to further illustrate the time-domain performance of the different
moment-based models, Figure 5.7 presents steady-state motion
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(velocity) time-traces for a particular sea-state realisation, both for
Σ̃F1 in (a), and Σ̃F3 in (b). Note that, while differences can be
effectively appreciated for the case of Σ̃F1 , i.e. a reduced model
by moment-matching using a single interpolation frequency, the
steady-state response of the moment-based system Σ̃F3 is virtually
identical to that of Σ in (5.2).

Figure 5.7: Time-domain perfor-
mance (for a particular sea-state re-
alisation) of the moment-based re-
duced models for the toroidal de-
vice. In particular, (a) and (b), show
the steady-state (velocity) response
of the moment-based systems (solid)
Σ̃F1 , and Σ̃F3 , respectively. The tar-
get response, i.e. the steady-state re-
sponse of system Σ in (5.2), is de-
picted in all plots with a dashed line.

5.3.2 Radiation model reduction

Following Section 5.3.1, an equivalent procedure can be carried out
to compute moment-based reduced order models for the radiation
dynamics, using the theoretical results developed in Section 5.1, and
the methodology proposed in Section 5.2.2.

In other words, selection of the interpolation points can be done
analogously, where any sensible set F would contain the frequency
characterising the H∞-norm of the radiation system Σr, which
appears at ≈ 1.75 [rad/s], for the toroidal device considered in
this case study (see Figure 5.4 (b)). In particular, the following
interpolation sets are considered:

I F1 = {1.75},
I F2 = {0.8, 1.75},
I F3 = {0.8, 1.75, 2.6},
I F4 = {0.5, 0.8, 1.75, 2.6},

where, naturally, Fi ⊂ Fj for i < j, with {i, j} ⊂ N4. Similarly to
the input-output case presented in Section 5.3.1, the performance
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Model Dim NRMSEF

Σ̃rF1 2 68.73%
Σ̃rF2 4 5.84%
Σ̃rF3 6 1.41%
Σ̃rF4 8 0.98%

Table 5.2: Performance of the radia-
tion moment-based reduced models
for the toroidal device.

of these moment-based reduced models, for the radiation system Σr,
is now discussed and illustrated for the first three interpolation sets,
i.e. F1, F2 and F3 defined above. Figure 5.8 shows the Bode plot,
for both the target frequency response Kr(ω) (dashed), and the
approximating frequency response mappings14

14: Analogously to the input-output
case, the notation K̃rF is used for the
frequency response of the radiation
reduced model by moment-matching
Σ̃rF .

(solid) K̃rF1(ω) in
(a), K̃rF2(ω) in (b), and K̃rF3(ω) in (c). The interpolation points
selected for the computation of each approximating parametric
structure are denoted by an empty black circle.

Figure 5.8: Frequency-domain performance of the moment-based reduced models for the radiation dynamics of the toroidal
device. In particular, (a), (b) and (c), show the frequency response of the moment-based systems (solid) Σ̃rF1 , Σ̃rF2 and
Σ̃rF3 , i.e. K̃rF1 , K̃rF2 and K̃rF3 , respectively. The target frequency response Kr(ω) is depicted in all plots with a dashed
line.

In contrast to the input-output reduction case, the performance
obtained with a single frequency component is not sufficiently accu-
rate; as discussed previously in Section 2.6, the input-output model
reduction approach virtually always provides a lower order descrip-
tion to that characterising the radiation dynamics, for equal fidelity
of the overall model. This is easily solved by considering a higher
number of interpolation points, as can be appreciated from Figure
5.8 (and Table 5.2).

Finally, and to provide a precise measure of the frequency-domain
performance of the moment-based reduced models for the radiation
dynamics of the toroidal WEC considered in this case study, Table
5.2 offers a numerical comparison in terms of the same key indicators
utilised in Section 5.3.1, i.e.

Dim Dimension (order) of the approximating parametric model.
NRMSEF NRMSE computed against the target WEC radiation

frequency response Kr(ω), with ω ∈W .

Note that, similarly to the input-output dynamics case, little improve-
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ment can be observed when considering more than three frequencies
in the interpolation scheme, as can be directly appreciated from
Table 5.2.

5.4 On the properties of radiation models

Though Section 5.3.2 presents performance results for the radia-
tion moment-based reduced models in terms of their accuracy in
the frequency domain (with respect to the target response Kr),
a discussion on the fundamental physical properties of radiation
effects, introduced in Section 2.4, is presented in this section. These
properties, for any approximating (reduced) model Σ̃r, are briefly
recalled below, for convenience15 15: The reader is referred to Sections

2.3.2.2 and 2.4 for a comprehensive
discussion on these properties.

.

I Property 1: Σ̃r is BIBO stable.
I Property 2: The complex (transfer) function K̃r(s) is positive-

real.
I Property 3: K̃r(s) has zeros at s = 0.
I Property 4: Σ̃r is strictly proper.

An assessment on the fundamental properties listed above is now
provided, for the moment-based reduced models Σ̃rF2 , Σ̃rF3 and
Σ̃rF4 , computed in Section 5.3.2 for the toroidal device described in
Figure 5.3.

Remark 5.4.1 Σ̃rF1 (or, equivalently, K̃rF1) does not provide
a sufficiently representative response for the radiation dynamics
Σr and, hence, it is excluded from the analysis performed in this
section.

As discussed in the following paragraphs, Properties 1 and 4 are
guaranteed by construction, i.e. they are always fulfilled by the family
of models defined in equation (6.37).

Remark 5.4.2 As a matter of fact, for the case of Property 1,
internal stability (in the Lyapunov sense) is guaranteed by the
strategy, which is naturally a stronger result than BIBO stability.

On the other hand, Properties 2 and 3 are not explicitly guaranteed,
though they are, effectively, virtually always respected by the moment-
based strategy: since the reduced order model matches the moments
of the system, it is not just the result of a low-order reduction but
it actually retains some key properties of the system under analysis
[232]. Nevertheless, aiming to provide as complete a model reduction
framework as possible, systematic methods to guarantee Properties
2 and 3 are given in Sections 5.4.1 and 5.4.2, respectively.
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Property 1

The process to compute the optimal input matrix ∆opt guarantees in-
ternal stability of the family of reduced models by moment-matching
defined in equation (6.37). In other words, internal stability can
be retained by construction, given that λ(S −∆L) can always be
assigned such that λ(S − ∆L) ⊂ C<0, as a consequence of the
observability of the pair (S,L). This can be clearly appreciated in
the pole-zero maps16 16: Following standard conventions

in system dynamics, poles are denoted
with ×, while zeros are depicted with
◦.

presented in Figure 5.9.

Remark 5.4.3 Note that, unlike this moment-based approach,
many of the available model reduction strategies utilised in the
wave energy field (and other marine applications) cannot inherently
preserve internal stability (see Section 2.6).

Figure 5.9: Pole-zero map for
the moment-based reduced models
K̃rF2(s), in (a), and K̃rF3(s), in
(b).

Property 2

Positive-realness of K̃r, for this linear case, is directly related to
the property of passivity (see Section 2.4). If the target frequency-
response data Kr(ω) effectively comes from a passive model17 17: This is clarified since errors can

manifest in BEM codes, producing
target hydrodynamic coefficients that
corresponds with a non-passive sys-
tem, even though (uncontrolled) WEC
systems are, by definition, inherently
passive.

, the
reduced models obtained with the proposed moment-based strategy
are virtually always inherently passive. This can be appreciated in
Figure 5.10, which depicts the Nyquist plot for both K̃rF2(ω) and
K̃rF3(ω). It is clear that <{K̃rF (ω)} > 0, for all ω ∈ R/0 which,
together with the internal stability shown in the pole zero map of
Figure 5.9, directly imply that the models are passive.

Properties 3 & 4

Property 3 manifests itself explicitly in Figure 5.9, where there is
clearly a zero at s = 0, both for the moment-based model K̃rF2(s),
and K̃rF3(s).
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Figure 5.10: Nyquist plot for
the moment-based reduced models
K̃rF2(ω), in (a), and K̃rF3(ω), in
(b).

With respect to Property 4, the family of models defined in equation
(6.37) is strictly proper by construction: the feed-through matrix of
Σ̃rF is always zero, independently on the selection of the interpola-
tion set F involved.

5.4.1 Enforcing passivity

Though, as discussed in Section 5.4, passivity is virtually always
retained by the moment-based strategy (if the interpolation points
are effectively selected in a sensible manner), some specific applica-
tions may require a guarantee of passivity for the reduced model of
the radiation system. In this thesis, an optimisation-based approach
is used to ensure passivity, together with the so-called scattering
representation of a system. To begin this discussion, the following
assumption is required.

Assumption 5.4.1 Consider the set F = {ωp}fp=1, fully charac-
terising the dynamics of the signal generator defined in equation
(5.32). Then, the target interpolation frequency-domain data
points (computed with any suitable hydrodynamic solver) are such
that {<{Kr(ωp)}}fp=1 ⊂ R≥0.

Remark 5.4.4 Assumption 5.4.1 guarantees that the target in-
terpolation values Kr(ωp) effectively correspond with a passive
system, for all p ∈ Nf . Note that this assumption is only required
for any ωp ∈ F . In other words, no hypothesis is required for the
remainder of the frequency points selected in the discretisation
set18 18: Recall that the set Ω contains

the totality of the frequency points
utilised to compute the hydrodynamic
coefficients of the corresponding WEC.

Ω.

Remark 5.4.5 Under Assumption 5.4.1, the family of models
for the radiation system (6.37) parameterised in ∆ ∈ Rν , which
contains all models of dimension ν achieving moment-matching
at (S,L) (see Section 4.2.1), naturally includes a passive model.
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The problem now boils down to the selection of a suitable ∆ such
that the reduced model (6.37) is, effectively, passive. To achieve
such an objective, the so-called scattering representation of a system
is considered herein, as defined below.

Definition 5.4.1 (Scattering representation [233]) Let W be a
system defined, for t ∈ R+, by the set of differential equations

W :
{
ẋ = Ax+Bu,

y = Cx.

The scattering representation of system W is defined as

W s :
{
ẋ = (A−BC)x+

√
2Bl,

o =
√

2Cx− l,
(5.34)

which is obtained by the following coordinate transformation19 19: The variables l and o are usu-
ally referred to as the “incoming” and
“outgoing” waves, respectively [233].

:

l = 1√
2

(u+ y),

o = 1√
2

(y − u).
(5.35)

This particular coordinate transformation is now considered, since it
provides a condition for the passivity of the original system W in
terms of the L2-gain of its scattering representation W s, as recalled
in the following theorem.

Theorem 5.4.1 [224, 233] The system W is passive if and only
if its scattering representation W s has L2-gain ≤ 1.

Theorem 5.4.2 [234] Let W : C→ C, s 7→W (s), be the trans-
fer function associated with system W . The L2-gain of W is equal
to its H∞-norm, i.e. ‖W ‖2 ≡ ‖W (s)‖∞.

Remark 5.4.6 From Definition 5.4.1, one can easily derive that,
in the frequency-domain, the input-output dynamics l 7→ o can
be written in terms of W (ω) as

W s(ω) = W (ω)− 1
W (ω) + 1 . (5.36)

Based on the theory presented in this section, one can adapt the pro-
cedure to compute the optimal gain ∆opt for the radiation dynamics,
i.e. Procedure 1 described in Section 5.2, by simply changing Steps
4 and 5 as follows. Let Ks

r : R→ C be the frequency-response map-
ping of the scattering representation associated with the radiation



5 Reduced models for linear SISO WECs 111

dynamics Kr, i.e.

Ks
r (ω) = Kr(ω)− 1

Kr(ω) + 1 . (5.37)

Then, Steps 4 and 5 of Procedure 1, can be modified as follows:

4 Consider the frequency response of the scattering representation
(as in Definition 5.4.1) of system (6.37) as a function of ∆, i.e.
the mapping K̃s

rF : R×Rν → C given by

K̃s
rF (ω,∆) = 2Y r (jωIν − S + (L+ Y r)∆)−1 ∆− 1. (5.38)

5 Let Ω = {ωi}Mi=1 ⊂W be the (finite) frequency set utilised to
compute the hydrodynamic coefficients Br(ω) and Ar(ω), in the
frequency range W = [ωl, ωu] ⊂ R+. Then, compute the input
matrix ∆opt with the following optimisation-based procedure:

∆opt = arg min
∆∈Rν

M∑
i=1

∣∣∣K̃s
rF (ωi,∆)−Ks

r (ωi)
∣∣∣2 ,

subject to:
‖K̃s

rF (ω,∆)‖∞ ≤ 1,

(5.39)

where Ks
r (ω) is defined as in (5.37).

The objective of the optimisation-based procedure described above
is to compute an optimal input matrix ∆opt such that the reduced
model Σ̃rF minimises the Euclidean distance between K̃rF and
the target frequency response Kr, while ensuring passivity in the
approximating structure. This is demonstrated below by the use of a
particular case study, where the same toroidal device used in Section
5.3 is considered.

Let the frequency set used to compute a reduced model for the
radiation system (as in Section 5.2.2) be F = {1, 1.6, 1.8, 2.3, 2.8},
and the corresponding frequency range, utilised to minimise the
corresponding Euclidean distance to the target data Kr(ω), be
W = [0.3, 3] [rad/s]. With this specific selection of points in F , the
specific frequency range defined in W , and the geometry associated
with the toroidal device presented in Figure 5.3, the resulting moment-
based reduced model, computed following Procedure 1 (see Section
5.2), is non-passive. In the light of this, the passivity enforcement
method proposed in this section is applied to the toroidal device,
considering the same interpolation set F and frequency range W .
The frequency-domain behaviour associated with the moment-based
non-passive (solid) and passive (dotted) models, for the interpolation
set F , is illustrated in Figure 5.11 (a).
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Figure 5.11: Frequency-domain characteristics of moment-based radiation models with preservation of passivity. In particular,
(a) shows the Bode plot of a non-passive (solid) and passive (dotted) moment-based models, for the interpolation set
F = {1, 1.6, 1.8, 2.3, 2.8} (denoted with black circles), while (b) illustrates the magnitude of their corresponding scattering
representations. The target data Kr(ω), in (a), and Ks

r (ω), in (b), are depicted in dashed lines.

Figure 5.11 (b) shows the frequency response of the scattering
representations associated with non-passive (solid), and passive
(dotted), moment-based models, along with the target scattering
(dashed-black) data Ks

r (ω). The corresponding passivity violation
can be clearly appreciated, i.e. the frequency-response (magnitude)
of the scattering representation associated with the non-passive
model has values over the 0 [dB] line (depicted in dashed-red),
while that of the model computed with the moment-based passivity
preserving strategy, described in this section, effectively has a H∞-
norm less than 1 (see Theorem 5.4.1). This can be also appreciated
in Figure 5.12, where the Nyquist plot of the non-passive (solid),
and passive (dotted) moment-based models, are presented. Note
that the real part of the frequency response associated with the
passive model is always defined over the positive real axis, for all
ω ∈ R, directly agreeing with Property 2 listed in the first paragraph
of Section 5.4.

Figure 5.12: Nyquist plot for a
non-passive (solid) and passive (dot-
ted) moment-based radiation mod-
els, for the interpolation set F =
{1, 1.6, 1.8, 2.3, 2.8}.
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5.4.2 Enforcing zeros at s = 0

The existence of zeros at s = 0 is directly related to the hydro-
dynamic nature of the radiation process. As discussed in Section
2.3.2.2, the impulse response function kr, characterising the memory
effects of the fluid, is such that

lim
ω→0

Kr(ω) = 0, (5.40)

which automatically implies that s = 0 is a zero20 20: The algebraic multiplicity of this
zero is, in principle, dependent on the
geometry under analysis.

of Kr(s).

That said, if required, enforcing (5.40) for the reduced model Σ̃r
can be carried out straightforwardly with the presented moment-
based strategy, by simply matching the 0-order moment of Σr at
s = 0. This can be done by proposing a suitable modification of
the signal generator defined in equation (5.32). In particular, the
dynamic matrix S in (5.6) can be modified to include s = 0 as an
interpolation point, by using an appropriate direct sum, i.e.

S0 = 0⊕

 f⊕
p=1

[
0 ωp

−ωp 0

] = 0⊕ S, (5.41)

where the matrix S0 ∈ Rν+1×ν+1.

Remark 5.4.7 Note that the interpolation points defined in
the matrix S0 are now fully characterised by the set F0 =
0 ∪ {ωp}fp=1 = 0 ∪F ⊂ R+.

Following the same steps of Proposition 5.1.1, it can be proved
straightforwardly that the moment-domain equivalent for the radia-
tion system, for a signal generator defined by the (observable) pair
(S0, L0), Lᵀ0 ∈ Rν+1, is given by,

Y r0 = L0 (Kr(0)⊕R) = L0 (0⊕R) , (5.42)

where the matrix R ∈ Rν×ν is as in Proposition 5.1.1, and the
relation Kr(0) = 0 follows directly from equation (5.40). With this
result, one can automatically write the family of models achieving
moment-matching for the radiation system Σr at (S0, L0), as

Σr ≈ Σ̃rF0 :
{

Θ̇ = (S0 −∆0L0)Θ + ∆0ż,

ỹr = Y r0Θ,
(5.43)

where the input matrix ∆0 ∈ Rν+1 can be computed following
an analogous procedure to that described in Section 5.2.1, i.e.
Procedure 1.
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5.5 Conclusions

Motivated by the inherent necessity of suitable model reduction tech-
niques to express Cummins’ formulation in a state-space (parametric)
form (see Section 2.4), this chapter presents a moment-matching
model reduction framework, for linear SISO WEC devices (i.e. con-
strained to move in a single DoF). To fulfill such an objective, the
moment of the non-parametric system Σ, defined in equation (5.1),
is derived, to later define a suitable family of models achieving
moment-matching. In particular, the proposed moment-based formu-
lation allows the user to exactly match the steady-state behaviour
of the device under analysis at a set of key frequencies, such as the
resonant frequency (i.e. the frequency characterising the H∞-norm
of the specific DoF under analysis), retaining important physical
properties of the studied WEC.

The methodology is proposed both to compute a reduced order
model for the input-output (force-to-motion), and radiation dynam-
ics. Unlike the strategies proposed in the literature of linear model
reduction for WEC applications, reviewed in Section 2.6, specific
methodologies are presented to preserve all the physical properties
associated with radiation effects: BIBO stability, passivity, zero dy-
namics, and strict properness. Both the efficacy, and each of the
underlying features of this moment-based model reduction frame-
work, are presented and demonstrated with a case study, where a
toroidal WEC is considered, constrained to move in heave.

Though not discussed in this chapter, the family of moment-based
reduced models presented shares a strong connection with unknown-
input estimation techniques applied in the wave energy field, which
can be exploited to provide efficient parameterisations, tailored for
wave excitation force estimation (see Section 3.2.1). This is discussed
in detail in Chapter 6, where a linear MIMO moment-matching model
reduction framework is proposed for WECs, extending the results of
this chapter to either multi-DoFs or arrays of wave energy systems.
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Recall, from Section 2.4, that the equation of motion for a WEC,
under the assumptions of linear potential flow theory (see Section
2.3.1), can be expressed in terms of Cummins’ equation (2.20). This
equation is recalled below, for a N -DoF WEC device, with N ∈ N
for convenience:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe) ,
y = ż,

(6.1)

where z : R+ → RN is the displacement vector, kr : R+ → RN×N ,
krij ∈ L2(R), ∀{i, j} ⊂ NN , the radiation impulse response (matrix)
function, fe : R+ → RN the wave excitation, andM is the inverse
of the generalised mass matrix of the device.

Remark 6.0.1 As discussed in Section 2.4, note that the structure
of equation (6.1) can be used to alternatively describe the motion
of a N -DoF WEC device, or an array of N devices, with each
WEC constrained to move in a single DoF1 1: Naturally, one can also consider

arrays of multi-DoF WECs within the
same formulation, by ‘extending’ the
dimensions (order) associated with
the matrices in (6.1). Nevertheless,
this is omitted in this chapter, aiming
to alleviate the notation used through-
out each corresponding section.

. Only the specific
entries of kr, sh and M are different. The reader is referred to
[49] for further detail on this topic.

Remark 6.0.2 Throughout the theoretical results of this chapter,
the term N -th order WEC system (or device), is utilised to refer
either to an N -DoF WEC device, or an array of N devices, each
constrained to move in a single-DoF. Each ‘order’ represents
either a DoF associated with a multi-DoF WEC, or a single device
composing a WEC farm, respectively.

In contrast to the case of a single-DoF device, an N -th order WEC
represents not only a wave absorber but also a wave generator [49],
i.e. the motion of each ‘order’ of the WEC is directly affected by
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the waves generated by other devices/DoF, due to radiation effects.
This ‘feature’ often produces mathematical representations that
are not tractable (either computationally or representatively) for
key components facilitating the maximisation of energy absorption
from ocean waves, such as real-time optimal controllers and wave
excitation force estimators.

Similarly as in the SISO case presented in Chapter 5, the presence of
the non-parametric convolution operation in equation (6.1), related
to radiation effects, represents both a representative and a computa-
tional drawback for a variety of applications (including WEC control
and state-estimation design). Model reduction techniques can be
used to parameterise this non-parametric operator, in terms of a
state-space representation, which should ideally retain the underlying
physical properties that characterise the WEC dynamics.

This chapter proposes an extension of the moment-matching-based
model reduction framework, developed in Chapter 5, for MIMO
systems. To achieve such an objective, the first contribution of this
chapter is the formal extension of the system-theoretic definition
of moments2 2: Previous literature in moment-matching,

for the MIMO case, utilises the so-
called tangential interpolation frame-
work [221]. This is not pursued herein,
given that these models based on tan-
gential interpolation do not exactly
preserve steady-state response charac-
teristics. This is discussed with more
detail in Section 6.1.

, as provided in Chapter 4, for linear MIMO systems.
This is achieved by proposing a suitable modification of the single-
output signal generator introduced in Section 4.1.1, and by providing
a formal definition of a MIMO reduced order model by moment-
matching, for a generic linear system structure. With this definition,
a family of reduced order models, achieving moment-matching, is
proposed for the non-parametric equation (6.1), hence providing
a moment-based model reduction approach for N -th order WEC
systems. As per the SISO linear model reduction theory recalled
in Chapter 4, these MIMO moment-based reduced structures are
such that the transfer function, associated with such approximating
models, exactly matches the steady-state behavior of the target
system at a specific user-selected set of interpolation frequencies.

As in the single-DoF (SISO) WEC case, the moment-based approx-
imation framework, proposed in this chapter, is presented in two
different modalities: input-output (force-to-motion), and radiation
effects model reduction. The former deals with producing (paramet-
ric) reduced order models from an input-output perspective, i.e.
system Σ defined in equation (6.1), while the latter approximates
the radiation subsystem Σr (defined in Section 2.4), to later ‘embed’
into Cummins’ formulation, as demonstrated in equation (2.22).

In addition, taking explicit advantage of the (frequency) interpola-
tion feature of the proposed moment-based strategy, the existence
of an intrinsic connection between the wave excitation force esti-
mation problem, and the moment-based parameterisation method
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proposed in this thesis, is explicitly shown, in terms of the unknown-
input estimation strategy presented in [90]. Particularly, the strategy
presented in [90] has been proven to outperform state-of-the-art
unknown-input (observer) strategies applied in the wave energy field,
both in terms of estimation accuracy and computational time [15].
This technique is based on optimal state-estimation theory, and
presents a combination of Kalman filtering [235] and the internal
model principle3 3: Note that, as reported in [15], the

combination of modern state-estimation
strategies and the internal model prin-
ciple has been exploited in several
wave excitation force estimation stud-
ies, using a variety of state observers.

of control theory [236]. This mathematical correla-
tion can be exploited to compute low-order models which provide
a high degree of wave excitation force estimation accuracy, with
a significant improvement in terms of computational requirements.
This has strong practical implications, being particularly appealing
for real-time (combined) estimation and optimal control of wave
energy farms.

The remainder of this chapter is organised as follows. Section 6.1
generalises the notion of moments for MIMO linear systems, giving
an explicit definition of a MIMO reduced order model by moment-
matching. Using these results and definitions, Section 6.2 proposes a
MIMO moment-based formulation for WECs, to explicitly compute
the moment-domain equivalent associated with the non-parametric
system (6.1). Section 6.3 outlines the proposed methodology behind
the computation of moment-based reduced order models, both for
the input-output system Σ, and the radiation dynamics, defined by
Σr. Section 6.4 provides a case study for the input-output dynamics
reduction case, utilising a particular WEC array composed of 1-DoF
state-of-the-art devices. Using this same array layout, Section 6.5
discusses and illustrates the synergy between the unknown-input
estimation problem in wave energy, and the moment-based MIMO
framework developed in this chapter. For the radiation dynamics
case, Section 6.6 provides a case study in terms of a multi-DoF WEC
(instead of a WEC array as in the input-output case), to illustrate
the performance of the presented strategy, making emphasis in
the capabilities of retaining the physical properties associated with
radiation effects (listed in Table 2.1). Finally, the main conclusions
of this chapter are encompassed in Section 6.7.

6.1 Model reduction by moment-matching for
linear MIMO systems

Consider a finite-dimensional, MIMO, continuous-time system de-
scribed, for t ∈ R+, by the state-space model

ẋ = Ax+Bu,

y = Cx,
(6.2)
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with4 4: Without any loss of generality, the
focus is put on square systems, aiming
to simplify the notation.

x(t) ∈ Rn, u(t) ∈ Rq and y(t) ∈ Rq. The (constant) matri-
ces composing (6.2) are such that A ∈ Rn×n, {B,Cᵀ} ⊂ Rn×q.
Consider the associated transfer function W : C → Cq×q, s 7→
C(sIn −A)−1B, and assume that (6.2) is minimal.

Consider the following multiple-output signal generator described,
for t ∈ R+, by the set of differential equations

ξ̇ = (Iq ⊗ S)ξ,
u = Lξ,

(6.3)

with ξ(t) ∈ Rqν , L ∈ Rq×qν , ξ(0) ∈ Rqν , and the matrix S ∈ Rν×ν

is exactly as in the single-output signal generator defined in equation
(4.3). An analogous assumption, to that defined in Assumption 4.1.1,
is now introduced.

Assumption 6.1.1 The triple of matrices (L, Iq ⊗ S, ξ(0)) is
minimal.

A proposition is now presented, which provides an ‘adaptation’ of
Lemma 4.1.1 for the MIMO case, exploiting an explicit connection
with the signal generator defined for the SISO case (4.3), in terms
of the operator S.

Proposition 6.1.1 Suppose Assumptions 4.1.2 and 6.1.1 hold,
and that system (6.2) is asymptotically stable in the Lyapunov
sense, i.e. λ(A) ⊂ C<0. Then, there is a unique matrix Π ∈
Rn×qν which solves the Sylvester equation

Π(Iq ⊗ S) = AΠ +BL, (6.4)

and the steady-state response of the interconnected system (6.2)-
(6.3) is xss(t) = Πξ(t), for any x(0) and ξ(0).

Moreover, under the same set of assumptions, there exists a one-
to-one relation between the moments5 5: Recall that the 0-order moment is

η0(s∗) = C(s∗In − A)−1B ∈ Cq×q,
with s∗ ∈ C/λ(A) (see Definition
4.1.1).

η0(s1), η0(s2), . . . , η0(sν),
with si ∈ λ(S), ∀ i ∈ Nν , and the steady-state output response
yss(t) = CΠξ(t). In fact, the moments are uniquely determined
by the matrix CΠ.

Proof. The proof of this proposition follows the same arguments
as those for the SISO case considered in [20] and, hence, it is
omitted. �

Definition 6.1.1 Suppose the assumptions of Proposition 6.1.1
are fulfilled. The matrix CΠ is the moment of system (6.2) at
(S,L), i.e. at the signal generator (6.3).
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Remark 6.1.1 Previous literature in moment-matching, for the
MIMO case, utilises the so-called tangential interpolation frame-
work [221], which does not ‘extend’ the matrix S as a function of
the number of inputs, i.e. q ∈ N≥1. Here, and as in the SISO case
discussed in Chapter 3, there is special interest in retaining the
exact same steady-state response for the N -th order WEC system,
in spite of the consequent increase in model order with respect
to the tangential approach, which interpolates W (s) at specific
‘directions’ in Cq, rather than complex points. One of the main
motivations behind this argument stems from the fact that retain-
ing an exact steady-state response in the reduced model greatly
increases the accuracy of unknown-input estimation procedures,
as discussed and illustrated in Section 6.5. This exact steady-
state response connection is also exploited for control purposes,
in Chapter 9.

Remark 6.1.2 Analogously to the linear SISO case, presented
in Section 4.1.1, the moment for system (6.2) is computed in
terms of the unique solution of a Sylvester equation, i.e. equation
(6.4). In addition, the matrix CΠ ≡ Y is referred to as the
moment-domain equivalent of y.

Based on this steady-state characterisation of moments, provided
in Proposition 6.1.1, Definition 4.2.1 and Lemma 4.2.1 can be
adapted for the MIMO case straightforwardly, as detailed in the
following.

Definition 6.1.2 Consider the signal generator (6.3). The system
described by the equations

Θ̇ = FΘ + ∆u,
θ = QΘ,

(6.5)

with Θ(t) ∈ Rqν , θ(t) ∈ Rq, F ∈ Rqν×qν and {∆, Qᵀ} ⊂ Rqν×q,
is a model of system (6.2) at (S,L) if system (6.5) has the same
moments at (S,L) as system (6.2). In addition, system (6.5) is
a reduced order model of system (6.2) at (S,L) if qν < n.

Lemma 6.1.2 [20, 21] Consider system (6.2) and the signal gen-
erator (6.3). Suppose Assumptions 4.1.2 and 6.1.1 hold, and that
system (6.2) is asymptotically stable, i.e. λ(A) ⊂ C<0. Then, sys-
tem (6.5) is a model of system (6.2) at S if 6 6: Note that λ(I⊗M) = λ(M) for

any matrix M ∈ Rn×n [24].
λ(F ) ∩ λ(S) = ∅

and
CΠ = QP, (6.6)

where CΠ = Y is the moment-domain equivalent of the output of
system (6.2), computed from (6.4), and P is the unique solution
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of the Sylvester equation

P (Iq ⊗ S) = FP + ∆L. (6.7)

Remark 6.1.3 As in the linear SISO case of Section 4.2.1, the
steady-state output of the reduced order model (6.5) exactly
matches the steady-state output of the system resulting from the
interconnection of system (6.2) and the signal generator (6.3),
provided λ(F ) ⊂ C<0.

6.2 Moment-based WEC formulation for
MIMO model reduction

As in the SISO model reduction technique introduced in Chapter
5, and given that moments for MIMO systems, as defined herein in
Section 6.1, are also inherently based on the knowledge of a state-
space representation of the system to be reduced, the equation of
motion characterising Σ, i.e. equation (6.1), needs to be re-written
in a more suitable structure. The following equivalent representation,
is proposed:

Σ :
{
ẇ = Aw +Bυ,

y = Cw,
(6.8)

for t ∈ R+, where w(t) =
∑N
i=1 e

N
i ⊗

[
zi(t) żi(t)

]ᵀ
∈ R2N con-

tains displacement and velocities for each N -th device or DoF
involved in the equation of motion, i.e. each ‘order’ of the WEC
system7 7: Notation directly inherited from

Remark 6.0.2.
, and the (constant) matrices A ∈ R2N×2N , B ∈ R2N×N

and C ∈ RN×2N are defined as

A =
N∑
i=1

N∑
j=1

eNij ⊗

 0 i
jδ

−Mijshi 0

 ,
B =

N∑
i=1

N∑
j=1

eNij ⊗
[

0
Mij

]
,

C = IN ⊗ [0 1],

(6.9)

Analogously to equation (5.4), the ‘input’ function υ : R+ → RN ,
is defined as

υ = fe − kr∗ ż = fe − kr∗Cw. (6.10)

Within the moment-based formulation introduced in Section 6.1, the
mapping associated with the external input, fe, is written in terms of
an autonomous multiple-output signal generator (analogously to the
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case of equation (6.3)), i.e. using the set of differential equations

ξ̇ = (IN ⊗ S)ξ,
fe = Lξ,

(6.11)

for t ∈ R+, with ξ(t) ∈ RNν , S ∈ Rν×ν and L ∈ RN×Nν . Recall
that Assumptions 6.1.1 and 4.1.2 are required to have a well-posed
system-theoretic definition of moments. These are discussed, for the
MIMO WEC case, in the following paragraphs.

With respect to Assumption 4.1.2, which poses a set of characteristics
for λ(S), a finite-set F = {ωp}fp=1 ⊂ R+ is considered (as for the
SISO case of Section 5.1), and the dynamic matrix S is written in a
block-diagonal form as,

S =
f⊕
p=1

[
0 ωp
−ωp 0

]
, (6.12)

with ν = 2f , f ∈ N≥1, and λ(S) = (jF ) ∪ (−jF ) ⊂ C0.

Remark 6.2.1 As per the theory proposed in Section 6.1, the
dynamic matrix S for this MIMO case is shared with the SISO
technique proposed in Chapter 5: Each ωp defined in (6.12) repre-
sents a desired interpolation point for the MIMO model reduction
process.

With respect to Assumption 6.1.1, and without any loss of generality,
the initial condition of the signal generator is set to ξ(0) = εNν , so
that the minimality condition on the triple (L, IN ⊗ S, εNν) holds
as long as the pair (IN ⊗ S,L) is observable.

Under this selection of matrices, the moments of system (6.8),
driven by the signal generator (6.11), can be computed by solving a
specific Sylvester equation (as in Proposition 6.1.1). Such a moment
equation can be specialised for the MIMO WEC case as

AΠ +B (L−Kr) = Π(IN ⊗ S), (6.13)

where Π ∈ R2N×Nν and Kr ∈ RN×Nν is the moment-domain
equivalent of the radiation force, for the MIMO radiation system
Σr. The moment-domain equivalent of the velocity, which is the
key theoretical tool to develop reduced order models by moment-
matching (as in Lemma 6.1.2), can be expressed in terms of the
solution of (6.13) as Ż = CΠ.

As in the SISO case, the term Kr clearly depends on the matrix Π.
A formal definition for the moment-domain equivalent Kr is given
in the following.
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Proposition 6.2.1 The moment-domain equivalent of the con-
volution integral in (6.1) can be computed as

Kr =
N∑
i=1

N∑
j=1

eNij Ż (IN ⊗Rij) , (6.14)

where each Rij ∈ Rν×ν is a block-diagonal matrix defined as

Rij =
f⊕
p=1

[
i
jrωp

i
jmωp

−ijmωp i
jrωp

]
, (6.15)

with

i
jrωp = Bij(ωp) i

jmωp = ωp
[
Aij(ωp)−m∞ij

]
, (6.16)

where Aij(ω) and Bij(ω) are the ij-th entries of the added-mass
and radiation damping matrix of the MIMO WEC, respectively,
at each specific frequency induced by the eigenvalues of S, and
m∞ij is the ij-th entry of the matrix m∞.

Proof. The proof of this statement follows the same arguments
presented for the SISO case (see Proposition 5.1.1), and, hence, is
omitted. �

Finally, the following two propositions, that address the uniqueness
of the solution of the Sylvester equation (6.13), for the MIMO WEC
case, and the explicit computation of the moment equivalent Ż, are
now stated.

Proposition 6.2.2 The solution of the Sylvester equation (6.13)
is unique if and only if

λ

 f⊕
p=1

[
Tp 0
0 Tp

] ∩ λ(S) = ∅, (6.17)

where each matrix Tp is defined as

Tp = A−B(Trωp + jTmωp )C, (6.18)

with

Trωp =
N∑
i=1

N∑
j=1

i
jrωp ⊗ eNij , Tmωp =

N∑
i=1

N∑
j=1

i
jmωp ⊗ eNij . (6.19)

Proof. A direct application of the vec operator to equation (6.13)
(and considering Property 1.3.1 and the bilinearity and associativity
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property of the Kronecker product) yields the equivalent linear system
of equations

(IN ⊗ Φ) vec{Π} = vec {−BL} , (6.20)

where the matrix Φ ∈ R2Nν×2Nν is defined as

Φ =
(
S ⊕̂A

)
+

N∑
i=1

N∑
j=1

Rᵀij ⊗−Be
N
ijC. (6.21)

From (6.20), one can automatically conclude that the solution of
the Sylvester equation (6.13) is unique if and only if 0 /∈ λ(Φ). As a
consequence of the block-structure of each of the matrices involved
in (5.19), the matrix Φ can be always written in a block-diagonal
structure, i.e. Φ =

⊕f
p=1 Φp. Therefore, the matrix Φ is invertible if

and only if8 8: Note that, for any matrix M ∈
C
n×n, λ(I⊗M) = λ(M) [24].

each block Φp is invertible.

After algebraic manipulation of (6.21), each block composing Φ can
be expressed as

Φp =
[

A−BTrωpC ωpI2N +BTmωpC

−ωpI2N −BTmωpC A−BTrωpC

]
, (6.22)

where Trωp and Tmωp are defined in (6.19). Consider now the (in-
vertible) matrix

W =
[
I2N jI2N
I2N −jI2N

]
, (6.23)

and the similarity transformation WΦp = WΦpW
−1, which yields

WΦp = −
[
jωpI2N − Tp 0

0 jωpI2N − Tp

]
, (6.24)

where one can straightforwardly conclude that Φp is invertible if and
only if

λ

([
Tp 0
0 Tp

])
∩ λ(S) = ∅ (6.25)

Finally, the claim follows repeating the same analysis for each block
of Φp with p ∈ Nf . �

Proposition 6.2.3 Suppose (6.17) holds. Then, the moment-
domain equivalent of the output y of the MIMO WEC system
(6.8) can be uniquely determined as

vec{Ż} = (IN ⊗ ΦR) vec {L} , (6.26)
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where

ΦR = (Iν ⊗ C)Φ−1(Iν ⊗−B),

Φ =
(
S ⊕̂A

)
+

N∑
i=1

N∑
j=1

Rᵀij ⊗−Be
N
ijC,

(6.27)

with Φ ∈ R2Nν×2Nν and ΦR ∈ RNν×Nν .

Proof. Recall that Ż = CΠ. Then, if equation (6.17) holds, equation
(6.26) follows directly from (6.20). �

Remark 6.2.2 Similarly to the SISO WEC case of Chapter 5,
equation (6.17) always holds for the MIMO WEC case, since it
follows from the internal stability of (6.8) (see Section 2.4) that
λ(Tp) ⊂ C<0 for all p ∈ Nf .

6.3 Reduced models achieving
moment-matching

With the theoretical results proposed in Section 6.2, it is possible to
compute reduced order models both for the input-output (force-to-
motion) dynamics, i.e. a system Σ̃ approximating Σ in (6.8), and
the radiation system, i.e. a system Σ̃r approximating Σr. In contrast
to the SISO case discussed in Chapter 5, this section considers the
theoretical structure behind the family of systems (6.5) achieving
moment-matching at the user-selected set of frequencies F , in
synergy with some of the main notions behind frequency-domain
subspace-based identification methods, as proposed in [237], and
briefly recalled in the subsequent sections.

Remark 6.3.1 Consider the input-output dynamics Σ. One could
follow an analogous procedure to that of Chapter 5: Let P in
equation (6.7) be such that P = INν . Then,

Σ ≈ Σ̃F :
{

Θ̇ = (IN ⊗ S −∆L)Θ + ∆fe,

ỹ = ŻΘ,
(6.28)

is the family of reduced order models, for t ∈ R+, parameterised in
∆ ∈ RNν×N , containing all the models of dimensionNν achieving
moment-matching at (S,L), i.e. interpolating the moments of
system (6.8) at the eigenvalues of the matrix S, and where Ż
is as in Proposition 6.2.3. Note that, observability of the pair
(IN ⊗ S,L) guarantees that the eigenvalues of (6.28) can be
assigned arbitrarily. Nevertheless, for this MIMO case, there is
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an infinite set of (constant) gains ∆ for each particular desired
set of eigenvalues [75]. In other words, if one attempts to follow
an analogous procedure to that described in Section 5.2, i.e.
Procedure 1, the search space of the related optimisation problem
becomes substantially more complex.

6.3.1 Input-output dynamics

The rationality behind Remark 6.3.1 motivates the following proce-
dure, where an optimal input matrix ∆opt is computed, based on
the concepts discussed below.

Following well-established theory on subspace-based methods, re-
ported in, for instance, [237], both the dynamic and output matrix
from system (6.8) can be approximated in terms of the singular
value decomposition of the Hankel matrix Ĥ, constructed9 9: The reader is referred to [237] for

further details on the computation of
the Hankel matrix Ĥ associated with
a given dynamical system Σ.

from the
input-output frequency-domain data of the MIMO WEC, computed
(with BEM solvers) at the finite set of uniformly spaced frequen-
cies Ω. The α-dimensional approximated matrices dÂα ∈ Rα×α,
Ĉα ∈ RN×α (where dÂα corresponds to a discrete-time model) can
be computed [237] as

dÂα = (J1Ûα)†J2Ûα, Ĉα = J3Ûα, (6.29)

where the singular value decomposition of the Hankel matrix is
written as

Ĥ =
[
Ûα Ûo

] [Σ̂α 0
0 Σ̂o

] [
V̂ ᵀα
V̂ ᵀo

]
, (6.30)

and the matrices {J1, J2} ⊂ R(N−1)N×N2 , J3 ∈ RN×N2 are

J1 =
[
I(N−1)N

0

]ᵀ
, J2 =

[
0

I(N−1)N

]ᵀ
, J3 =

[
IN

0

]ᵀ
. (6.31)

Remark 6.3.2 Note that, with knowledge of the frequency sam-
pling value associated with the set Ω, the continuous-time equiv-
alent matrix Âα can be computed directly from dÂα using, for
instance, the bilinear (Tustin) mapping, as discussed in [237].

Remark 6.3.3 If dÂα, computed as in (6.29), has unstable eigen-
values, one can always project such a set into the complex unit
circle, following the procedure described in [237]. This guarantees
the computation of a Jury matrix dÂα, if required.

With the theory recalled above, an algorithm to compute a moment-
matching-based reduced model of the input-output WEC dynamics,
is proposed, explicitly exploiting the result of Proposition 6.2.3 and
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the system-theoretic structure of the family of systems (6.5). The
complete procedure is summarised in the following steps, listed
below.

Procedure 2: MIMO model reduction procedure for WECs

1 Select a set of f interpolation points (frequencies) F = {ωp}fp=1 ⊂
R+ to achieve moment-matching.

2 Compute the matrix IN ⊗ S following (6.12) and select any L
such that the pair (IN ⊗ S,L) is observable.

3 Calculate the moment-domain equivalent of the output of system
(6.8), i.e. Ż, using the result of Proposition 6.2.3.

4 Compute the matrices ÂNν and ĈNν using the frequency-domain
data points associated with the input-output response of the
WEC G(ω), as described in equation (6.29).

5 Consider the family of systems (6.5) and set F = ÂNν and
Q = ĈNν .

6 Consider the frequency response of (6.5) as a function of ∆ i.e.
the mapping G̃F : R×RNν×N → CN×N given10

10: Note that the mapping G̃F is
linear in the argument ∆.

by

G̃F (ω,∆) = Q (jωINν − F )−1 ∆. (6.32)

7 Let Ω = {ωi}Mi=1 ⊂W be the (finite) frequency set utilised to
compute the hydrodynamic coefficients Br(ω) and Ar(ω), in the
frequency range W = [ωl, ωu] ⊂ R+. Then, compute the input
matrix ∆opt with the following optimisation-based procedure:

∆opt = arg min
∆∈RNν×N

M∑
i=1

∥∥∥G̃F (ωi,∆)−G(ωi)
∥∥∥2

F
,

subject to:
FP + ∆L = P (IN ⊗ S),
QP = Ż.

(6.33)

8 Compute an Nν-dimensional input-output WEC time-domain
model achieving moment-matching at (S,L) from (6.5) as

Σ ≈ Σ̃F :
{

Θ̇ = FΘ + ∆optfe,

ỹ = QΘ.
(6.34)

Procedure 2 is based on the idea of building the reduced order
model Σ̃F , matching the f (user-defined) frequencies of the set F ,
exploiting the system structure of (6.5), and solving an equality-
constrained optimisation problem. Summarising, this optimisation
process computes the input matrix ∆opt that minimises the difference
between the target frequency response and that of (6.5) (in terms
of the matrix Euclidean norm) while guaranteeing the moment-
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matching conditions in the obtained reduced model. The optimisation
problem of Procedure 2 is a constrained least-squares problem and
can be solved using state-of-the-art solvers, such as those detailed
in, for instance, [207].

Remark 6.3.4 The model computed with Procedure 2 has dimen-
sion Nν with ν = 2f , where N is either the number of devices
in the WEC array, or the number of DoF considered for a single
device, and f is the number of interpolation points (frequencies)
selected in the set F .

6.3.2 Radiation dynamics

A reduced order model for the radiation system Σr can be obtained
following an analogous procedure to that considered for the input-
output (force-to-motion) case. In particular, let the velocity vector
ż be expressed as a multiple-output signal generator, in the same
fashion as equation (6.11), i.e.

ξ̇ = (IN ⊗ S)ξ,
ż = Lξ,

(6.35)

where the structure of S is as in equation (5.6), and any L such that
the pair (IN ⊗ S,L) is observable. Then, recalling the result posed
in Proposition 6.2.1, the moment-domain equivalent of system Σr,
i.e. yr, can be directly obtained as

Y r =
N∑
i=1

N∑
j=1

eNijL (IN ⊗Rij) , (6.36)

and a reduced order model can be computed as

Σr ≈ Σ̃rF :
{

Θ̇ = FΘ + ∆optż,

ỹr = QΘ,
(6.37)

where the set of matrices {F,Q,∆opt} can be analogously computed
using Procedure 2 (described in Section 6.3.1), by simply replacing
Ż by Y r, and the device frequency response G(ω) by that of the
radiation force, i.e. Kr(ω) (defined in Section 2.3.2.2).

6.4 Input-output case study: an array of
CorPower-like devices

This section presents an application case to illustrate and analyse
the proposed strategy for the input-output model reduction by
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moment-matching case, based on the square WEC array layout
studied in [90], and depicted in Figure 6.1. This particular layout is
composed of N = 4 energy converters, where the geometry of each
of the four devices composing the WEC farm corresponds with a
state-of-the-art full-scale CorPower11 11: See [238] for up-to-date detail on

this device.
-like device oscillating in heave

(translational motion). Such a device is illustrated in Figure 6.2,
along with its corresponding physical dimensions specified in metres.
These dimensions are based on the experimental study performed in
[239], which have also been considered in [240].

Figure 6.1: Regular-polytope-type WEC array layout considered for the application case. The distance d between devices is
set to twice the diameter of the upper part of the float, i.e. d ≈ 17 [m]. The dotted arrows represent the hydrodynamic
interaction between WECs in the array, while β denotes the incident wave direction.

Figure 6.2: Schematic and dimensions of the CorPower-like device as studied in [239, 240]. Dimensions are in metres.

To fully characterise this farm, Figure 6.3 presents the hydrodynamic
characteristics of the WEC array considered in this application case,
in terms of its corresponding radiation damping and radiation added-
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Figure 6.4: JONSWAP spectra
utilised to generate the wave inputs,
with T̄w = 7.5 [s], H̄w ∈ {1.5, 2, 3}
[m] and γ = 3.3.

mass matrices, i.e. Br(ω) and Ar(ω), respectively. Note that, since
the devices composing the WEC farm are identical (i.e. CorPower-like
devices), the corresponding hydrodynamic characteristics (including
interactions arising due to radiation effects) present symmetrical
behavior, in accordance with the layout depicted in Figure 6.1. That
said, only three elements of the matrices {Br(ω), Ar(ω)} ⊂ R4×4

are required to completely characterise the hydrodynamic parameters
of the complete array. These are plotted in Figure 6.3, along with
the corresponding symmetry pattern12 12: The reader is referred to [49] for

an extensive discussion on the hydro-
dynamic coefficients of WEC arrays
and the principles behind this sym-
metrical behaviour.

for Br(ω) and Ar(ω).

Figure 6.3: Hydrodynamic charac-
teristics of the CorPower-like WEC
farm, in terms of the matrices Br(ω)
(dotted, left axis) and Ar(ω) (dashed,
right axis). Note that there is a one-
to-one relation between the colors of
the lines and the corresponding sym-
metry pattern depicted in the figure.

Irregular waves are considered as inputs, corresponding with a JON-
SWAP SDF Sw (see Section 2.1.2) with a peak period T̄w = 7.5
[s], significant wave height H̄w in the set {1.5, 2, 3} [m] and peak
enhancement factor γ = 3.3 (shown in Figure 6.4). The total du-
ration of each generated wave and, hence, each simulation, is set
to 200 [s]. Analogously to the SISO case discussed in Section 5.3,
the frequency set W , used explicitly to compute the reduced order
models by moment-matching considered in this section, is set to
W = [0.3, 3] [rad/s]. Finally, without any loss of generality, the
incident wave direction β is set to β = 0 (see Figure 6.1).

Similarly to the SISO case presented in Chapter 5, and aiming to
obtain statistically meaningful and consistent results for the time-
domain scenarios, it is found that the mean of 15 simulations is
necessary to obtain a 95% confidence interval with a half-width of
0.2% of the mean, also computed as in [90].

Remark 6.4.1 From now on, the notation Gij(ω) is used for the
ij-th element of the matrix G(ω). More precisely, Gij : R→ C
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Figure 6.5: Singular values plot (also
known as sigma plot) for the target
response of the WEC array G(ω).

is the frequency response mapping between the wave excitation
force acting on the i-th device fei , and the output velocity of the
j-th device żj .

Following the theoretical results developed in Section 6.3, and the
method proposed in Procedure 2, an explicit computation of a
moment-based reduced model Σ̃F is considered, aiming to approxi-
mate the force-to-velocity dynamics Σ described in Equation (6.8).
To fulfill this objective, the target frequency response operator G(ω),
computed using BEM codes, is explicitly used (as per Procedure
2 in Section 6.3). Recall that a key feature of this moment-based
strategy is that the user is allowed to select a set of frequencies F

to interpolate, i.e. a set of frequency points where the approximating
model Σ̃F exactly matches the steady-state response of (6.8).

As discussed in Section 5.3 for the SISO case (i.e. equivalent to a
single device in the array), a sensible selection of the interpolation
set can be achieved by analysing the gain of the target frequency
response, and selecting points that characterise dynamically impor-
tant features of the WEC system. In the SISO WEC case, a sensible
selection always includes the resonant frequency of the device un-
der analysis, i.e. the frequency characterising the H∞-norm of the
WEC system. For this MIMO case, it is well-known that the system
gain depends intrinsically on the so-called input directions (see, for
instance, [234]), hence the selection of these dynamically relevant
points cannot be done by simply inspecting each mapping Gij(ω)
individually. As a matter of fact, the ‘gain’ of a MIMO system is
defined in terms of the singular values of G(ω), plotted, for the
CorPower-array case, in Figure 6.5.

Based on the previous discussion, and to test the proposed strat-
egy in the motion (velocity) simulation case, different frequency
interpolation points sets F are considered, as follows:

� F sim
1 = {1.17},

� F sim
2 = {1.17, 1.11},

� F sim
3 = {1.17, 1.11, 1.8},

� F sim
4 = {1.17, 1.11, 1.8, 0.6}.

Note that F sim
i ⊂ F sim

j for i < j, with {i, j} ⊂ N4. As can be
appreciated from Figure 6.6, the set F sim

1 includes a key interpolation
point, which explicitly characterises the H∞-norm of the WEC array.
To be precise, and analogous to the SISO case of Chapter 5, the
presented MIMO moment-based strategy is able to preserve the H∞-
norm of the target system by simply including the corresponding
frequency in the interpolation set. The set F sim

2 additionally includes
the frequency point where the second maximum amplification peak
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Figure 6.6: Singular values plot (also known as sigma plot) (inputs 1 to 4) for both the target response G(ω) (dashed),
and the approximating sigma mappings (solid) corresponding with Σ̃F sim

1
(top) and Σ̃F sim

4
(bottom). The interpolation

points are denoted by an empty black circle.

occurs. Finally, the sets F sim
3 and F sim

4 expand F sim
2 by including

a low-, and a low- and high- frequency component, respectively.

One can begin the assessment of the moment-based model reduction
approach in terms of WEC array motion simulation, by illustrating
the performance of the reduced models Σ̃F sim

1
and Σ̃F sim

4
. Figure

6.6 presents the singular values plot (also known as sigma plot),
for both the target response G(ω) (dashed), and the approximating
frequency response mappings (solid) corresponding with the models
Σ̃F sim

1
(top) and Σ̃F sim

4
(bottom). The interpolation points selected

for the computation of each approximating parametric structure are
denoted by an empty black circle. Note that, as imposed by the theo-
retical foundations of this moment-based strategy, the approximating
models have exactly the same gain as the target model G(ω) of the
WEC array, for each element of the corresponding interpolation set
F sim. In addition, it can be readily appreciated that, by a sensible
selection of the interpolation frequency set F sim

1 , the model Σ̃F sim
1

,
i.e. a reduced order model by moment-matching computed using
a single interpolation point, already provides a relatively accurate
frequency-domain description when compared with the target steady-
state response of the WEC array under study. Though considering
F sim

1 as an interpolation set provides quite accurate results, the
decrease in the overall approximation error from system Σ̃F sim

1
to

Σ̃F sim
4

can be clearly appreciated (discussed in Table 6.1).

As a conclusive graphical illustration of the frequency-domain per-
formance for the models computed via this moment-based strategy,
Figure 6.7 presents the Bode diagrams for the mappings G11(ω),
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Figure 6.7: Bode plots for the elements {1, 1}, {1, 2} and {1, 4}, for both the target response G(ω) (dashed), and the
approximating frequency response mappings (solid) G̃F sim

1
(top) and G̃F sim

4
(bottom). The interpolation points are denoted

by an empty black circle.

G12(ω) and G14(ω). Note that, due to the underlying symmetry of
the WEC array illustrated in Figure 6.3, these mappings are sufficient
to completely characterise the frequency response function G(ω).
Analogously to what is presented in Figure 6.6, Figure 6.7 uses the
same line convention to characterise the target response, and the
approximating frequency responses G̃F sim

1
(top) and G̃F sim

4
(bottom).

Once again, it can be appreciated that, by a sensible selection of the
set F1, the moment-based approximating model, computed using
a single interpolation point, already presents reasonably accurate
results, though this performance is significantly improved by the
set F4. Note that both parametric models have exactly the same
response (both in magnitude and phase) as the target WEC array
G(ω), for each element contained in the corresponding interpolation
sets F sim.

To provide a precise measure of the performance of the moment-
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Model Dim NRMSEF NRMSET

Σ̃F sim
1

8 4.82% 13.77%
Σ̃F sim

2
16 0.44% 1.78%

Σ̃F sim
3

24 0.16% 0.65%
Σ̃F sim

4
32 0.09% 0.34%

Table 6.1: Simulation results compar-
ison table.

based reduced order models computed for the WEC array considered
in this case study, Table 6.1 offers a numerical comparison in terms
of the following key indicators:

Dim Dimension (order) of the approximating reduced model.
NRMSEF NRMSE computed against the target WEC array fre-

quency response G(ω), with ω ∈W .
NRMSET NRMSE computed (in steady-state) against the target

time-domain response of the WEC array computed di-
rectly from Σ (i.e. explicitly solving each corresponding
convolution integral associated with radiation effects).
The corresponding wave excitation force inputs are com-
puted from the (JONSWAP) SDFs of Figure 6.4.

It is straightforward to acknowledge, from Table 6.1, that the
frequency-domain performance of the moment-matching-based mod-
els is always more than 95% accurate, being able to successfully
represent the target WEC array even in the case where a single
interpolation frequency is (sensibly) chosen. This performance is
progressively improved by using the interpolation sets F sim

2 , F sim
3

and F sim
4 .

The increase of approximation quality, when considering the different
interpolation sets in time-domain simulations, is consistent with the
previous frequency-domain results, though it can be appreciated
that the reduced order model Σ̃F sim

1
presents quite different behavior

in time-domain, compared to the frequency-domain. This is due
to the fact that the waves generated as inputs for this simulation
scenario correspond to a JONSWAP SDF with T̄w = 7.5 [s], i.e. a
peak frequency of ≈ 0.84 [rad/s]. As can be appreciated from Figure
6.7, the fit between the frequency response of Σ̃F sim

1
and the target

response of the WEC array is relatively poor in the neighborhood of
0.84 [rad/s], hence directly implying a loss of performance in this
particular time-domain scenario.

Finally, and to briefly illustrate the transient response of the reduced
models computed with the presented strategy, Figure 6.8 presents
three different velocity curves for a particular realisation with H̄w = 2
[m]: Target steady-state response (dashed), target transient response
(dotted), and transient response of the moment-matching-based
model Σ̃F sim

4
(solid), for each of the devices composing the WEC

array under analysis. The target transient response is computed by
explicitly solving the convolution operation in equation (6.8). It can
be readily noted that the velocity computed with the target and
approximating model perfectly overlap throughout both the transient
period (approximate time-length of 20 [s]), and the steady-state
regime.
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Figure 6.8: Target steady-state re-
sponse (dashed), target transient re-
sponse (dotted), and transient re-
sponse of the moment-matching-
based model Σ̃F sim

4
(solid), for each

of the devices composing the WEC
array under analysis.

6.5 Synergy between moments and
unknown-input estimation

The unknown-input estimation strategy considered in this section
is that utilised in [90], where the estimation of wave excitation
force for a WEC array is discussed. This strategy belongs to the
class of unknown-input observers, where the system’s input (wave
excitation force fe acting on the device) is estimated using only
velocity measurements of the WEC array (i.e. the vector ż) based on
a direct application of the internal model principle [236]. To this end,
a Kalman Filter13

13: Note that [90] uses a discrete-
time KF. Herein the continuous-time
counterpart, i.e. a Kalman-Bucy filter,
is considered. The reader is referred
to, for instance, [241], for further de-
tail on Kalman-Bucy filtering.(KF) [235] is used, in conjunction with a harmonic

oscillator model, to (approximately) describe the dynamics of the
excitation force. In fact, note that the dynamical model used to
describe the wave excitation effect is exactly defined by the multiple-
output signal generator proposed in (6.11). In other words, there
is a natural synergy between the moment-matching-based parame-
terisation strategy proposed in this thesis, and the unknown-input
estimation problem inherently present in wave energy systems. This
intrinsic connection, together with a summary of the unknown-input
estimation strategy presented in [90] (for the sake of completeness),
are discussed in the subsequent paragraph.
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Remark 6.5.1 Note that, as reported in [15], the harmonic de-
scription of excitation forces (in spirit of the internal model prin-
ciple) has been exploited in several studies, using a variety of
state observers. In other words, the discussion and results pro-
vided in this section are not specific to the strategy reported in
[90], and can also be automatically extended to a larger class of
unknown-input strategies for WECs.

With regard to the unknown-input observer design, the so-called aug-
mented system (see [236]) can be defined in terms of the following
finite-dimensional continuous-time system, described, for t ∈ R+,
in state-space form, as

Υ̇ = FaΥ + ε,

υ = QaΥ + ζ,
(6.38)

where ε and ζ represent the process and measurement (white) noises,
with associated covariance matrices Qε and Rζ , respectively. The
extended matrices, and state-vector, involved in (6.38), are defined
as

Fa =
[
F ∆optL

0 IN ⊗ S

]
, Qa =

[
Q 0

]
, Υ =

[
Θ
ξ

]
, (6.39)

where Υ(t) ∈ R2Nν contains the system and signal generator
state-vectors, i.e. Θ and ξ, respectively. Following [90], an opti-
mal continuous-time KF observer, can be defined as

˙̃Υ = FaΥ̃ + K(y −QaΥ̃), (6.40)

where y represents the output of the WEC array system Σ, and the
optimal gain K : R+ → RN×N , t 7→ K(t), can be computed [241]
as,

Ḋ = FaD +DF ᵀa −DQᵀaR−1
ζ QaD + Qε,

K = DQᵀaR
−1.

(6.41)

Finally, the estimated wave excitation force can be directly computed
in terms of the estimated state-vector as

f̃e = L [0 INν ] Υ̃. (6.42)

As can be directly appreciated from Equation (6.39), Fa explicitly
includes the dynamic matrix of the signal generator (6.11), which
is utilised in the moment-based model reduction method discussed
in Section 6.3. This mathematical connection can be exploited to
improve the performance of the unknown-input observer substantially,
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by a wise selection of the set of interpolation points contained in the
set F . To be precise, one can compute a reduced model by moment-
matching for the input-output dynamics of the WEC array, i.e. an
approximating model Σ̃F , interpolating the same set of frequencies
used to describe the internal model of the wave excitation force in
the observer defined in (6.40) (i.e. the set λ(S)). Such a practice
guarantees that the moment-matching-based model, computed with
the strategy presented in Section 6.3, has the exact same steady-
state response as the target non-parametric model of the WEC array
Σ, at the key frequencies utilised to describe the excitation input.
This improvement in performance is now discussed both in terms of
estimation quality, and computational effort required by the observer,
as demonstrated in the remainder of this section.

To illustrate the advantages of using the moment-based model
reduction method proposed in this chapter, within the unknown-
input estimation problem, a KF observer is designed for the array of
CorPower-like devices presented in Figure 6.1, where the spectrum
of the matrix S is completely characterised by the sets,

F est
1 = {0.84},

F est
2 = {0.84, 1.17}.

(6.43)

Note that F est
1 ⊂ F est

2 . The definition of the set F est
1 is made

using explicit knowledge of the stochastic description of the wave
excitation input: a key frequency to take into account in the internal
model description is the characteristic ‘peak’ (maximum) of the
JONSWAP SDF presented in Figure 6.4, i.e. 2π/7.5 ≈ 0.84 [rad/s].
The second set includes the frequency point 1.17 [rad/s] which, as
discussed previously in Section 6.4, characterises the H∞-norm of
the WEC array14 14: The reader is referred to [15, 90]

for further discussion on the selection
of the frequency points to represent
stochastic wave excitation forces in
spirit of the internal model principle.

. Using the frequency sets defined in equation
(6.43), one can compute the moment-based state-space models
Σ̃F est

1
and Σ̃F est

2
following Procedure 2 (see Section 6.3.1).

Considering these two moment-based models, specifically designed
to correlate with the optimal observer of equation (6.40), and the
moment-matching models Σ̃F sim

1
and Σ̃F sim

2
, computed for the WEC

array motion simulation case of Section 6.4, a KF is designed, using
each of these reduced models. The performance of these different
unknown-input observers is assessed in Table 6.2, in terms of the
indicators listed in the following.

Remark 6.5.2 The so-called ‘multi-SISO’ approach is also in-
cluded in Table 6.2, which essentially constitutes a reduced order
model of the WEC array Σ described in (6.8), obtained by ap-
proximating each individual convolution operator associated with
the radiation impulse response mapping kr (arising due to hy-
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drodynamic interaction between devices) with a SISO system,
i.e. in a ‘decoupled’ fashion. This is, indeed, the predominant
approach utilised in the wave energy literature, and hence is in-
cluded in Table 6.2 for the sake of comparison. The strategy
used to compute an approximation of each of these convolution
terms separately, follows the most-widely used method available
in the WEC literature, i.e. the frequency-domain parameterisation
approach presented in [71, 242] (see also Section 2.6.1.2). The
dimension of each approximating model is set to 4, which results
in a full state-space description of the input-output dynamics of
the WEC array of dimension (order) 72.

Dim Dimension (order) of the reduced model describing the
WEC array dynamics.

Dime Dimension (order) of the wave excitation force estimator.
NRMSEF NRMSE of the reduced model approximating the WEC

array dynamics computed against the target WEC array
frequency response G(ω), with ω ∈W .

NRMSEe
T NRMSE computed (in steady-state) against the target
wave excitation force signal, computed from a JONSWAP
SDF with H̄w ∈ {1.5, 2, 3} [m], T̄w = 7.5 [s] and γ = 3.3
(see Figure 6.4).

T-Gain % improvement in normalised run-time15

15: The computations are performed
using Matlab R©, running on a PC
composed of an Intel Xeon CPU E5-
1620 processor with 16 GB of RAM.
The time is measured using the em-
bedded functions Tic and Toc.

(i.e. the ratio
between the time required to compute the estimated
wave excitation force, and the length of the simulation
itself) with respect to the slowest model (normalised
run-time indicated in table between parenthesis).

Model Dim Dime NRMSEF NRMSEe
T T-Gain

Multi-SISO 72 88 0.76% 4.37% (1.96× 10−2)

Σ̃F sim
1

8 16 4.82% 23.59% 80.16%
Σ̃F est

1
8 16 31.12% 9.82% 80.16%

Σ̃F sim
2

16 24 0.44% 4.28% 68.92%
Σ̃F est

2
16 24 5.02% 2.04% 68.92%

Table 6.2: Estimation results com-
parison table.

The analysis of Table 6.2 is begun by making an explicit performance
comparison between the moment-matching-based models Σ̃F sim

1
and

Σ̃F est
1
, for the unknown-input estimation problem. Note that the

dimension (order) of both models is exactly the same, i.e. the
same number of interpolation points are used to compute both
reduced (parametric) representations. Despite sharing the same
model complexity, the performance results are significantly different,
as discussed in the following.

While Σ̃F sim
1

provides a much better overall approximation in the
frequency-domain (with almost 96% of accuracy) than Σ̃F est

1
, the
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performance of the estimator designed using Σ̃F sim
1

is quite poor,
with a NRMSEeT of ≈ 24%. In contrast, having a frequency-domain
NRMSEF of almost 32%, the KF designed using Σ̃F est

1
performs

substantially better in terms of wave excitation force estimate quality,
with less than 10% of estimation error. This can be attributed to
the fact that Σ̃F est

1
has the exact same steady-state response as

the WEC array, at the frequency points selected to represent the
internal model of the wave excitation force embedded in the optimal
observer (6.40), where the majority of the spectral content of the
input signal is contained (see Figure 6.4).

Figure 6.9: Target (dashed) and esti-
mated (solid) wave excitation forces
for each device in the WEC array, us-
ing a KF designed with the moment-
based parametric model Σ̃Fest

1
.

Figure 6.9 graphically illustrates the performance of the KF designed
using Σ̃F est

1
for a time-window of 100 [s], where it can be appreciated

that both time traces, i.e. target (dashed) and estimated (solid)
wave excitation force, for each of the four devices composing the
analysed WEC array, are qualitatively identical.

Figure 6.10 shows a Bode diagram analogous to that of Figure 6.7,
where the frequency-domain description and performance of the
parametric models Σ̃F sim

1
and Σ̃F est

1
can be explicitly appreciated.

Note that, consistent with the results of Table 6.2, the overall
frequency-domain fit of Σ̃F sim

1
, for the selected frequency range

W , is clearly better than Σ̃F est
1
, though Σ̃F est

1
interpolates in a key
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Figure 6.10: Bode plots for the elements {1, 1}, {1, 2} and {1, 4}, for both the target response G(ω) (dashed), and the
approximating frequency response mappings (solid) G̃F sim

1
(top) and G̃Fest

1
(bottom). The interpolation points are denoted

by an empty black circle.

frequency point for the unknown-input estimation problem, thus
significantly improving the performance of the corresponding KF.

It is noteworthy to highlight that exploiting this inherent relationship
between model reduction by moment-matching and the internal
model principle, considered for the estimation of the wave excita-
tion force, using a single interpolation point F est

1 , provides similar
estimation accuracy results to the case where the ‘multi-SISO’ ap-
proach is considered, but with ≈ 81% improvement in computational
requirements16 16: As defined in Table 6.2.. In other words, the estimator using the moment-
based model Σ̃F est

1
computes 8 times faster, for the same degree of

wave excitation force estimation accuracy, and is therefore especially
suited for real-time applications.

Finally, Table 6.2 also provides results for the KF observers de-
signed using the moment-based models Σ̃F sim

2
and Σ̃F est

2
, where the
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Figure 6.11: Hydrodynamic param-
eters Br(ω) (dotted) and Ar(ω)
(dashed) for the multi-DoF CorPower-
like device considered herein.

performance (frequency-domain fitting and wave excitation force
estimation quality) is subsequently improved, for both cases. Note
that the situation described in the previous paragraph is repeated,
i.e. the KF designed using Σ̃F est

2
provides better estimation perfor-

mance due to the particular selection of the interpolation points
(which are those carefully selected to describe the internal model
associated with the wave excitation input in (6.40)).

6.6 Radiation case study: a multi-DoF
CorPower-like device

To illustrate the performance of the MIMO moment-based model
reduction approach for the radiation dynamics, proposed in Section
6.3.2, a single CorPower-like device (as in Figure 6.2) is considered,
but in a multi-DoF configuration. In particular, surge, heave, and
pitch are considered in the following, referred to as modes 1, 2 and
3, respectively. The corresponding hydrodynamic parameters Br(ω)
and Ar(ω) can be appreciated in Figure 6.11. Note that the elements
{1, 2}, {2, 1}, {2, 3}, {3, 2} of the matrices Br(ω) and Ar(ω) are not
shown in Figure 6.11, given that there is no interaction due to
radiation forces between these particular modes of motions, i.e. they
are exactly zero for all ω ∈ R+.

From now on, the notation Krij (ω) is used for the ij-element of the
matrix Kr(ω), characterising the radiation system Σr associated with
the CorPower-like device considered in this section. More precisely,
Krij : R −→ C is the frequency response mapping between the
output i (radiation force exerted on the i-th mode) and the input j
(velocity of the j-th mode).

The computation of a moment-based approximation Σ̃rF for the
radiation subsystem Σr, is now specifically addressed, based on
knowledge of the target frequency response Kr(ω), and using the
procedure described in Section 6.3.2.

Analogously to the input-output dynamics case of Section 6.4, and
by analysing the singular values plot associated with the radiation
frequency-domain response Kr(ω), in Figure 6.12, the following
interpolation sets F are considered:

I F1 = {0, 1.7},
I F2 = {0, 0.8, 1.7},

where, naturally, F1 ⊂ F2. Note that ω ≈ 1.7 [rad/s] corresponds
with the frequency characterising the H∞-norm of the system. The
set F2 extends F1 by adding a low-frequency component in the
interpolation scheme. The frequency range W , selected to perform
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Figure 6.12: Singular values plot for
the radiation system Kr(ω).

the model reduction process described in Procedure 2, is chosen as
in the input-output dynamics case, i.e. W = [0.3, 3] [rad/s].

Given that heave (mode 2) is the main DoF of this WEC (in which
the PTO is active), Figure 6.13 presents the Bode diagram for the
target response Kr22(ω) (dashed), and the corresponding frequency-
response associated with the moment-based radiation reduced mod-
els (solid) Σ̃rF1 (a) and Σ̃rF2 (b). The interpolation points for each
model are denoted by an empty black circle. As expected, the approx-
imating reduced systems have the exact same frequency response
as the target model for each corresponding element of the sets F1
and F2, respectively. Though using the set F1 as interpolation set
provides quite accurate results, the decrease in the approximation
error from system Σ̃rF1 to Σ̃rF2 is also evident.

Figure 6.13: Bode diagram for
Kr22(ω) (dashed), and K̃rF22(ω)
(solid), for both reduced models Σ̃rF1

(a) and Σ̃rF2 (b). The interpolation
points are denoted by an empty black
circle

As a conclusive graphical illustration of the frequency-domain per-
formance for the models computed via the proposed moment-based
strategy, Figure 6.14 presents the singular value plot for the target
response Kr(ω), and the approximated mapping K̃rF (ω), both for
Σ̃rF1 (a) and Σ̃rF2 (b). It can be readily appreciated that both
models can effectively approximate the target singular values in
every principal direction, i.e. the target MIMO gain, with a natural
increase in accuracy when using the interpolation set F2 instead of
F1.

Similarly to the input-output dynamics case of Section 6.4, and
aiming to further assess the performance of the proposed moment-
based strategy for the radiation system, Table 6.3 offers a numerical
appraisal of each of the moment-matching-based reduced models in
terms of the following parameters:
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Figure 6.14: Singular value plot for
Kr(ω) (dashed) and K̃r(ω) (solid) for
K̃rF1 (ω) (a) and K̃rF2 (ω) (b). The
interpolation points are denoted by
an empty black circle.

Model Dim NRMSEF NRMSET

Σ̃rF1 6 6.06% 8.04%
Σ̃rF2 12 1.09% 1.06%

Table 6.3: Numerical comparison ta-
ble for the radiation dynamics case.

Dim Dimension (order) of the parametric model.
NRMSEF NRMSE computed against the target radiation frequency

response ∀ω ∈W .
NRMSET NRMSE computed (in steady-state) against the target

steady-state radiation system response using inputs gen-
erated with frequency content inside the set W .

It is worth highlighting that, as can be appreciated in Table 6.3, the
approach proposed here provides accurate results even with a single
interpolation point, with only ≈ 4% of error in both the frequency-
and time-domain, and with an intrinsic decrease in computational
complexity, given the low dimension (order) of the resulting model.

6.6.1 On the properties of radiation models

Analogously to the SISO case presented in Chapter 5, a discussion on
the fundamental physical properties of radiation effects, introduced
in Section 2.4, is presented in this section, for the MIMO case. These
properties, for any approximating (reduced) model Σ̃r, are briefly
recalled below, for convenience17

17: The reader is referred to Sections
2.3.2.2 and 2.4 for a comprehensive
discussion on these properties.

.

I Property 1: Σ̃r is BIBO stable.
I Property 2: The complex (transfer) function K̃r(s) is positive-

real.
I Property 3: K̃r(s) has transmission zeros18

18: The name transmission zero is
originated within the electronic en-
gineering community, referring to a
complex number at which the trans-
fer function of an electrical network
has zero transmission [86]. In the con-
trol community, this set of zeros are
often called invariant zeros, i.e. they
define a particular invariant set asso-
ciated with a (minimal) state-space
system. The reader is referred to, for
instance, [75], for further discussion
on this topic.

at s = 0.
I Property 4: Σ̃r is strictly proper.

An assessment on these properties, for the moment-based computed
models Σ̃rF1 and Σ̃rF2 , is now given in the following.
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Figure 6.15: Pole-zero map for the
approximating model Σ̃rF1 .

Property 1

The process proposed to compute the optimal input matrix ∆opt, i.e.
Procedure 2 in Section 6.3, always guarantees internal stability of the
family of reduced models by moment-matching (see Remark 6.3.3).
By way of example, Figure 6.15 shows the pole-zero map for system
Σ̃rF1 computed, in Section 6.6, for the multi-DoF CorPower-like
device. It can be appreciated that all the poles are contained in the
open left-half of the complex plane, i.e. Σ̃rF1 is BIBO stable.

Property 2

Positive-realness of K̃r, for this linear case, is directly related to the
property of passivity (see Section 2.4). Similarly as in the SISO case
of Chapter 5, if the target frequency-response data Kr(ω) effectively
corresponds with a passive model, the reduced models obtained with
the proposed moment-based strategy are virtually always inherently
passive. By way of example, Figure 6.16 depicts the Nyquist plot
for the diagonal elements of K̃rF (ω) for Σ̃rF2 , where it can be
appreciated that <{K̃rFii

(ω)} > 0, for all ω ∈ R/0 and i ∈ N3
and, hence, Σ̃rF2 is passive.

Figure 6.16: Nyquist plot (diagonal
elements) of K̃rF (ω) for Σ̃rF2 .

Properties 3 & 4

Property 3 manifests itself explicitly in the example case of Figure
6.15, where there is clearly a zero at s = 0.

With respect to Property 4, the family of models defined by Pro-
cedure 2 (see Section 6.3.2) is strictly proper by construction: the
feed-through matrix of Σ̃rF is always zero, independently on the
selection of the interpolation set F involved.

Remark 6.6.1 (On the enforcement of passivity and zero dynam-
ics for the MIMO radiation case) If required by the application,
passivity and zero dynamics can be enforced by using an anal-
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ogous procedure to that described in Sections 5.4.1 and 5.4.2,
for the SISO case, respectively. In particular, note that for the
zero dynamics case, one can re-define the dynamic matrix S in
equation (6.12) to include s = 0 as an interpolation point, as
follows:

S0 = 0⊕ S, (6.44)

where the matrix S0 ∈ Rν+1×ν+1. The moment-domain equivalent
for the radiation system, for a signal generator defined by the
(observable) pair (IN ⊗ S0, L0), with L0 ∈ RN×N(ν+1), is then
straightforwardly given by,

Y r0 =
N∑
i=1

N∑
j=1

eNijL0
(
IN ⊗R0ij

)
, (6.45)

where each matrix R0ij ∈ Rν+1×ν+1 follows the expression,

R0ij = Krij (0)⊕Rij = 0⊕Rij , (6.46)

with Krij : R → C, and Rij as in Proposition 6.2.1, for all
{i, j} ⊂ NN . Note that the relation Kr(0) = 0 follows directly
from Section 2.3.2.2. Then, Procedure 2, described in Section
6.3.2, can be carried out in an analogous form, by simply re-
placing Y r by Y r0 , and adjusting the dimensions (order) for the
computation of the triple of matrices (F,Q,∆opt) accordingly.

6.7 Conclusions

This chapter presents a MIMO moment-based model reduction
framework for wave energy applications. In particular, non-parametric
models associated with both multi-DoF WECs, and arrays of wave
energy devices (referred to as N -th order WEC systems/devices),
are considered within this model reduction formulation.

Analogously to the SISO case of Chapter 5, this MIMO moment-
based framework allows for the computation of state-space represen-
tations characterising either the input-output, or the radiation force
dynamics, for a generic type of N -th order WEC system. These
moment-based reduced models exactly match the target steady-
state behavior at a set of user-selected frequencies and allow for the
preservation of the relevant dynamic characteristics of the device.

Moreover, for the particular case of the radiation dynamics, this
chapter shows that this moment-based model reduction framework
is effectively able to retain important physical properties, such as
input-output stability, passivity, and zero dynamics, agreeing with
the underlying physics that characterise such a system.
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In addition, an intrinsic mathematical relationship between the
unknown-input wave excitation force estimation problem, and the
moment-based strategy presented in both Chapters 5 and 6, is shown
and exploited by a sensible selection of the set of interpolation points,
in synergy with the internal model principle utilised to estimate fe.

For the input-output dynamics case, both simulation and wave
excitation force estimation performance are assessed, in terms of
a case study, involving an array of state-of-the-art CorPower-like
devices, constrained to oscillate in heave (translational motion). For
the radiation dynamics case, a multi-DoF CorPower-like device is
considered, assumed to oscillate in three different modes of motion,
i.e. surge, heave and pitch. In both model reduction scenarios,
i.e. input-output and radiation force dynamics, the performance
of the strategy is demonstrated and analysed from both a time-
and a frequency-domain perspective. In the particular case of wave
excitation force estimation, the synergy between moments and the
unknown-input observer design allows for the computation of models
tailored for a particular sea state, with relatively mild computational
requirements, hence providing parametric representations that are
especially suited to the design of real-time energy-maximisation
strategies.
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Following the hydrodynamic modelling basics presented in Chapter
2, recall, from Section 2.4, that the equation of motion for a WEC,
under the assumptions of potential flow theory (see Section 2.3.1),
can be expressed in terms of the so-called extended Cummins’
equation. This equation is recalled below, for the SISO case, for
convenience:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe + fnl) ,
y = ż,

(7.1)

where z : R+ → R is the displacement, kr : R+ → R, kr ∈ L2(R),
the radiation force impulse response function, fe : R+ → R, the
wave excitation force, andM∈ R>0 is the inverse of the generalised
mass matrix of the device. In contrast to the cases discussed in
Chapters 5 and 6, equation (7.1) incorporates nonlinear behaviour:
the mapping fnl : R+ → R, t 7→ fnl(t) represents potential nonlinear
effects, which give rise to the so-called nonlinear extensions of
Cummins’ equation, described in Section 2.5.

Remark 7.0.1 A SISO WEC system is considered at the beginning
of this chapter, aiming to simplify the notation utilised, particularly
throughout the theoretical propositions posed in both Sections
7.1 and 7.2. Nevertheless, note that a specific section is dedicated
to the extension of the proposed model reduction framework for
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nonlinear MIMO WECs, i.e. Section 7.4.

The equation of motion describing system Σ is not only non-
parametric, but can also present complex nonlinear effects via the
mapping fnl, which can potentially render control and/or state-
estimation strategies unsuitable for realistic applications: There
is a limit for both the analytical complexity for which an energy-
maximising controller can effectively guarantee existence of solutions,
and the underlying computational complexity that can be handled
in real-time. The latter is especially true for the case of WEC arrays,
where the ‘number’ of nonlinear effects, involved in the definition of
the equation of motion, naturally increases when considering several
devices.

Remark 7.0.2 If nonlinear effects are considered in control/state-
estimation for WEC applications, only the issue, regarding the
non-parametric nature of Σ in (7.1), is commonly tackled in the
literature by computing an approximating model for the linear
radiation dynamics1 1: Assuming that the non-parametric

nature of Σ is only due to linear ra-
diation dynamics. This is not always
necessarily the case, since fnl can be
potentially non-parametric.

, and simply accommodating the nonlinear
effects in the corresponding augmented system (see equation
(2.22)). In other words, there is no nonlinear model reduction
process taking place, but only the linear system, fully characterised
by the radiation impulse response kr, is approximated with a
parametric form, hence avoiding the computational complexity and
representational drawback of the associated convolution operator.

As discussed in2 2: See, in particular, the state-of-the-
art of model reduction techniques, de-
tailed in Section 2.6.

Chapter 2, and to the best of the author’s knowledge,
there is currently no literature on systematic nonlinear model reduc-
tion methods proposed (or even applied) within the scope of WEC
technology, even though this would represent a valuable tool for a
variety of applications, including, but not limited to, state-estimation
and energy-maximising optimal control of WECs.

Though the nonlinear moment-based framework for model reduction,
recalled in Section 4.2, can present a valuable tool for the nonlinear
WEC case (given the inherent preservation of steady-state response
characteristics), the computation of a reduced model by moment-
matching relies on the availability of a closed-form solution of the
nonlinear partial differential equation (4.8), which fully characterises
the corresponding moment. Although one can explicitly provide
conditions for existence and uniqueness of such a solution, an analytic
closed-form (if it exists) is virtually impossible to compute. In other
words, without a suitable approximation framework, the theory
recalled in Section 4.2 for nonlinear systems is far from having any
practical value for this WEC case.

In the light of this, this chapter presents a moment-matching model
reduction framework for the nonlinear and non-parametric WEC
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equation (7.1), tackling each of the following aspects. Firstly, and
similar to the linear cases discussed in Chapters 5 and 6, a moment-
based formulation for the WEC is provided in Section 7.1, where the
existence and uniqueness of the associated moment is discussed and
ensured for the case of wave energy systems. Secondly, an approx-
imation framework for the computation of the nonlinear moment
is proposed in Section 7.2, based on the family of mean weighted
residual methods3 3: Note that the underlying charac-

teristics of these methods is discussed,
in this thesis, in Section 3.4.1.2.

. Practical aspects and considerations behind this
approximation framework are discussed in Section 7.3, while the
extension of the nonlinear model reduction by moment-matching
technique to MIMO WEC systems is posed in Section 7.4. Sections
7.5 and 7.6 discuss the case of model reduction for WEC systems
under regular, and irregular, wave excitation inputs, respectively.
Finally, the main conclusions of this chapter are encompassed in
Section 7.7.

7.1 Nonlinear moment-based WEC
formulation for model reduction

Similarly to both Chapters 5 and 6, the nonlinear moment-based
theory, recalled and discussed in Chapter 4, directly depends on
the availability of a state-space representation of the system to
be reduced, which is not the case for the non-parametric equation
described by system Σ in (7.1). In the light of this, the following
equivalent representation is proposed:

Σ :
{
ẇ = fΣ(w, fe) = Aw +B(fe − kr∗Cw) + f(w),
y = hΣ(w) = Cw,

(7.2)

for t ∈ R+, where w(t) =
[
z(t) ż(t)

]ᵀ
∈ R2 contains the displace-

ment and velocity corresponding with system Σ, and the (constant)
matrices A ∈ R2×2, B ∈ R2 and Cᵀ ∈ R2 are defined as

A =
[

0 1
−Msh 0

]
, B =

[
0
M

]
, C =

[
0
1

]ᵀ
. (7.3)

The nonlinear mapping f : R2 → R2 is given by

f(w) =
[

0
Mfnl(w)

]
= Bfnl(w). (7.4)

Remark 7.1.1 In line with the nonlinear hydrodynamic effects
described in Section 2.5 (which are indeed the most utilised nonlin-
ear effects in WEC control/estimation applications), it is assumed
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that the mapping fnl depends only on w, i.e. the displacement
and velocity of the WEC system involved. Nevertheless note that,
if required by a particular application, a more general class of
nonlinear effects can be considered, such as, for instance, non-ideal
PTO dynamics4 4: The reader is referred to Section

3.4.2.1 for further detail on nonlinear
mappings considered within the WEC
control literature, including non-ideal
PTO dynamics.

.

Within the moment-based formulation of Chapter 4, the mapping
corresponding with the external input fe is written in terms of an
autonomous single-output signal generator (analogously5

5: See also Section 5.1.

to the case
of equation (4.3)), i.e. the set of equations

ξ̇ = Sξ,

fe = Lξ,
(7.5)

for t ∈ R+, with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν . The set of
standing Assumptions, 4.1.1 and 4.1.2, are ensured as follows.

In contrast to the linear model reduction cases discussed in Chapters
5 and 6, Assumption 4.1.2, which concerns the definition of the
spectrum of the matrix S, is addressed by recalling6 6: See Section 2.1.2 and, in particu-

lar, Remark 2.1.3.
that ocean waves

are commonly generated as a finite sum of harmonics of a so-called
fundamental frequency ω0. To be precise, let F = {hpω0}fp=1 ⊂
R+, where H = {hp}fp=1 ⊂ N≥1, with h1 < . . . < hf , be a
set composed of a finite number of harmonics of the fundamental
frequency ω0. In particular, the matrix S is defined in a block-diagonal
form as

S =
f⊕
p=1

[
0 hpω0

−hpω0 0

]
, (7.6)

where ν = 2f , f ∈ N≥1, and the spectrum of S is given by
λ(S) = (jF ) ∪ (−jF ) ⊂ C0, so that Assumption 4.1.2 clearly
holds.

Unlike the linear moment-based formulation presented in Chapters
5 and 6, the definition of a nonlinear moment, presented in Section
4.2.2, inherently depends on the initial condition ξ(0) of the signal
generator7 7: As a matter of fact, note that

the computation of the corresponding
nonlinear moment is locally defined
in a neighborhood Ξ of ξ = 0.

defined in (7.6). In the light of this, Assumption 4.1.1
is ensured as follows: From now, the output vector L is given by
a Hadamard identity on the space R1×ν , i.e., Lᵀ = 1ν , so that
the minimality of the triple (1ᵀν , S, ξ(0)) holds as long as the pair
(S, ξ(0)) is excitable.

Remark 7.1.2 (On the definition of ξ(0)) Let ξ(0) =
∑f
p=1 e

f
p ⊗[

αp βp
]ᵀ
, where the set of coefficients {αp, βp}fp=1 ⊂ R. Then,
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the vector ξ can be conveniently expanded as

ξ(t) = eStξ(0) =
f∑
p=1

efp ⊗
[
pξ+(t)
pξ−(t)

]
, (7.7)

where the mappings pξ are defined as

pξ+ : R+ → R, t 7→ αp cos(hpω0t) + βp sin(hpω0t),
pξ− : R+ → R, t 7→ βp cos(hpω0t)− αp sin(hpω0t).

(7.8)

Remark 7.1.3 Note that the excitability condition on the pair
(S, ξ(0)) holds as long as αp and βp are not simultaneously zero,
for all p ∈ Nf .

Remark 7.1.4 Consider the sets of functions X f
ξ = {pξ+, pξ−}fp=1

and X f
0 = {cos(hpω0t), sin(hpω0t)}fp=1. Note that, given the ex-

citability condition on the pair (S, ξ(0)), it is straightforward
to check that span{X f

ξ } = span{X f
0 }. As a consequence, the

input fe is always T -periodic, where T = 2π/ω0 ∈ R+ is the
fundamental period of fe.

Without any loss of generality, the following standard assumption
on the nonlinear mapping f is posed to later prove existence and
uniqueness of the nonlinear moment of system (7.2) at the signal
generator (S,L).

Assumption 7.1.1 The mapping f : R2 → R2 is such that

f(0) = 0, ∂f(w)
∂w

∣∣∣∣
w=0

= 0. (7.9)

Note that this assumption is without loss of generality, since the
matrices in (7.2), and the mapping f , can always be redefined to
satisfy it8 8: This claim, which directly relates

to Jacobian analysis, is considered
standard in nonlinear dynamics. Fur-
ther detail can be found in, for in-
stance, [22, Chapter 8].

.

Finally, an assumption on the stability in the first approximation of
system (7.2), is introduced.

Assumption 7.1.2 The zero equilibrium of system

ẇ = Aw −B(kr∗Cw), (7.10)

is asymptotically stable.

As discussed in Section 2.4, including also several studies, such as
[53, 123], the linear equation of motion (7.10) is asymptotically
stable for any meaningful values of the involved parameters (and
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impulse response function kr). Thus, this assumption is, in practice,
also without loss of generality.

Proposition 7.1.1 Suppose the triple (L, S, ξ(0)) is minimal, and
Assumption 7.1.1 and 7.1.2 hold. Then, there exists a unique
mapping π, locally defined in a neighborhood Ξ of ξ = 0, which
solves the partial differential equation

∂π(ξ)
∂ξ

Sξ = fΣ(π(ξ), Lξ), (7.11)

and the moment of system (7.2) at the signal generator (S,L),
i.e. the mapping9 9: See Definition 4.1.3 for further de-

tail.
hΣ ◦ π, computed along a particular trajectory

ξ(t), coincides with the well-defined steady-state output response
of such an interconnected system, i.e. yss(t) = hΣ(π(ξ(t))).

Proof. Let Lᵀ = 1ν and let the initial condition ξ(0) be as defined in
Remark 7.1.3. Then, it is straightforward to check that minimality of
the triple (L, S, ξ(0)) holds. Moreover, note that the signal generator
defined in equation (7.5) is always such that λ(S) ⊂ C0 with simple
eigenvalues, in line with Assumption 4.1.2. Therefore, Proposition
7.1.1 automatically holds as long as the zero equilibrium of system
ẇ = fΣ(w, 0) is locally exponentially stable (see Lemma 4.1.2). Since
this is the case by Assumption 7.1.2, the proof is concluded. �

Remark 7.1.5 Under the assumptions of Proposition 7.1.1, the
moment of system Σ, defined in (7.2), at the signal generator
(S,L), defined in (7.5), can be computed as hΣ ◦ π, with π the
solution of equation (7.11).

In slightly different words, Proposition 7.1.1, via Remark 7.1.5,
guarantees that the steady-state response of system (7.2), driven by
(7.5), can be effectively computed using the corresponding moment
at (S,L). In particular, and following the result of Lemma 4.2.2, a
family of reduced models achieving moment-matching at (S,L) of
order (dimension) ν = 2f , for the WEC system defined in equation
(7.1) (alternatively (7.2)), can be written in terms of the mapping
hΣ ◦ π, with π the solution of (7.11), as

Θ̇ = (S −∆L)Θ + ∆fe,

ỹ = hΣ(π(Θ)) = Cπ(Θ),
(7.12)

with ∆ ∈ Rν a free (design) parameter.

Remark 7.1.6 If the mapping π is effectively known, the family
of models (7.12) exactly matches the steady-state response of the
target nonlinear WEC system Σ at the signal generator (S,L).
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Remark 7.1.7 The family of models defined in (7.12) is input-
to-state linear, and any nonlinear effects are (statically) present
in the output mapping hΣ ◦ π (i.e. it is described by a Wiener
model10 10: Further detail on Wiener models,

including origin and applications in
nonlinear system identification, can
be found in [243].

). Note that, similarly to the linear case presented in
Chapters 5 and 6, the set λ(S −∆L) can be assigned arbitrarily,
as a consequence of the observability of the pair (S,L).

Remark 7.1.8 Unlike the nonlinear system Σ (7.1), which is ef-
fectively non-parametric, the family of systems achieving moment-
matching at (S,L) is in state-space form. In other words, this
model reduction process not only reduces complexity, but inher-
ently computes a parametric form for the WEC system, in a single
‘step’.

Though the family of models (7.12) provides a strong result to tackle
the nonlinear model reduction problem for WECs, there is clearly
an intrinsic downside to its definition: Even if the existence and
uniqueness of π (solution of (7.11)) are guaranteed by the result of
Proposition 7.1.1, it is virtually impossible to compute its analytic
expression, given the nonlinearity of the mapping fΣ. In other words,
the family of models defined in (7.12) lacks any practical value,
unless one can appropriately approximate the mapping π. This is
explicitly addressed in Section 7.2.

7.2 On the approximation of π

The very nature of the mapping π intrinsically depends on both
the characteristics of the signal generator (7.5), and the system
dynamics defined by the mapping fΣ. The following proposition is
introduced, aiming to formally characterise π.

Proposition 7.2.1 Suppose the triple (L, S, ξ(0)) is minimal, and
that Assumptions 7.1.1 and 7.1.2 hold. Then, for a given trajec-
tory ξ(t), each element of the mapping π, which solves equation
(7.11), i.e. πi, with i ∈ N2, belongs to the Hilbert space L2(T )
with T = [0, T ] ⊂ R+, where T = 2π/ω0.

Proof. Given the nature of the signal generator defined in equa-
tion (7.5), the function fe is T -periodic, with T = 2π/ω0 (see
Remark 7.1.4). Moreover, under the above assumptions, the zero
equilibrium of ẇ = fΣ(w, 0) is locally exponentially stable and its
(well-defined) steady-state solution is also T -periodic [244, Section
VI], i.e. wss(t) = wss(t−T ). Given that, under the minimality of the
triple (L, S, ξ(0)) and Assumptions 7.1.1 and 7.1.2, wss(t) = π(ξ(t))
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(see Proposition 7.1.1), it is straightforward to conclude that each
element of the mapping π belongs to L2(T ). �

Following the characterisation offered in the result of Proposition
7.2.1, and aiming to propose a method to approximate π, let the
family of complex-valued mappings ΩCq : Rν → C, ξ 7→ ΩCq (ξ),
with q ∈ N≥1, be defined such as

ΩCq (ξ) =
f∑
p=1

(γpξ)q/hp , (7.13)

where γᵀp ∈ Cν is such that γᵀp = eν2p−1 + jeν2p, for all p ∈ Nf .

This mapping can be effectively used to span L2(T ), as explicitly
demonstrated in the following proposition.

Proposition 7.2.2 Let X k
0 = {cos(qω0t), sin(qω0t)}kq=1 be a

canonical set in L2(T ), with T = [0 T ] ⊂ R+, T = 2π/ω0, and
consider the family of real-valued functions

Ω+
q : Rν → R, ξ 7→ <

{
ΩCq (ξ)

}
,

Ω−q : Rν → R, ξ 7→ =
{

ΩCq (ξ)
}
.

(7.14)

Let the set X k
Ω = {Ω+

q (ξ),Ω−q (ξ)}kq=1. Then,

span{X k
Ω } = span{X k

0 }. (7.15)

Proof. Note that the key term, composing the family of complex-
valued mappings in (7.13), can be alternatively written as

γpξ = pξ+ + jpξ− ∈ C, (7.16)

for all p ∈ Nf , and where each of the mappings pξ+ and pξ− are
defined as in equation (7.8) (see also Remark 7.1.2). Moreover, note
that these functions can be equivalently written as,

pξ+(t) = <
{

(αp + jβp)ejhpω0t
}
,

pξ−(t) = =
{

(αp + jβp)ejhpω0t
}
,

(7.17)

so that, clearly, the following expression

(γpξ)q/hp =
(
pξ+ + jpξ−

)q/hp
= (αp + jβp)q/hpejqω0t, (7.18)

for all p ∈ Nf and q ∈ N≥1, holds. In other words, only the q-th
harmonic of the fundamental frequency, i.e. qω0, is present in the
output of the complex-valued mapping ΩCq .



7 Reduced models for nonlinear WECs 154

Given the excitability condition on the pair (S, ξ(0)), αp and βp
cannot be simultaneously zero, for all p ∈ Nf (see Remark 7.1.3),
so that span{Ω+

q (ξ),Ω−q (ξ)} = span{cos(qω0t), sin(qω0t)}, and the
proof follows. �

Remark 7.2.1 Naturally, the set X k
Ω forms an orthogonal basis

of L2(T ), under the standard inner-product operator of such a
space, as k →∞.

The result of Proposition 7.2.2, together with Remark 7.2.1, allows
each element of the mapping π, i.e. πi, with i ∈ N2, to be uniquely
expressed in terms of the set X k

Ω as a linear combination of its
elements, i.e.

πi(ξ) =
k∑
q=1

[
c+
q c−q

] [Ω+
q (ξ)

Ω−q (ξ)

]
+ εi(ξ) = Π̃iΩk(ξ) + εi(ξ), (7.19)

with Ωk(ξ(t)) ∈ R2k such that Ωk(ξ) =
∑k
q=1 e

k
q⊗
[
Ω+
q (ξ) Ω−q (ξ)

]ᵀ
,

and where the mapping εi : Rν → R is given by,

εi(ξ) =
+∞∑
q=k+1

[
c+
q c−q

] [Ω+
q (ξ)

Ω−q (ξ)

]
. (7.20)

Remark 7.2.2 Note that, following equation (7.19), π can be
compactly expressed as

π(ξ) =
[
Π̃1
Π̃2

]
Ωk(ξ) +

[
ε1(ξ)
ε2(ξ)

]
= Π̃Ωk(ξ) + E(ξ), (7.21)

where the operator E : Rν → R2 is the truncation error.

If the truncation error E is ‘ignored’, the mapping π can be effec-
tively approximated as π ≈ π̃(ξ) = Π̃Ωk(ξ), i.e. by its expansion
on the 2k-dimensional set X k

Ω . This motivates the following key
definition.

Definition 7.2.1 The mapping hΣ ◦ π̃, where π̃(ξ) = Π̃Ωk(ξ), is
the approximated moment of system (7.2) at the signal generator
(S,L).

With this definition, and following equation (7.12), a family of
reduced models of order (dimension) ν = 2f , for the WEC system
defined in equation (7.1), can be written in terms of the approximated
moment (see Definition 7.2.1) as

Σ ≈ Σ̃nl :
{

Θ̇ = (S −∆L)Θ + ∆fe,

ỹ = CΠ̃Ωk(Θ),
(7.22)
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parameterised by the design matrix ∆ ∈ Rν .

Remark 7.2.3 Note that not only the family of systems (7.22)
is input-to-state linear, but the user also has full control over
the complexity of the output mapping, i.e. one can define how
‘complex’ is Ωk by simply adjusting the number k of harmonics
utilised to approximate π with π̃.

Within the proposed framework, the computation of a reduced system
by moment-matching, as defined in equation (7.22), now boils down
to the computation of the matrix Π̃, for a given selection of order
k in Ωk, i.e. a given number of harmonic functions associated with
the fundamental frequency ω0 (dictated by the nature of the input
fe). This is specifically addressed in Section 7.2.1.

7.2.1 A Galerkin-like approach

Aiming to propose a method to compute Π̃, and inspired by the
family of mean weighted residual methods [150, 154] (see also
Section 3.4.1.2), the following residual mapping r : R2 → R2 can
be defined as

r(Π̃Ωk(ξ)) := Π̃∂Ωk(ξ)
∂ξ

Sξ − fΣ(Π̃Ωk(ξ), Lξ), (7.23)

which directly arises from ‘replacing’ the mapping π by the approxi-
mating function π̃ in equation (7.11).

Remark 7.2.4 Similarly to the linear moment-based model reduc-
tion framework described in Chapters 5 and 6, the non-parametric
terms associated with the mapping fΣ, i.e. radiation effects, can
be written in terms of a matrix product. In particular, note that the
residual function, defined in (7.23), can be conveniently expanded
in terms of Π̃ as

r(Π̃Ωk(ξ)) = Π̃∂Ωk(ξ)
∂ξ

Sξ − (AΠ̃−BCΠ̃R)Ωk(ξ)−

BLξ − f(Π̃Ωk(ξ)),
(7.24)

where the matrix R ∈ R2k×2k arises from the convolution opera-
tor, involved in system (7.1), associated with the radiation effects.
In particular, and analogously to Proposition 5.1.1, the matrix R

is given in block diagonal form as,

R =
k⊕
q=1

[
rqω0 mqω0

−mqω0 rqω0

]
, (7.25)
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where the set of parameters {rqω0 ,mqω0} ⊂ R are defined in
equation (5.10), for all q ∈ Nk.

Following the so-called Galerkin (or spectral) approach (see, for
instance, [245]), which effectively belongs to the family of mean
weighted residual methods discussed in Section 3.4.1.2, the constant
matrix Π̃ can be computed by projecting the residual mapping onto
the space spanned by the set of k harmonics of the fundamental
frequency defined by X k

Ω , i.e. the entries of Ωk
Ω(ξ). In contrast

to the ‘traditional’ Galerkin formulation, a Galerkin-like method is
proposed, as detailed in the following.

Let Ωk
0(t) =

∑k
q=1 e

k
q ⊗

[
cos(qω0t) − sin(qω0t)

]ᵀ
∈ R2k be a

vector containing the 2k canonical harmonic functions on L2(T ).
Then, given a fixed trajectory ξ(t), the constant matrix Π̃ ∈ R2×2k

can be computed by zeroing the projection of the residual mapping
onto the set spanned by the elements (entries) of the vector Ωk

0, i.e.
as the solution of the following algebraic system of 4k equations:〈

r(Π̃Ωk(ξ)),Ωkᵀ

0

〉
= 0, (7.26)

where 〈 〉 denotes the inner-product operator in L2(T ), as defined
in Section 1.3.

Remark 7.2.5 In the proposed Galerkin-like approach, the canon-
ical vector Ωk

0 is utilised when projecting the residual mapping,
instead of the entries of Ωk (which would be the case in a ‘tra-
ditional’ Galerkin method11 11: See, for instance, [154].). This substantially simplifies the
computation of the projections involved in (7.26), which are ef-
fectively inner-product operations in L2(T ). This simplification is
specifically discussed in Section 7.3.1.

Remark 7.2.6 The existence of solutions of equation (7.26),
under the hypothesis of Proposition 7.2.1, is always guaranteed
for all sufficiently large k [245].

Remark 7.2.7 The system of algebraic equations (7.26) on the
4k entries of Π̃, can be computed using state-of-the-art root
finding algorithms, such as those described in, for instance, [246].

7.3 Practical aspects and considerations

7.3.1 Projection of the residual mapping

This section begins by noting that the selection of the vector Ωk
0,

involved in the projection of the residual mapping within the Galerkin-
like approach proposed in Section 7.2.1, has a very specific purpose,
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which is detailed in the following. Recall that the Fourier transform
of a T -periodic function, i.e. a function x ∈ L2(T ), is always well-
defined, and can be computed with the expression

X(ω) =
∫
T
x(t)e−jωtdt,

=
∫
T
x(t) cos(ωt)dt− i

∫
T
x(t) sin(ωt)dt.

(7.27)

Note that, due to the specific selection of the entries of Ωk
0, each of

the inner-product operations involved in the Galerkin-like method
proposed in (7.26) are, effectively, either the real or the imaginary
parts of the Fourier transform of the residual mapping r, evaluated
at each of the k harmonics of the fundamental frequency ω0, i.e.
at the set {qω0}kq=1. In other words, the system of equations (7.26)
characterising Π̃ can be equivalently written as[
<{R(ω0)} ={R(ω0)} . . . <{R(kω0)} ={R(kω0)}

]
= 0, (7.28)

where R : R → C2 denotes the Fourier transform of the residual
mapping r.

Remark 7.3.1 The evaluation of the Fourier transform at each
frequency qω0, can be done both efficiently and robustly using
well-established fast Fourier transform (FFT) algorithms (see, for
instance, [247]).

7.3.2 Extension to multiple trajectories

Until this point, a single trajectory ξ(t) has been considered, i.e.
a single initial condition ξ(0) for the signal generator (S,L). In
other words, a single input fe(t) = LeStξ(0) has been taken into
account for the computation of the approximating π̃. Though this
might be appropriate for some cases, such as, for instance, the
case of WECs under (deterministic) regular wave excitation (further
discussed in Section 7.5.1), constraining the approximation method
to a single initial condition can be limiting for the case of WEC
systems subject to irregular wave excitation. This issue is addressed,
for the Galerkin-like approach of Section 7.2.1, as follows12 12: The extension to multiple trajec-

tories presented in this section is pro-
posed in the spirit of the so-called
U /X variation [232].

.

Let ξ(0) ∈ Ξ, where Ξ = {ζi}li=1 ⊂ Rν represents a set with l

initial conditions, defined in a neighbourhood of ξ = 0. Suppose
the pairs of matrices (S, ζi) are excitable for all i ∈ Nl. Let the
vector ξ, generated as a function of the initial condition ζi, be
denoted as ξζi = eStζi. Then, the Galerkin-like procedure, proposed
in Section 7.2.1, can be adapted for the case of multiple trajectories,
where the constant matrix Π̃, which completely characterises the



7 Reduced models for nonlinear WECs 158

approximating mapping π̃(ξ) = Π̃Ωk(ξ), is computed in terms of a
minimisation procedure:

min
Π̃∈R2×2k

∥∥∥∥∥∥∥∥∥


〈
r(Π̃Ωk(ξζ1)),Ωk

0(ξζ1)
〉

...〈
r(Π̃Ωk(ξζl)),Ωk

0(ξζl)
〉

∥∥∥∥∥∥∥∥∥

2

F

, (7.29)

where the inner product operations, for each initial condition ζi,
with i ∈ Nl, can be computed using FFT operations, as detailed in
Section 7.3.1.

The minimisation procedure described in equation (7.29) is effec-
tively utilised both for the case of nonlinear model reduction by
moment-matching for WECs under regular, and irregular wave ex-
citation, further discussed and illustrated in Sections 7.5 and 7.6,
respectively.

7.3.3 Modifications to the mapping Ωk

This section introduces a modification for the vector valued function
Ωk, utilised to approximate the nonlinear moment of system (7.1) at
the signal generator (7.5), aiming to ‘simplify’ the description of the
output mapping involved in (7.12). In particular, one can modify the
entries of Ωk(ξ) such that only integer exponents of ξ are required,
and a fixed maximum number of harmonics associated with a given
multiple hpω0, involved in the definition of the matrix S in equation
(7.6), is considered, for each p ∈ Nf . This is explicitly addressed in
the following.

Let kmax
p denote the maximum number of harmonics of a given

multiple of the fundamental frequency hpω0, with p ∈ Nf . Then,
the complex-valued mapping ΩCq defined in equation (7.13), which
fully characterises the entries of Ωk, can be modified as follows:

ΩCq (ξ) =
f∑
p=1

aqp(γpξ)q/hp , (7.30)

where the coefficients aqp are defined as

aqp =

1 if mod(q, hp) = 0 ∧ q
hp
≤ kmax

p ,

0 if mod(q, hp) 6= 0 ∨ q
hp
> kmax

p ,
(7.31)

and mod : N×N≥1 → N denotes the modulo operator.

Remark 7.3.2 With the introduction of this set of coefficients
aqp, the mapping Ωk only depends on natural powers involving
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Figure 7.1: Coefficients aqp for the
mapping Ωk, for h1 = 1, h2 = 3
and h3 = 4, where q ∈ N10. Non-
zero values of aqp are indicated with
a black dot.

the entries of ξ, i.e. it becomes polynomial. In other words, the
output of the reduced model ỹ (7.22) is always smooth.

To clarify the use and ‘evolution’ of the set of coefficients aqp, for a
given signal generator, an illustrative example is considered in the
following. Let the fundamental frequency be ω0 = 1 and consider a
signal generator with a dynamic matrix S given by

S =



0 1 0 0 0 0
−1 0 0 0 0 0

0 0 0 3 0 0
0 0 −3 0 0 0
0 0 0 0 0 4
0 0 0 0 −4 0


, (7.32)

where, clearly, the set of coefficients H = {hp}3p=1 is given by
h1 = 1, h2 = 3 and h3 = 4. Suppose the maximum number of
harmonics associated with each hp, to compute the vector Ωk, are
set to kmax

1 = 10, kmax
2 = 3 and kmax

3 = 2. The coefficients aqp
are illustrated, for this example case, in Figure 7.1, with q ∈ N10.
Non-zero values of aqp are indicated with a black dot.

7.3.4 On the eigenvalues of the reduced model

As discussed in Remark 7.1.7, the family of reduced models by
moment-matching defined in equation (7.22) is input-to-state linear.
Furthermore, the eigenvalues characterising such a system, i.e. the
set λ(S −∆L), can be assigned arbitrarily, as a consequence of the
observability of the pair (S,L).

It is proposed to assign such a set of eigenvalues using information
from the Jacobian linearisation of system (7.1) about the origin, i.e.
the non-parametric linear Cummins’ equation (7.10). In particular,
and similarly to the linear model reduction case presented in Chapter
6, one can estimate a set Λ ⊂ C of ν eigenvalues for system (7.10)
in terms of the singular value decomposition of the Hankel matrix
Ĥ, constructed from the input-output frequency-domain data of the
WEC, computed with BEM solvers (see Section 6.3.1 for a detailed
discussion on this procedure).

Once this set Λ is obtained, the matrix ∆ can always be computed
such that λ(S −∆L) = Λ, due to the observability of (S,L), using
standard algorithms.
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7.4 Extension to MIMO WEC systems

Although, until this point, a SISO nonlinear WEC has been con-
sidered, the methodology to produce reduced models by moment-
matching proposed in Sections 7.1 and 7.2, can be extended to the
MIMO nonlinear case, with some minor considerations. These are
explicitly addressed in the following.

Recall, from Section 2.4, that the equation of motion for a N -th
order WEC system13 13: As previously described in Re-

mark 6.0.2, the termN -th order WEC
system (or device), is utilised to refer
either to a N -DoF WEC device, or
an array of N devices, constrained to
move in a single DoF.

, with N ∈ N≥1, can be expressed as:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe + fnl) ,
y = ż,

(7.33)

where z : R+ → RN is the displacement vector, kr : R+ → RN×N ,
krij ∈ L2(R), ∀{i, j} ⊂ NN , the radiation force impulse response
(matrix) function, fe : R+ → RN the wave excitation force, andM
is the inverse of the generalised mass matrix of the device. Similar to
the SISO case of equation (7.1), the mapping fnl : R+ → RN , t 7→
fnl(t), represents potential nonlinear effects. The same procedure
described in Sections 7.1 and 7.2 can be straightforwardly applied
to a N -th order WEC system (i.e. MIMO WEC case), with the
following modifications.

Analogously to Section 7.1, the following equivalent representation
for the N -th order (MIMO) WEC system can be proposed:

Σ :
{
ẇ = fΣ(w, fe) = Aw +B(fe − kr∗Cw) + f(w),
y = hΣ(w) = Cw,

(7.34)

for t ∈ R+, where w(t) =
∑N
i=1 e

N
i ⊗

[
zi(t) żi(t)

]ᵀ
∈ R2N con-

tains displacement and velocity corresponding with system Σ in
(7.33), and the (constant) matrices A ∈ R2N×2N , B ∈ R2N×N

and C ∈ RN×2N are defined as

A =
N∑
i=1

N∑
j=1

eNij ⊗
[

0 i
jδ

−Mijshi 0

]
,

B =
N∑
i=1

N∑
j=1

eNij ⊗
[

0
Mij

]
,

C = IN ⊗
[
0 1

]
.

(7.35)

The nonlinear mapping f : R2N → R2N is given by

f(w) = Bfnl(w). (7.36)

Following the MIMO formulation presented in Chapter 6, the signal
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generator defined in equation (7.5) is modified accordingly, i.e. it is
written in terms of an autonomous multiple-output signal generator,
using the set of differential equations

ξ̇ = (IN ⊗ S)ξ,
fe = Lξ,

(7.37)

for t ∈ R+, and where the triple (L, IN ⊗ S, ξ(0)) is such that
L = IN ⊗ 1ᵀν and (IN ⊗ S, ξ(0)) is excitable (as detailed in Remark
7.1.3). The matrix S, involved in the definition of the multiple-
output signal generator (7.37), is exactly the same as in the SISO
case, i.e. as defined in equation (7.6).

Posing an analogous assumption for the mapping f , to that defined
in Assumption 7.1.1 for the SISO case, the existence and uniqueness
of the nonlinear moment of system Σ (7.33) at the signal generator
(7.37) can be automatically guaranteed, following the same argu-
ments of Proposition 7.1.1. In other words, the definition of the
nonlinear moment of the MIMO system Σ at the signal generator
(S,L) is always well-posed.

An approximation of the mapping π : RNν → R2N , ξ 7→ π(ξ), for
this MIMO case, can be computed exactly as in the Galerkin-like
procedure proposed in Section 7.2.1 for the nonlinear SISO case. To
be precise, an approximating mapping π̃ can be computed as

π ≈ π̃(ξ) = CΠ̃(1N ⊗ Ωk(ξ)). (7.38)

Remark 7.4.1 The matrix Π̃ ∈ RN×Nν , which completely charac-
terises the approximating mapping π ≈ π̃(ξ) = CΠ̃(1N ⊗Ωk(ξ)),
can be computed in an exact same manner than that proposed
in Section 7.2, with appropriate changes to the residual equation
defined in (7.24). Summarising, one has to replace the quantities
in (7.24) as follows:

S by IN ⊗ S,

Ωk(ξ) by 1N ⊗ Ωk(ξ),

Ωk
0(ξ) by 1N ⊗ Ωk

0(ξ),

CΠ̃R by
N∑
i=1

N∑
j=1

eNij ⊗ CΠ̃(IN ⊗Rij),

(7.39)

where each Rij directly stems from Proposition 6.2.1, i.e. it can
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be written as a block-diagonal matrix defined as

Rij =
k⊕
q=1

[
i
jrqω0

i
jmqω0

−ijmqω0
i
jrqω0

]
, (7.40)

for {i, j} ⊂ NN , and where the set {ijrqω0 ,
i
jmqω0} ⊂ R is as

defined in equation (6.16), for all q ∈ Nk.

Finally, a family of reduced models of order (dimension) 2Nf for
the WEC system defined in equation (7.33), can be written in terms
of the approximating moment hΣ ◦ π̃, for this MIMO case, as

Σ ≈ Σ̃nl :
{

Θ̇ = (IN ⊗ S −∆L)Θ + ∆fe,

ỹ = CΠ̃(1N ⊗ Ωk(Θ)),
(7.41)

parameterised in ∆ ∈ RNν×N .

Remark 7.4.2 Note that, similarly to the case presented in equa-
tion (7.12). the set λ(IN ⊗ S −∆L) can be assigned arbitrarily,
as a consequence of the observability of the pair (IN ⊗ S,L).

7.5 WEC systems under regular wave
excitation

To illustrate the performance of the model reduction by moment-
matching technique presented in this chapter, a clear distinction has
to be made, in terms of the nature of the wave excitation input,
i.e. regular or irregular. In particular, this section analyses a WEC
system under regular wave excitation, assuming two different cases
concerning the wave height: Deterministic and stochastic14 14: Note that the analysis provided

in this section motivates the method-
ology proposed for the more complex
irregular wave input case, described
in Section 7.6.

.

For the remainder of this section, a spherical heaving point absorber
WEC is considered, with a radius of 2.5 [m]. Such a geometry is
schematically illustrated in Figure 7.2. The hydrodynamic coefficients
Br(ω) and Ar(ω), for this spherical-type device, are those shown in
Figure 2.8.

Figure 7.2: Spherical heaving point
absorber WEC considered for the case
of nonlinear model reduction under
regular wave excitation.
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The nonlinear mapping fnl, characterising the nonlinear effects
present in the non-parametric WEC equation (7.1), is assumed
to be given, for this spherical heaving point absorber case, by:

fnl(z, ż) = fnlre (z) + fv(ż),

fnlre (z) = 1
3ρgπz

3,

fv(ż) = −2ρπ(2.5)2Cdż|ż|,

(7.42)

where ρ is the water density, g the gravitational constant, and fv
and fnlre represent nonlinear viscous and hydrostatic restoring effects
(see Section 2.5), respectively15 15: The mapping fnlre is geometry de-

pendent and, for the spherical heaving
point absorber case, can be found in,
for instance, [125].

. The value for the viscous drag
coefficient is set to Cd = 1, following the study on consistency of
viscous drag identification for WECs, performed in [18].

To illustrate the proposed nonlinear model reduction by moment-
matching technique for devices under regular excitation, it is assumed
that the WEC is subject to regular waves with a given frequency
ω∗ and height Hw. As a matter of fact, note that ω∗ is indeed the
fundamental frequency defined in Section 7.1, i.e. ω0 = ω∗. Under
these conditions, the wave excitation input fe can be written16 16: Note that, without any loss of

generality, the phase shift is assumed
to be zero.

as,

fe(t) = A∗ cos(ω∗t), (7.43)

where A∗ = |Ke(ω∗)|Hw2 ∈ R+, with Ke : R → C the Fourier
transform of the excitation impulse response function (see Section
2.3.2.1). This input can be clearly generated following Section 7.1,
i.e. as the output of a signal generator, analogously to equation
(7.5), characterised by the one-dimensional set F = {ω∗}:

ξ̇ = Sξ =
[

0 ω∗

−ω∗ 0

]
ξ,

fe = Lξ =
[
1 1

]
ξ,

ξ(0) =
[
α β

]ᵀ
=
[
A∗

2
A∗

2

]ᵀ
.

(7.44)

A clear distinction is now made, with respect to the nature of the
wave heightHw and, hence, the amplitude A∗ of the excitation signal
fe. In particular, if the wave height is assumed to be fixed and known,
then a single initial condition ξ(0) (as in equation (7.44)) is required
to fully characterise the approximating moment and, hence, the
corresponding reduced order model by moment-matching. This case
is referred to as deterministic regular excitation, and is illustrated
and discussed in Section 7.5.1. In contrast, if the wave height is only
known to lie in a given set, then a set of multiple initial conditions is
required to characterise the corresponding reduced order model, by
following Section 7.3. This case is referred to as stochastic regular
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excitation, and is illustrated and discussed in Section 7.5.2.

7.5.1 Deterministic regular excitation

Recall that, for this regular excitation case, the so-called fundamental
frequency ω0 is indeed ω∗. As discussed previously in Section 7.5, if
the wave height is fixed and known, then a single initial condition ξ(0)
is required to fully characterise the reduced order model by moment-
matching, defined in equation (7.22). To be precise, the computation
of the matrix Π̃, fully characterising the approximating moment (as in
Definition 7.2.1), can be computed using the Galerkin-like approach
proposed in Section 7.2.1, without any further modifications. This
case is explicitly discussed in the following.

Let ω∗ = 0.8 [rad/s], which corresponds with a wave period of
approximately Tw = 8 [s], and suppose the wave height, which
characterises the amplitude A∗ of the wave excitation force, is fixed
to Hw = 2 [m]. A nonlinear model, reduced by moment-matching,
for the heaving sphere considered in this section, can be computed
directly from (7.22) as

Σ ≈ Σ̃nl :


Θ̇ =

([
0 0.8∗

−0.8∗ 0

]
−∆

[
1 1

])
Θ + ∆fe,

ỹ = CΠ̃Ωk(Θ),
(7.45)

where the mapping Ωk is characterised by equation (7.14), for a
given number of harmonics k of the fundamental frequency ω∗,
and where the matrix Π̃ is computed following Section 7.2.1. Note
that the initial condition ξ(0), involved in the computation of Π̃,
is exactly as described in equation (7.44). The matrix ∆, assigning
the eigenvalues of the reduced model (7.45), is computed following
Section 7.3.4.

Remark 7.5.1 Given that only the fundamental frequency is
explicitly present in the definition of the signal generator (7.44)
and, hence, in the model reduced by moment-matching defined in
equation (7.45), the mapping Ωk is, effectively, polynomial (i.e.
no fractional exponents of ξ are required for the regular wave
input case).

To begin with the assessment of this case study, Figure 7.3 illustrates
the performance of a nonlinear moment-based reduced model as in
equation (7.45), computed with k = 3 (i.e. with Ωk including three
harmonics of the fundamental frequency ω∗). In particular, Figure
7.3 shows both the output of the target (dashed) nonlinear model of
the WEC system (7.1), computed with a Runge-Kutta method (time
step of 10−4 [s]), where the non-parametric convolution operator
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is explicitly solved, and the output of the moment-based reduced
order model (7.45) (solid), with k = 3.

0 5 10 15 20 25 30 35 40
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 7.3: Output of both the tar-
get nonlinear model (dashed) and the
moment-based reduced order model
(solid), with k = 3.

It can be readily appreciated that, after the corresponding transient
period, the steady-state response of both target and approximating
models are effectively indistinguishable, as a virtue of the inherent
moment-matching feature of the reduced model. To illustrate the
improvement in (steady-state) accuracy for higher values of k, Figure
7.4 shows (in logarithmic scale) the absolute value of the difference
between target and approximating output for k ∈ {3, 5, 7}, as
a function of time. In addition, the error corresponding with the
output of the system arising from Jacobian linearisation, i.e. the
linear Cummins’ equation in (7.10), corresponding with the spherical
heaving point absorber considered in this section, is also shown.
Although, as can be concluded from both Figures 7.3 and 7.4,
selecting k = 3 provides accurate results, these can be improved by
increasing k accordingly.
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Figure 7.4: Absolute value of the dif-
ference between target and approxi-
mating output for k ∈ {3, 5, 7}, as
a function of time. In addition, the
error corresponding with the output
of the Jacobian linearisation is also
shown.

Aiming to provide a conclusive performance indicator for this regular
deterministic wave input case and given that, unlike the linear case
presented in Chapters 5 and 6, only a time-domain comparison can
be performed for this nonlinear WEC case, the normalised mean
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# of harmonics NMAPE

(Jacobian linearisation) 10.12 %
k = 3 0.76 %
k = 5 0.14 %
k = 7 0.04 %

Table 7.1: NMAPE for the moment-
based reduction strategy, for WECs
under regular excitation.

absolute percentage error NMAPE is considered, defined as

NMAPE(ỹss) = 100
Ns

Ns∑
i=1

|ỹss(ti)− yss(ti)|
max{|yss(ti)|}

, (7.46)

where Ns ∈ N≥1 denotes the number of (time-domain) samples
available for the time-traces of the steady-state target, and approx-
imating output signals yss and ỹss, respectively. Table 7.1 shows
the NMAPE for the nonlinear moment-based models computed
from equation (7.45), with k ∈ {3, 5, 7}, and that corresponding
with the Jacobian linearisation about the origin, i.e. equation (7.10).
Clearly, a result consistent with that shown in Figure 7.4 can be
straightforwardly concluded.

7.5.2 Stochastic regular excitation

Section 7.5.1 discusses a case study where the amplitude associ-
ated with the regular wave excitation input fe is exactly known. In
other words, a single trajectory ξ(t) of the signal generator (7.44),
obtained from a unique initial condition ξ(0), is required to fully
characterise the approximating moment hΣ ◦ π̃, in terms of the
Galerkin-like approach presented in Section 7.2.1. If the wave height,
characterising the wave excitation amplitude, is only known to lie on
a certain set, i.e. Hw ∈ H , with H = [Hmin

w , Hmax
w ] ⊂ R+, then

the approximation of the corresponding nonlinear moment depends
on an infinite number of initial conditions (each for every possible
wave height in the set H ).

Though an adaptation of the Galerkin-like approach, proposed in
Section 7.2.1, is given in Section 7.3.2 for the multiple trajectory case,
the number of initial conditions is assumed to be finite. Motivated
by this, a worst-case approach is considered in the following: Only
the set of initial conditions Ξt = {ζmin, ζmax} ⊂ R2 are taken
into account for the computation of the matrix Π̃, where ζmin

and ζmax correspond with the inputs with height Hmin
w and Hmax

w ,
respectively.

Remark 7.5.2 From now on, the elements of the set of initial
conditions Ξt, associated with the worst-case approach described
in this section, are referred to as training initial conditions. Anal-
ogously, the trajectories generated as a function of the set Ξt, i.e.
{ξζmin , ξζmax}, are referred to as training trajectories.
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Note that the set of training initial conditions can be computed
analogously to equation (7.43), i.e.

ζmin =
[
A∗1
2

A∗1
2

]ᵀ
, A∗1 = |Ke(ω∗)|

Hmin
w

2 ,

ζmax =
[
A∗2
2

A∗2
2

]ᵀ
, A∗2 = |Ke(ω∗)|

Hmax
w

2 .

(7.47)

For this case study, it is assumed that Hmin
w = 1.6 [m] and Hmax

w =
2.4 [m], i.e. the actual value of the wave height can vary ± 20%
of the nominal value Hw = 2 [m], adopted in Section 7.5.1. The
approximating moment is then computed as detailed in Section 7.3.2,
for the set of training trajectories Ξt, and where, in light of the results
computed for the deterministic case of Section 7.5.1, the number of
harmonics involved in the definition of Ωk is set to k = 5. Figure
7.5 illustrates the output of the nonlinear moment-based reduced
order model (in steady-state, solid), for the inputs corresponding
with the training trajectories ξζmin and ξζmax . The target outputs,
computed from system Σ in (7.1) using a Runge-Kutta method with
a time-step of 10−4 [s] (as in Section 7.5.1), are denoted with a
dashed line.
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Figure 7.5: Output of the nonlinear
moment-based reduced order model
(in steady-state, solid), for the inputs
corresponding with the training tra-
jectories ξζmin and ξζmax . The target
outputs are denoted with a dashed
line.

Remark 7.5.3 Note that, as expected from the method proposed
in Section 7.3.1, the performance of the approximating outputs
for the training trajectories ξζmin and ξζmax , is not as accurate as
in the deterministic case presented in Section 7.5.1. In particular,
the latter is fully characterised by a single trajectory ξ, and the
approximating moment can be computed with the Galerkin-like
approach proposed in this chapter, with an arbitrary degree of pre-
cision (facilitated by an appropriate selection of k in the mapping
Ωk). When multiple trajectories for the signal generator (S,L)
are considered, a minimisation approach is utilised, where a single
matrix Π̃ is computed to characterise the approximating moment
hΣ ◦ π̃ for all the training trajectories involved, hence providing a
more versatile reduced order model (i.e. valid for a larger class of
inputs) but, naturally, with a corresponding loss in performance.
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Figure 7.6: NMAPE for 1000 reali-
sations of regular wave inputs with
Hw ∈ [1.6, 2.4] [m]. The average
value NMAPE ≈ 3% is denoted with
a horizontal black line.

To illustrate the performance of the moment-based reduced model
computed in this section, a set of 1000 randomly generated realisa-
tions of regular wave inputs with wave heights in the set [1.6, 2.4]
[m], is considered. In particular, Figure 7.6 shows the NMAPE (com-
puted as in equation (7.46)) for each wave realisation involved. Note
that the average NMAPE value is NMAPE ≈ 3%, and the maximum
error registered is of ≈ 4%. In other words, using the methodology
proposed in this section for the selection of an appropriate set of
training trajectories to compute the approximating moment, the
reduced order model by moment-matching (7.45) is able to success-
fully approximate the behaviour of the target non-parametric WEC
system Σ, for regular wave excitation inputs with varying (stochastic)
wave height.

7.6 WEC systems under irregular wave
excitation

The case of model order reduction by moment-matching for irregular
sea states has a number of distinctive features with respect to
the regular wave excitation cases discussed in Section 7.5, which,
unless addressed appropriately, can substantially compromise the
synthesis of such a nonlinear reduced structure. To begin with,
both the wave height and wave period are not fixed, and only
knowledge of the significant wave height H̄w and peak period T̄w are
commonly available, for a given stochastic sea-state characterisation
in terms of a particular SDF (see Section 2.1.2). This clearly has
several implications, both on the definition of the signal generator
characterising the wave excitation effect (as in equation (7.6)), and
the methodology involved in the computation of the approximating
moment. These implications are addressed and discussed in the
following subsections.

7.6.1 On the definition of the signal generator

The signal generator (7.6) is composed of f harmonics of a fun-
damental frequency ω0, i.e. the set F = {hpω0}fp=1, with H =
{hp}fp=1 ⊂ N≥1, and where h1 < . . . < hf . Though this assump-
tion is, in principle, not restrictive (see Section 2.1.2), an accurate
representation of wave excitation effects potentially requires both
a sufficiently small fundamental frequency ω0, and a sufficiently
large number of harmonics f . This, in turn, has the following conse-
quences:
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1) A small fundamental frequency implies that the projection, in-
volved in the Galerkin-like procedure proposed to compute the
approximating moment, has to be performed on a larger time
interval T = [0, 2π/ω0]. Though this can be still performed
efficiently using FFTs (see Section 7.3), it can also increase
the computational complexity involved in the solution of the
projected residual equation (7.26).

2) A large number of harmonics f in the definition of the signal
generator (7.6) directly affects the complexity of the resulting
reduced model by moment-matching: the order (dimension)
ν of the family of reduced order models achieving moment-
matching (7.22) depends linearly on f .

The issue discussed in item 1) above, can be easily overcome by
a sensible selection of the fundamental frequency, which should
take into account the particular sea state under analysis (further
discussed in the case study provided in this section). Item 2) above
can be overcome in the spirit of the linear moment-based technique
proposed in Chapters 5 and 6: Only a set of dynamically relevant
frequencies should be selected to represent the wave excitation effects
and, hence, to characterise the corresponding reduced order model
by moment-matching. As demonstrated in Chapters 5 and 6, this
set, for the WEC case, includes the resonant frequency associated
with the linearised behaviour of the WEC system (i.e. the frequency
characterising the H∞-norm of the linearised system), and the peak
frequency characterising the input SDF, i.e. ω̄w = 2π/T̄w.

7.6.2 On the definition of the set of training
trajectories

Given the stochastic nature of the wave process, and once the set
of frequencies F involved in the definition of the corresponding
signal generator is selected (following Section 7.6.1), a method to
choose a set of training trajectories is required, similarly to the case
discussed in Section 7.5.2.

Inspired by the worst-case approach defined for the case of regular
wave excitation with stochastic height, the following procedure is
proposed. Recall that every initial condition ξ(0) can be written as in
Remark 7.1.2, i.e. in terms of a set of coefficients {αp, βp}fi=1 ⊂ R,
associated to each harmonic hpω0 involved in the definition of the
signal generator. Let Ap =

√
α2
p + β2

p ∈ R+, with p ∈ Nf , be a set
of positive real-valued ‘amplitudes’ associated with17 17: The use of the term ‘amplitude’

for Ap is justified in Remark 7.6.1.
each harmonic

hp. Then:
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I Generate a random set of Nt ∈ N≥1 initial conditions Ξ =
{ζi}Nti=1 (i.e. wave inputs), according to the SDF Sw charac-
terising the sea state under analysis.

I Compute the set Ap = {Aip}Nti=1, with p ∈ Nf , for each
randomly generated initial condition ζi, where Aip denotes the
amplitude associated with the harmonic hpω0.

I Select the set of initial conditions Ξt that maximise and
minimise each Ap, denoted as ζmin

p and ζmax
p , for every p ∈ Nf .

Note that this automatically implies that 2f initial conditions
are selected (one amplitude maximiser and one minimiser
for each harmonic hp involved in the definition of the signal
generator).

I Compute the set of training trajectories using Ξt, directly
from the definition of the signal generator (7.5), i.e. the set
{ξζmin

p
, ξζmax

p
}fp=1.

Remark 7.6.1 The method proposed in this section is indeed
analogous to the worst-case approach proposed in Section 7.5.2:
Note that the value Ap =

√
α2
p + β2

p corresponds to the absolute
value of the complex number (αp+jβp)ehpω0t, which characterises
the entries of the trajectory ξ(t) associated with the harmonic
hpω0 (see Remark 7.1.2). In other words, the method outlined in
this section retains as training trajectories only those trajectories
associated with the maximum and minimum input amplitudes, for
each harmonic hpω0, with p ∈ Nf .

7.6.3 Numerical study

For the remainder of this numerical study of nonlinear model re-
duction by moment-matching, under irregular wave excitation, an
array of two identical spherical heaving point absorber WECs is
considered, each device with a radius of 2.5 [m] (as in Section 7.5),
in the layout configuration presented in Figure 7.7. The distance
between devices is set to one diameter, i.e. d = 5 [m].

Figure 7.7: Spherical heaving point absorber WEC layout considered for the case of nonlinear model reduction under
irregular wave excitation.
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Figure 7.8: SDF corresponding with
a JONSWAP spectrum utilised to
generate the wave input.

The nonlinear mapping fnl, characterising the nonlinear effects for
this WEC system, is given by:

fnl(z, ż) =
[
fnlre (z1) + fv(ż1)
fnlre (z2) + fv(ż2)

]
, (7.48)

where the mappings fnlre and fv are defined as in equation (10.34),
and where z1 : R+ → R and z2 : R+ → R denote the displacement
of device 1 and 2, respectively.

Remark 7.6.2 Note that the WEC system, presented in the layout
of Figure 7.7, can be regarded as a single-input system: Given the
direction of the incident waves, and the underlying symmetry of
the layout, the wave excitation force experienced by both devices is
indeed the same. In other words, the single-output signal generator
defined in equation (7.5) can be utilised to describe fe. In addition,
from now on, the velocity of device 1, i.e. ż1, is selected as target
output18

18: This is considered to simplify the
case study, and focus on the per-
formance of the nonlinear reduction
technique. If the wave direction is
different, then one can simply apply
the extension to MIMO systems pre-
sented in Section 7.4.

.

The numerical generation of the irregular input waves, for this case
study, is fully characterised by a JONSWAP spectrum with H̄w = 2
[m] and T̄w = 8 [s]. The peak enhancement factor is set to γ = 3.3.
The corresponding SDF Sw is that illustrated in Figure 7.8.

Following Section 7.6.1, and given the specific SDF selected for
the generation of numerical waves, the fundamental frequency is
set to a value of ω0 = 0.1 [rad/s], which facilitates a sufficiently
accurate representation of the wave process for the synthesis of
the corresponding reduced order model, as demonstrated in the
remainder of this section. In addition, the signal generator involved
in the definition of the reduced model by moment-matching, i.e.
equation (7.5), is characterised with the set of frequencies F =
{0.8, 2}, where, given the selection of ω0 = 0.1 [rad/s], the set
H = {h1, h2} = {8, 20}.

Remark 7.6.3 Note that, as discussed in Section 7.6.1, the
selection of the set F is not arbitrary: 0.8 [rad/s] represents
the frequency corresponding with the peak characterising the
input SDF (see Figure 7.8), while 2 [rad/s] is the frequency
characterising the H∞-norm of the Jacobian linearisation of the
WEC system, i.e. the resonant frequency corresponding to heave
motion.

Remark 7.6.4 With the selection of frequencies in the set F ,
the order (dimension) of the reduced model by moment-matching
(as in equation (7.22)) is ν = 2f = 4.
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Remark 7.6.5 The generation of waves for the assessment of
the proposed strategy, i.e. in the simulation stage, is naturally
performed using both a smaller value of ω0, and a higher number
of harmonics, than those specified in the signal generator used
to synthesise the moment-based reduced model. This is specified
and detailed in the following paragraphs.

Once the set F is defined, the set of training trajectories, utilised
to compute an approximation of the moment of the WEC system at
the signal generator (S,L), is obtained following Section 7.6.2. In
particular, a set of Nt = 50 random initial conditions is considered19

19: Computed randomly according to
the SDF of Figure 7.8.

to compute the sets A1 = {Ai1}50
i=1 and A2 = {Ai2}50

i=1, associated
with the harmonics corresponding with h1 = 8 (0.8 [rad/s]) and
h2 = 20 (2 [rad/s]), respectively. These sets are illustrated in Figure
7.9, where the maximum and minimum values for each set A are
denoted using the black color.
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Figure 7.9: Sets of amplitudes A1 = {Ai1}50
i=1 and A2 = {Ai2}50

i=1, associated with the harmonics corresponding with
h1 = 8 and h2 = 20, respectively.

With the result presented in Figure 7.9, one can completely char-
acterise the set of training trajectories , i.e. the set of trajectories
{ξζmin

1
, ξζmax

1
, ξζmin

2
, ξζmax

2
} ⊂ R4. Finally, aiming to keep the output

mapping, characterising the reduced model by moment-matching, to
a polynomial form (analogously to the case of regular input waves
discussed in Section 7.5), the mapping Ωk, utilised to compute the
approximating moment hΣ ◦ π̃, is chosen as described in Section
7.3.2. In particular, the maximum number of harmonics associated
with each frequency in the set F is set to kmax

1 = 5 and kmax
2 = 3,

i.e. 5 and 3 harmonics associated with the frequencies 0.8 [rad/s]
and 2 [rad/s], respectively. Analogously to the regular input case
with stochastic height of Figure 7.5, the steady-state output of
the nonlinear moment-based reduced order model computed in this
section, for the inputs corresponding with each training trajectory,
is shown in Figure 7.10 (solid). The target outputs, for each corre-
sponding training trajectory, are computed from the non-parametric
WEC system Σ (as in equation (7.1), with a Runge-Kutta method
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(time-step of 10−4 [s]), and can be appreciated in Figure 7.10 with
dashed lines.
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Figure 7.10: Output of the nonlinear moment-based reduced order model under irregular wave excitation (in steady-state,
solid), for the inputs corresponding with each training trajectory. The target outputs are denoted with a dashed line.

To begin with the assessment of the resulting reduced order model
by moment-matching, Figure 7.11 presents results for a particular
(randomly generated) sea state realisation, where the input waves,
considered for this simulation stage, are computed as in Remark
2.1.3, using a fundamental frequency ω0 = 0.01 [rad/s] and 400
harmonics (i.e. with a cut-off frequency of 4 [rad/s]). As can be
directly appreciated from Figure 7.11, the output of the reduced order
model by moment-matching (solid) is effectively able to approximate
the target output (dashed), even during the transient period. Note
that the output corresponding with the Jacobian linearisation about
the origin, i.e. linear Cummins’ equation (7.10) for the analysed WEC
system, is also shown, using a dotted line. A significant overprediction
of velocity can be appreciated by the linear model, potentially leading
to an overprediction of power production. The NMAPE, computed
as in equation (7.46) for 100 [s] of simulation time (as shown in
Figure 7.11), is ≈ 4.6% for the nonlinear reduced model computed
in this section, and ≈ 40% for the case of the Jacobian linearisation.
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Figure 7.11: Output of the reduced
order model by moment-matching
(solid) and target motion (dashed),
for a randomly generated sea-state
realisation, with SDF as in Figure 7.8.
The output corresponding with the
Jacobian linearisation about the ori-
gin is also shown, using a dotted blue
line.
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Figure 7.13: NMAPE for 100 realisa-
tions of irregular wave inputs accord-
ing to the SDF presented in Figure
7.8. The average value NMAPE ≈
4.5% is denoted with a horizontal
black line.

A more detailed characterisation of the approximation error can be
appreciated in Figure 7.12, where the absolute value of the difference
between target and approximating output is shown, for both the
reduced model by moment-matching, and the output arising from
Jacobian linearisation.
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Figure 7.12: Absolute value of the
difference between target and approx-
imating output, for the case of irreg-
ular wave excitation. The error cor-
responding with the output of the
Jacobian linearisation is also shown.

To provide a conclusive illustration of the capabilities and perfor-
mance of the moment-based model, the NMAPE for a set of 100
random realisations of wave inputs, according to the JONSWAP
spectrum considered (see Figure 7.8), is explicitly shown in Figure
7.13. Note that the mean NMAPE is NMAPE ≈ 4.5%, with any
individual errors always below 6%, effectively showing the capabilities
of the moment-based strategy, presented in this chapter, to approx-
imate the behaviour of a nonlinear WEC system under stochastic
irregular wave excitation.

Finally, and aiming to assess the computational features of the
nonlinear moment-based reduced model computed in this section,
Figure 7.14 shows:

A) Normalised run-time20

20: Ratio between the time required
to compute the output of each cor-
responding model, and the length of
the simulation itself. The computa-
tions are performed using Matlab R©,
running on a PC composed of an Intel
Core i7-5550U processor with 8GB of
RAM.

for a parametric nonlinear model of
the WEC system, where the convolution operation associated
with radiation forces is replaced with a reduced order model
(in state-space) of order 8, following the linear moment-based
strategy presented in Chapter 5 using the same frequency
interpolation set considered in this section, i.e. F = {0.8, 2}.

B) Normalised run-time for the nonlinear reduced model by moment-
matching computed as detailed in this section.

Remark 7.6.6 Note that for case A), detailed above, no ‘nonlinear
model reduction’ takes place, but only the linear convolution term
is replaced with a state-space form to alleviate the computational
requirements of the convolution itself (see Remark 7.0.2).

It can be readily appreciated that the reduced nonlinear model,
presented in this chapter, computes in an order of magnitude faster
than the original parametric model, which can be attributed to
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two main features. Firstly, a smaller order (dimension) is required
to represent the behaviour of the WEC system, which effectively
leads to faster computations. Secondly, and more importantly, the
input-to-state dynamics are linear, and only the output mapping
presents nonlinear behaviour (which is static). In other words, the
main computational cost behind the moment-based reduced model is
simply solving a set of first order linear ordinary differential equations.
This feature is indeed appealing from a control/state-estimation
perspective, where both efficient and precise models are required.
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Figure 7.14: Normalised run-time for
a parametric nonlinear model of the
WEC system (circles, upper trace),
where the convolution operation is
replaced with a reduced order model
(in state-space), and for the nonlinear
reduced model by moment-matching
computed as detailed in this section
(diamonds, lower trace). Mean values
are indicated with black horizontal
lines.

7.7 Conclusions

This chapter presents a nonlinear model reduction framework for
wave energy applications, based on moment-matching techniques,
which inherently preserve steady-state response characteristics. This
is, to the best of the author’s knowledge, the first systematic non-
linear model reduction technique proposed in the wave energy field.
The first contribution of this chapter concerns the proof of exis-
tence and uniqueness of the corresponding nonlinear moment for the
non-parametric WEC system Σ. Secondly, and given the intrinsic
necessity of an analytic expression for the corresponding nonlin-
ear moment, a consistent approximation method is presented, by
a suitably defined family of functions, in terms of a Galerkin-like
methodology. Practical aspects behind this approximation framework
are given and discussed, including the connection (and use) of well-
established algorithms, to efficiently compute such an approximating
moment.

The family of nonlinear models reduced by moment-matching pro-
posed in this chapter is inherently parametric (given specifically
in state-space form), and input-to-state linear, with any nonlinear
behaviour confined to the output mapping only. Moreover, given
the nature of the Galerkin-like method proposed to approximate
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the corresponding moment, the user can manipulate the degree
of complexity of this nonlinear output mapping, hence having full
control of the underlying characteristics of the reduced structure.

Two different model reduction cases are clearly defined, in terms of
the nature of the input: model reduction of nonlinear WEC systems
under regular, and irregular, wave excitation. For WECs under regular
wave excitation, both deterministic and stochastic wave height cases
are considered. In the deterministic case, the wave height is assumed
to be known, and the approximating moment can be characterised
in terms of a single trajectory associated with the corresponding
signal generator. For the stochastic case, the wave height is only
assumed to lie on a certain (given) set, which directly implies that, in
principle, an infinite number of inputs needs to be considered within
the approximation process. In the light of this, a worst-case approach
is proposed to select a finite set of so-called training trajectories,
representing the ‘limit’ cases associated with the set of heights. Case
studies are presented for both deterministic and stochastic cases, in
terms of a spherical heaving point absorber WEC, including both
nonlinear viscous, and hydrostatic restoring effects. It is shown that
the nonlinear models reduced by moment-matching, can successfully
approximate the nonlinear target WEC system Σ, with a NMAPE
always below 4%, clearly showing the capabilities of the strategy.

For the case of irregular waves, given the (fully) stochastic nature of
the wave input, methods are provided to select the characteristics
describing the wave excitation effects, both in terms of the funda-
mental frequency, and the harmonics required in the definition of the
signal generator. In addition, and analogously to the stochastic regu-
lar input case, a methodology to select a set of training trajectories
is provided, also based on a worst-case approach. A numerical case
study is provided, considering a WEC system composed of two heav-
ing point absorber devices, presenting nonlinear behaviour (nonlinear
viscous and hydrostatic restoring effects). The average NMAPE for
this case study is ≈ 4.5%, effectively showing the capabilities of the
proposed moment-based strategy to approximate the behaviour of a
nonlinear WEC system under stochastic irregular wave excitation.
Finally, a study on the normalised run-time is provided, showing that
the presented strategy computes in an order of magnitude less than
when solving the nonlinear Cummins’ equation (7.1) with a state-
space description approximating the non-parametric (convolution)
terms.
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Recall, from Section 2.4, that the equation of motion for a controlled
WEC, under the assumptions of linear potential flow theory (see
Section 2.3.1), can be expressed in terms of Cummins’ equation
(2.20). This equation is recalled below, for a 1-DoF WEC device,
for convenience:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe − u) ,
y = ż,

(8.1)

where z : R+ → R is the displacement, kr : R+ → R, kr ∈ L2(R),
the radiation impulse response function, fe : R+ → R, the wave
excitation, and M ∈ R>0 is the inverse of the generalised mass
matrix of the device (which is simply a scalar in this case). The
control input u : R+ → R, supplied by means of the so-called power
take-off system, plays a key role in the optimisation of the operation
of wave energy devices, as discussed in Section 3.

In particular, energy-maximising control of wave energy converters
has been shown to be one of the fundamental contributions towards
efficient energy extraction from ocean waves: Optimal control strate-
gies significantly improve maximum time-averaged power extraction
from waves, potentially reducing the LCoE, and hence contributing
to the roadmap towards successful commercialisation of WECs.

Any energy-maximising control strategy for WECs must take into
account the inherent physical limitations of both the device itself,
and the PTO (actuator) dynamics, such that energy extraction is
maximised, while systematically minimising the risk of component
damage1 1: See section 3.2 for further detail

on the definition of these device limi-
tations.

. The above control specifications form the basis for a
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range of studies, which are mostly formulated in terms of an optimal
control problem subject to both state and input constraints (see
Section 3.4).

This chapter presents a solution for the energy-maximising optimal
control problem for linear SISO WECs, explicitly using moment-based
theory. In particular, this chapter shows that, besides being a power-
ful model reduction tool (as demonstrated in the strategies proposed
in Part II of this thesis), the parameterisation of the steady-state re-
sponse of a system in terms of moments (i.e. in terms of the solution
of a specific invariant equation, see Chapter 4), can be explicitly used
to transcribe the (infinite-dimensional) energy-maximising control
problem to a finite-dimensional optimisation program. To be specific,
within the moment-based optimal control framework proposed in
this chapter, the energy-maximising OCP can be mapped into a
strictly concave quadratic program (QP), systematically guarantee-
ing a unique solution for the energy-maximising control objective,
subject to both state and input constraints. This clearly has a strong
impact on the practical viability of the proposed moment-based
approach, facilitating the utilisation of state-of-the-art QP solvers
(such as those described in [207]), providing a computationally effi-
cient energy-maximising control framework. In addition, unlike most
of the model-based energy-maximising control strategies reported2

2: See Section 3.4 for a review on
the state-of-the-art of optimal control
techniques for WECs.

for WECs, this moment-based strategy does not require a-priori para-
metric approximation (i.e. model reduction) of the radiation force
(convolution) term, but actually provides an analytical description
of the convolution in the moment-domain3 3: This is, indeed, the moment-domain

equivalent of the radiation force sub-
system Σr, defined in Section 5.1.

, further reducing the
computational burden when solving the target energy-maximising
OCP.

In particular, Section 8.1 formalises the definition of the OCP for
linear SISO WEC systems, while Section 8.2 presents the funda-
mental results required to guarantee existence and uniqueness of
a moment-based representation of the WEC system. Section 8.3
proposes a moment-based control framework for WECs, in which the
target OCP is mapped to a finite-dimensional QP, deriving explicit
conditions for the existence of a unique globally optimal control law.
The main features and capabilities of the strategy are discussed in
Section 8.4, which presents a case study, using the CorPower-like
device considered in Chapter 6 (see also Figure 6.2).

Up until this point, the wave excitation force fe, numerically gener-
ated as in Section 2.1.2 (i.e. in terms of the so-called fundamental
frequency ω0 = 2π/T ), is assumed to be known for a sufficiently
large time period T .
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Remark 8.0.1 Despite the fact that having full (i.e. instantaneous
and future) knowledge of the excitation input (for a sufficiently
large period T ) is, in general, not viable in practice, such an
assumption does not pose any loss of generality with respect to the
theoretical results developed in Sections 8.2 and 8.3: Uniqueness
and existence of a moment-based representation and, consequently,
a moment-based parameterisation of the OCP can be ensured
independently of the available knowledge of fe.

Aiming to drop the assumptions described in Remark 8.0.1 (which
may not be applicable in practice), the moment-based framework,
proposed in Section 8.3, is appropriately modified to incorporate
estimation and forecasting algorithms accordingly4 4: Unknown-input state-estimation strate-

gies are required to provide instanta-
neous values of fe, while forecasting
techniques are employed to predict
future wave excitation force within a
certain time interval. The reader is
referred to Section 3.2.1 for further
detail on this topic.

, in terms of a
real-time moment-based receding-horizon optimal control framework
for WEC systems. To fulfill such an objective, an explicit definition
for the receding-horizon energy-maximising OCP for WECs is for-
malised in Section 8.5. The representation of the wave excitation
force input in the moment-domain (as posed in Section 8.2) is
adequately adapted to incorporate estimated and forecasted values
of fe in Section 8.6, dropping the requirements stated in Remark
8.0.1, without affecting the theoretical results derived in Sections
8.2 and 8.3. In other words, this (subtle) modification maintains the
intrinsic computational efficiency and uniqueness of the correspond-
ing solution, facilitated through the convenient parameterisation of
the corresponding OCP in the moment-domain.

Using the unknown-input estimation strategy presented in [90] (re-
called and explicitly considered in Section 6.5), and the autoregres-
sive (AR) model of [16], the performance of the moment-based
receding-horizon strategy is assessed, in Section 8.7, revisiting the
case study of Section 8.4 (i.e. where a CorPower-like device is con-
sidered, and full knowledge of the wave excitation input is available).
Furthermore, Section 8.7 provides a sensitivity analysis, addressing
the impact of estimation and forecasting errors in the computation
of the moment-based optimal control input and, hence, on total
energy absorption. Finally, the main conclusions of this chapter are
encompassed in Section 8.8.

8.1 Optimal control problem

Recall, from Section 3.2, that WEC optimal control design entails an
energy-maximisation criterion, where the objective is to maximise
the absorbed energy from ocean waves over a finite time interval5

5: Note that there is no loss of gen-
erality in considering 0 as initial time.

T = [0, T ] ⊂ R+. To be precise, the useful energy absorbed from
incoming waves is converted in the PTO system, and can be directly
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computed as the time integral of converted (instantaneous) power,
i.e. this energy-maximising control procedure can be cast as an
optimal control problem, with objective function J : R → R,
u 7→ J(u), u(t) ∈ R, defined as

J (u) = 1
T

∫
T
u(τ)ż(τ)dτ, (8.2)

where u : T → R denotes the control (PTO) force. As discussed
in Section 3.2, the computation of the control law which optimises
(8.2) is non-trivial, mainly due to the irregularity of the input (the
wave excitation fe) to the system (see equation (8.1)).

As is well known in the wave energy literature, and is specifically dis-
cussed throughout Chapter 3, the unconstrained energy-maximising
optimal control law, i.e. maximiser of J in (8.2), often implies un-
realistic device motion and excessively high PTO (control) forces,
which consign this optimal unconstrained solution to the academic
realm, far from being practically viable. Aiming to derive an im-
plementable solution, constraints on both the displacement and
velocity of the WEC, z and ż, and the exerted control force u, need
to be considered appropriately. This guarantees that the physical
limits associated with device and actuator dynamics (PTO) are
consistently respected, while effectively maximising, at the same
time, absorbed energy from incoming waves. This set of constraints
can be compactly written6 6: See also Section 3.2.as

C :


|z(t)| ≤ Zmax,

|ż(t)| ≤ Żmax,

|u(t)| ≤ Umax,

(8.3)

with t ∈ T , and where
{
Zmax, Żmax, Umax

}
⊂ R+.

Given the control objective function defined in (8.2), the governing
dynamics of the WEC in (8.1), and the set of state and input
constraints defined in (8.3), the constrained energy-maximising OCP
can be posed as

uopt = arg max
u
J (u),

subject to:WEC dynamics Σ (8.1),
state and input constraints C (8.3).

(8.4)
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8.2 Moment-based WEC formulation for
optimal control

As discussed in the case of linear model reduction by moment-
matching for WECs, presented in Chapters 5 and 6, moment-based
theory is inherently based on the knowledge of a state-space repre-
sentation of the system under analysis, which is clearly not the case
for Cummins’ formulation. Analogously to Section 5.1, and aiming
to consider the theoretical results discussed in Section 4.1.1 for this
1-DoF WEC case, the equation of motion characterising the WEC
system Σ is written using the following equivalent representation:

Σ :
{
ẇ = Aw +Bυ,

y = Cw,
(8.5)

for t ∈ R+, where w(t) =
[
z(t) ż(t)

]ᵀ
∈ R2 contains displacement

and velocity for the (single) DoF involved in the equation of motion,
and the (constant) matrices A ∈ R2×2, B ∈ R2 and Cᵀ ∈ R2 are
defined as

A =
[

0 1
−Msh 0

]
, B =

[
0
M

]
, C =

[
0
1

]ᵀ
. (8.6)

The ‘input’ function υ : R+ → R, is defined as

υ = fe − kr∗Cw − u. (8.7)

Remark 8.2.1 In contrast to the model reduction by moment-
matching case, the input υ now includes the external PTO (con-
trol) force to be optimally designed, using the system-theoretic
definition of moments.

Within the moment-based formulation, recalled in Chapter 4, the
mappings corresponding to both external inputs, i.e. the wave excita-
tion fe, and control force u, are written in terms of an autonomous
single-output signal generator (analogously to the case of equation
(4.3)), i.e. the set of differential equations

ξ̇ = Sξ,

fe = Leξ,

u = Luξ,

(8.8)

for t ∈ R+, with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν . Recall that a
set of standing assumptions on the nature of the signal generator
(i.e. Assumptions 4.1.1 and 4.1.2), are required to have a well-posed
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system-theoretic definition of moments. These are discussed, for the
WEC control case, in the following paragraphs.

Assumption 4.1.2 is ensured by recalling, from Section 2.1.2, that
ocean waves are commonly generated as a finite sum of harmonics
of a (sufficiently small) fundamental frequency ω0. To be precise, let
the finite-set F = {pω0}fp=1 ⊂ R+, with f ∈ N≥1. The dynamic
matrix S in equation (8.8) is defined in block-diagonal form as

S =
f⊕
p=1

[
0 pω0

−pω0 0

]
, (8.9)

where ν = 2f , and hence λ(S) = (jF )∪(−jF ) ⊂ C0.

Remark 8.2.2 For this moment-based WEC formulation for opti-
mal control, the definition of the matrix S, associated with the
signal generator (8.8), explicitly considers an (increasing) number
of harmonics of the fundamental frequency ω0. This contrasts
with the model reduction by moment-matching cases presented
in Chapters 5 and 6, where the signal generator includes a set of
interpolation frequencies, which does not necessarily correspond
with any (pre-defined) fundamental frequency.

Remark 8.2.3 From now on, and aiming to simplify the notation
used throughout the theoretical results posed in the upcoming
sections, it is assumed that the moment-domain equivalent Le,
characterising the wave excitation fe as in equation (8.8) is known,
i.e. full knowledge of fe is available, in the spirit of the separation
principle [75]. Note that this assumption is dropped later on, in
Section 8.6, where both estimated and forecasted values of the
wave excitation effects are explicitly considered in the control for-
mulation. In addition, it is important to document the maximum
achievable control performance in the absence of estimation/fore-
casting errors.

With respect to Assumption 4.1.1, and without any loss of generality,
the initial condition on the signal generator is chosen as ξ(0) = εν ∈
Rν . Given that, in contrast to the model reduction case of Chapter
5, the input to the WEC system is now composed of a (linear)
combination of both the wave excitation force fe and the control
law u, the following assumption is required to have a well-posed
system-theoretic definition of moments.

Assumption 8.2.1 The pair of matrices (S,Le−Lu) is observable.

The objective is now to compute a moment-based description for
one of the key variables in the optimal control problem defined in
equation (8.4): the velocity ż of the WEC device to be controlled.
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Adopting similar theoretical arguments to those in Section 5.1, the
moment of system Σ at the signal generator (S,Le − Lu) can be
computed by solving a specific Sylvester equation, which can be
written, for the controlled WEC case, as

AΠ +B (Le − Lu −Kr) = ΠS, (8.10)

where Π ∈ R2×ν and Kᵀr ∈ Rν is the moment-domain equivalent of
the radiation convolution term (see Proposition 5.1.1).

Remark 8.2.4 If Assumption 8.2.1 holds, the definition of the
moment-domain equivalent of the velocity is well-posed, and its
computation can be directly expressed in terms of the solution of
(8.10) as Ż = CΠ.

The Sylvester equation posed in (8.10) can be solved analogously
to equation (5.7). In particular, using the results of Propositions7

7: Note that the result of Proposi-
tion 5.1.2 holds independently of the
definition of the output vectors of the
signal generator, i.e. it can be directly
applied for the WEC under controlled
conditions.

5.1.2 and 5.1.3, the following proposition, guaranteeing existence
and uniqueness of Ż for the WEC under control conditions, can be
straightforwardly stated.

Proposition 8.2.1 Suppose Assumption 8.2.1 and condition (5.16)
hold. Then, the moment-domain equivalent of the output y of
system (8.5) (the velocity of the device ż) can be uniquely deter-
mined as

Ż = (Le − Lu)ΦᵀR , (8.11)

where the matrix ΦR ∈ Rν×ν is defined as

ΦR = (Iν ⊗ C)Φ−1(Iν ⊗−B),
Φ =

(
S ⊕̂A

)
+ Rᵀ ⊗−BC,

(8.12)

with Φ ∈ R2ν×2ν , and the block-diagonal operator R ∈ Rν×ν ,
characterising the radiation effects in the moment-domain, is
given by

R =
f⊕
p=1

[
rpω0 mpω0

−mpω0 rpω0

]
, (8.13)

where the set of parameters {rpω0 ,mpω0}
f
p=1 ⊂ R is defined as in

equation (5.10).

Proof. Recall that, under Assumption 8.2.1, the moment of system
Σ at the signal generator (S,Le−Lu) is Ż = CΠ. Then, given that
condition (5.16) holds by hypothesis, the result posed in equation
(8.11) follows directly from Proposition 5.1.3, with an appropriate
change of the moment-domain equivalent associated with radiation
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effects, i.e. the matrix R described in (8.13). �

Remark 8.2.5 As previously discussed in Section 5.1, the condi-
tion stated in (5.16) (which guarantees existence and uniqueness
of the moment-domain equivalent Ż) always holds for the WEC
device case, as a result of the internal stability of (8.5) (see Section
2.4).

Remark 8.2.6 The computation of the moment of system Σ at
(S,Le − Lu), which directly provides a parameterisation of the
state-variables in terms of moments, can be done without the
necessity of an a-priori state-space representation of the radiation
system Σr, described by the impulse response function kr. In other
words, and in contrast to MPC algorithms, the parameterisation
of the state-variables can be performed using the (non-parametric)
integro-differential equation (8.1) directly, without the necessity
of ‘augmenting’ system Σ8 8: See Section 2.4 for further detail..

Using the result posed in Proposition 8.2.1 as stepping stone, the
energy-maximising OCP, posed in equation (8.4), can be solved using
a moment-based representation, by taking explicit advantage of the
steady-state response parameterisation provided by the corresponding
system-theoretic definition of moments. This is explicitly addressed
in Section 8.3.

8.3 Energy-maximising moment-based control
formulation

Recall that the objective function, involved in the definition of the
energy-maximising OCP (8.4), explicitly depends on the velocity ż
of the WEC system. The following proposition makes use of the
moment-domain equivalent of such a quantity, showing that the
target optimal control problem (8.4) (which is originally defined on
an infinite-dimensional space), can be parameterised in terms of
moments.

Proposition 8.3.1 Suppose Assumption 8.2.1 and condition (5.16)
hold. Then the objective function J defined in (8.2), i.e. absorbed
energy from ocean waves over the time period T = [0, T ] ⊂ R+,
where T = 2π/ω0, can be computed in the moment-domain as

J 7→ 1
2 ŻL

ᵀ
u, (8.14)

where Ż denotes the moment-domain equivalent of the velocity
of the device, as in Proposition 8.2.1.
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Proof. Under Assumption 8.2.1 and condition (5.16), the objective
function J , which is defined over the time period T = [0, T ], can
be expressed in terms of Ż and Lu as

J 7→ 1
T

∫
T

(
Żξ(τ)

)(
Luξ(τ)

)
dτ

= 1
T
Ż

[∫
T
ξ(τ)ξᵀ(τ)dτ

]
Lᵀu,

= 1
T
Ż I Lᵀu.

(8.15)

Note now that, similarly to equation (5.12), the vector ξ(t) ∈ Rν

can be conveniently expanded as

ξ(t) = eStεν =
f∑
p=1

efp ⊗
[
pξ+(t)
pξ−(t)

]
, (8.16)

where the mappings pξ are defined as

pξ+ : R+ → R, t 7→ cos(pω0t),
pξ− : R+ → R, t 7→ − sin(pω0t).

(8.17)

The matrix I ∈ Rν×ν is symmetric, i.e. I = Iᵀ, and is entirely
composed of inner-product operations defined on the space L2(T ).
In particular, the following operations can be found in the main
diagonal of I:

〈pξ+, pξ+〉 =
∫
T

cos2(pω0τ)dτ = T

2 ,

〈pξ−, pξ−〉 =
∫
T

sin2(pω0τ)dτ = T

2 ,
(8.18)

for all p ∈ Nf , while, outside the main diagonal, the entries of the
matrix I are given by

〈pξ+, qξ+〉 =
∫
T

cos(pω0τ) cos(qω0τ)dτ = 0,

〈pξ+, qξ−〉 = −
∫
T

cos(pω0τ) sin(qω0τ)dτ = 0,

〈pξ−, qξ+〉 = −
∫
T

sin(pω0τ) cos(qω0τ)dτ = 0,

〈pξ−, qξ−〉 =
∫
T

sin(pω0τ) sin(qω0τ)dτ = 0,

(8.19)

for all p 6= q, {p, q} ⊂ Nf . Clearly, from both equations (8.18) and
(8.19), the matrix I, directly involved in the definition of J in the
moment-domain (i.e. equation (8.15)), is such that I = (T/2)Iν ,
which automatically proves the claim. �

Using the result of Proposition (8.3.1), the optimal control problem
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of (8.4) can be fully written using moments. In particular, the
following result considers the unconstrained version of (8.4), i.e.
without considering state and input constraints.

Proposition 8.3.2 Consider the unconstrained 9 9: The term unconstrained here refers
to optimal control problem (8.4) with-
out consideration of the set of state
and input constraints C .

OCP (8.4) and
suppose Assumption 8.2.1 and condition (5.16) hold. Then, the
optimal control law uopt that maximises the objective function J
over the time period T , can be computed in the moment-domain
as the solution of the QP problem

uopt = Lopt
u ξ,

Lopt
u = arg max

Lᵀu∈Rν
−1

2LuΦᵀRL
ᵀ
u + 1

2LeΦᵀRL
ᵀ
u.

(8.20)

Proof. Consider the result of Proposition 8.3.1 (i.e. equation (8.14)).
Then, given that Assumption 8.2.1 and condition (5.16) hold by
hypothesis, the claim follows by simply replacing Ż according to
equation (8.11). �

The result of Proposition 8.3.2 explicitly shows that the computation
of an energy-maximising control law, using the proposed moment-
based framework, boils down to solving a QP problem. This QP
formulation can be solved efficiently if and only if equation (8.20)
has a unique global maximiser, i.e. the problem is strictly concave.
Existence and uniqueness of a global maximiser, for this moment-
based approach, is explicitly guaranteed, as detailed in Proposition
8.3.3 and Corollary 8.3.4, in the following paragraphs.

Proposition 8.3.3 Let Tp = A − B(rpω0 + jmpω0)C, for all p ∈
Nf . The QP optimisation problem defined in (8.20) has a unique
global solution if and only if

λ
(
<{C(jpω0I2 − Tp)−1B}

)
⊂ R+, (8.21)

for all p ∈ Nf .

Proof. This proof can be started by noting that (8.20) has a unique
global solution if and only if the symmetric part of ΦR is positive-
definite10 10: The reader is referred to, for in-

stance, [207]
, i.e. λ(H {ΦR}) ⊂ R+. Following the proofs of Proposi-

tions 5.1.2 and 8.2.1, note that one can always write the matrix ΦR

in a block-diagonal form, i.e. ΦR = ⊕fp=1ΦRp with each p-block
defined as

ΦRp = −CW−1
(
WΦp

)−1
WB, (8.22)
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where the matrices W and WΦp are defined as in Proposition 5.1.2.
A direct algebraic manipulation of (8.22) yields

ΦRp =
[
<{ψp} ={ψp}
−={ψp} <{ψp}

]
, (8.23)

where ψp ∈ C2×2 is defined as

ψp = C(jpω0I2 − Tp)−1B. (8.24)

It follows from the particular structure of the matrix ΦRp that
λ(H {ΦRp}) = λ(<{ψp}) for all p ∈ Nf , which proves the claim.

�

Proposition 8.3.3 gives explicit conditions for the well-posedness
of the QP optimisation problem of (8.20). Nevertheless, note that
the specific role of each parameter (or quantity) characterising
the equation of motion (8.1), in the existence of a unique global
solution, is not immediately clear from condition (8.21). This is
explicitly addressed in the following corollary, where a simple relation
is given in terms of the radiation damping characteristics associated
with the WEC device under analysis.

Corollary 8.3.4 Condition (8.21) holds if and only if rpω0 > 0,
for all p ∈ Nf .

Proof. Note that, using well-known matrix identities11 11: See, for instance, [226]., the inverse
of the matrix (jpω0I2 − Tp) ∈ C2×2 in (8.21) can be computed as

(jpω0I2 − Tp)−1 =
−det(Tp)T−1

p + jpω0I2

det(Tp)− p2ω2
0 − jpω0tr(Tp)

. (8.25)

Given the structure of the matrices involved, one can directly verify
that det(Tp) ∈ R, CT−1

p B = 0 and

tr(Tp) = −rpω0M+ jmpω0M, (8.26)

for all p ∈ Nf . Then, each of the matrices <{ψp}, with ψp defined
as in equation (8.24), become

<{ψp} = −p
2ω2

0CB<{tr(Tp)}
α2
p + β2

p

I2,

with αp = det(Tp)− p2ω2
0 + ={tr(Tp)},

βp = pω0<{tr(Tp)},

(8.27)

noting that CB =M. It is then clear that λ(<{ψp}) ⊂ R+ if and
only if

M2p2ω2
0rpω0 > 0 (8.28)
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which holds if and only if rpω0 > 0, for all p ∈ Nf , proving the
claim. �

Corollary 8.3.4 states that the existence of a unique globally optimal
energy-maximising solution for the moment-based QP problem (8.20)
is completely determined by one particular quantity: the radiation
damping of the device evaluated at the frequencies induced by
the eigenvalues of the matrix S, i.e. at the set F = {pω0}fp=1,
characterising the signal generator (8.8).

Remark 8.3.1 rpω0 = B(pω0) > 0, for all p ∈ Nf , as a conse-
quence of the passivity property associated with radiation effects
(see Section 2.4). In other words, the moment-based QP problem,
defined in Proposition 8.3.2 always has a unique global maximiser
for the WEC case.

Remark 8.3.2 The existence and uniqueness of an energy-maximising
global solution allows the utilisation of well-known and efficient
quadratic programming solvers (see for instance, [207]). This,
naturally, facilitates the computation of an optimal control in-
put in a computationally efficient manner, i.e. achieving real-time
performance. This is further discussed in Sections 8.4 and 8.6.

8.3.1 Handling of state and input constraints

Using the moment-based representations developed throughout Sec-
tion 8.3, the set of state and input constraints (8.3) can be mapped
using their respective moment-domain equivalents12 12: Note that the moment-domain

equivalent of the displacement z can
be expressed as ŻS−1, following the
result of Proposition 5.2.1.

, as

C :


|z(t)| ≤ Zmax,

|ż(t)| ≤ Żmax,

|u(t)| ≤ Umax,

7→


|ŻS−1ξ(t)| ≤ Zmax,

|Żξ(t)| ≤ Żmax,

|Luξ(t)| ≤ Umax.

(8.29)

Let Tc = {ti}Nc
i=1 ⊂ T ⊂ R+, be a finite set of (specified) uniformly-

spaced time instants, with Nc ∈ N≥1. The constraints defined in
(8.29) can be enforced at the set Tc, i.e. using a collocation approach,
through the definition of the following matrices. Let Λ ∈ Rν×Nc

and Υ ∈ Rν×2Nc be defined as

Λ =
[
ξ(t1) . . . ξ(tNc)

]
, Υ =

[
Λ −Λ

]
. (8.30)

Finally, one can formulate a moment-based energy-maximising con-
strained optimal control solution for WECs in terms of an inequality-
constrained concave QP problem, as follows.
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Proposition 8.3.5 Consider the state and input constrained OCP
(8.4) and suppose Assumption 8.2.1 and condition (5.16) hold.
Then, the optimal control law uopt, that maximises the objec-
tive function J over the time period T , can be computed in
the moment-domain as the solution of the inequality-constrained
concave QP problem

uopt = Lopt
u ξ,

Lopt
u = arg max

Lᵀu∈Rν
−1

2LuΦᵀRL
ᵀ
u + 1

2LeΦᵀRL
ᵀ
u,

subject to:
LuAz ≤ Bz,
LuAż ≤ Bż,
LuAu ≤ Bu,

(8.31)

where the matrices {Az,Aż,Au} ⊂ Rν×2Nc and {Bz,Bż,Bu} ⊂
R1×2Nc are defined as

Az = −ΦᵀRS
−1Υ

Bz = Zmax11×2Nc + LeAz,
Aż = −ΦᵀRΥ,
Bż = Żmax11×2Nc + LeAż,
Au = Υ,
Bu = Umax11×2Nc .

(8.32)

Proof. Note that, under the set of assumptions considered in this
proposition, equation (8.31) follows directly from Proposition 8.3.2.
With respect to the incorporation of the set of state and input
constraints, defined in (8.29), consider first the constraint associated
with the control input and note that

|Luξ(t)| ≤ Umax ⇒ −Umax ≤ Luξ(t) ≤ Umax. (8.33)

Equation (8.33), enforced at the set of collocation instants Tc, can
be straightforwardly written in terms of the matrix Υ defined in
(8.30), i.e.

LuΥ ≤ Umax11×2Nc . (8.34)

from where both matrices Au and Bu follow directly. Finally, the
claim of this proposition follows by writing the set of constraints
associated with displacement and velocity, defined in (8.29), as in
equation (8.34), i.e. in terms of the matrix Υ. �
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8.4 Case study: a CorPower-like device

To demonstrate the performance of the moment-based energy-
maximising control proposed in Section 8.3, the CorPower-like wave
energy device, presented in Figure 6.2, is considered, and constrained
to oscillate in heave13 13: Note that this is, effectively, the

DoF from where mechanical energy
is converted.

(translational motion). The corresponding
hydrodynamic characteristics, in terms of Br(ω) and Ar(ω), are
presented below, in Figure 8.1.
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Figure 8.1: Hydrodynamic coeffi-
cients Br(ω) and Ar(ω) for the
CorPower-like device, constrained to
oscillate in heave.

In the remainder of this case study, two types of input waves are
considered: regular (numerically generated as in Section 2.1.1), and
irregular (numerically generated as in Section 2.1.2) inputs. Though
the former case does not represent a realistic sea-state, it is useful
to evaluate the control strategy in terms of well-known analytical
results, which are directly connected to the underlying theory of
impedance-matching-based control (see Section 3.1).

From now on, to fully expose the capabilities of the moment-based
strategy to optimise energy absorption in constrained scenarios,
the set of state and input limitations {Zmax, Żmax, Umax} ⊂ R+ is
defined such that,

Zmax = 2 [m], Żmax = 2 [m/s], Umax = 1× 106 [N]. (8.35)

Following the arguments previously stated in the current section, the
performance assessment of the presented moment-based strategy
initially considers the case of regular waves, taking into consideration
both state and input constraints. The reader is reminded that, as
discussed in Section 3.2, the necessity of considering motion limita-
tions stems from the fact that the unconstrained energy-maximising
optimal solution often requires unrealistic values for the physical
variables of the analysed WEC system, i.e. displacement, velocity,
and applied control force.

Figure 8.2 illustrates the (steady-state) WEC motion (a) under op-
timally controlled conditions, along with the corresponding moment-
based energy-maximising control law (b). The input wave is fully
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characterised by height Hw = 2 [m] and period Tw = 8 [s]. The
state and input constraints are set as in equation (8.35).
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Figure 8.2: Motion and control re-
sults for regular wave excitation. (a)
shows displacement (left axis, solid),
velocity (left axis, dashed) and wave
excitation force input (right axis,
dotted), for the WEC system. (b)
presents the corresponding moment-
based control input (left axis, solid),
used to elicit the corresponding mo-
tion results, along with the wave exci-
tation force input (right axis, dotted).
The horizontal dash-dotted lines rep-
resent constraint values.

Some key aspects can be immediately appreciated from the results
presented in Figure 8.2. To begin with, it is straightforward to
check that both state and input constraints are being consistently
respected, illustrating the capability of the moment-based strategy
to maximise energy absorption while simultaneously respecting the
inherent physical limitations of the WEC system. From Figure 8.2 (a),
a particular aspect, noteworthy of special attention, is that (even in
this fully constrained case) the velocity of the device under optimal
control conditions remains ‘in-phase’14 14: Let f(t) ∈ R and g(t) ∈ R be

time-traces. From now on, the term
‘in-phase’ is used to denote that f(t)
and g(t) are synchronised in terms of
instantaneous phase.

with the wave excitation
input, agreeing with well-known results for unconstrained energy
absorption, presented in Section 3.1. Figure 8.2 (b) presents the
control force computed with the presented moment-based strategy,
used to elicit the corresponding motion results, along with the
(regular) wave excitation input. Note that the control force is ‘shifted’
by ≈ π/2 [rad] with respect to fe, also agreeing with the theoretical
(unconstrained maximum) energy absorption conditions, presented
in Section 3.1.

Remark 8.4.1 Note that, though the regular wave excitation
input fe is composed of a single frequency component, i.e. the
fundamental frequency ω0 = 2π/Tw, the control input u (for this
constrained control case) is allowed to be composed of f > 1
(f integer) harmonics of ω0, as detailed in the signal generator
of equation (8.8). The output vector Le, fully characterising the
regular input fe, is simply completed with zeros accordingly15 15: Note that this is indeed an in-

clusion map [226]. Though not fur-
ther discussed throughout this chap-
ter, this inclusion mapping is a step-
ping stone for the nonlinear moment-
based technique presented in this the-
sis, and is formalised accordingly in
Chapter 11.

.

Remark 8.4.2 The selection of f in (8.8) determines the so-
called cut-off frequency, i.e. the highest harmonic fω0 present
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in the definition of the signal generator (largest element of the
set F = {pω0}fp=1). For this regular wave input case, it is found
(using numerical simulation) that no significant improvement in
terms of energy absorption can be achieved beyond a cut-off
frequency of 6 [rad/s] (which corresponds with f = 8 in (8.8)).

In the remainder of this section, irregular waves, generated stochasti-
cally from a JONSWAP spectrum (see Section 2.1.2), are considered.
The corresponding SDF Sw is fully characterised by a significant
wave height H̄w of 2 [m], varying peak period T̄w ∈ [5, 12] [s], and
peak shape parameter γ = 3.3. The total time-length (fundamental
period) of each wave record is set to of T = 120 [s]. The correspond-
ing spectral density functions are illustrated, for reference, in Figure
8.3. Since the waves are generated from sets of random amplitudes
(see Remark 2.1.3), it is found that a mean of ≈ 40 simulations (per
sea state) is necessary to obtain statistically consistent performance
results for the moment-based controller presented in this chapter.
Following the same argument as for the regular input case (see
Remark 8.4.2), the cut-off frequency is also selected as 6 [rad/s].
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Figure 8.3: Spectral density func-
tions for different JONSWAP spectra
with fixed wave height of H̄w = 2 [m]
and varying peak period T̄w ∈ [5, 12].
The peak shape parameter is fixed to
γ = 3.3.

Figure 8.4 presents performance results for the proposed moment-
based energy-maximising controller, in terms of energy absorption,
under both displacement and velocity constraints (simultaneously).
To be precise, Figure 8.4 explicitly shows the value of the objective
function J (black circles), for sea states with H̄w = 2 [m] and
T̄w ∈ [5, 12] [s] (i.e. corresponding with the set of SDFs presented in
Figure 8.3), where the displacement and velocity of the CorPower-
like device are constrained to Zmax = 2 [m] and Żmax = 2 [m/s],
respectively.

Finally, Figure 8.5 presents both motion, and energy-maximising
control input results for a particular sea state, characterised by a
JONSWAP spectrum with H̄w = 2 [m] and T̄w = 8 [s] (see Figure
8.3). Both the state and input constraints are also set to the exact
same values as those for the regular excitation case of Figure 8.2,
i.e. Zmax = 2 [m], Żmax = 2 [m/s] and Umax = 1 × 106 [N] (see
also Equation (8.36)). Note that this figure is analogous to Figure
8.2, and the same indexing to variables is used.
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Figure 8.4: Constrained (displace-
ment and velocity) energy absorption
for the moment-based energy max-
imising controller proposed in this
chapter.
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Figure 8.5: Motion results for irreg-
ular wave excitation. (a) shows dis-
placement (left axis, solid), velocity
(left axis, dashed) and wave excita-
tion force input (right axis, dotted),
for the WEC system. (b) presents
the corresponding moment-based con-
trol input (left axis, solid), used to
elicit the corresponding motion re-
sults, along with the wave excitation
force input (right axis, dotted). The
horizontal dash-dotted lines represent
constraint values.

In particular, note that, as can be appreciated from Figure 8.5,
the moment-based strategy is able to maximise energy absorption
while systematically respecting both state and input constraints
for this irregular wave input case, according to the control design
objective, and hence providing energy-maximising performance in
a realistic sea description. A noteworthy feature, which can be
directly appreciated from Figure 8.5 (a), is that the velocity and
wave excitation force (external input) present the same ‘in-phase’
optimal energy absorption condition, inherently present for the case
of regular unconstrained motion.

8.5 Receding-horizon optimal control problem

As discussed in the introduction to this chapter16 16: Further discussed in Section 3.2., motivated by
both the real-time requirements, and the intrinsic estimation and
forecasting needs associated with the WEC energy-maximising con-
trol problem, the optimal formulation described in equation (8.4)
can be re-written in a receding-horizon approach. In particular, note
that the energy-maximising OCP posed in equation (8.4) can be
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generally defined within a receding-horizon framework, simply as

uoptN = arg max
uN

1
Th

∫
ΞN

uN (τ)ż(τ)dτ,

subject to:

WEC dynamics Σ (8.1),
state and input constraints C (8.3),
z(tmN ) = zm(tmN ),
ż(tmN ) = żm(tmN ),

(8.36)

with Th ∈ T ⊂ R+ , Th < T , the time-horizon, where one ef-
fectively optimises energy-capture within the time-window ΞN =
[N∆h, N∆h + Th] ⊂ R+, N ∈ N, by means of an optimal control
input uoptN : ΞN → R, and where ∆h is denoted as the receding
time-step.

Remark 8.5.1 The variable T in (8.4), which fully describes
the (total) time interval T , is now replaced by the time-horizon
Th < T . In other words, the optimal control input is computed
such that the energy absorbed from ocean waves is optimised
throughout the time-window ΞN .

Remark 8.5.2 Note that the definition of the time-window ΞN
is strongly linked to the estimation and forecasting requirements
of the wave excitation effects, and the representation of fe in the
moment-domain, according to its corresponding signal generator.
This last statement is further discussed throughout Section 8.6.

Following Remark 8.5.2, the set ΞN is formally written as

ΞN = [N∆h, t
m
N ) ∪ tmN ∪ (tmN , N∆h + Th],

= Ξe
N ∪ tmN ∪ Ξf

N ,
(8.37)

where Ξe
N and Ξf

N correspond with past (estimated) and future
(forecasted) values of fe, respectively. The variable tmN ∈ ΞN cor-
responds to the current time instant, which (without any loss of
generality) is located in the centre of the time-window ΞN , i.e.
tmN = Th/2 +N∆h.

The distribution of the sets and time constants described above
is illustrated in Figure 8.6. The additional set of (two) equality
constraints in (8.36), which is standard in any receding-horizon
control formulation17 17: The reader is referred to, for in-

stance, [148], for further information
on this topic.

, is used to guarantee continuity of the WEC
variables z and ż, under the optimal control input uoptN , where zm
and żm denote the measured values of displacement and velocity,
respectively.
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The receding-horizon optimal control procedure described in equation
(8.36) can be summarised in three basic steps:

1) uoptN ← Solve (8.36) for the time-window ΞN .
2) Apply uoptN in the interval ΞuN = [N∆h, (N + 1)∆h].
3) Replace ΞN by ΞN+1 accordingly and go back to 1).

Figure 8.6: Sets and time constants
involved in the receding-horizon OCP
defined in (8.36). The solid- and
dashed-black lines represent esti-
mated and forecasted values of f̃e
(i.e., the approximated wave excita-
tion input), respectively, while the
solid grey line is the target excita-
tion input fe. The solid-grey circle
represents the current time instant.

8.6 Receding-horizon energy-maximising
moment-based control formulation

Based on the receding-horizon OCP posed in (8.36), and the theoret-
ical framework developed in Sections 8.2 and 8.3, a moment-based
receding-horizon controller is now proposed. In particular, Section
8.6.1 discusses the representation of the input fe in the moment-
domain, for this receding-horizon approach, while Section 8.6.2
effectively proposes a moment-based energy-maximising real-time
controller for WECs, based on the proposed representation of fe.

8.6.1 Input representation

Though highly computationally efficient, a standing assumption for
the moment-based control strategy, presented in Sections 8.2 and
8.3, is that the wave excitation input fe can be characterised by a
T -periodic mapping, with a fundamental period T = 2π/ω0, where
ω0 is the so-called fundamental frequency (see Section 2.1.2). If
the wave excitation estimation and forecasting requirements are
effectively introduced to the optimal control formulation, then this
assumption can be limiting in practice, as further discussed through-
out this section. The framework presented in the following aims to
alleviate the effect (and limitations) behind this assumption, by the
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introducing a simple modification to the representation of the wave
excitation signal.

Remark 8.6.1 Note that, if T is considered to be sufficiently
large (i.e. the fundamental frequency is sufficiently small) then
the signal fe can be effectively considered T -periodic, for any
practical purposes18 18: See also the discussion provided

in Section 2.1.2.
.

Remark 8.6.1 itself poses a contradiction: While the moment-based
controller developed in Section 8.3 would require a sufficiently large
time T (equivalent to a sufficiently large time-horizon in equation
(8.36)), state-of-the-art forecasting algorithms are not usually able
to provide an accurate prediction of fe for more than a couple of
seconds [90], i.e. precise information is only available throughout a
shorter time-horizon Th.

Motivated by this limitation in terms of implementation, this section
introduces a modification of the representation of fe in the moment-
domain, suitable for receding-horizon control, as follows. Suppose
f̃eN : ΞN → R denotes the approximated wave excitation input for
the time-window ΞN , composed of both estimated and forecasted
values (see Figure 8.6). Using the underlying philosophy of the
short-term Fourier transform (see [192]), the so-called apodised
wave excitation input can be written as

bf̃eN cϑ = ϑf̃eN , (8.38)

where the apodisation19 19: Often also called windowing (see
[192]).

mapping ϑ : ΞN ×R+ → [0 1] is used to
smoothly bring the wave excitation signal, defined for a time-horizon
Th, down to zero at the edges of the set ΞN . This effectively reduces
the spectral leakage produced by the discontinuities arising from
truncating the signal f̃e on the (potentially) short time-horizon Th
(see also [57]). In other words, the apodised signal bf̃eN cϑ is smoothly
brought to zero at the boundaries so that the derivative of its periodic
extension is sufficiently smooth. The family of apodisation functions
considered here are the so-called Planck-taper mappings [248]. This
set of functions, which optimally preserves the power spectrum of
the signal, was first suggested within the theory of gravitational
waves, and stem from the functional form of the Planck distribution,
i.e.

ϑ(t, γ) =



1
eZ+(t,γ)+1

, tiN ≤ t < γtfN ,

1, γtfN ≤ t < (1− γ)tfN ,
1

eZ−(t,γ)+1
, (1− γ)tfN ≤ t ≤ t

f
N ,

0, t < tiN ∨ t > tfN ,

(8.39)
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where {tiN , t
f
N} ⊂ ΞN are defined as tiN = N∆h and tfN = N∆h +

Th, and the mapping Z is such that

Z±(t, γ) = 2γ

1±
(

2γ
tfN
− 1

) + 2γ

1− 2γ ±
(

2γ
tfN
− 1

) . (8.40)

An example, showing both f̃e and bf̃eN cϑ for a time-window ΞN
and parameter γ = 0.5, is shown in Figure 8.7.

Let ωh0 ∈ R+ be the fundamental frequency associated with the
time-horizon Th, i.e. ωh0 = 2π/Th. Following the theoretical frame-
work proposed in Section 8.2, both the apodised wave excitation
input bf̃eN cϑ and the control input uN are expressed analogously
to (8.8), i.e. in terms of the signal generator

ξ̇ = Shξ,

bf̃eN cϑ = LeN ξ,

uN = LuN ξ,

(8.41)

for t ∈ ΞN , where ξ(t) ∈ Rνh , {LᵀuN , L
ᵀ
eN } ⊂ Rνh , and the dynamic

matrix Sh ∈ Rνh×νh is defined analogously to (8.9), i.e. in block-
diagonal form as

Sh =
fh⊕
p=1

[
0 pωh0

−pωh0 0

]
, (8.42)

with νh = 2fh, fh ∈ N≥1. The initial condition is set exactly as
in the case discussed in Section 8.2, i.e. ξ(0) = ενh , and the pair
(Sh, LeN −LuN ) is assumed observable (analogously to Assumption
8.2.1).

Within this framework, the excitation input vector LeN , for a par-
ticular time-window ΞN , can be straightforwardly defined using a
least-squares approach: Let Tξ = {ti}Pi=1 ⊂ ΞN be a finite set of
P ∈ N≥νh uniformly-spaced time instants, and let ΛTξ ∈ Rνh×P

and Λᵀbf̃eN cϑ
∈ RP be defined as

ΛTξ =
[
ξ(t1) . . . ξ(tP )

]
,

Λbf̃eN cϑ
=
[
bf̃eN cϑ(t1) . . . bf̃eN cϑ(tP )

]
.

(8.43)

Then, the vector LeN can be readily defined in terms of the following
expression:

LeN := Λbf̃eN cϑ
ΛᵀTξ(ΛTξΛ

ᵀ
Tξ)
−1, (8.44)

where the invertibility of the matrix ΛTξΛ
ᵀ
Tξ is guaranteed by the

excitability of the pair (Sh, ενh), see [223].
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Figure 8.7: Target excitation input
feN (solid grey), and the (apodised)
approximated wave excitation input
bf̃eN cϑ = LeN ξ (black), with LeN

as in (8.44), for the time-window ΞN .
The apodisation mapping ϑ is plotted
with a dash-dotted grey line, while the
solid-grey circle represents the current
time.

Remark 8.6.2 Though real-time performance is already available
with (8.44) (see Section 8.7), note that, if required, extra compu-
tational speed could be achieved using a recursive least-squares
implementation20 20: Plenty of literature on recursive

least-squares strategies is available,
such as, for instance, [44, 232].

instead of (8.44).

8.6.2 Receding-horizon controller

Based on the moment-domain representation of the (apodised) wave
excitation input, discussed in Section 8.6.1, and the equation of
motion (8.5), a receding-horizon moment-based energy-maximising
controller subject to state and input constraints, is proposed in
this section, following an analogous procedure to that presented in
Section 8.3.

In particular, let TcN = {ti}Nc
i=1 ⊂ ΞN be a set of uniformly-

distributed time-instants, i.e. collocation points, and define ΛN ∈
Rνh×Nc and ΥN ∈ Rνh×2Nc as

ΛN =
[
ξ(t1) . . . ξ(tNc)

]
, ΥN =

[
ΛN −ΛN

]
. (8.45)

With the definition of ΛN and ΥN in (8.45), one can write the
moment-based control input uoptN , for a given time window ΞN , in
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terms of the unique global solution of the concave QP problem, as

uoptN = Lopt
uN ξ,

Lopt
uN = arg max

LᵀuN∈R
νh
−1

2LuNΦᵀRL
ᵀ
uN + 1

2LeNΦᵀRL
ᵀ
uN ,

subject to:
LuNAz ≤ Bz,
LuNAż ≤ Bż,
LuNAu ≤ Bu,
LuNA

eq
z = Beqz ,

LuNA
eq
ż = Beqż ,

(8.46)

where the pairs of matrices (Az,Bz), (Aż,Bż) and (Au,Bu), asso-
ciated with the state and input inequality constraints in (8.3) on
displacement, velocity and control (PTO) input, respectively, are
defined analogously as in Proposition 8.3.5. Note that, in contrast
to Proposition 8.3.5, the pairs of matrices (Aeq

z ,Beqz ) and (Aeq
ż ,B

eq
ż )

are now included, aiming to fulfill the equality constraints in (8.36)
at each current time instant, i.e. at t = tmN ∈ ΞN . In particular,
these matrices are defined21 21: The explicit derivation of the set

of matrices (Aeq
z ,Beq

z ) and (Aeq
ż ,B

eq
ż )

can be obtained directly from Propo-
sition 8.3.5.

as

Aeq
z = −ΦᵀRS

−1
h ξ(tmN ),

Beqz = zm(tmN ) + LeNA
eq
z ,

Aeq
ż = −ΦᵀRξ(t

m
N ),

Beqż = żm(tmN ) + LeNA
eq
ż .

(8.47)

Remark 8.6.3 Following the receding-horizon approach to WEC
control discussed in Section 8.5, the moment-based OCP, proposed
in (8.46), is solved for a particular time window ΞN , and then
applied to the system for the time interval ΞuN = [N∆h, (N +
1)∆h], i.e. for a single receding time-step ∆h. The time window
is then subsequently shifted, i.e. ΞN 7→ ΞN+1, and the process is
repeated.

8.7 Case study revisited: inclusion of
estimation and forecasting

To demonstrate the performance of the receding-horizon moment-
based controller proposed in Section 8.6, this section considers the
same device analysed in Section 8.4, i.e. a CorPower-like device,
subject to irregular wave excitation, corresponding with the set of
SDFs presented in Figure 8.3.
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From now on, the time-horizon is selected as Th = 60 [s], i.e. 30 [s]
of both estimated and forecasted values of fe are considered. This
corresponds with a fundamental frequency ωh0 = 2π/60 [rad/s],
which provides accurate results with respect to the least-square pro-
cedure described in (8.44), with mild computational requirements.
The receding time-step is fixed as ∆h = 0.1 [s], while the dimension
(order) of the signal generator (8.41) is chosen as ν = 60 (fol-
lowing an analogous procedure to that described in Remark 8.4.2).
With respect to state constraints, the maximum allowed displace-
ment and velocity values are set to Zmax = 2 [m] and Żmax = 2
[m/s], respectively (i.e. same values as in the case study of Section
8.4).

Remark 8.7.1 Note that the moment-based controller run-time,
i.e. the time required to compute the energy-maximising optimal
control input for the duration of the receding-step ∆h, is of
the order of22 22: Measured with the Matlab R©na-

tive function tic-toc.
∼ 1 [ms] � ∆h for the totality of the preceding

simulations (implemented in Matlab R©), hence always achieving
real-time performance. Naturally, the speed at which computations
are performed can be further improved (if required) by simply
implementing this algorithm in a compiled language, such as C or
C++.

As discussed in the introduction to this chapter, the unknown-input
estimation strategy, selected to compute the estimation section
of f̃eN , for each time-window Ξe

N , is based on a combination of
Kalman filtering and the internal model principle of control theory,
as presented (and tuned) in the study [90]. The forecasting algorithm
considered, over the set Ξf

N , is the AR model proposed in [16], where
the order O is set to 200 (see also Section 8.7.2).

Remark 8.7.2 As a matter of fact, the wave excitation estimation
algorithm presented in [90] has been explicitly described in this
thesis, in Section 6.5. The parametric form, required to facilitate
a state-space representation for the WEC system, is obtained
with the input-output moment-matching-based model reduction
strategy presented in Chapter 5, where the set of interpolation
frequencies is selected as F = {0.8, 2}. These frequencies corre-
spond with the resonant frequency of the device (constrained to
move in heave) ≈ 2 [rad/s], and a low frequency component.

Initial controller performance assessment focuses on energy absorp-
tion under both displacement and velocity constraints. Figure 8.8
shows absorbed energy for the sea states characterised in Figure 8.3,
where the displacement and velocity of the CorPower-like device
are constrained to Zmax and Żmax, respectively. Circles represent
the ideal (performance) scenario, where the wave excitation input
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is assumed to be perfectly known over the entire simulation time
(i.e. the case studied in Section 8.4), while diamonds denote the ac-
tual performance of the receding-horizon moment-based controller,
where the approximated (estimated and forecasted) excitation force
F̃eN is utilised. Clearly, the actual performance of the proposed
receding-horizon moment-based approach is almost indistinguishable
from its ideal counterpart, being able to perform optimally, with
differences of less than 5% in terms of energy absorption.
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Figure 8.8: Constrained (displace-
ment and velocity) energy absorp-
tion for the receding-horizon moment-
based energy-maximising controller
proposed in this section. Black cir-
cles and grey diamonds represent the
ideal and actual performance results,
respectively.

8.7.1 Sensitivity analysis: Estimation

A sensitivity analysis for the proposed receding-horizon moment-
based controller is now presented, concerning errors in the estimated
wave excitation force, over the time-interval Ξe

N . From now on,
aiming to simplify the presentation of results, the wave peak period
is fixed to T̄w = 8 [s], given that almost identical conclusions can
be drawn using different values for T̄w ∈ [5, 12] [s].

As discussed in the comparison study [15], there are two main sources
of errors affecting f̃eN , arising from improper tuning of any unknown-
input estimator: Constant errors in instantaneous amplitude (i.e.
constant deviations in envelope), and instantaneous phase (i.e. time-
delays). These imperfections are represented, within the estimation
stage, using the criterion specified in what follows.

Remark 8.7.3 Another possible error source is the presence of
measurement noise, i.e. the estimator is tuned in such a way that
high frequency noise (affecting motion sensors) is not filtered.
This effect is not analysed here. However, note that the moment-
based representation for the input (discussed in Section 8.6.1)
can intrinsically filter high frequency components, via a suitable
selection of ν in equation (8.42) (i.e. by a sensible selection of
the so-called cut-off frequency23 23: See Remark 8.4.2.).

Let {Fα, Fφ} ⊂ ΩF, with ΩF = [0.75, 1.25], be (error) factors
associated with24 24: From now on, instantaneous am-

plitude and instantaneous phase are
referred to simply as amplitude and
phase, respectively.

the amplitude (A) and phase (P) of f̃eN . The
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following error sources, for t ∈ Ξe
N , are analysed:

A: f̃eN (t) 7→ Fαf̃eN (t),
P: f̃eN (t) 7→ f̃eN (t+ (Fφ − 1)T̄w).

A+P: f̃eN (t) 7→ Fαf̃eN (t+ (Fφ − 1)T̄w).

Case A assumes that the amplitude of the estimated signal is not
estimated correctly, i.e. f̃e is multiplied by a factor Fα, while case P
effectively considers the existence of a time (phase) delay (positive or
negative) between estimated and true excitation force, proportional
to the peak period T̄w. Lastly, case A+P combines both amplitude
and phase sources of error, for all possible combinations of {Fα, Fφ}
in [0.75, 1.25].

Remark 8.7.4 Due to the underlying linearity of the AR model
considered in this case study, if f̃eN is modified either by scaling,
shifting in time, or superposing both cases, for t ∈ Ξe

N , this
modification propagates within the forecasted time-window Ξf

N in
the exact same manner. In other words, the sources of estimation
error described in cases A, P and A+P affect the forecasted signal
in the exact same proportions.

Figure 8.9: Illustrative example of
cases A ((a), green) and P ((b),
green), for a particular estimated
(apodised) excitation force signal
bf̃eN cϑ (solid-black). The target ex-
citation force fe is depicted with a
solid-grey line.

Figure 8.9 presents an illustrative example of a wave excitation force
signal affected by cases A and P, for a time-window ΞN . In particular,
the estimated and forecasted excitation force with Fα = Fφ = 1,
i.e. error-free (solid-black), are shown, for various values of Fα ((a),
green) and Fφ ((b), green).
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Define the following performance indicator Re
J as Re

J (Fα, Fφ) =
J (Fα, Fφ)/J (1, 1), where the image of the mapping J : ΩF×ΩF →
R is the absorbed energy throughout the complete simulation time,
for any pair of values (Fα, Fφ), under controlled conditions, i.e.
Re
J is the ratio between the absorbed energy under the moment-

based control strategy, with and without the presence of estimation
errors.

Figure 8.10: Re
J for cases A (a)

and P (b). A value of Re
J below

zero (solid-blue line) indicates neg-
ative energy absorption. The filled
black circle indicates absorption with
Fα = Fφ = 1.

Figure 8.10 shows performance results for cases A (a) and P (b),
in terms of Re

J (Fα, 1) and Re
J (1, Fφ), respectively. For case A,

it can be appreciated that, even under an amplitude deviation of
±25% from its true value, the absorbed energy always remains above
90% of its optimal achievable performance (computed without any
amplitude or phase estimation errors). In other words, deviations in
amplitude, for the estimated wave excitation force, generate only
small deviations in absorbed energy, under controlled conditions.
This is clearly not the case for phase deviations, i.e. case P, where
a delay (positive or negative) of ≈ 10% of the peak period (around
0.8 [s], for this case study), not only dramatically affects optimal
energy absorption, but actually generates negative power (the device
starts to drain energy from the electric grid).

Remark 8.7.5 A key point stems directly from the sensitivity
analysis presented in this section: maximal effort should be put
into tuning the estimator to guarantee phase synchronisation
with the target wave excitation signal, hence achieving optimal
energy-maximisation, under controlled conditions.

Finally, Figure 8.11 shows results for case A+P, where both errors in
amplitude and phase are analysed simultaneously. Similarly to case
P, it is clear that the presence of a time-delay (positive or negative)
has a much greater impact on energy absorption than any existing
differences in estimated amplitude. Interestingly, while positive or
negative delays have an almost symmetric effect, underprediction of
the wave excitation force amplitude has a lesser impact on perfor-
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mance than overprediction. Note that this behaviour is consistent
with that of Figure 8.10 (a).

Figure 8.11: Re
J for case A + P.

A value of Re
J below zero (solid-blue

line) indicates negative energy absorp-
tion. Cases A and B are depicted with
solid-black (empty circle) lines. The
filled black circle indicates absorption
with Fα = Fφ = 1.

8.7.2 Sensitivity analysis: Forecasting

Errors arising purely from the forecasting procedure are now consid-
ered, i.e. assuming that the unknown-input estimator is well-tuned
(achieving convergence towards the target excitation force), and
that any potential mismatch is only present within the forecasted
window Ξf

N .

Figure 8.12: Sensitivity analysis with
respect to forecasting errors in terms
of the performance indicator Rf

J .

Figure 8.12 presents performance results in terms of the indicator
Rf
J (tf) = J (tf)/J (5), where the image of the operator J : R+ →

R is the energy absorbed, assuming tf < 5 seconds of forecast
within 99% and 100% of accuracy. In other words, Rf

J is the ratio
of absorbed energy, under controlled conditions, between energy
extraction assuming quasi-perfect knowledge of the forecasted signal
for a section of Ξf

N , and the maximum time-length with a forecast
accuracy of better than 99%, i.e. ≈ 5 [s], obtained for a sufficiently
large AR model order O (here chosen as O = 200). Figure 8.13
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presents an illustrative example of a forecasted excitation force signal
with tf = 5 [s] (dashed-black), and for tf < 5 (dashed-green).

Unlike the estimation case discussed in Section 8.7.1, where de-
viations from the target excitation force can effectively generate
negative power absorption, the impact of forecasting errors, for the
moment-based controller presented in this chapter, is almost negli-
gible. Even with tf ≈ 1 [s], the controller is able to perform within
99% of its optimal performance, i.e. the performance obtained with
an AR model with a sufficiently large order.

Figure 8.13: Illustrative example of a
forecasted (apodised) excitation force
signal with tf = 5 [s] (dashed-black),
and for tf < 5 [s] (dashed-green). The
target excitation force fe is depicted
with a solid-grey line.

8.8 Conclusions

This chapter presents a moment-based energy-maximising framework
for linear SISO WECs. In particular, the moment-based parameter-
isation of the steady-state response of the WEC system is shown
to provide a significant simplification of the target OCP, transcrib-
ing such an infinite-dimensional problem to a finite-dimensional
quadratic program. Existence and uniqueness results for such a
moment-based parameterisation are explicitly formalised. In addition,
the resulting QP problem is shown to be strictly convex for the
WEC case, systematically guaranteeing a unique globally optimal
solution for the energy-maximising OCP in the moment-domain,
subject to both state and input constraints. This allows for the
utilisation of state-of-the-art QP solvers, which, in turn, provide a
computationally efficient framework for optimal control of WECs.
This chapter considers, to the best of the author’s knowledge, the
first application of moment-based theory to solve a constrained
optimal control problem.

A case study is presented, in terms of a CorPower-like device, con-
strained to move in heave (translational motion). The capabilities
of the proposed moment-based strategy are explicitly highlighted,
showing that the framework is effectively able to maximise energy
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absorption, while simultaneously considering state and input con-
straints.

In addition, and to give practical value to the presented strategy,
a real-time moment-based receding-horizon OCP is also presented,
which incorporates both wave excitation force estimation and fore-
casting algorithms. The optimal control objective is stated accord-
ingly, using a receding-horizon approach, while retaining the intrinsic
computational efficiency and uniqueness of the energy-maximising
solution provided by the moment-based framework. This receding-
horizon formulation is able to perform to virtually ideal levels, where
full knowledge of fe is available over the time-horizon, with differ-
ences of less than 5% in terms of power absorption for the range of
analysed sea-states.

Finally, a sensitivity analysis, addressing the impact of estimation and
forecasting errors on total energy absorption under controlled condi-
tions, is presented. Two main conclusions can be directly extracted
from this analysis: Forecasting mismatches have a negligible impact
on the overall performance of the strategy, while differences arising
from unknown-input estimators can effectively generate negative
power absorption. In particular, phase errors (positive or negative)
in the estimated excitation force have a substantial impact on the
energy-maximising performance of the controller, suggesting that
maximal design effort should be put in tuning the observer such that
(instantaneous) phase synchronisation is achieved with the target
excitation force.
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Recall, from Section 2.4, that the equation of motion for a WEC,
under the assumptions of linear potential flow theory (see Section
2.3.1), can be expressed in terms of Cummins’ equation (2.20). This
equation is recalled below, for a N -DoF WEC device, with N ∈ N
for convenience:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe − u) ,
y = ż,

(9.1)

where z : R+ → RN is the displacement vector, kr : R+ → RN×N ,
krij ∈ L2(R), ∀{i, j} ⊂ NN , the radiation impulse response (matrix-
valued) function, fe : R+ → RN the wave excitation, andM is the
inverse of the generalised mass matrix of the device.

Remark 9.0.1 From now on, it is considered that the equation
of motion (6.1) represents an array of N devices, constrained to
move in a single DoF. Such a choice is motivated in the following
paragraphs. Note that a similar analysis, to that presented in this
chapter, can be carried out for energy-maximisation of a multi-DoF
device, with slight changes in the control objective1 1: In particular, in the objective func-

tion characterising the OCP.
.

The control input u : R+ → RN , supplied by means of the so-called
power take-off system, plays a key role in the optimisation of the
operation of the wave energy array, and has to be designed such
that the total energy absorbed by the array is maximised.

Aiming to put things in perspective, recall, from Section 3.4, that
despite the fact that energy from ocean waves has one of the highest
power densities available among renewable energy resources, the
current high installation, operation, maintenance, and decommis-
sioning costs hinder wave energy extraction technologies in reaching
economic viability. As a direct consequence of this, the roadmap
to successful commercialisation of WECs naturally embodies the
development of so-called WEC arrays (or farms), which effectively
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incorporates several devices in a common sea area, potentially re-
ducing the levelised cost of energy (LCoE) through an economy of
scale. In other words, any realistic effort to commercialise a novel
WEC technology requires both a single WEC, and a WEC farm
development process.

To further reduce the levelised cost of energy, it is well-known that
wave energy systems require optimal operational behaviour ensuring
maximum time-averaged power extraction from ocean waves. In
the case of an array of WECs, the devices composing a WEC farm
are commonly installed in close proximity, mainly motivated by the
underlying practical considerations, such as space limits, sharing
of electrical and mooring infrastructure, and general maintenance
[14]. Given that each WEC represents not only a wave absorber
but also a wave generator [49], the motion of each WEC is directly
affected by the waves generated by adjacent devices (i.e. radiation
effects). This feature complicates optimal control design, when
compared to the case of a single device, sometimes rendering the
energy-maximising control task unsuitable for real-time applications
if all these interactions are considered within the design dynamical
model.

Following the array roadmap for successful WEC commercialisa-
tion, and given the desirable properties of the SISO moment-based
strategy presented in Chapter 8, this chapter presents a MIMO
moment-based energy-maximising optimal control framework, incor-
porating WEC farms into this moment-based control methodology.
Within this framework, the hydrodynamic interactions between bod-
ies (or devices) are fully exploited to compute the optimal control
law, therefore optimally maximising the energy extraction of a WEC
array from a given wave field, subject to both state and input con-
straints. The desirable properties of the moment-based strategy
proposed in Chapter 8 are retained in this WEC device farm case.
In particular, unlike most of the model based energy-maximising
control strategies reported for both single WECs and WEC farms,
this moment-based strategy does not require an a-priori parametric
approximation of the radiation force (convolution) term, but rather
provides an analytical description of the convolution operation in
the moment-domain. This characteristic, together with the strictly
concave QP formulation presented in the upcoming sections, ren-
ders this moment-based strategy highly efficient in computational
terms, and hence appealing for real-time applications, especially in
a high-dimensional setting, such as WEC arrays.

Remark 9.0.2 Throughout this chapter, aiming both to simplify
the notation, and to solely focus the upcoming sections on the
formulation of a MIMO moment-based controller, the excitation
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force is assumed to be known over the complete time interval T ⊂
R+, where energy absorption from incoming waves is maximised.
This is done without any loss of generality, since a receding-
horizon formulation can be achieved directly, by simply following
the theory2 2: In particular, by following the adap-

tation of the moment-based represen-
tation of the wave excitation input,
to alleviate the effects of considering
a (potentially) short time-horizon for
the computation of the control law
(see Section 8.6.1).

presented in Section 8.6, without further modifications.

The remainder of this chapter is organised as follows. Section 9.1
formally introduces the energy-maximising problem for WEC farms,
while Section 9.2 details the moment-based analysis of the WEC
array, and guarantees existence and uniqueness of such a moment-
domain representation. Section 9.3 details the moment-based energy-
maximising constrained optimal control formulation. Finally, Section
9.4 discusses a case study, considering an array of CorPower-like
devices (see Figure 6.2), while Section 9.5 encompasses the main
conclusions of this study.

9.1 Optimal control problem

The control problem for a wave energy farm composed of N WEC
devices can be informally posed as follows: compute the optimal
control input (PTO force) acting on each body ui : R+ → R such
that the time-averaged energy absorbed by the (complete) wave
energy array is maximised over a time interval T = [0, T ] ⊂ R+.
To state this energy-maximising criterion in terms of an objective
function J : RN → R, u 7→ J (u), note that the total useful energy
converted by the PTO of each WEC in the array can be computed
as

J (u) =
N∑
i=1

1
T

∫
T
ui(τ)żi(τ)dτ = 1

T

∫
T
P (τ)dτ, (9.2)

where żi : R+ → R and P : R+ → R denote the velocity of the
i-th device and the total instantaneous power of the WEC array,
respectively.

As discussed throughout Chapter 3, any optimal control approach
for WECs should consider both state (displacement and velocity)
and input (PTO force) constraints, since the unconstrained optimal
solution that maximises energy absorption is often unrealistic in
terms of body motion and PTO force requirements.

In particular, constraints on the displacement and velocity of each
WEC composing the array, zi and żi, respectively, simultaneously
with constraints on each device PTO force ui, are considered. This
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set of constraints can be compactly written, for all i ∈ NN , as3 3: Note that there is no loss of gener-
ality in assuming that the maximum
allowed values are the same for the
N devices composing the array. This
is considered to simplify the notation.
In addition, there is also a likelihood
that WEC arrays will be composed of
a homogeneous collection of devices,
for reasons of economy of production,
installation and management (see, for
instance, [14]).

C :


|zi(t)| ≤ Zmax,

|żi(t)| ≤ Żmax,

|ui(t)| ≤ Umax,

(9.3)

with t ∈ T , and where {Zmax, Żmax, Umax} ⊂ R+.

Given the objective function defined in (9.2), the governing dynamics
of the WEC array in (9.1), and the set of state and input constraints
defined in (9.3), the energy-maximising optimal control problem can
be stated as

uopt = arg max
u
J (u),

subject to:WEC array dynamics Σ (9.1),
state and input constraints C (9.3).

(9.4)

9.2 Moment-based WEC array formulation
for optimal control

Analogously to Section 6.2, let the equation of motion be re-written
(without any loss of generality) using the following equivalent repre-
sentation,

Σ :
{
ẇ = Aw +Bυ,

y = Cw,
(9.5)

for t ∈ R+, where w(t) =
∑N
i=1 e

N
i ⊗

[
zi(t) żi(t)

]ᵀ
∈ R2N con-

tains displacement and velocities for device involved in the WEC
array, and the (constant) matrices A ∈ R2N×2N , B ∈ R2N×N and
C ∈ RN×2N are defined as

A =
N∑
i=1

N∑
j=1

eNij ⊗

 0 i
jδ

−Mijshi 0

 ,
B =

N∑
i=1

N∑
j=1

eNij ⊗
[

0
Mij

]
,

C = IN ⊗ [0 1],

(9.6)

The ‘input’ function υ : R+ → RN , is defined as

υ = fe − kr∗Cw − u, (9.7)

where the convolution mapping is incorporated as a feedback term,
as before.
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The stepping stone towards a moment-based WEC array represen-
tation, for control purposes, relies on the MIMO moment-based
theory proposed in Section 6.1, with appropriate modifications. In
particular, each i-th entry of the vectors fe and u are expressed as
the output of the single-output signal generators

ξ̇i = Sξi,

fei = Leiξi,

ui = Luiξi,

(9.8)

for t ∈ R+, with ξ(t) ∈ Rν , S ∈ Rν×ν and {Lᵀei , L
ᵀ
ui}Ni=1 ⊂ Rν .

Analogously to the moment-based representation discussed in the
SISO control case (see Section 8.2), and following the requirement
of Assumption 4.1.2 to have a well-posed system-theoretic definition
of moments, a finite-set F = {pω0}fp=1 ⊂ R+, with f ∈ N≥1,
is considered. This set contains a finite number of harmonics of a
(sufficiently small) fundamental frequency ω0, fully characterising
the numerical generation of ocean waves4 4: See Section 2.1.2 for further detail.. Using the set F , the
dynamic matrix S in (9.8) is written in block-diagonal form as,

S =
f⊕
p=1

[
0 pω0

−pω0 0

]
, (9.9)

where ν = 2f . Finally, both the wave excitation force fe and control
force u are expressed as the solution of the autonomous multiple-
output signal generator as

ξ̇ = (IN ⊗ S)ξ,

fe =
(

N∑
i=1

eNii ⊗ Lei

)
ξ = Leξ,

u =
(

N∑
i=1

eNii ⊗ Lui

)
ξ = Luξ.

(9.10)

Remark 9.2.1 From now on, it is assumed that the moment-
domain equivalent Le, fully characterising the wave excitation
force vector fe, is known. Note that this is done without any loss
of generality, as discussed in Remark 9.0.2.

Finally, with respect to Assumption 4.1.1, the following is considered.
Firstly, and without loss of generality, the initial condition of the
multiple-output signal generator (9.10) is set to ξ(0) = εNν ∈ RNν .
Secondly, and analogously to the SISO control case discussed in
Section 8.2, the input to the WEC system (described in terms of
the signal generator (9.10)), is now composed of both the wave
excitation force fe, and control input u. This motivates the following
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standing assumption.

Assumption 9.2.1 Let L = {(S,Lei − Lui)}Ni=1 ⊂ (R1×ν ×
Rν×ν). Then, each element of the set L is observable.

The objective is now to compute a parameterisation of the velocity ż
in terms of moments. In particular, the computation of the moment
of system Σ at the signal generator (S,Le − Lu), can be computed
by solving a specific Sylvester equation (as in Proposition 6.1.1).
Such a moment equation can be specialised for the WEC array case
as

AΠ +B (Le − Lu −Kr) = Π(IN ⊗ S), (9.11)

where Π ∈ R2N×Nν and Kr ∈ RN×Nν is the moment-domain
equivalent of the radiation convolution mapping.

Remark 9.2.2 If the observability condition posed in Assumption
9.2.1 holds, the definition of the moment-domain equivalent of
the velocity is well-posed, and can be directly expressed in terms
of the solution of (9.11), i.e. Ż = CΠ.

The Sylvester equation posed in (9.11) can be solved using the
results of Propositions5 5: Note that the result of Proposi-

tion 6.2.2 holds independently of the
definition of the output vectors of the
signal generator, i.e. it can be directly
applied for this WEC control case.

6.2.2 and 6.2.3. In particular, Ż, for the
controlled WEC array case, can be computed in terms of the following
proposition. This result is explicitly used to parameterise the optimal
control problem for WEC arrays, in Section 9.3.

Proposition 9.2.1 Suppose Assumption 9.2.1 and condition (6.17)
hold. Then, the moment-domain equivalent of the output y of
system (9.5) (the velocity vector of the WEC array ż) can be
uniquely determined as

vec{Ż} = (IN ⊗ ΦR) vec {Le − Lu} , (9.12)

where the matrix ΦR ∈ RNν×Nν is defined as

ΦR = (Iν ⊗ C)Φ−1(Iν ⊗−B),

Φ =
(
S ⊕̂A

)
+

N∑
i=1

N∑
j=1

Rᵀij ⊗−Be
N
ijC,

(9.13)

with Φ ∈ R2Nν×2Nν , and where each Rij ∈ Rν×ν , characterising
the radiation effects in moment-domain, is given by

Rij =
f⊕
p=1

[
i
jrpω0

i
jmpω0

−ijmpω0
i
jrpω0

]
, (9.14)

where the set of parameters {ijrpω0 ,
i
jmpω0}

f
p=1 ⊂ R is defined as

in equation (6.16), for all {i, j} ⊂ Nf .
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Proof. Recall that, under Assumption 9.2.1, the moment of system
Σ at the signal generator (S,Le−Lu) is Ż = CΠ. Then, given that
condition (6.17) holds by hypothesis, the result posed in equation
(9.12) follows directly from Proposition 6.2.3, with an appropriate
change of the moment-domain equivalent associated with radiation
effects, i.e. the set of matrices Rij , with {i, j} ⊂ Nf described in
(9.14). �

Remark 9.2.3 Note that, as previously discussed in Section 6.2,
condition (6.17) is guaranteed for the WEC array case. In other
words, the existence and uniqueness of the moment-domain equiv-
alent Ż always holds, as a result of the internal stability of (9.5)
(see Section 2.4).

Remark 9.2.4 Given the structure of the matrices Lu and Le in
(9.10), the moment-domain equivalent Ż can always be expressed
as Ż =

∑N
i=1 e

N
ii ⊗ Żi, where Ż

ᵀ
i ∈ Rν denotes the moment-

domain equivalent of the velocity of the i-th device.

9.3 Energy-maximising moment-based WEC
array control formulation

The target energy-maximising OCP for arrays, formalised in Section
9.1, is now recalled. This OCP explicitly depends on the velocity of
each device composing the farm, i.e. żi, ∀i ∈ NN . The following
proposition makes use of the moment of system Σ (defined in
equation (9.1)) at the signal generator (S,Le − Lu) (defined in
equation (9.10)), to write the energy-maximising objective function
J in terms of moments.

Proposition 9.3.1 Suppose Assumption 9.2.1 and condition (6.17)
hold. Then the objective function J defined in (9.2), i.e. to-
tal absorbed energy from ocean waves over the time period T =
[0, T ] ⊂ R+, where T = 2π/ω0, can be computed in the moment-
domain as

J 7→ 1
2

N∑
i=1

ŻiL
ᵀ
ui , (9.15)

where Żi denotes the moment-domain equivalent of the velocity
of the i-th device6 6: See Remark 9.2.4..

Proof. The proof of this statement follows the same steps of the
proof of Proposition 8.3.1 and, hence, is omitted for brevity. �
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Proposition 9.3.1 shows that, under the proposed moment-based
strategy, the objective function of (9.2) can be mapped (and com-
puted) as the sum of N inner-product operations in R1×Nν . Fur-
thermore, as explicitly shown in the following, under the presented
moment-based strategy, the unconstrained7 7: This refers to the objective func-

tion (9.2) under the assumption that
the state and input constraints de-
fined in (9.3) are not considered in
the formulation.

OCP (9.2) can be com-
puted as the solution of a strictly concave QP problem.

Proposition 9.3.2 Consider the unconstrained energy-maximising
OCP for WEC arrays (9.2) and suppose Assumption 9.2.1 and
condition (6.17) hold. Then, the optimal control law uopt, that
maximises the objective function J over the time period T , can
be computed in the moment-domain as the solution of the QP
problem

uopt = Lopt
u ξ,

Lopt
u = arg max

Lu∈RN×Nν
−1

2 vec{Lu}ᵀ
(
IN ⊗ ΦᵀR

)
vec{Lu}+

1
2 vec{Le}ᵀ

(
IN ⊗ ΦᵀR

)
vec{Lu}.

(9.16)

Proof. Note that, since Żᵀi = vec{Żi} and Lᵀui = vec{Lui}, the
expression of the moment-domain time-averaged power (9.15) can
be written as

Lopt
u = arg max

Lu

1
2

N∑
i=1

vec{Żi}ᵀvec{Lui}. (9.17)

Furthermore, the relations

vec{Żi} =
(
INν ⊗ eNii

)
vec{Ż},

vec{Lui} =
(
INν ⊗ eNii

)
vec{Lu},

(9.18)

for i ∈ NN , hold. Replacing (9.12) in the objective function of
(9.17), and noting that eNii = (eNii )ᵀ, yields

Lopt
u = arg max

Lu

1
2 vec{Le − Lu}ᵀMvec{Lu},

M =
N∑
i=1

(
IN ⊗ ΦᵀR

) (
INν ⊗ eNii

)
,

(9.19)

where, considering the bilinearity and associativity properties of the
Kronecker product, the matrix M can be equivalently written as

M = IN ⊗ ΦᵀR

(
N∑
i=1
Iν ⊗ eNii

)
= IN ⊗ ΦᵀR , (9.20)

from which the claim follows. �
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Proposition 9.3.3 The QP formulation in (9.16) is strictly con-
cave for any physically meaningful values of the parameters of
(9.5).

Proof. Note that the QP defined in (9.16) is strictly concave if and
only if H {IN ⊗ ΦᵀR} = IN ⊗H {ΦᵀR} is positive-definite.

Let D(t) = fe(t) − u(t) = [d1(t), . . . , dN (t)]. Recall that, since
system (9.5) is strictly passive, the relation [224]

∫ t2

t1
D(τ)ᵀż(τ)dτ =

N∑
i=1

∫ t2

t2
di(τ)żi(τ)dτ > 0, (9.21)

for any time interval [t1, t2] ∈ R, holds. Assume, without any loss
of generality, that the time interval is set to T = [0, T ]. Then, it
follows from the representation of the input D(t) as in (9.10), i.e.
D = Ld Ξ, Proposition 9.3.1, and the condition in equation (9.21),
that the relation

N∑
i=1

∫
T

di(τ)żi(τ)dτ = 1
2

N∑
i=1

ŻiL
ᵀ
di > 0, (9.22)

holds. Performing the same analysis as in Proposition 9.3.2, the
proof of the claim follows noting that

N∑
i=1

ŻiL
ᵀ
di = vec{Ld }ᵀ

(
IN ⊗ ΦᵀR

)
vec{Ld } > 0, (9.23)

which holds if and only if H {ΦᵀR} is positive-definite, proving the
claim. �

Remark 9.3.1 Propositions 9.3.2 and 9.3.3 have a strong impact
on the practicality of the moment-based solution proposed in this
chapter: the target optimal control formulation of (9.2), for WEC
arrays, can be transformed into a QP program, which always has
a unique (global) maximum due to the fact that strict concavity
is always guaranteed. Hence, well-known and highly efficient state-
of-the-art quadratic programming solvers can be used (see, for
instance, [207]).

9.3.1 Handling of state and input constraints

Following the SISO control case presented in Chapter 8, the state
and input constraints, defined in equation (9.3) for the array case,
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are mapped to their respective moment-domain equivalents8 8: Recall, from Proposition 5.2.1, that
the moment-domain equivalent of the
displacement zi can be directly ex-
pressed as Żi(IN ⊗ S

−1).

, i.e.


|zi(t)| ≤ Zmax,

|żi(t)| ≤ Żmax,

|ui(t)| ≤ Umax,

7→


|Żi (IN ⊗ S−1)ξ(t)| ≤ Zmax,

|Żiξ(t)| ≤ Żmax,

|Luiξ(t)| ≤ Umax.

(9.24)

Let Tc = {ti}Nc
i=1 ⊂ T ⊂ R+, be a finite set of (specified) uniformly-

spaced time instants, with Nc ∈ N≥1. The constraints defined in
(9.24) can be enforced at the set of time instants Tc, i.e. using a
collocation approach. Let the matrices Λ ∈ RNNc×N2ν and Υ ∈
R2NNc×N2ν be defined as

Λ =
[
ξ(t1)⊗ IN . . . ξ(tNc)⊗ IN

]ᵀ
, Υ =

[
Λᵀ −Λᵀ

]ᵀ
. (9.25)

With the definition of Υ in (9.25), one can formulate a moment-based
energy-maximising constrained optimal control solution for WEC
arrays in terms of an inequality-constrained concave QP problem,
as follows.

Proposition 9.3.4 Consider the state and input constrained OCP
for WEC arrays (9.2), and suppose Assumption 9.2.1 and condi-
tion (6.17) hold. Then, the optimal control law uopt, that max-
imises the objective function J over the time period T , can be
computed in the moment-domain as the solution of the inequality-
constrained concave QP problem

uopt = Lopt
u ξ,

Lopt
u = arg max

Lu∈RN×Nν
−1

2 vec{Lu}ᵀ
(
IN ⊗ ΦᵀR

)
vec{Lu}+

1
2 vec{Le}ᵀ

(
IN ⊗ ΦᵀR

)
vec{Lu}.

subject to:
Azvec{Lu} ≤ Bz,
Ażvec{Lu} ≤ Bż,
Auvec{Lu} ≤ Bu,

(9.26)
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where the matrices {Az,Aż,Au} and {Bz,Bż,Bu} are defined as

Az = −Υ
(
IN ⊗ (S−1 ⊗ IN )ᵀΦR

)
,

Bz = Zmax12NNc −Azvec{Le},
Aż = −Υ (IN ⊗ ΦR) ,
Bż = Żmax12NNc −Ażvec{Le},
Au = Υ,
Bu = Umax12NNc .

(9.27)

Proof. Note that under the set of assumptions considered in this
proposition, equation (9.26) follows directly from Proposition 9.3.2.
The derivation of the set of inequality constraints in Lu, defined in
(9.26), follows the same arguments as those of Proposition 8.3.5
and, hence, is omitted for brevity. �

9.4 Case study: an array of CorPower-like
devices

This section presents a case study to illustrate the proposed strat-
egy, based on the regular-polytope-type WEC array layout depicted
in Figure 9.1, composed of N = 5 converters. Each of the five
devices composing this WEC farm is a full-scale CorPower-like de-
vice (see Figure 6.2) oscillating in heave (translational motion). To
fully characterise this wave farm, Figure 9.2 presents the hydrody-
namic characteristics of the WEC array considered in this application
case, in terms of its corresponding radiation damping and radia-
tion added-mass matrices, i.e. Br(ω) and Ar(ω), respectively. Note
that, due to the fact that the devices composing the WEC farm are
identical (i.e. CorPower-like devices), the corresponding hydrody-
namic characteristics (including interactions due to radiation effects)
present symmetrical behaviour, in accordance with the layout de-
picted in Figure 9.1. That said, only three elements of the matrices9

9: The reader is referred to [49, Chap-
ter 8] for an extensive discussion on
the hydrodynamic coefficients of WEC
arrays and the principles behind this
symmetrical behaviour.

{Br(ω), Ar(ω)} ⊂ R5×5 are required to completely characterise the
hydrodynamic parameters of the farm. These are plotted in Fig-
ure 9.2, along with the corresponding symmetry pattern for both
matrices Br(ω) and Ar(ω).

The performance assessment of the presented moment-based strat-
egy initially considers the case of regular input waves (see Section
2.1.1), taking into consideration both state and input constraints.
Recall that, as discussed in Section 3.2, the necessity of consider-
ing motion constraints stems from the fact that the unconstrained
energy-maximising optimal solution often requires unrealistic values
for the physical variables of the analysed WEC system. Naturally,
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Figure 9.1: Regular-polytope-type WEC array layout considered for the application case. The distance d between devices is
set to twice the diameter of the upper part of the float, i.e. d ≈ 17 [m].
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constraining the motion of the device leads to a decrease in the total
absorbed power. This provides motivation to explicitly analyse how
the state and input constraints affect the total power absorbed by
the WEC farm of Figure 9.1, when using the moment-based strategy
proposed in this chapter. To fulfill this objective, the definition of a
power absorption ratio is proposed, as a function of the constrained
variable (i.e. motion variable or control input). To be precise, let
zoptunc and uoptunc be the displacement and control force for the WEC
array under unconstrained optimal conditions, for a particular wave
excitation force fe.

Then, the following power absorption ratio is proposed, as a perfor-
mance indicator:

RP = J
con,RA|C
T

J unc
T

, (9.28)

where J con,RA|C
T is the total power absorption for a regular wave

of period Tw with either displacement (J con,RA) or control force
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(J con,RC ) constrained to

Zmax = RA max |zuncT |, RA ∈ [0, 1], (9.29)
Umax = RC max |uuncT |, RC ∈ [0, 1]. (9.30)

14

0.2
0.4

12 1

0.6

0.8

0.8

10 0.68 0.40.26

14

0.2
0.4

12 1

0.6

0.8

0.8

10 0.68 0.40.26

14

0.2
0.4

12 1

0.6

0.8

0.8

10 0.68 0.40.26

14

0.2
0.4

12 1

0.6

0.8

0.8

10 0.68 0.40.26

0.4

0.6

0.8

14

0.2
0.4

12 1

0.6

0.8

0.8

10 0.68 0.40.26

14

0.2
0.4

12 1

0.6

0.8

0.8

10 0.68 0.40.26

0.4

0.6

0.8

0.4

0.6

0.8

Figure 9.3: Power absorption ratio
Rp for different wave period Tw,
where the displacement of the de-
vice (left column) and control input
are constrained following equations
(9.29) and (9.30), respectively. Each
row of the figure represents a different
wave height Hw.

Figure 9.3 illustrates the results obtained for RP with varying wave
period Tw, considering both displacement and control force con-
straint factors RA (left column) and RC (right column), respectively.
Furthermore, the results presented here are for three different wave
heights, i.e. Hw ∈ N3 [m]. A key element to highlight from Figure
9.3 is that the proposed moment-based strategy is able to maintain
consistent performance with respect to variations in Hw, giving
almost identical power absorption ratio results for the full set of anal-
ysed wave heights. Focusing on the left column of Figure 9.3, where
the displacement of the device is constrained following equation
(9.29), it is noteworthy that with a constraint of 40% of the optimal
unconstrained motion, the energy-maximising moment-based strat-
egy is capable of extracting ≈ 80% of the unconstrained optimal
result for the totality of the analysed periods, with almost 90% for
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some values of Tw. Similar behaviour can be appreciated in the
right column of Figure 9.3, where now the maximum PTO force is
constrained within the optimal energy-maximising control compu-
tation, as in equation (9.30). Note that the deterioration in power
performance becomes higher in the case where the PTO force (con-
trol input) is constrained, while a milder effect can be appreciated
in the case of displacement constraints. This is indeed consistent
with previous results, such as those reported in [249] (simplified
theoretical analysis) and [176, 219] (numerical assessment).
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Figure 9.4: Results for regular input
wave excitation. The left column of
Figure 9.4 shows displacement (solid
black), velocity (dashed black) and
wave excitation force input (dotted
grey), for each device composing the
array, for devices 1 (top) to 5 (bot-
tom). The right column of Figure 9.4
presents (in the same order) the cor-
responding control inputs for each
device computed with the moment-
based strategy (solid black), along
with the wave excitation force (dot-
ted gray) experienced by each device.
The horizontal dash-dotted lines rep-
resent constraint values.

Completing the results for regular wave excitation, Figure 9.4 illus-
trates the WEC array motions under moment-based optimal control
conditions (left column), along with each corresponding moment-
based energy-maximising control laws (right column). The input
wave is considered to have a wave height Hw = 2 [m] and a pe-
riod Tw = 8 [s]. The state and input constraints, for each device
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composing the array, are set as follows:

Zmax = 2 [m], Żmax = 2 [m/s], Umax = 1× 106 [N]. (9.31)

More precisely, the left column of Figure 9.4 shows displacement
(solid black), velocity (dashed black) and wave excitation force input
(dotted grey), for each device composing the array, in ‘increasing’
order of appearance (i.e. from device 1 to device 5). The constraint
limits for displacement and velocity are denoted with a horizontal
dash-dotted line.

Some key features can be directly appreciated in the left column
of Figure 9.4, which are detailed in the following. To begin with,
it is straightforward to notice that the state constraints are being
consistently respected for all the devices composing the WEC array,
illustrating the capability of the moment-based strategy to maximise
energy-absorption while respecting the physical limitations of each
device. Moreover, note that even in this fully constrained case, the
velocity of the device under optimal control conditions remains ‘in-
phase’ with the wave excitation force, agreeing with the well-known
theoretical results for unconstrained energy-maximisation of (single)
WECs (see Section 3.1). The right column of Figure 9.4 presents
the control inputs for each device computed with the moment-based
strategy (solid black), along with the wave excitation force (dotted
gray) experienced by each device. Once again, it can be appreciated
that the PTO force constraints (dash-dotted) are being respected
consistently, showing the ability of the strategy to handle both
state and input constraints simultaneously. Finally, note that the
moment-based optimal control force is shifted by ≈ π/2 [rad] with
respect to the wave excitation force input, also agreeing with the
theoretical (unconstrained maximum) power absorption conditions
for an isolated WEC device (see Section 3.1).

Results under irregular wave excitation, randomly generated using a
JONSWAP SDF (see Section 2.1.2), are now presented. In particular,
a JONSWAP spectrum, analogous to the regular excitation case
presented in Figure 9.4, is considered, i.e. with peak period T̄w = 8
[s] and significant wave height H̄w = 2 [m]. The peak enhancement
factor is set to γ = 3.3. Both the state and input constraints for
each device are also set to the same values as those for the regular
excitation case of Figure 9.4, i.e. equation (9.31).

Figure 9.5 presents motion (left column) and energy-maximising
control input (right column) results for this irregular wave input
case. Note that this figure uses the same indexing to variables and
devices as Figure 9.4. As can be appreciated from Figure 9.5, the
MIMO moment-based strategy presented in this chapter, is able to
maximise energy-absorption, while systematically respecting both
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Figure 9.5: Results for irregular input
wave excitation. The left column of
Figure 9.5 shows displacement (solid
black), velocity (dashed black) and
wave excitation force input (dotted
grey), for each device composing the
array, for devices 1 (top) to 5 (bot-
tom). The right column of Figure 9.5
presents (in the same order) the cor-
responding control inputs for each
device computed with the moment-
based strategy (solid black), along
with the wave excitation force (dot-
ted gray) experienced by each device.
The horizontal dash-dotted lines rep-
resent constraint values.

state and input constraints for the case of this irregular wave input,
according to the control design objective, and hence providing a
strong practical result in a realistic sea description. In addition, note
that the velocity and excitation force of each device presents the ‘in-
phase’ optimal energy absorption condition for regular unconstrained
motion. In fact, this behaviour is consistent with what has been
reported previously in the energy-maximising moment-based strategy
presented in Chapter 8, for the isolated (single) WEC case.

9.5 Conclusions

This chapter formally introduces an extension of the moment-based
energy-maximising technique for a single WEC (SISO system) de-
veloped throughout Chapter 8 to a WEC farm (MIMO system),
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providing a mathematical framework for array optimal control design
with strong practical value, thus helping in the roadmap towards
successful commercialisation of WEC technologies. This chapter
demonstrates that the desirable properties of the moment-based
strategy presented for the single WEC case, such as the mapping
of the original objective function to a concave QP problem (which
can be efficiently solved using state-of-the-art-solvers), are also re-
tained in this WEC array optimal control framework. The chapter
also details how to systematically handle both state and input con-
straints simultaneously, by making explicit use of the advantages
inherently present in the moment-domain formulation. The combi-
nation between energy-maximisation, successful simultaneous state
and input constraint handling, and computational efficiency (due to
the nature of the objective function in moment-domain) has strong
practical advantages, providing an optimal control framework that
can maximise energy absorption from incoming sea waves, respect
intrinsic physical limitations, and compute efficiently. Finally, this
chapter demonstrates the usage of the proposed method by means
of a full-scale WEC array composed of five CorPower-like devices,
explicitly assessing the performance of the moment-based strategy
for both regular and irregular wave excitation.
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Recall, from Section 2.4 and Chapter 8, that the equation of motion
for a controlled WEC, under the assumptions of linear potential flow
theory (see Section 2.3.1), can be expressed in terms of Cummins’
equation (2.20). This equation is recalled below, for a 1-DoF WEC
device, for convenience:

Σ0 :
{
z̈ =M (−kr∗ ż − shz + fe − u) ,
y0 = ż,

(10.1)

where z : R+ → R is the displacement, kr : R+ → R, kr ∈ L2(R),
the radiation impulse response function, fe : R+ → R, the wave
excitation force, and M ∈ R>0 is the inverse of the generalised
mass matrix of the device. Finally, u : R+ → R represents the
control input, supplied by means of the PTO system, and computed
in terms of the energy-maximising optimal control problem defined
in (8.4).

Remark 10.0.1 A SISO WEC system is considered in this section,
aiming to simplify the notation. Nonetheless, note that MIMO
WEC systems can be considered analogously, by simply following
the theoretical framework presented in Chapter 9.

As discussed and detailed throughout Chapter 3, despite the fact
that the number of control techniques, proposed in the literature,
has increased considerably during recent years, only a few studies
address the robustness of energy-maximising controllers; the optimal
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control input is mostly computed based only on a nominal model,
without considering possible dynamical deviations, i.e. system un-
certainty, which are ubiquitous in hydrodynamic modelling. By way
of example, some parameters of the WEC hydrodynamic model can
vary significantly due to the change in the relative motion of the de-
vice (see, for instance, [18]), or simply due to unmodelled dynamics,
not captured by the nominal WEC model. The scarcity of robust
strategies among WEC control methods can be attributed to the fact
that the design of energy-maximising controllers does not directly
fit into a ‘traditional’ form, unlike the well-known reference tracking
problem. This, in turn, intrinsically complicates the application of
well-developed robust control strategies.

System uncertainty is not the only source of error inherently present
in the WEC energy-maximising optimal control problem: Given that
the wave excitation force, which is a key variable in the OCP (8.4), is
virtually always approximated by means of unknown-input estimation
(instantaneous values) and forecasting (future values) techniques,
input uncertainty is also ubiquitous. Moreover, and to the best
of the author’s knowledge1 1: See Section 3.4.2.1 for further de-

tail on robust solutions for WECs
available in the literature.

, robustness with respect to errors in
the estimation and forecasting of the excitation effect, i.e. input
uncertainty, has not been yet addressed in the current WEC control
synthesis literature2

2: An assessment on the robustness
of certain families of WEC control
systems can be found in, for instance,
[19, 88].

.

Motivated by the discussion provided above, this chapter details
an energy-maximising moment-based framework which explicitly
considers system and input uncertainty in the computation of the
optimal control law, while systematically respecting motion and
PTO (state and input) constraints. In particular, this is achieved
by a suitable moment-based characterisation for the uncertainty,
taking into consideration an appropriate uncertainty set, written
in terms of a convex polytope defined over a real vector space.
To this end, the concept of moments is combined with the robust
optimisation principles considered in [182, 184], by proposing a
worst-case performance (WCP) approach. Necessary and sufficient
conditions on the definition of the uncertainty polytope are explicitly
derived, so that this novel moment-based robust optimal control
framework always has a unique global energy-maximising solution,
preserving all the appealing characteristics of the (nominal) strategy
developed in Chapter 8, hence leading to a computationally efficient
robust control solution for WECs. The performance of the proposed
controller is illustrated and analysed by means of a case study,
considering a heaving point absorber WEC, subject to system and
input uncertainty.

The remainder of this chapter is organised as follows. Section 10.1
describes and formalises the moment-based description of the energy-



10 Robust energy-maximising control for WECs 227

maximising optimal control problem under system uncertainty, and
poses the so-called robust moment-based optimal control problem
for uncertain WEC systems. Analogously, Section 10.2 formalises the
robust moment-based optimal control problem for WEC systems un-
der input uncertainty, i.e. considering that the wave excitation force
measurement/estimate is affected by an external source of error.
Section 10.3 briefly discusses the technicalities behind considering
system and input uncertainty simultaneously. The use and perfor-
mance of the robust moment-based control framework, proposed
in this chapter, is illustrated using two case studies, presented in
Sections 10.4 and 10.5, based on a spherical heaving point absorber
WEC, under system and input uncertainty, respectively. Both sections
include insight in the definition and computation of the correspond-
ing uncertainty sets, which, ultimately, play a fundamental role in
setting up the trade-off between performance and conservativeness
of the control law. Finally, the main conclusions of this chapter are
presented in Section 10.6.

Remark 10.0.2 Section 10.4 also offers a data-driven method to
identify and define the (system) uncertainty set. In other words,
(output) time-traces, obtained from nonlinear WEC models (in-
cluding high-fidelity solvers such as those based in CFD), can be
directly incorporated in this framework by means of a suitable
approximation technique (specifically proposed in Section 10.4.4),
which ‘maps’ each nonlinear output onto a suitably defined uncer-
tainty set.

Remark 10.0.3 Throughout this chapter, aiming both to simplify
the notation, and to solely focus the upcoming sections on the
formulation of a robust moment-based approach under system and
input uncertainty, the excitation force is assumed to be available
over the complete time interval T ⊂ R+, where energy absorption
from incoming waves is maximised. This is done without any loss
of generality, since a receding-horizon formulation can be achieved
directly, by simply following the theory3 3: In particular, by following the adap-

tation of the moment-based represen-
tation of the wave excitation input,
to alleviate the effects of considering
a (potentially) short time-horizon for
the computation of the control law
(see Section 8.6.1).

presented in Section
8.6, without further modifications. Naturally, availability of the
excitation force does not imply perfect knowledge, but rather that
a wave excitation measurement/estimate, potentially subject to
uncertainty, is available throughout the time interval T , in which
the energy-maximising control law is computed.
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10.1 Moment-based control under system
uncertainty

Consider the nominal WEC model Σ0, defined in equation (10.1),
and suppose the mappings corresponding to both external inputs,
i.e. the wave excitation force fe, and control force u, are written in
terms of the autonomous single-output signal generator (S,Le−Lu)
(see equation (8.8)), with dynamic matrix S as in (8.9). In addition,
suppose Assumption 8.2.1 and condition (5.16) hold. Then, the result
of Proposition 8.2.1 follows, and the moment-domain equivalent of
the output y = ż of the nominal system Σ0 is given by

Ż0 = (Le − Lu)ΦᵀR . (10.2)

Remark 10.1.1 From now on, the matrix Ż0 is referred to as the
moment-domain equivalent of the velocity of the nominal WEC
system Σ0.

In a more realistic scenario, the model describing the WEC dynamics
is affected by modelling errors, which can be written in terms of
a suitably defined uncertainty. This statement, together with a
suitable definition for the uncertainty, is formalised in the following
paragraphs.

Suppose Σ∆ is a stable (in the Lyapunov sense) linear time invariant
system describing the dynamics of the WEC under the presence
of modelling errors, with output y∆ = ż∆. As discussed in the
introduction to this chapter, these errors can arise as a function of,
for instance, the presence of parametric uncertainty in the definition
of the WEC model, or simply as a consequence of unmodelled
dynamics. Independent of the specific definition of the dynamics
of Σ∆, the moment-domain equivalent of its output can always be
uniquely4 4: Uniqueness of the moment-domain

equivalent Ż∆ is a direct consequence
of the internal stability of Σ∆ (see the
discussion provided in Section 5.1).

computed analogously to equation (10.2), i.e. Ż∆ can be
computed as

Ż∆ = (Le − Lu)Φᵀ∆, (10.3)

where the matrix Φᵀ∆ ∈ Rν×ν depends on the specification of Σ∆,
and can be simply defined analogously to (8.12). To be precise, in
terms of the formal definition of the (system) uncertainty allowed
throughout this chapter, the definition of uncertain WEC system
Σ∆, adopted for the remainder of this analysis, is provided below.
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Definition 10.1.1 (Uncertain WEC system) Suppose Assump-
tion 8.2.1 and condition (5.16) hold. A system describing the
dynamics of a WEC is termed an uncertain WEC system if it’s
defined by a stable linear time invariant system Σ∆, and the mo-
ment of Σ∆ at the signal generator (S,Le − Lu) is given by,

Ż∆ = Ż0 + Ż0∆, (10.4)

where Ż0 is as in equation (10.2), and the matrix ∆ ∈ Rν×ν is
given by

∆ =
(
ΦᵀR
)−1 Φᵀ∆ − Iν . (10.5)

Definition 10.1.1 can be easily interpreted from a ‘traditional’ ro-
bust control theory viewpoint. In particular, it stems directly from
considering that the nominal WEC system Σ0 is perturbed by a
multiplicative output uncertainty [234]. This output uncertainty is
characterised by a stable linear time-invariant system H∆, with
input y0 (i.e. nominal velocity of the WEC), and where the moment-
domain equivalent of its output d∆ is given by,

D∆ = Ż0∆. (10.6)

The discussion provided above is schematically illustrated in Figure
10.1, also including the description of each steady-state output in
terms of the corresponding moments.

Figure 10.1: Schematic illustration of nominal WEC system Σ0 subject to multiplicative output uncertainty, including each
corresponding moment-based representation.

Remark 10.1.2 From now on, the matrix Ż∆ is referred to as
the moment-domain equivalent of the velocity of the uncertain
WEC system Σ∆.

Remark 10.1.3 Note that the definition of the matrix ∆ follows
immediately from equations (10.3) and (10.4), i.e.

Ż∆ = (Le − Lu)Φᵀ∆ = (Le − Lu)ΦᵀR(Iν + ∆), (10.7)
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which, taking into account that the matrix ΦᵀR is always invert-
ible, as a consequence of the uniqueness of the moment-domain
equivalent of the nominal system Ż0 (under Assumption 8.2.1
and condition (5.16)), automatically implies (10.5).

Remark 10.1.4 Given the specific structure of the matrices in-
volved in equation (10.5), it is straightforward to note that the
matrix ∆ can always be written as,

∆ =
f⊕
p=1

[
pδ+ pδ−

−pδ− pδ+

]
, (10.8)

where {pδ+, pδ−}fp=1 ⊂ R.

Not only is ∆ always structured as (10.8), but it can also be fully
characterised in terms of a vector δ ∈ Rν , which is especially useful
for the upcoming definitions and computations. The nature of this
vector is formalised in the following. Let δ ∈ Rν be the uncertainty
vector, defined as

δ =
f∑
p=1

efp ⊗
[
pδ+

pδ−

]
. (10.9)

Following Remark 10.1.4, it is clear that the matrix ∆ can always
be written in terms of the uncertainty vector δ, provided a suitable
mapping δ 7→ ∆ is defined. In particular, the following mapping
Γ : Rν → Rν×ν , δ 7→ Γ(δ), is proposed, defined as below:

Γ(δ) =
f∑
p=1

(
δᵀ ef2p−1

) [1 0
0 1

]
+
(
δᵀ ef2p

) [ 0 1
−1 0

]
,

=
f⊕
p=1

[
pδ+ pδ−

−pδ− pδ+

]
= ∆.

(10.10)

Remark 10.1.5 Note that, as per equation (10.10), the mapping
Γ is linear in the argument δ. As discussed in Section 10.1.1,
the linearity of the mapping Γ plays a fundamental role in the
existence, uniqueness, and tractability of the robust moment-based
energy-maximising procedure, proposed in this chapter.

Recall that the objective function, involved in the definition of the
energy-maximising OCP (8.4), explicitly depends on the velocity
of the WEC system. Suppose now that, instead of considering the
nominal system Σ0 (as in the energy-maximising control framework
of Chapter 8), the WEC system is now affected by the presence of
modelling errors, i.e. the uncertain WEC system Σ∆ is considered
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(see Definition 10.1.1). The following proposition is analogous to
Proposition 8.3.2, and makes use of the moment-domain equivalent
of the output of the uncertain WEC system, i.e. Ż∆, to show that
the target optimal control problem (8.4) (which is originally defined
over an infinite-dimensional space), can be parameterised in terms
of moments.

Proposition 10.1.1 Consider the unconstrained 5 5: The term unconstrained here refers
to the optimal control problem (8.4)
without consideration of the set of
state and input constraints C .

OCP (8.4) and
suppose Assumption 8.2.1 and condition (5.16) hold. Then, given
a fixed uncertainty vector δ ∈ Rν , the optimal control law uopt

which maximises the objective function J over the time period
T , for the uncertain system Σ∆, can be computed in the moment-
domain as the solution of the QP problem

uopt = Lopt
u ξ,

Lopt
u = arg max

Lᵀu∈Rν
−1

2LuΦᵀR(Iν + Γ(δ))Lᵀu+

1
2LeΦᵀR(Iν + Γ(δ))Lᵀu.

(10.11)

Proof. Consider the result of Proposition 8.3.1 (i.e. equation (8.14)).
Then, given that Assumption 8.2.1 and condition (5.16) hold by
hypothesis, the moment-domain equivalent of the output of the
uncertain system is always well-defined, and the claim follows by
simply replacing Ż∆ according to equation (10.7). �

The result of Proposition 10.1.1 explicitly shows that the computa-
tion of a moment-based energy-maximising control law, in the pres-
ence of modelling uncertainty, boils down to solving a QP problem.
As in the nominal case discussed in Chapter 8, this QP formulation
can be solved efficiently if and only if equation (10.11) has a unique
global maximiser, i.e. the problem is strictly concave.

Remark 10.1.6 In contrast to the moment-based optimal control
framework for the nominal WEC model Σ0, presented in Chapter
8, the existence and uniqueness of a global maximiser for the QP
(10.11) explicitly depend upon the definition of the uncertainty
vector δ. In the light of this, necessary and sufficient conditions
for strict concavity of this QP are explicitly given in Proposition
10.1.2.

Proposition 10.1.2 The QP problem defined in (10.11) has a
unique global energy-maximising solution if and only if

<{ψp}+
[
<{ψp} −={ψp}

] [pδ+

pδ−

]
> 0, (10.12)
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for all p ∈ Nf , and where each ψp ∈ C2×2 is defined as in (8.24).

Proof. This proof can be started by noting that (10.11) has a
unique global solution if and only if the symmetric part of Φᵀ∆ =
ΦᵀR(Iν+Γ(δ)) is positive-definite. Following the proof of Proposition
8.3.3, note that one can always write the matrix Φ∆ in a block-
diagonal form, i.e. Φ∆ = ⊕fp=1Φ∆p , with each p-block defined as

Φᵀ∆p
=
[
<{ψp} ={ψp}
−={ψp} <{ψp}

](
I2 +

[
pδ+ pδ−

−pδ− pδ+

])
, (10.13)

for all p ∈ Nf , and where each matrix ψp is defined as in (8.23).
Hence, the symmetric-part of Φ∆ can be written as,

H {Φᵀ∆} =
f⊕
i=1

[
ψ∆
p 0
0 ψ∆

p

]
, (10.14)

with each ψ∆
p ∈ R defined as

<{ψp}+ <{ψp}pδ+ −={ψp}pδ−, (10.15)

for all p ∈ Nf . Clearly, H {Φᵀ∆} is positive-definite if and only if
ψ∆
p > 0, for all p ∈ Nf , which proves the claim. �

Remark 10.1.7 Note that, if ‖δ‖2 < ε, with ε sufficiently small,
then the condition expressed in (10.12) always holds, as a conse-
quence that <{ψp} > 0, for all p ∈ Nf (see Remark 8.3.1).

10.1.1 Robust formulation under system uncertainty

In this section, and following the approach proposed in [182], the
moment-domain optimisation problem (10.11) is re-formulated based
on the underlying principles of robust optimisation theory, developed
in key studies such as [184]. The underpinning concept behind this
approach originates in the field of decision theory, and is known as
Wald’s Minimax (Maximin) paradigm [250], also commonly referred
to as the Worst-Case Performance (WCP) method. Before going
further with the formal definition of a robust moment-based energy-
maximising QP formulation, the following standing assumption is
introduced.

Assumption 10.1.1 The uncertainty vector δ is such that δ ∈ P ,
where P ⊂ Rν is a convex V-polytope6 6: The reader is referred to [234] for

further detail in convex polytopes and
their use in robust control applica-
tions.

, defined as the convex hull
of a finite set of NV points (vertices) in space Vδ = {δV1 , . . . δVNV },
i.e. P = conv{Vδ}.
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Finally, in the spirit of the WCP method, and using the result of
(10.11), the robust moment-based energy-maximising QP formula-
tion, for uncertain WEC systems, is defined as follows.

Problem 10.1.1 (Robust energy-maximising OCP under system
uncertainty) Suppose condition 10.1.2 holds for every uncertainty
vector δ ∈ P, and Assumption 10.1.1 holds. Then, the robust
formulation of the (unconstrained) energy-maximising QP problem
(10.11) under system uncertainty can be written as

uRC = LRC
u ξ,

LRC
u = arg max

Lᵀu∈Rν
arg min

δ∈P
−1

2LuΦᵀR(Iν + Γ(δ))Lᵀu+

1
2LeΦᵀR(Iν + Γ(δ))Lᵀu,

(10.16)

where uRC denotes the worst-case performance moment-based
energy-maximising optimal control law.

Problem 10.1.1 computes the worst-case scenario for the energy-
maximising problem (10.11), with respect to every possible uncer-
tainty vector δ, lying inside the polytope P.

Remark 10.1.8 Assumption 10.1.1 plays a fundamental role in
the definition of Problem 10.1.1, as detailed in the following. Note
that, as a direct consequence of the linearity of the mapping Γ
(see Remark 10.1.5), the minimisation problem in (10.16) is affine
in δ. Then, taking into account that δ is such that condition
10.1.2 holds, i.e. the QP problem in Lu is always strictly concave,
the solution of the moment-based robust formulation (10.16) is
reached precisely on the convex hull of the uncertainty set P
[207]. Moreover, given that P is convex by Assumption 10.1.1,
the solution of (10.16) lies precisely at one of the vertices of
P, i.e. it is sufficient to solve equation (10.16) only for the NV

elements of the finite set Vδ (see, for instance, [207, 251]).

Two main conclusions can be directly extracted from Remark 10.1.8.
Firstly, the robust energy-maximising framework, defined in Problem
10.1.1, always has a unique globally optimal solution. Secondly, the
optimisation problem to be solved is tractable7 7: The reader is referred to [252] for

a formal definition of a tractable op-
timisation problem.

, i.e. it is sufficient
to solve (10.16) for a small number of ‘points’, characterising the
vertices of the uncertainty polytope. This, in turn, directly implies
that (10.16) can be effectively solved using computationally efficient
minimax optimisation routines [207, 253, 254].

Remark 10.1.9 The definition of the uncertainty set P plays a key
role on the actual performance of the proposed robust approach:
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a ’larger’ polytope P, naturally covers a ’wider’ uncertainty set,
at the expense of computing a more conservative WCP energy-
maximising solution. In other words, the definition of the set P
has to be done sensibly, ideally using a-priori information of the
potential modelling errors present in the analysed WEC system.
Insight on how to achieve a suitable definition for such a polytope,
for the case of system uncertainty, can be explicitly found in
Section 10.4, including an explicit procedure to compute P.

10.1.2 Handling of state and input constraints

In principle, the handling of state and input constraints can be done
somewhat ‘analogously’ to the nominal moment-based controller
developed throughout Chapter 8, with some additional consider-
ations, given the inherent presence of uncertainty in this robust
moment-based control case. That said, the set of state and input
constraints (8.3) can be mapped using their respective (uncertain)
moment-domain equivalents, as

C :


|z(t)| ≤ Zmax,

|ż(t)| ≤ Żmax,

|u(t)| ≤ Umax,

7→


|Ż∆S−1ξ(t)| ≤ Zmax,

|Ż∆ξ(t)| ≤ Żmax,

|Luξ(t)| ≤ Umax.

(10.17)

Following the collocation approach presented in Section 8.3.1, let
Tc = {ti}Nc

i=1 ⊂ T ⊂ R+, be a finite set of (specified) uniformly-
spaced time instants, with Nc ∈ N≥1. Let Υ ∈ Rν×2Nc be defined
as in (8.30).

Remark 10.1.10 Given that it is sufficient to solve the robust
formulation defined in Problem 10.1.1 only at the finite-set of
vertices of the convex polytope P (see Remark 10.1.8), a sensible
approach to incorporate state constraints into Problem 10.1.1 is
to guarantee that such constraints are satisfied at every point
of the set of vertices Vδ. This effectively ensures that the state
constraints in (10.17) are consistently fulfilled for every δ ∈ P
[207, 251].

Finally, one can formulate a robust moment-based energy-maximising
constrained optimal control law for WECs, explicitly considering
the presence of uncertainty in the WEC model, in terms of an
inequality-constrained minimax QP problem, which always has a
unique globally optimal solution. This is addressed in the following
proposition.
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Proposition 10.1.3 Consider Problem 10.1.1 and the uncertain
WEC system Σ∆. Suppose condition 10.1.2 holds for every un-
certainty vector δ ∈ P, and Assumption 10.1.1 holds. Then,
the state and (control) input constrained robust moment-based
energy-maximising control law uRC can be computed in terms of
the following minimax QP problem,

uRC = LRC
u ξ,

LRC
u = arg max

Lᵀu∈Rν
arg min

δ∈Vδ⊂P
−1

2LuΦᵀR(Iν + Γ(δ))Lᵀu+

1
2LeΦᵀR(Iν + Γ(δ))Lᵀu,

subject to:
LuARC

z ≤ BRC
z ,

LuARC
ż ≤ BRC

ż ,

LuAu ≤ Bu,

(10.18)

where the pair of matrices (Au,Bu) is defined as in (8.31), and
where

ARC
z =

[
Aδ

V
1
z . . . Aδ

V
N
z

]
, BRC

z =
[
Bδ

V
1
z . . . Bδ

V
N
z

]
,

ARC
ż =

[
Aδ

V
1
ż . . . Aδ

V
N
ż

]
, BRC

ż =
[
Bδ

V
1
ż . . . Bδ

V
N
ż

]
,
(10.19)

with each element of the sets {Aδ
V
i
z ,Aδ

V
i
ż } and {Bδ

V
i
z ,Bδ

V
i
ż } de-

fined as,

Aδ
V
i
z = −ΦᵀRS

−1Υ− ΦᵀRΓ(δVi )S−1Υ = Az + Ãz(δVi ),

Bδ
V
i
z = Zmax11×2Nc + LeA

δVi
z = Bz + B̃z(δVi ),

Aδ
V
i
ż = −ΦᵀRΥ− ΦᵀRΓ(δVi )Υ = Aż + Ãż(δVi ),

Bδ
V
i
ż = Żmax11×2Nc + LeA

δVi
ż = Bż + B̃ż(δVi ),

(10.20)

for all δVi ∈ Vδ.

Proof. The proof of this proposition follows the same steps as those
employed in Proposition 8.3.5, taking into account that the set of
constraints (10.17) are enforced, in Problem 10.1.1, at each element
of the set of vertices Vδ (defining the uncertainty polytope P) and,
hence, is omitted for brevity. �

Remark 10.1.11 The computation of the matricesAu and Bu can
be performed exactly as in the nominal case presented in Chapter
8: the definition of the PTO force constraint does not depend
upon the definition of the uncertainty set P . Although this is not
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the case with the pairs of matrices (ARC
z ,BRCz ) and (ARC

ż ,BRCż ),
which explicitly depend on the nature of the uncertainty polytope
P (i.e. the set of vertices Vδ), it is sufficient to compute these
matrices only once, which can be readily done offline8 8: In other words, the computation

of the set of constraints does not in-
fluence the computational complexity
of the proposed solution.

, following
the definition of the set P.

Remark 10.1.12 It is noteworthy that the matrices {Aδ
V
i
z ,Aδ

V
i
ż }

and {Bδ
V
i
z ,Bδ

V
i
ż } can be computed, for all δVi ∈ Vδ, as the sum of

the nominal constraint matrices {Az,Aż} and {Bz,Bż}, defined
in Proposition 8.3.5, and a linear ‘perturbation’ term, accounting
for the effect of the uncertainty vector δ.

10.2 Moment-based control under input
uncertainty

As previously discussed in the introduction to this chapter, the
wave excitation force fe inherently arises from a combination of
unknown-input estimation, and forecasting techniques. In other
words, the excitation force signal, utilised by the energy-maximising
controller, is prone to be affected by uncertainty, arising directly from
errors in both the estimation and forecasting processes. Moreover,
as detailed in Section 8.7, the computation of the moment-based
energy-maximising strategy is especially sensitive to estimation errors,
particularly those manifested as a ‘delay’ in the excitation force
estimate (i.e. errors in instantaneous phase). Motivated by the
discussion provided above, this section details a moment-based
energy-maximising control framework which is robust with respect
to input uncertainty. From now on, and borrowing the notation from
Chapter 8, the approximated wave excitation force signal9 9: Often referred to, throughout this

section, as either wave excitation force
estimate, or simply wave excitation
force (when clear from the context).

, arising
from both estimation and forecasting processes, is denoted as f̃e.

To be precise, suppose now that the WEC system Σ is assumed to
be that defined as the nominal system, i.e. Σ = Σ0 (see equation
(10.1)), and that the uncertainty is assumed to be ‘located’ in the
input mapping f̃e only. Analogously to Section 10.1, this section
begins by providing a suitable definition of a nominal signal generator
G0, i.e.

G0 :


ξ̇ = Sξ,

f̃0
e = L0

eξ,

u = Luξ,

(10.21)

where S and Lu are defined as in (8.8), and L0
e ∈ R1×ν characterises

the nominal wave excitation force f̃0
e .
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Remark 10.2.1 From now on, the matrix L0
e is referred to as the

nominal output vector for the wave excitation force, associated
with the nominal signal generator (10.21).

Based on the definition of the nominal excitation force f̃0
e , the aim

is now to consider the presence of uncertainty in the definition of the
wave excitation force input f̃e. Suppose the excitation force affected
by uncertainty, denoted as f̃∆

e , is defined in terms of ξ as,

f̃∆
e = L∆

e ξ, (10.22)

with L∆
e ∈ R1×ν . Similarly to the case of Section 10.1, and to be

precise in terms of the formal definition of the (input) uncertainty
specified throughout this section, the definition of the so-called
uncertain signal generator G∆ is now provided, inspired by Definition
10.1.1.

Remark 10.2.2 Note that the same notation considered in Sec-
tion 10.1 is used for the definition of the variables related to input
uncertainty in this section, for the sake of simplicity. That said,
note that both the use, and specific meaning of each of these
variables, is always clear from the context.

Definition 10.2.1 (Uncertain signal generator) Let S and Lu
be as in (8.8). The exogenous system G∆ is termed an uncertain
signal generator if it is described by the set of equations,

G∆ :


ξ̇ = Sξ,

f̃∆
e = (L0

e + L0
e∆)ξ,

u = Luξ,

(10.23)

where L0
e is as in equation (10.21), and the matrix ∆ ∈ Rν×ν is

such that,
L0
e∆ = L∆

e − L0
e . (10.24)

Similarly to the uncertain WEC system in Definition 10.1.1, the un-
certain signal generator, in Definition 10.2.1, can also be interpreted
from a robust control theory viewpoint. In particular, Definition
10.2.1 stems directly from considering that the nominal signal gener-
ator G0 is affected by a multiplicative output uncertainty in a single
output channel, i.e. the output associated with the wave excitation
force fe. This uncertainty is characterised by a stable linear time-
invariant system H∆, with input f̃0

e (i.e. the nominal excitation
force), and where the moment-domain equivalent of its output d∆

is given by,
D∆ = L0

e∆. (10.25)

Analogously to the case presented in Figure 10.1, the viewpoint
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provided in the discussion above, is schematically illustrated in Figure
10.2.

Figure 10.2: Schematic illustration of the nominal signal generator G0, subject to multiplicative output uncertainty, including
each corresponding moment-based representation.

Remark 10.2.3 From now on, the matrix L∆
e is referred to as the

uncertain output vector for the wave excitation force, associated
with the uncertain signal generator (10.23).

Remark 10.2.4 The matrix ∆ is also structured as in Remark
10.1.4 and, hence, can be fully characterised in terms of an uncer-
tainty vector δ ∈ Rν , by means of the linear mapping Γ defined
in (10.10).

Aiming to pose a robust moment-based energy-maximising formula-
tion for WECs under input uncertainty, the first fundamental step
is to provide an expression for the moment-domain equivalent of
the device velocity Ż, considering the uncertain wave excitation
force f̃∆

e . This is, indeed, straightforward to compute from the
result of Proposition 8.2.1, by introducing the following standing
assumption.

Assumption 10.2.1 The pair of matrices (S,L0
e +L0

e∆−Lu) is
observable.

Remark 10.2.5 Assumption 10.2.1 is analogous to Assumption
8.2.1 (considered for the nominal moment-based WEC controller
developed throughout Chapter 8), and guarantees that the defini-
tion of moments, for the WEC device under input uncertainty, is
always well-posed.

That said, suppose Assumption 10.2.1 and condition (5.16) hold.
Then, the moment-domain equivalent of the WEC velocity under
the effect of input uncertainty can be computed as,

Ż = (L0
e + L0

e∆− Lu)ΦᵀR , (10.26)
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where the matrix ΦᵀR ∈ Rν×ν is defined as in (8.12).

With the definition of Ż in equation (10.26), the energy-maximising
OCP (8.4), considering the uncertain wave excitation force f̃∆

e , can
be mapped to a finite-dimensional strictly concave QP problem, us-
ing the associated moment-based representations. This is addressed
in the following proposition10 10: Note that Proposition 10.2.1 is

analogous to Proposition 10.1.1, con-
sidering input, rather than system, un-
certainty.

.

Proposition 10.2.1 Consider the unconstrained OCP (8.4) and
suppose Assumption 10.2.1 and condition (5.16) hold. Then,
given a fixed uncertainty vector δ, the optimal control law uopt,
which maximises the objective function J over the time period
T , for the uncertain signal generator G∆, can be computed in the
moment-domain as the solution of the QP problem

uopt = Lopt
u ξ,

Lopt
u = arg max

Lᵀu∈Rν
−1

2LuΦᵀRL
ᵀ
u + 1

2L
0
e(Iν + Γ(δ))ΦᵀRL

ᵀ
u.

(10.27)

Proof. This proof follows the same arguments as those considered in
the proof of Proposition 10.1.1, taking into account the expression
for the moment-domain equivalent of the device velocity Ż under
the presence of input uncertainty, i.e. equation (10.26) and, hence,
is omitted for brevity. �

Remark 10.2.6 There is a fundamental difference between the
result of Proposition 10.1.1, i.e. energy-maximisation under sys-
tem uncertainty, and Proposition 10.2.1, i.e. energy-maximisation
under input uncertainty, as discussed in the following. Unlike
the case of Proposition 10.1.1, the QP formulation presented in
(10.27) is always strictly concave independent of the definition of
δ. Concavity, for this case, is simply a direct result of Corollary
8.3.4, in the light of Remark 8.3.1. In other words, given any
fixed uncertainty vector δ, there exists a unique global energy-
maximising solution for the moment-based WEC optimal control
problem under input uncertainty.

10.2.1 Robust formulation under input uncertainty

Based on the results and definitions posed in Section 10.2, an
analogous robust moment-based procedure (to that outlined in
Section 10.1.1 for uncertain WEC systems), can be carried out for
the input uncertainty case. In particular, in the spirit of the WCP
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method, the following robust energy-maximising QP formulation is
defined, for the case of an uncertain signal generator G∆.

Problem 10.2.1 (Robust energy-maximising OCP under input
uncertainty) Suppose Assumption 10.1.1 holds. Then, the robust
formulation of the (unconstrained) energy-maximising QP problem
(10.11) under input uncertainty can be written as,

uRC = LRC
u ξ,

LRC
u = arg max

Lᵀu∈Rν
arg min

δ∈P
−1

2LuΦᵀRL
ᵀ
u+

1
2L

0
e(Iν + Γ(δ))ΦᵀRL

ᵀ
u,

(10.28)

where uRC denotes the worst-case performance moment-based
energy-maximising optimal control law.

Analogously to Problem 10.1.1, Problem 10.2.1 computes the worst-
case scenario for the energy-maximising problem (10.27), taking
into account every possible uncertainty vector δ, lying inside the
polytope P (i.e. the uncertainty set).

Remark 10.2.7 Note that, as in the case of Section 10.1.1 for
uncertain WEC systems, the polytope P , defining the uncertainty
affecting the wave excitation force estimate, is such that Assump-
tion 10.1.1 holds, i.e. P is a V-convex polytope, defined by finite
set of vertices Vδ.

Remark 10.2.8 Assumption 10.1.1 plays the same role as in the
robust formulation under system uncertainty. In particular, as a
direct consequence of the linearity of the mapping Γ, (10.28) is
affine in δ. Taking into account that the QP problem in Lu is
always strictly concave for any δ (see Remark 10.2.6), the solution
of the moment-based robust formulation under input uncertainty
(10.28) is reached on the convex hull of the uncertainty set P.
Since P is convex by Assumption 10.1.1, the solution of (10.28)
lies precisely at one of the vertices of P, and it is sufficient to
solve (10.28) only for the finite-set of NV vertices Vδ (see [207,
251]).

Remark 10.2.9 Once again, the definition of the uncertainty set
P determines the performance of the proposed robust approach,
following the discussion provided in Remark 10.1.9. A methodology
to compute this uncertainty polytope is specifically discussed, for
the input uncertainty case, in Section 10.5.
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10.2.2 Handling of state and input constraints

Following the same approach as in Section 10.1.2, i.e. using a
collocation approach, the incorporation of state and input constraints
in Problem 10.2.1 can be performed by making explicit use of the
set Tc, and the matrix Υ defined in equation (8.30).

In the light of Remark 10.1.10, the constraints are formulated such
that they are satisfied at each point contained in the set of vertices
Vδ, ensuring that the state constraints are consistently fulfilled at
every δ ∈ P. This is formalised in the following proposition, which
presents a robust moment-based energy-maximising constrained op-
timal control law for WECs, in terms of an inequality-constrained
minimax QP problem which has a unique solution, explicitly consid-
ering the presence of uncertainty in the wave excitation estimate.

Proposition 10.2.2 Consider Problem 10.2.1 and the uncertain
signal generator G∆. Suppose Assumption 10.1.1 holds. Then,
the state and (control) input constrained robust moment-based
energy-maximising control law uRC, can be computed in terms of
the following minimax QP problem,

uRC = LRC
u ξ,

LRC
u = arg max

Lᵀu∈Rν
arg min

δ∈Vδ⊂P
−1

2LuΦᵀRL
ᵀ
u+

1
2L

0
e(Iν + Γ(δ))ΦᵀRL

ᵀ
u,

subject to:
LuARC

ż ≤ BRC
z ,

LuARC
ż ≤ BRC

ż ,

LuAu ≤ Bu,

(10.29)

where the pair of matrices (Au,Bu) is defined as in (8.31), and
where

ARC
z = Az ⊗ 11×NV , B

RC
z =

[
Bδ

V
1
z . . . Bδ

V
N
z

]
,

ARC
ż = Aż ⊗ 11×NV , B

RC
ż =

[
Bδ

V
1
ż . . . Bδ

V
N
ż

]
,

(10.30)

with {Az,Aż} as in (8.31), and each element of the set {Bδ
V
i
z ,Bδ

V
i
ż }

defined as,

Bδ
V
i
z = Zmax11×2Nc + L0

e(Iν + Γ(δVi ))Az = Bz + B̃z(δVi ),

Bδ
V
i
ż = Żmax11×2Nc + L0

e(Iν + Γ(δVi ))Aż = Bż + B̃ż(δVi ),
(10.31)

for all δVi ∈ Vδ.



10 Robust energy-maximising control for WECs 242

Proof. The proof of this proposition follows the same steps as those
employed in Proposition 8.3.5 and Proposition 10.1.3, taking into
account that the set of state and input constraints for the WEC
system are enforced, in Problem 10.2.1, at each element of the set
of vertices Vδ ⊂ P and, hence, is omitted for brevity. �

Remark 10.2.10 In contrast to the moment-based robust for-
mulation for the uncertain WEC system, when the uncertainty
is ‘located’ in the approximated wave excitation input, not only
is the computation of the matrices Au and Bu exactly as in the
nominal case presented in Chapter 8, but also ARC

ż and ARC
ż can

be directly computed as per the nominal moment-based control
formulation. This is related to the fact that these matrices are
only system dependent, and system uncertainty is not considered
within this section. Clearly, this is not the case for the set of ma-
trices {BRCz ,BRCż }, which explicitly depend upon the nature of the
uncertainty polytope P (i.e. the set of vertices Vδ). Nevertheless,
note that it is sufficient to compute this set of matrices only once,
which can be performed offline, immediately after the definition
of the set P.

10.3 A note on considering system and input
uncertainty simultaneously

One might be tempted to consider a ‘combination’ of input and
system uncertainty, by defining different uncertainty vectors δin ∈ Pin
and δsys ∈ Psys, respectively, and where {Pin,Psys} ⊂ Rν are convex
polytopes describing each corresponding uncertainty set. Although
considering system and input uncertainty simultaneously can be
effectively achieved by ‘merging’ the robust formulations, proposed
in Sections 10.1 and 10.2, into a single minimax optimisation problem,
there is, in general, no guarantee of uniqueness of a global energy-
maximising solution: It is relatively straightforward to show that the
resulting problem is bilinear in the uncertainty, i.e. it contains terms
of the form δᵀinQδsys, with Q ∈ Rν×ν , and, hence, is inherently
non-convex (see, for instance, [255]).

In other words, the solution to this ‘combined’ problem inherently
requires global optimization routines, whose complexity is directly
affected by the ‘size’ of the search space defined by the polytopes
{Pin,Psys} ⊂ Rν , given that the solution is no longer guaranteed
to be attained at the convex hull of the uncertainty set. This, in
turn, requires both complex optimisation routines, and an inherent
discretisation of the uncertainty set, which can increase the com-
putational complexity required to solve the corresponding robust
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moment-based energy-maximising solution, directly compromising its
real-time capabilities. For the reasons listed above, the combination
of system and input uncertainty is not considered within the scope
of this thesis11 11: Though not considered here, the

reader interested in performing such
an uncertainty combination is encour-
aged to contact the author if any fur-
ther assistance is required.

.

10.4 Case study: WEC under system
uncertainty

This section analyses and illustrates the performance of the robust
moment-based energy-maximising control framework, presented in
this chapter, for the case of WECs under system uncertainty. To be
precise, a spherical heaving point absorber WEC is considered, with
a radius of 2.5 [m], i.e. the same device considered in Chapter 7,
to illustrate the proposed nonlinear moment-based model reduction
technique. The geometry of such a device is schematically illustrated
in Figure 7.2. The hydrodynamic coefficients, Br(ω) and Ar(ω), for
this spherical-type device, are those presented in Figure 2.8.

Aiming to (intuitively) illustrate the performance of the moment-
based strategy, presented throughout Section 10.1.1, it is assumed
that the parameters of the WEC system, defined in equation (10.1),
are imprecisely known, i.e. the uncertainty is considered to be of
a parametric nature. In particular, the hydrostatic stiffness sh of
the spherical heaving point absorber WEC is considered uncer-
tain.

Remark 10.4.1 A single parameter is assumed to be uncertain,
aiming to simplify the presentation of results throughout the
following paragraphs. Nevertheless, note that this is done without
any loss of generality, since multiple parameters can be considered
to be imprecisely known within the presented robust moment-
based framework, by means of a suitable uncertainty polytope
P.

Remark 10.4.2 Parametric uncertainty is considered mainly to
give a relatively ‘intuitive’ example on how to compute the corre-
sponding uncertainty set P . Nonetheless, note that any source of
uncertainty that can be written in terms of a (stable) linear sys-
tem H∆ (as in Figure 10.1), can be straightforwardly considered
within this robust framework.

10.4.1 On the definition of the uncertainty polytope P

This section outlines a method to compute the uncertainty set P,
generated in terms of uncertain parameters in the WEC model.
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Nonetheless, as detailed in Remark 10.4.2, any source of uncer-
tainty, represented in terms of a stable linear system H∆, can be
straightforwardly included (see Remark 10.4.2).

Let s0
h denote the nominal hydrostatic stiffness, and suppose its

actual value is such that sh ∈ Sh, with Sh = [−1.3s0
h, 1.3s0

h] ⊂ R,
i.e. it can vary within ±30% of its nominal value s0

h. This parametric
uncertainty, defined by means of the set Sh, needs to be written in
terms of the so-called uncertainty vector δ (see equation (10.9)),
such that δ ∈ P. Once the dynamics of the signal generator are
chosen, i.e. the corresponding dynamic matrix S in equation (8.9)
is selected, the following procedure can be directly considered to
construct the corresponding uncertainty set P.

Procedure 1: Polytope definition under parametric uncertainty

1 Discretise the set Sh, i.e. construct the finite-set S∆
h = {s∆

hi
}N∆
i=1 ⊂

Sh, containing N∆ ∈ N≥1 possible values for the hydrostatic
stiffness.

2 Consider the WEC system defined in equation (10.1). Con-
struct12

12: Note that this can be done by
simply ‘substituting’ sh in (10.1) by
each element of the set S∆

h .

the set of systems {Σ∆i}N∆
i=1, corresponding with each

possible value for the hydrostatic stiffness s∆
hi

in the set S∆
h .

3 Compute the set of matrices {Φᵀ∆i
}N∆
i=1 ⊂ Rν×ν , characterising

the moment-domain equivalent of the output of each uncertain
WEC system in the set {Σ∆i}N∆

i=1 (see equation (10.3)), which
can be done straightforwardly, making explicit use of the result
posed in equation (8.12).

4 Compute the set of matrices {∆i}N
∆

i=1 ⊂ Rν×ν , corresponding
with each matrix in the set {Φᵀ∆i

}N∆
i=1, using the relation posed

in equation (10.5).
5 Construct the set of uncertainty vectors {δi}N

∆
i=1 ⊂ Rν , corre-

sponding with each matrix in the set {∆i}N
∆

i=1, which can be
done straightforwardly following the structure of ∆ in (10.8).

6 Finally, compute the polytope P as the convex hull of the set
{δi}N

∆
i=1. In addition, extract the set of vertices of the resulting

P, i.e. construct the set Vδ.

Remark 10.4.3 Steps 1 to 5 above can be compactly summarised
in terms of the following sequence of operations:

s∆
hi

Uncertain
parameter

→ Σ∆i

Uncertain
system

→ Φᵀ∆i
Moment

→ ∆i
Uncertainty

matrix

→ δi
Uncertainty

vector

for every i ∈ NN∆ . Once the set {δi}N
∆

i=1 is computed, Step 6
can be performed using well-known higher-dimensional convex
hull algorithms. A particularly well-established algorithm, is that
presented in [256], implemented in Matlab R© by means of the
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Figure 10.3: Polytope P ⊂ R
2 for

Tw = 9 [s], obtained using Procedure
1 (grey filling), and its corresponding
set of vertices Vδ, denoted with black
(empty-filled) circles. In addition, a
more conservative uncertainty set P�
is also illustrated (green filling), fully
defined by four vertices, denoted with
black (empty-filled) squares.

native function convhulln13 13: Note that this Matlab R© function
is based on the open-source software
Qhull, which can be downloaded for
free from [257].

.

Once the uncertainty polytope P is defined, the robust moment-
based control solution (under system uncertainty) can be readily
computed, using the framework proposed in Section 10.1.1.

10.4.2 Performance assessment under regular waves

This section evaluates the performance of the robust moment-based
framework proposed throughout Section 10.1, explicitly using Pro-
cedure 1, to characterise the corresponding uncertainty set P under
regular wave excitation.

Remark 10.4.4 The case of regular wave excitation is first consid-
ered here mainly to (graphically) illustrate the result of Procedure
1: a regular wave input directly implies that the matrix S (see
equation (8.9)), characterising the corresponding signal generator,
is composed of a single frequency component ω0, and, hence, the
dimension of S is ν = 2. Using different words, the polytope P,
arising from Procedure 1, can be visualised in a 2D-plot, along
with its corresponding set of vertices Vδ.

Consider that the regular wave input is such that Tw = 9 [s],
which corresponds with a fundamental frequency ω0 = 2π/9 ≈
0.7 [rad/s]. Figure 10.3 illustrates the polytope P obtained using
Procedure 1 (grey filling), plotted in terms of its set of vertices,
i.e. δVi = [δ+, δ−]ᵀ ∈ Vδ ⊂ R2. These vertices are represented with
black (empty-filled) circles. Note that, the nominal value for the
hydrostatic stiffness (s0

h = 196.87 × 103 [kg/s2]), is represented
in Figure 10.3 with a black-filled circle, i.e. by the point in R2

corresponding with the zero uncertainty vector δ = [0, 0]ᵀ.

Note that Procedure 1, described in Section 10.4.1, relies on having
a-priori knowledge of the parametric uncertainty set Sh, i.e. the
‘range’ of variation for the uncertain parameter under analysis. If
this set is not known (or only partially known), one can potentially
define a more ‘conservative’ uncertainty set, by simply covering a
‘larger’ set for the uncertainty vector δ. To illustrate this, Figure
10.3 shows the set P� (green-filled), which has the shape of a
parallelogram, fully defined by four vertices, denoted with black
(empty-filled) squares.

Remark 10.4.5 The ‘larger’ set P�, illustrated in Figure 10.3,
simply constitutes an example shape. Note that any polytope can
be considered, as long as it is convex (in line with Assumption
10.1.1), and condition (10.12) holds.
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Remark 10.4.6 The definition of the polytopes presented in
Figure 10.3 is particular to the case of a (regular) wave with
Tw = 9 [s]. Nonetheless, note that the exact same procedure can
be applied for any Tw ∈ R+, obtaining analogous results.

Though, naturally, both polytopes P and P� can be considered
for the computation of a robust moment-based energy-maximising
solution, the performance obtained with the latter is consequently
adversely affected by its more conservative nature. This is explicitly
discussed and illustrated in the upcoming paragraphs. From now
on, the following convention is adopted, to define three different
assessment (performance) scenarios:

I Ideal performance14
14: i.e. nominal control - nominal sys-
tem.

: the optimal control input is computed
using the nominal approach presented in Chapter 8, i.e. only
using knowledge of the nominal model Σ0 without considering
any possible source of uncertainty, and applied to the same
nominal system Σ0.

I Nominal performance15
15: i.e. nominal control - uncertain
system.

: the optimal control input is com-
puted using the nominal approach presented in Chapter 8,
i.e. only using knowledge of the nominal model Σ0 without
considering any possible source of uncertainty, but applied to
the actual system Σ∆, characterised by the uncertainty δ.

I Robust performance16
16: i.e. robust control - uncertain sys-
tem.

: the optimal control input is com-
puted using the robust approach proposed in this chapter,
i.e. the control law explicitly considers the knowledge of the
uncertainty polytope, and applied to the actual system Σ∆,
characterised by the uncertainty δ.

Figure 10.4 shows (state and input unconstrained) nominal and
robust performance results, in terms of energy absorption for dif-
ferent ‘levels’ of uncertainty in the parameter sh (given in % of
deviation from its nominal value s0

h), for a regular input wave with
height Hw = 2 [m], and period Tw = 9 [s]. The case of nominal
performance is denoted with black circles. Two different robust per-
formance cases are considered in Figure 10.4: robust performance
arising from computing a moment-based control solution consid-
ering the polytope P (denoted with grey diamonds), and a more
conservative case (denoted with green squares), arising from the
(parallelogram) boundary P� (as shown in Figure 10.3). The WCP,
for the three cases, occurs when the parameter sh has a deviation
of −30% from its nominal value. Note that, as discussed previously
in this same section, the optimal WCP is obtained with the robust
energy-maximising strategy computed with the polytope arising from
Procedure 1, which explicitly uses a-priori knowledge of the ‘range’
of variation of the uncertain parameter, while a clear drop in per-
formance (in terms of WCP), can be directly observed for the case
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where the more conservative polytope P� is considered.

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
4.5

5

5.5

6

6.5

7

7.5 10 5

Figure 10.4: Nominal performance
(black circles), and robust perfor-
mance for the polytope P (grey di-
amonds) and the more conservative
boundary set P� (green squares), as
a function of the parametric uncer-
tainty (% of deviation from its nom-
inal value), for an input wave with
Tw = 9 [s]. The performance for the
nominal system is denoted with a ver-
tical dashed line.

Note that Figure 10.4 clearly shows an ‘inflexion’ point in terms
of performance results, which, for this case, happens exactly when
there is no deviation in the hydrostatic stiffness (i.e. sh coincides
with its nominal value s0

h). In other words, for negative deviations in
the parameter s0

h, the robust moment-based approach outperforms
the nominal moment-based controller, with this difference being
larger at the point where the WCP is located (which is exactly
the optimisation criterion used in the robust energy-maximising
framework proposed). For positive deviations, the exact opposite
happens, and the controller based on the nominal model outperforms
the robust approach presented in this chapter.

Remark 10.4.7 Following the discussion provided immediately
above, note that the robust performance case is conservative by
definition, given that it optimises for the worst-case scenario, in
terms of the (defined) system uncertainty. If an accurate nominal
WEC model is available, then the nominal moment-based solution
is more appropriate, since it delivers optimal results for Σ0, and
can be computed independent of the definition of the uncertainty
set. On the other hand, if the presence of uncertainty is known to
be significant, then the robust approach is preferred, given that
it ‘alleviates’ the potential drop in performance arising from not
having an accurate WEC model, by optimising for the worst-case
(uncertainty) scenario.

Figure 10.5 extends the results of Figure 10.4 to different wave
periods, specifically contained in the set Tw ∈ [6, 10] [s]. Note that,
for the remainder of this section (including the results presented in
Figure 10.5), the robust performance (denoted with diamonds) only
corresponds with the robust moment-based controller computed
with the uncertainty polytope P, arising directly from Procedure 1,
considering a signal generator according to each wave period Tw
analysed. Similar results, to those previously presented in Figure
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10.4, can be observed in Figure 10.5, where it is clear that the WCP
occurs when the parameter sh has a deviation of −30% from its
nominal value, for the totality of the analysed wave periods in the
set [6, 10] [s].
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Figure 10.5: Nominal performance
(circles), and robust performance (di-
amonds), as a function of the para-
metric uncertainty (% of deviation
from its nominal value), for input
waves with Tw ∈ [6, 10] [s]. The per-
formance for the nominal system is
indicated with a vertical dashed line.

To complete the results of this section, and aiming to fully illustrate
the optimality of the robust moment-based solution with respect to
the WCP (in terms of the defined system uncertainty), Figure 10.6
shows the so-called normalised WCP, both for nominal (circles),
and robust (diamonds) performance scenarios. In the case of the
former, the normalised WCP is defined as the ratio between energy
absorbed for the worst-case scenario (in terms of uncertainty) when
the nominal moment-based control law is applied, and the ideal
performance, corresponding with each wave period Tw. The latter
is defined analogously, but in terms of the energy absorbed with the
robust moment-based control framework presented in this chapter.
It is noteworthy that the robust moment-based controller is able
to perform, in the worst-case scenario, at over %80 of the ideal
performance (denoted in Figure 10.6 with a horizontal dashed-line),
for the totality of the analysed wave periods. This is clearly not
the case for the controller computed using only the nominal WEC
system Σ0, whose WCP drops significantly, absorbing between ≈
%40 and %65 of the energy obtained in the ideal scenario.

10.4.3 Performance assessment under irregular waves

This section analyses the performance of the robust moment-based
strategy when irregular wave excitation is considered, and where
the WEC system is subject to parametric uncertainty (characterised
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Figure 10.6: Normalised WCP for
nominal (circles) and robust (dia-
monds) performance scenarios. The
ideal performance scenario is denoted
with a horizontal dashed line.

as previously described in Section 10.4). In particular, this section
analyses the performance of the strategy subject to state constraints,
i.e. the performance of the control solution outlined in Proposition
10.1.3.

Remark 10.4.8 If irregular input waves are considered, the com-
putation of the corresponding uncertainty polytope P can be done
following the procedure described in Section 10.4.1, i.e. Procedure
1. Naturally, given the intrinsic (high) dimension of the associated
matrix S (which for irregular input waves is composed of f � 1
harmonics of a fundamental frequency ω0), such an uncertainty
polytope cannot be (graphically) illustrated.

Remark 10.4.9 State constraints are explicitly selected to illus-
trate the performance of the robust moment-based controller,
since their formulation explicitly depends upon the definition of
the uncertainty polytope P . Note that this is not the case for the
control constraint, which can always be written independent of
the nature of the uncertainty (see Remark 10.1.11).

The results presented in this section are computed considering
irregular input waves, generated from a JONSWAP SDF Sw (see
Section 2.1.2) with significant wave height H̄w = 2 [m], peak
period T̄w = 9 [s], and peak enhancement factor γ = 3.3. Figure
10.7 illustrates motion results (displacement and velocity) for both
nominal (dotted), and robust (solid) performance scenarios, for a
particular wave input, randomly generated according to Sw. The
WEC system, considered to elicit such a response, is such that its
hydrostatic stiffness is defined as sh = −1.2s0

h, i.e. with a deviation
of −20% from its nominal value. The state constraints are defined
such that the limitations in displacement and velocity are set to
Zmax = 2 [m] and Żmax = 2 [m/s], respectively.

It can be immediately highlighted that the motion arising from
the moment-based control law, computed using only the nominal
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Figure 10.7:Motion results (displace-
ment and velocity) for both nominal
(dotted), and robust (solid) perfor-
mance scenarios, for a particular wave
input, randomly generated according
to Sw. The WEC system, considered
to elicit such a response, is such that
its hydrostatic stiffness is defined as
sh = −1.2s0

h. The (scaled) wave exci-
tation force is plotted using a dashed-
blue line. The constraint values are
indicated with horizontal dash-dotted
lines.

WEC model, presents constraint violations, consistently occurring
throughout the entire simulation time. This is not the case for
the robust moment-based framework, presented in this chapter,
which is always within the specified limits, as a consequence of the
incorporation of the uncertainty-dependent set of state constraints
(as per the result of Proposition 10.1.3). Note that the velocity of the
device, arising both from applying the moment-based nominal, and
robust control signals, is always ‘in-phase’ (instantaneous phase)
with the wave excitation force input, plotted17 17: Note that, aiming to show the

synchronisation in terms of instan-
taneous phase, the wave excitation
input is scaled in Figure 10.7.

(dashed-blue) in
Figure 10.7, along with the velocity time-traces.

Finally, and aiming to show that the robust moment-based controller
can respect constraints for any uncertainty vector inside the polytope
P , Figure 10.8 shows time-snippets of displacement, for both nominal
(dotted), and robust (solid) moment-based control strategies, for
different WEC systems, all of which have been computed by a
random generation of uncertainty vectors δ in the defined polytope
P . To be precise, each of these systems corresponds with a different
value of hydrostatic stiffness s∆

h , lying in the set Sh. The wave input
is the exact same input used to elicit the motion results of Figure
10.7. Note that, unlike the motion results arising from the nominal
moment-based controller, the robust framework, presented in this
chapter, is able to consistently respect the defined state constraint,
for each of the WEC systems considered. Once again, this is merely a
consequence of the definition of the state constraints in Proposition
10.1.3, which explicitly depend upon the uncertainty set P.
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Figure 10.8: Displacement results for
nominal (dotted) and robust (solid)
moment-based control techniques, for
different WEC systems, all of which
have been computed by a random
generation of parametric uncertainty.
The state constraints are indicated
with dash-dotted horizontal lines.

10.4.4 Data-driven characterisation of system
uncertainty

Within the robust framework, presented in Section 10.2.1, a standing
assumption is that the uncertainty can be written in terms of a matrix
∆, which directly arises from the moment-domain representation
of the output of a linear stable system H∆, characterising the
corresponding multiplicative output uncertainty. If, for instance,
the uncertainty considered (10.1) is ‘located’ in the parameters of
the WEC, then this perturbation can always be written in terms
of a matrix ∆, hence the framework applies straightforwardly, as
illustrated previously in Section 10.4.

This subsection considers the case where the user does not know if
the uncertainty, characterising the WEC device, can be effectively
written in terms of a linear system. This is the case when, for
instance, one considers that the WEC system is affected by errors
arising from nonlinear unmodelled dynamics. As a matter of fact,
this is exactly what motivates the following data-driven approach
to characterise the uncertainty polytope P.

Suppose a (potentially) nonlinear WEC system Σnl (with some
stability properties18 18: It is assumed that, given a bounded

input, the nonlinear WEC model pro-
duces bounded outputs.

) is available, whose output is the velocity of
the device, denoted, from now on, as ynl.

Remark 10.4.10 System Σnl does not have to be known analyt-
ically. As a matter of fact, Σnl can represent, for instance, CFD
based numerical models, or even an actual WEC in an experimental
environment.

That said, Procedure 1, presented in Section 10.4.1, can be ‘adapted’
so that the uncertainty polytope is constructed and characterised in
terms of the (potentially) nonlinear system Σnl. This can be achieved
by changing Steps 1 to 4 in Procedure 1, for the following three
steps:

1 Define a set of N∆ wave excitation inputs {f ie}N
∆

i=1 according
to a specific SDF Sw, with N∆ ∈ N≥1, i.e. in terms of a signal
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generator19
19: Recall that the initial condition
ξ(0) is fixed to ξ(0) = εν , so it is
sufficient to change the output vec-
tor Le to generate the different wave
inputs.

with dynamic matrix S, and a set of output vectors
{Lie}N

∆
i=1.

2 Using the nonlinear WEC system Σnl, compute the set of outputs
(velocities) {yinl}N

∆
i=1, corresponding with each wave excitation

input signal generated with the set of output vectors {Lie}N
∆

i=1.
3 Select a set of time-instants T∆ = {tj}N

∆
j=1 ⊂ T , where T repre-

sents the time-interval in which energy absorption is maximised.
For each input-output pair (f ie, yinl), compute the corresponding
matrix ∆i = Γ(δi), ∆i ∈ Rν×ν , such that

min
δi∈Rν

N∆∑
j=1

(
yinl(tj)− LieΦ

ᵀ
R(1 + Γ(δi))ξ(tj)

)2
, (10.32)

for all i ∈ NN∆ .

Aiming to clarify the nature and rationality of the steps proposed
above, the following remarks are offered below.

Remark 10.4.11 Step 1 is a fundamental stepping stone for the
definition of the uncertainty polytope P, in terms of the output
of the nonlinear system Σnl. Unlike the case presented in Section
10.4.1, where the uncertainty is linear, and can be characterised
independently of the wave input (i.e. the computation of the
matrices ∆i can be done independently of the wave excitation
force vector Le), multiple inputs are required to characterise the
uncertainty in terms of Σnl. Naturally, this directly stems from the
fact that the superposition principle does not hold anymore (i.e.
the WEC system is nonlinear). Once this set of multiple inputs is
defined, Step 2 follows immediately.

Remark 10.4.12 Given an excitation force input fe = Leξ, Step
3 is based on finding the ‘closest’ matrix ∆ (equivalently the
closest uncertainty vector δ), in a Euclidean norm sense, such that
it minimises the difference between the output of the nonlinear
system ynl, and the steady-state output response of the linear
‘perturbed’ WEC system, i.e. y∆

ss = LeΦᵀR(1 + Γ(δi))ξ (see equa-
tion (10.4)). Note that, due to the linearity of the mapping Γ (see
Remark 10.1.5), the minimisation operation proposed in Step 3 is
a linear least squares procedure, and always has a unique solution
δ, for each input-output pair (fe, ynl).

Once the uncertainty polytope P is obtained (following the modifi-
cation to Procedure 1 proposed in this section), the robust moment-
based control input can be directly computed following the framework
developed throughout Section 10.2. To explicitly illustrate the data-
driven characterisation of uncertainty, proposed in this section, the
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following nonlinear WEC model is considered:

Σnl :
{
z̈ =M (−kr∗ ż − shz + fe + fnl) ,
y = ż,

(10.33)

where Σnl is defined exactly as the linear WEC system (10.1), but
with the addition of the nonlinear mapping fnl : R+ → R. This
nonlinear map is (partially) borrowed from Chapter 7, where the
same heaving point absorber WEC is considered. In particular, fnl is
defined such that it represents nonlinear viscous effects20 20: The definition of these effects can

be found, in this thesis, in Section 2.5.
, i.e.

fnl = 2ρπ(2.5)2Cdż|ż|, (10.34)

where ρ is the water density, and Cd is the so-called viscous drag
coefficient (see Section 2.5). For this case study, Cd is fixed as
Cd = 2. To generate the set of multiple excitation inputs, required
in Step 1 above, a JONSWAP SDF is considered, with significant
wave height H̄w = 2 [m], peak wave period T̄w = 8 [s], and peak
enhancement factor γ = 3.3. A set of N∆ = 20 waves is considered,
which generates a polytope P characterised by 12 vertices in Rν .
To compute the robust moment-based energy-maximising input,
the result of Proposition 10.1.1 is considered, with a displacement
constraint set to a value of Zmax = 2 [m].
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Figure 10.9: (a) shows displacement results for the nonlinear WEC system Σnl, both for the nominal moment-based control
case (dotted), and the robust moment-based control case (solid). The constraint limitation is denoted with a horizontal
dash-dotted line. (b) shows cumulative energy absorption for both cases, using the same line code.

Figure 10.9 (a) shows displacement results for a particular realisation
of wave excitation input, both for the nominal moment-based con-
trol case (dotted), i.e. computed using the linear nominal model Σ0

(defined in equation (10.1)), and the robust moment-based control
case (solid), i.e. computed using the uncertainty polytope P, char-
acterised with the aid of the nonlinear WEC model Σnl, as described
in this same section. It is straightforward to note that, for this wave
input realisation, the robust controller is effectively respecting the
displacement limitation, as a consequence of a suitable definition
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of the set P. In contrast, the nominal controller, which does not
have any information on the nonlinear viscous effects present in
the WEC model, has constraint violations throughout the simula-
tion time. Finally, using the knowledge of the polytope not only
helps in guaranteeing constraint satisfaction, but, as can be directly
appreciated from Figure 10.9 (b), the robust controller effectively
outperforms the nominal controller (for this wave input case), in
terms of (cumulative) energy absorption21 21: Similar conclusions can be drawn

for different input waves, generated
randomly according to the correspond-
ing SDF Sw

.

Remark 10.4.13 Note that, for the case study described above,
the nonlinear WEC model (10.33) is assumed to be known an-
alytically. If this is the case, instead of using such a model to
characterise a given uncertainty set, the author recommends to
consider the nonlinear moment-based control framework proposed
in Chapter 11.

10.5 Case study: WEC under input
uncertainty

As recalled in the introduction to this chapter, input uncertainty
is also ubiquitous in the WEC control problem, given the intrinsic
necessity of both unknown-input estimation, and forecasting, strate-
gies, to provide information on the force exerted by waves, i.e. the
wave excitation. This section illustrates the robust moment-based
technique presented in Section 10.2, where uncertainty in the defi-
nition of the wave excitation force input is explicitly incorporated
in the energy-maximising control problem. To that end, the same
heaving point absorber WEC, as that utilised in Section 10.4, is
considered throughout this section.

Motivated by the sensitivity analysis performed in Section 8.7, the
existence of errors in the instantaneous phase (i.e. time-delays) of
the wave excitation force is considered, to characterise the (input)
uncertainty polytope P. In particular, as demonstrated in Section
8.7, this error source can cause significant losses in terms of energy-
maximising performance, if the time delay is sufficiently large.

Remark 10.5.1 Constant deviations in instantaneous amplitude
are not considered in the upcoming analysis, motivated by the
results offered in Section 8.7, which explicitly show that the
performance of the (nominal) moment-based control solution
remains almost unaffected with respect to amplitude errors in the
wave excitation force estimate22 22: Nonetheless, these can be incor-

porated in the computation of the
uncertainty polytope P straightfor-
wardly, if required by the particular
application under analysis.

.
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10.5.1 On the definition of the uncertainty polytope P

Analogously to Section 10.4.1, this section outlines a methodology
to compute the polytope characterising input uncertainty, arising
from the presence of errors in the instantaneous phase of the wave
excitation force.

In particular, suppose the dynamic matrix S ∈ Rν×ν is given, and
let f̃0

e be the nominal wave excitation force, generated in terms
of the nominal signal generator G0 (see equation (10.21)). Let
the ‘perturbed’ excitation be defined as f̃∆

e = f̃0
e (t − τ), i.e. as

a ‘delayed’ version of the nominal wave excitation mapping f̃0
e .

Suppose τ ∈ F ⊂ R, where, for this case study, F = [−1.25, 1.25]
[s] (which corresponds with a shift in time τ between −1.25 and 1.25
seconds). To consider the robust moment-based control framework,
presented in Section 10.5, the input uncertainty generated by the
set F needs to be written in terms of an uncertain polytope P.
Before proposing a method to compute such a set P , note that the
following relation,

f̃0
e (t− τ) = L0

ee
S(t−τ)ξ(0) = L0

ee
−Sτξ(t), (10.35)

holds, so that, for a given τ ∈ F , the matrix ∆ ∈ Rν×ν , charac-
terising the so-called uncertain signal generator G∆ (see Definition
10.2.1 and equation (10.24)), can be directly obtained as ∆ = e−Sτ .
Based on the discussion provided above, the following procedure,
which computes the uncertainty set P, is proposed.

Procedure 2: Polytope definition under input uncertainty

1 Discretise the set F , i.e. construct the finite-set F∆ = {τi}N
∆

i=1 ⊂
F , containing N∆ ∈ N≥1 possible values for the wave excitation
input delay.

2 Compute the set of matrices {∆i}N
∆

i=1 ⊂ Rν×ν , corresponding
with each delay τi in the set F∆, using the relation posed in
equation (10.35).

3 Construct the set of uncertainty vectors {δi}N
∆

i=1 ⊂ Rν , corre-
sponding with each matrix in the set {∆i}N

∆
i=1, which can be

done straightforwardly following the structure of ∆ in (10.8).
4 Finally, compute the polytope P as the convex hull of the set
{δi}N

∆
i=1. In addition, extract the set of vertices of the resulting

P, i.e. construct the set Vδ.

Remark 10.5.2 Once the set {δi}N
∆

i=1 is computed, Step 4 above
can be performed analogously to Step 6 of Procedure 1, i.e. using
well-known and readily available higher-dimensional convex hull
algorithms (see, for instance, [256]).
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Figure 10.10: Polytope P ⊂ R2 for
Tw = 9 [s], obtained using Procedure
2 (grey filling), and its corresponding
set of vertices Vδ, denoted with black
(empty-filled) circles.

10.5.2 Performance assessment

This section evaluates the performance of the robust moment-based
framework proposed throughout Section 10.2, explicitly using Pro-
cedure 2, to characterise the corresponding uncertainty set P under
regular wave excitation.

Remark 10.5.3 Similarly to Section 10.4.2, regular waves are
considered to explicitly illustrate the resulting uncertainty set P
(see Remark 10.4.4). In addition, for this uncertain input case,
almost identical conclusions can be drawn for irregular waves, in
terms of controller performance.

Consider first that the regular wave input is such that Tw = 9
[s], which corresponds with a wave frequency ω0 = 2π/9 ≈ 0.7
[rad/s]. Figure 10.10 illustrates the polytope P obtained using
Procedure 2 (grey filling), plotted in terms of its set of vertices, i.e.
δi = [δ+, δ−]ᵀ ∈ Vδ ⊂ R2. These vertices are represented with black
(empty-filled) circles. Note that the ‘nominal’ value for the time
delay (τ = 0 [s]), is represented in Figure 10.10 with a black-filled
circle, i.e. by the point in R2 corresponding with the zero uncertainty
vector δ = [0, 0]ᵀ.

Remark 10.5.4 Though not explicitly considered in this section,
a more conservative polytope can potentially be selected, following
an procedure analogous to that presented in Section 10.4.2. The
only condition is that such a polytope must be convex, in line
with Assumption 10.1.1.

Similarly to the case of WECs under system uncertainty, the fol-
lowing convention is adopted, to define three different assessment
(performance) scenarios, under input uncertainty:

I Ideal performance23
23: i.e. nominal control - nominal in-
put.

: the optimal control input is computed
using the nominal wave excitation force input, and the WEC
system is effectively driven by the nominal signal generator
G0.

I Nominal performance24
24: i.e. nominal control - uncertain
input.

: the optimal control input is com-
puted using the nominal wave excitation force input, and the
WEC system is driven by the uncertain signal generator G∆,
characterised by the uncertainty vector δ.

I Robust performance25
25: i.e. robust control - uncertain in-
put.

: the optimal control input is computed
using the robust approach proposed in this chapter, i.e. the
control law explicitly considers the knowledge of the (input)
uncertainty polytope P , and the WEC system is driven by the
uncertain signal generator G∆, characterised by the uncertainty
vector δ.
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Figure 10.11 shows (state and input unconstrained26 26: Identical conclusions can be drawn
for the constrained case.

) nominal and
robust performance results, in terms of energy absorption for different
‘levels’ of uncertainty in the delay parameter τ (in seconds), where
the input waves are regular, with height Hw = 2 [m], and different
wave periods Tw ∈ [6, 10] [s]. The case of nominal performance is
denoted with black circles. The robust performance (denoted with
diamonds), corresponds with the robust moment-based controller
computed with the uncertainty polytope P, arising directly from
Procedure 2, considering a signal generator according to each wave
period Tw analysed. Note that the WCP, for both scenarios, occurs
when the delay takes the boundary values −1.25 [s] and 1.25 [s], in
a symmetric fashion.
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Figure 10.11: Nominal performance
(circles), and robust performance (di-
amonds), as a function of the input
delay τ (in seconds), for input waves
with Tw ∈ [6, 10] [s]. The perfor-
mance for the nominal wave input (i.e.
with zero delay) is indicated with a
horizontal dashed line. A value below
zero (solid-blue line) indicates nega-
tive energy absorption.

Remark 10.5.5 Note that, for |τ | ≥ 1, the nominal performance
drops below zero, i.e. the controlled device ‘drains’ energy from
the grid, which is effectively consistent with the sensitivity results
presented in Section 8.7. In contrast, the robust performance case
always delivers positive energy absorption, as a consequence of
the worst-case robust control objective.

Remark 10.5.6 Once again, note that the robust performance
case is conservative by definition, given that it optimises for
the worst-case scenario in terms of the possible delays defined
for the wave excitation input. That said, if the time delay is
known to lie approximately in the region [−0.75, 0.75] [s], then
the nominal controller is indeed preferred for this case study, since
it outperforms the robust approach in terms of energy absorption.

To complete the results for this section, and aiming to fully illustrate
the optimality of the robust moment-based solution with respect to
the WCP (under the presence of input uncertainty), Figure 10.12
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shows the normalised WCP27 27: Defined analogously to Figure 10.6,
but considering input, rather than sys-
tem, uncertainty.

. While the nominal controller presents
negative WCP results (i.e. negative energy absorption) for certain
wave periods, the robust moment-based controller is always able to
deliver positive energy absorption even in a worst-case scenario, for
each of the wave periods analysed. This is effectively a fundamental
feature of the proposed robust moment-based framework, which
always guarantees positive results in terms of absorbed energy, as
an intrinsic consequence of the worst-case optimisation approach
employed.
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Figure 10.12: Normalised WCP for
nominal (circles) and robust (dia-
monds) performance scenarios, under
the presence of input uncertainty. The
ideal performance scenario is denoted
with a vertical dashed line. A value
below zero (solid-blue line) indicates
negative energy absorption.

10.6 Conclusions

Motivated by the ubiquitous presence of input and system uncer-
tainty in the WEC energy-maximising optimal control problem,
this chapter introduces an extension of the moment-based energy-
maximising technique developed throughout Chapter 8, allowing the
user to explicitly consider both system, and input, uncertainty, in
the computation of the energy-maximising optimal control input.
This constitutes, to the best of the author’s knowledge, the first
energy-maximising framework, within the WEC control literature,
which is robust with respect to uncertainty in the wave excitation
force input.

In particular, this robust approach effectively incorporates system
and input uncertainty in the WEC moment-based energy-maximising
optimisation problem, by a suitable definition of an uncertainty
(convex) polytope P, and exploiting the underpinning concept of
the worst-case performance method. The proposed control law is
computed in terms of an optimisation procedure, formulated as
a minimax problem, which has to be solved only at the set of
vertices of the polytope, as a result of the nature of the objective
function, arising from mapping the state variables, and both the
external and control inputs, into their respective moment-domain
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representations. This minimax optimisation problem is shown to
have a unique globally optimal control solution, and hence can be
solved using computationally efficiently state-of-the-art numerical
routines. As a result, this robust moment-based framework provides
a computationally efficient robust optimal control method, which,
unlike its nominal counterpart, is able to consistently respect state
and input constraint limitations under the presence of uncertainty.
As a matter of fact, note that consistent constraint violations are
likely to have a significant effect on LCoE, further highlighting the
benefits of this robust moment-based approach.

In addition, and given the importance of a suitable definition for the
uncertainty polytope P, this chapter offers different procedures to
obtain such a set, both for the case of input, and system uncertainty.
For the latter, a data-driven method, to characterise the uncertainty
in terms of unmodelled nonlinear effects, is also presented, which is
only based on the knowledge of the output of the ‘target’ nonlinear
WEC model. This, in turn, gives the user the possibility of using
high-fidelity numerical solvers (such as those based on CFD), to
characterise the polytope P in terms of a large class of unmodelled
dynamic effects, with mild assumptions.

A case study is presented, based on a spherical heaving point ab-
sorber WEC. The performance of the robust strategy is explicitly
illustrated, and compared against its nominal counterpart, both when
input and system uncertainty are present. This includes both regular,
and irregular wave excitation inputs, as well as (state and input)
unconstrained, and constrained control scenarios. For the case of
system uncertainty, it is first assumed that the hydrostatic stiffness
of the WEC is imprecisely known. In addition, and to illustrate
the capabilities of the data-driven method proposed (to compute
the uncertainty set), nonlinear viscous effects are also considered,
showing the potential of this robust technique to ‘accommodate’
nonlinear effects in terms of the set P. For the case of input uncer-
tainty, it is assumed that the wave excitation input can potentially
have a time-delay, arising from an improper tuning of the estima-
tor/forecaster, employed for its computation. A key feature can be
highlighted for this type of input uncertainty: while the WCP for
the nominal moment-based controller can reach negative energy
absorption results (for certain values of delay), the robust strategy
always delivers positive performance, as an intrinsic consequence of
the worst-case optimisation approach employed.
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Following the hydrodynamic modelling basics presented in Chapter
2, recall, from Section 2.4, that the equation of motion for a WEC,
under the assumptions of potential flow theory (see Section 2.3.1),
can be expressed in terms of the so-called extended Cummins’
equation (2.20). This equation is recalled below, for the SISO case,
for convenience:

Σ :
{
z̈ =M (−kr∗ ż − shz + fe + fnl − u) ,
y = ż,

(11.1)

where z : R+ → R is the displacement, kr : R+ → R, kr ∈ L2(R),
the radiation force impulse response function, fe : R+ → R, the
wave excitation force, u : R+ → R, the control input, andM∈ R>0
is the inverse of the generalised mass matrix of the device. In contrast
to the moment-based WEC control cases discussed in Chapters 8,
9 and 10, equation (11.1) incorporates nonlinear behaviour: the
mapping fnl : R+ → R, t 7→ fnl(t) represents potential nonlinear
effects, which is precisely what gives origin to the so-called nonlinear
extensions of Cummins’ equation, described in Section 2.5.

Remark 11.0.1 A SISO WEC system is considered in this section,
aiming to simplify the notation. Nonetheless, note that MIMO
WEC systems can be considered analogously, by simply following
the theoretical moment-based framework presented in Chapter 9.

As discussed throughout Chapter 3, linear dynamics are virtually
always considered when designing optimal controllers for WECs,
motivated by both their simplicity (in terms of formulation and solu-
tion of the corresponding OCP), and their associated computational
convenience. In other words, these model-based control strategies
must be computed in real-time, therefore limiting the computa-
tional complexity of the hydrodynamic models employed. Moreover,
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there is also a limit to the complexity of mathematical models for
which an optimal control solution can be effectively found, either
algebraically or numerically. Another strongly contributing factor to
the use of linear dynamics is that linear hydrodynamic theory is a
well-established field where considerable effort and refinement has
been expended in the calculation of linear hydrodynamic parameters.
There is, therefore, little appetite to extend these models to include
nonlinear effects.

Nonetheless, despite the list of motives described above, the linearity
assumption has been recently an object of debate: WECs are, by
their nature, prone to show significant and diverse nonlinear effects,
since their principal aim, pursued by the optimal controller, is to
enhance the amplitude of motion to maximise power extraction1 1: The reader is referred to Chapter

3 for further discussion on this topic.
.

Though a small number of the WEC control studies reviewed2

2: See the state-of-the-art review pro-
vided in Section 3.4.

do consider nonlinear dynamics, none of them give formal and
explicit conditions for existence and uniqueness of globally optimal
energy-maximising control solutions (see Remark 3.4.9). As a matter
of fact, even if a control solution is found, it is not clear under
which conditions this energy-maximising control law is effectively a
globally optimal solution. This naturally generates a great deal of
uncertainty, specifically concerning which class of nonlinear models
can be actually used within the available nonlinear formulations, and
even if the reported performance corresponds with a global solution at
all. This provides significant motivation for optimal control strategies
that can effectively handle a large class of nonlinear effects, both
in terms of the well-posedness of the OCP (i.e. existence of global
energy-maximising solutions), and real-time capabilities.

Exploiting the concept of nonlinear moment, introduced in Chapter
4, this chapter presents an energy-maximising control strategy for
WECs subject to nonlinear dynamics. In particular, a method to map
the objective function (and system variables) to a finite-dimensional
tractable nonlinear program (NP), is proposed, which can be effi-
ciently solved using state-of-the-art nonlinear programming solvers
(see, for instance, [258]). In addition, by showing that the objective
function arising from the proposed moment-based strategy belongs to
a family of approximately convex/concave mappings (particularly to
the so-called outer Γ-convex/concave [259] functions), the existence
of a global energy-maximising solution is guaranteed, under mild as-
sumptions. Similarly to the case of convex/concave functions, where
each local solution is also global, explicit conditions to determine
whether a local energy-maximising solution is, effectively, a global
maximiser for the proposed moment-based OCP, are given, having
strong practical value when numerically solving the associated NP.
Finally, a case study, based on the energy-maximisation problem for
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a state-of-the-art CorPower-like WEC, is presented, where the WEC
model is subject to different sources of hydrodynamic nonlinearity.

Remark 11.0.2 Throughout this chapter, aiming both to simplify
the notation, and to solely focus the upcoming sections on the
formulation of a nonlinear moment-based controller, the excitation
force is assumed to be known over the complete time interval T ⊂
R+, where energy absorption from incoming waves is maximised.
This is done without any loss of generality, since a receding-
horizon formulation can be achieved directly, by simply following
the theory3 3: In particular, by following the adap-

tation of the moment-based represen-
tation of the wave excitation input,
to alleviate the effects of considering
a (potentially) short time-horizon for
the computation of the control law
(see Section 8.6.1).

presented in Section 8.6, without further modifications.

The remainder of this chapter is organised as follows. Section 11.1 de-
scribes and formalises the energy-maximising problem for WECs sub-
ject to nonlinear dynamics, while Section 11.2 details the nonlinear
moment-based representation for WECs, including a suitable approx-
imation technique for the corresponding nonlinear moment. Section
11.3 effectively describes and formalises the nonlinear moment-based
optimal control strategy, including state and input constraints. Fi-
nally, Section 11.3 discusses the application of this approach to a
CorPower-like WEC constrained to move in heave (translational
motion), while Section 11.5 encompasses the main conclusions of
this chapter.

11.1 Optimal control problem

The energy-maximising control problem for nonlinear WECs can be
defined analogously to the linear case presented in Section 8.1, with
one key (major) difference: the dynamic equality constraint in the
OCP (8.4) is now fully nonlinear, i.e. the WEC is described by the
nonlinear system Σ in equation (11.1).

To be specific in the definition of the corresponding OCP, let the
objective function J : R→ R, u 7→ J (u), be defined as in (8.2),
i.e. reflecting an energy-maximising control objective. In addition,
let the set of state and input constraints C be defined as in equation
(8.3). Then, the energy-maximising OCP for nonlinear WECs can
be posed as

uopt = arg max
u
J (u),

subject to:Nonlinear WEC dynamics Σ (11.1),
state and input constraints C (8.3).

(11.2)
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11.2 Nonlinear moment-based WEC
formulation for optimal control

Recall, from Chapter 4, that nonlinear moment-based theory directly
depends on the knowledge of a state-space representation of the
system to be reduced, which is not the case for the non-parametric
equation described by system Σ in (11.1). In the light of this, the
following equivalent representation is proposed:

Σ :
{
ẇ = fΣ(w, fe) = Aw +B(υ − kr∗Cw) + f(w),
y = hΣ(w) = Cw,

(11.3)

for t ∈ R+, where w(t) =
[
z(t) ż(t)

]ᵀ
∈ R2 contains displace-

ment and velocity corresponding with system Σ, and the (constant)
matrices A ∈ R2×2, B ∈ R2 and Cᵀ ∈ R2 are defined as

A =
[

0 1
−Msh 0

]
, B =

[
0
M

]
, C =

[
0
1

]ᵀ
. (11.4)

The ‘input’ function υ : R+ → R, is defined as

υ = fe − u, (11.5)

i.e. a linear combination of the external inputs fe and u, and the
nonlinear mapping f : R2 → R2 is given by

f(w) =
[

0
Mfnl(w)

]
= Bfnl(w), (11.6)

with fnl : R+ → R as in equation (11.1).

Remark 11.2.1 Following the nonlinear hydrodynamic effects
described in Section 2.5 (which constitute the set of the most
utilised nonlinear effects within WEC control/estimation appli-
cations), it is assumed that the mapping fnl depends only on
w, i.e. displacement and velocity of the WEC system involved.
Nonetheless, note that, if required by a particular application, a
more general class of nonlinear effects can be considered, such as
non-ideal PTO dynamics4 4: The reader is referred to Section

3.4.2.1 for further detail on nonlinear
mappings considered within the WEC
control literature, including non-ideal
PTO dynamics.

.

Recall, from Section 2.1.2, that the standard assumption for the
mathematical representation of wave excitation forces is that fe can
be written as a finite sum of harmonics of a so-called fundamental
frequency ω0 ∈ R+. Following the moment-based theory presented
in Chapter 4, the wave excitation force input can be written as a
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signal generator described, for t ∈ R+, by the set of equations

ξ̇ = Sξ,

fe = Leξ,
(11.7)

where ξ(t) ∈ Rν , Lᵀe ∈ Rν and the dynamic matrix S ∈ Rν×ν can
be written in terms of the set F = {pω0}fp=1 ⊂ R+, with f ∈ N≥1,
in block-diagonal form, as

S =
f⊕
p=1

[
0 pω0
−pω0 0

]
, (11.8)

with ν = 2f , and where, clearly, λ(S) = (jF ) ∪ (−jF ) ⊂ C0, so
that Assumption 4.1.2 automatically holds.

Even though the wave excitation force is composed of f harmonic
multiples of the (angular) fundamental frequency ω0, it is convenient
(for the subsequent theoretical results) to assume that the control
input u can be composed of a higher number f+d of harmonics, with
d ∈ N≥1 integer. For this purpose, the following auxiliary ‘extended’
signal generator, is defined as follows. Let S̄ ∈ R(ν+ι)×(ν+ι) be such
that

S̄ = S ⊕

 d⊕
p=1

[
0 (p+ f)ω0

−(p+ f)ω0 0

] , (11.9)

with ι = 2d. One can now directly express the wave excitation force
fe, and the control input u, as a function of this extended signal
generator, i.e.

˙̄ξ = S̄ξ̄,

fe = [Le 0]ξ̄ = L̄eξ̄,

u = L̄uξ̄,

(11.10)

where ξ̄(t) ∈ Rν+ι, and ξ̄(0) = [ξ(0)ᵀ, ξ?(0)ᵀ]ᵀ, ξ?(0) ∈ Rι. Note
that the input defined in (11.5) can be expressed accordingly as
υ = (L̄e − L̄u)ξ̄.

Remark 11.2.2 The signal generator (11.10) is an extension of
the one defined in (11.7) in the sense that it inherently incorpo-
rates the matrix S, while adding d harmonics of the fundamental
frequency ω0. With the selected initial condition ξ̄(0), the wave
excitation force fe can be written as a function of ξ̄ by simply
using an appropriate inclusion mapping, i.e. completing Le with
zeros accordingly5 5: The reader is referred to, for in-

stance, [226], for further detail on the
formal definition of an inclusion map.

.

In preparation for the upcoming results, and without loss of generality,
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three further assumptions are presented. The first concerns the signal
generator defined in equation (11.10).

Assumption 11.2.1 The triple of matrices (L̄e − L̄u, S̄, ξ̄(0)) is
minimal, i.e. observable and excitable.

Assumption 11.2.1 is required to have a well-posed definition of
moment (see Section 4.1.2). Note that the previous assumption is
without loss of generality, since the signal generator is user-defined
and so it can always be constructed such that the assumption
holds.

Remark 11.2.3 Let ξ̄i be the i-th entry of ξ̄, with i ∈ Nν+ι,
and define the set X̄ = {ξ̄i}ν+ι

i=1 . Note that, if Assumption 11.2.1
holds, then the pair (S̄, ξ̄(0)) is excitable and it is straightforward
to check that span{X̄ } = span{{cos(pω0t),− sin(pω0t)}f+d

p=1}.
As a consequence, the input υ is always T -periodic, where T =
2π/ω0 ∈ R+ is the fundamental period of υ.

The second standing assumption, required to prove existence and
uniqueness of the moment of system (11.3) at the signal generator
(S̄, L̄e − L̄u), is Assumption 7.1.1, i.e. the mapping f : R2 → R2 is
such that,

f(0) = 0, ∂f(w)
∂w

∣∣∣∣
w=0

= 0. (11.11)

Note that this assumption is without loss of generality, since the
matrices in (11.3), and the mapping f , can always be redefined to
satisfy it6 6: This claim, which directly relates

to Jacobian analysis, is considered
standard in nonlinear dynamics. Fur-
ther detail can be found in, for in-
stance, [22, Chapter 8].

.

Finally, the third standing assumption concerns the stability in the
first approximation of system (11.3), i.e. Assumption 7.1.2. To be
precise, the zero equilibrium of system

ẇ = Aw −B(kr∗Cw), (11.12)

is asymptotically stable. As discussed in Section 2.4, and in several
studies (such as [53, 123]), the linear equation of motion (11.12) is
asymptotically stable for any meaningful values of the involved pa-
rameters (and impulse response function kr). Thus, this assumption
is, in practice, also without loss of generality.

Proposition 11.2.1 Suppose Assumptions 11.2.1, 7.1.1 and 7.1.2
hold. Then, there exists a unique mapping π, locally defined in
a neighborhood Ξ of ξ = 0, which solves the partial differential
equation

∂π(ξ̄)
∂ξ̄

S̄ξ̄ = fΣ(π(ξ̄), (L̄e − L̄u)ξ̄). (11.13)
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Moreover, the moment of system (11.3) at the extended signal
generator (S̄, L̄e − L̄u) computed along a particular trajectory
ξ̄(t) coincides with the well-defined steady-state output response
of the interconnected system (11.3)-(11.4)-(11.10), i.e. yss(t) =
hΣ(π(ξ̄(t))).

Proof. Note that, under Assumption 11.2.1, the triple of matri-
ces (L̄e − L̄u, S̄, ξ̄(0)) is minimal. Moreover, the extended signal
generator defined in (11.10) is such that λ(S) ⊂ C0 with simple
eigenvalues, in line with Assumption 4.1.2. Therefore, Proposition
11.2.1 automatically holds as long as the zero equilibrium of system
ẇ = fΣ(w, 0) is locally exponentially stable (see Lemma 4.1.2). Since
this is the case by Assumption 7.1.2, the proof is concluded. �

In slightly different words, Proposition 11.2.1 guarantees that the
steady-state response of system (11.3), driven by the extended
signal generator (11.10), can be effectively computed using the
corresponding moment at (S̄, L̄e − L̄u). Nevertheless, even if the
existence of π (solution of (11.13)) is guaranteed, it is virtually
impossible to compute its analytic expression when the mapping f
in (11.3) is nonlinear.

Remark 11.2.4 Similarly to the nonlinear model reduction by
moment-matching case, introduced in Chapter 7, a suitable approx-
imation method is required for the computation of the mapping π,
tailored for the optimal control design case7 7: Though the approximation method

for nonlinear moments proposed in
Chapter 7, can be considered within
this optimal control procedure, its def-
inition, which is tailored for the model
reduction case (where the initial con-
dition of the signal generator is not
known), complicates the transcription
of the energy-maximising OCP when
using moments.

. This is specifically
addressed in Section 11.2.1.

11.2.1 On the approximation of π for optimal control

The very nature of the mapping π in (11.13) intrinsically depends on
both the characteristics of the extended signal generator (11.10) and
the system dynamics defined by the nonlinear mapping fΣ. Aiming
to formally characterise π, the following key remarks are introduced,
which drive the next main result.

Remark 11.2.5 Let T be defined as T = [0, T ] ⊂ R+. Note
that the set X̄ , defined in Remark 11.2.3, belongs to the Hilbert
space L2(T ) and is orthogonal under the standard inner-product
operator. Moreover, if Assumption 11.2.1 holds, one can always
complete X̄ to an orthogonal basis X of L2(T ), i.e. define8 8: See [260, Chapter 8].

X = X̄ ∪ X̆ ,

X̆ = {cos(pω0t),− sin(pω0t)}∞p=f+d+1 = {X̆i}∞i=ν+ι+1.
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Remark 11.2.6 If Assumption 11.2.1 holds, one can always find
a set of mappings Ii : Rν+ι → R such that X̆i = Ii(ξ̄), for
every i > ν + ι integer. This (standard) result states that one
can always generate the elements of the set X̆ (i.e. higher order
harmonics of the fundamental frequency ω0) by solely operating
on the ν + ι trigonometric polynomials defined by the entries of ξ̄
(see, for example, [261]).

Proposition 11.2.2 Suppose Assumptions 11.2.1, 7.1.1 and 7.1.2
hold. Then, for a given trajectory ξ̄(t), each element of the map-
ping π, as the solution to (11.13), i.e. πk, k ∈ N2, belongs to the
Hilbert space L2(T ) with T = [0, T ] ⊂ R+, where T = 2π/ω0,
i.e. it can be uniquely expressed as

πk(ξ̄) =
ν+ι∑
i=1

αki ξ̄i + εk(ξ̄) = Π̄kξ̄ + εk(ξ̄), (11.14)

where εk(ξ̄) =
∑∞
i=ν+ι+1 αkiIi(ξ̄), αki ∈ R ∀i, with Ii as defined

in Remark 11.2.6, and the matrix Π̄ᵀk ∈ Rν+ι is given by Π̄k =
[αk1 , . . . , αkν+ι ].

Proof. Given the nature of the signal generator defined in equa-
tion (11.10), the function υ is T -periodic, with T = 2π/ω0 (see
Remark 11.2.3). Moreover, under the above assumptions, the zero
equilibrium of ẇ = fΣ(w, 0) is locally exponentially stable and its
(well-defined) steady-state solution is also T -periodic [244, Section
VI], i.e. wss(t) = wss(t− T ). Since under Assumptions 11.2.1, 7.1.1
and 7.1.2, wss(t) = π(ξ̄(t)) (see Proposition 11.2.1), it is straight-
forward to conclude that each element of the mapping π belongs
to L2(T ), i.e. it can be expressed as a unique linear combination
of the orthogonal basis X (as defined in Remark 11.2.5), which
concludes the proof. �

Remark 11.2.7 The result of Proposition 11.2.2 allows π to be
compactly expressed as

π(ξ̄) =
[
Π̄1
Π̄2

]
ξ̄ +

[
ε1(ξ̄)
ε2(ξ̄)

]
= Π̄ξ̄ + E(ξ̄), (11.15)

where the term E : Rν+ι → R2 is called the truncation error.

Note that, if the truncation error E is ‘ignored’, the mapping π can
be effectively approximated as π̄(ξ̄) = Π̄ξ̄, i.e. by its expansion on
the (ν + ι)-dimensional set X̄ . This motivates the following key
definition.
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Definition 11.2.1 The function Cπ̄, where π̄(ξ̄) = Π̄ξ̄, is called
the approximated moment9 9: This notion is analogous to the

one given in [232].
of system (11.3) at the signal gener-

ator (S̄, L̄e − L̄u). In addition, the matrix Ȳ = CΠ̄ is referred to
as the approximated moment-domain equivalent10

10: This definition is analogous to
that used in the linear moment-based
WEC control framework proposed in
Chapters 8, 9 and 10. In addition,
note that, since y = ż in the WEC
case, one could also use the notation
¯̇Z, following that used in Chapters 8,
9 and 10. Nonetheless, the symbol Ȳ
is preferred over ¯̇Z throughout this
chapter, for convenience of notation.

of y.

Remark 11.2.8 Under the same set of assumptions as Proposi-
tion 11.2.2, the approximated moment-domain equivalent of y can
be effectively used to approximate the steady-state output of sys-
tem (11.3) driven by (S̄, L̄e − L̄u), i.e. yss(t) ≈ CΠ̄ξ̄(t) = Ȳ ξ̄(t).

Aiming to propose a method to compute Ȳ , and inspired by the
family of mean weighted residual methods [150, 154], the following
residual mapping R : R2 → R2 is defined, as

R(Π̄ξ̄) := Π̄S̄ξ̄ − fΣ(Π̄ξ̄, (L̄e − L̄u)ξ̄), (11.16)

which directly arises from ‘replacing’ π with π̄ in equation (11.13).
Using this residual equation, a collocation approach [154, Chapter
4] is considered, to compute the approximated moment-domain
equivalent Ȳ = CΠ̄. In other words, equation (11.16) is forced to be
exactly zero at a finite set of collocation points. This approximation
method is made explicit in the following proposition.

Proposition 11.2.3 Consider the nonlinear system (11.3) and
the signal generator defined by equation (11.10). Suppose As-
sumptions 11.2.1, 7.1.1 and 7.1.2 hold. Then, the approximated
moment-domain equivalent of y can be computed as CΠ̄, where
Π̄ is the solution of the algebraic system of equations

(Π̄S̄ −AΠ̄ +BCΠ̄R −B(L̄e − L̄u))〈ξ̄, δtj 〉 − 〈f(Π̄ξ̄), δtj 〉 = 0,
(11.17)

with Tδ = {ti}ν+ι
i=1 ⊂ T , a set of uniformly-distributed time in-

stants, and where the matrix R ∈ R(ν+ι)×(ν+ι), characterising
the radiation effects in moment-domain, is defined as

R =
f+d⊕
p=1

[
rpω0 mpω0

−mpω0 rpω0

]
, (11.18)

where the set of parameters {rpω0 ,mpω0}
f+d
p=1 ⊂ R is defined as in

equation (5.10).

Proof. Note that, using (11.3), the residual equation (11.16) can
be equivalently written as

(Π̄S̄ −AΠ̄−B(L̄e − L̄u))ξ̄ +B(kr∗CΠ̄ξ̄)− f(Π̄ξ̄), (11.19)

where the convolution operation involved, associated with the effect
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of radiation forces acting on the device, can be shown to be such
that (see Proposition 5.1.1)

kr∗CΠ̄ξ̄ = CΠ̄Rξ̄, (11.20)

with R as in equation (11.18). Then, following the well-known
collocation approach11 11: See [154, Chapter 4]., the residual function is forced to be or-
thogonal (under the standard inner-product of L2(T )) to the set
of translated Dirac-δ functions {δti}ν+ι

i=1 . Equation (11.17) follows
after considering the superposition property of the inner-product
operator. �

Corollary 11.2.4 The system of algebraic equations (11.17) can
be equivalently written in matrix form as

(Π̄S̄−AΠ̄ +BCΠ̄R−B(L̄e− L̄u))−Fnl(Π̄)Ω−1 = 0, (11.21)

where the matrices Fnl(Π̄) ∈ R2×(ν+ι) and Ω ∈ R(ν+ι)×(ν+ι) are
defined as

Ω =
[
ξ̄(t1) . . . ξ̄(tν+ι)

]
,

Fnl(Π̄) =
[
f(Π̄ξ̄(t1)) . . . f(Π̄ξ̄(tν+ι))

]
.

(11.22)

Proof. Note that if the set {tj} ⊂ T , then 〈l, δtj 〉 = l(tj), for
any continuous function l : T → R. Then, the result follows as a
consequence of the excitability of the pair (S̄, ¯ξ(0)), which implies
that the matrix Ω is always full rank [223]. �

Remark 11.2.9 If the set of uniformly-distributed time instants
Tδ ⊂ T is chosen such that tk = −T/2 + Tk/(ν + ι), tk ∈ Tδ
for all k ∈ Nν+ι, then the collocation approach utilised in Propo-
sition 11.2.3 is identical to the Galerkin method [154, Chapter
4]. The main advantage of Proposition 11.2.3 (collocation) lies
in its simplicity of implementation, i.e. one simply uses function
evaluation (see Corollary 11.2.4).

Remark 11.2.10 In the light of Remark 11.2.9, standard results
for Galerkin methods (see [245]) apply to this WEC case. In par-
ticular, the existence of solutions to system (11.17) (equivalently
equation (11.21)), under the hypothesis of Proposition 11.2.3,
is always guaranteed for all sufficiently large ι. Moreover, the
approximated moment π̄(ξ̄) = Π̄ξ̄ converges uniformly towards
the exact solution (11.15) as ι→∞ (see also [245]).

A corollary is now presented, which illustrates the result of Proposi-
tion 11.2.3 (through Corollary 11.2.4) in a more convenient form for
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the upcoming nonlinear moment-based energy-maximising control
formulation. In particular, this result shows that equation (11.21)
can be fully expressed in terms of the approximated moment-domain
equivalent Ȳ = CΠ̄, effectively reducing the number of variables
involved in such an equation.

Corollary 11.2.5 The system of algebraic equations (11.21) can
be fully written as a function of the approximated moment-domain
equivalent Ȳ = CΠ̄ as

Ȳ − (L̄e − L̄u)Φ̄ᵀR + vec{Fnl(g(Ȳ ))}ᵀΦᵀΩ = 0, (11.23)

where Φ̄R ∈ R(ν+ι)×(ν+ι) and ΦΩ ∈ R(ν+ι)×2(ν+ι) are given by
the expressions

Φ̄R = (Iν+ι ⊗ C)Φ−1(Iν+ι ⊗−B),
ΦΩ = (Iν+ι ⊗ C)Φ−1(Ω−1ᵀ ⊗ I2),

Φ = S̄⊕̂A+ Rᵀ ⊗−BC,
(11.24)

and the mapping g : R1×(ν+ι) → R2×(ν+ι) is defined as

g(Ȳ ) = (I2 ⊗ Ȳ )
[
S̄−1

Iν+ι

]
. (11.25)

Proof. A direct application of the vec operator12 12: See also Property 1.3.1.to equation (11.21),
yields

vec{Π̄}+Φ−1(Iν+ι ⊗B)vec{L̄e − L̄u}+
Φ−1(Ω−1ᵀ ⊗ I2)vec{Fnl(Π̄)} = 0,

(11.26)

in which explicit use of the skew-symmetricity of S̄ is made, i.e.
−S̄ᵀ = S̄, to obtain Φ as in (11.24). Equation (11.23) follows
after multiplying both sides of (11.26) by (Iν+ι ⊗ C), noting that
vec{CΠ̄} = vec{Ȳ } = Ȳ

ᵀ and vec{L̄e− L̄u} = (L̄e− L̄u)ᵀ. Finally,
the mapping g arises as a result of Proposition 5.2.1: given that
ẇ1 = w2 = y in (11.3), Π̄ can be written in terms of Ȳ simply as

Π̄ =
[
Ȳ S̄−1

Ȳ

]
= (I2 ⊗ Ȳ )

[
S̄−1

Iν+ι

]
= g(Ȳ ), (11.27)

which concludes the proof. �

Remark 11.2.11 If Fnl(g(Ȳ )) = 0, i.e. system (11.3) is linear, the
approach of Proposition 11.2.3 (through Corollary 11.2.5) recovers
(without approximation) the linear moment-domain equivalent
Ȳ = (L̄e − L̄u)Φ̄ᵀR , presented in Section 8.3. In other words,
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equation (11.23) can be regarded as the linear moment-domain
equivalent of y plus a nonlinear ‘perturbation’ term.

11.3 Nonlinear moment-based
energy-maximising OCP

The results presented in Section 11.2.1 can be effectively used to
approximate the energy-maximising optimal control problem pre-
sented in Section 11.1, making explicit use of the connection be-
tween moments and the steady-state behaviour of system (11.3).
In the following, a definition of the so-called approximated energy-
maximising OCP is explicitly provided13 13: Note that the set of state and

input constraints defined in (3.12) are
not yet included. These are explicitly
incorporated in Section 11.3.1.

, using the approximated
moment-domain equivalent Ȳ , presented in Definition 11.2.1.

Problem 11.3.1 (Approximated energy-maximising OCP) Sup-
pose Assumptions 11.2.1, 7.1.1 and 7.1.2 hold. Find the optimal
control input ūopt = L̄opt

u ξ̄ such that

L̄opt
u = arg max

L̄ᵀu∈Rν+ι

1
T

∫
T
L̄uξ̄(τ)Ȳ ξ̄(τ)dτ,

subject to:
Ȳ − (L̄e − L̄u)Φ̄ᵀR + vec{Fnl(g(Ȳ ))}ᵀΦᵀΩ = 0,

(11.28)

where Ȳ is the approximated moment-domain equivalent of the
output of system (11.3) (see Definition 11.2.1), and ξ̄ is the
solution of (11.10).

Remark 11.3.1 The main idea behind Problem 11.3.1 relies on
substituting the integro-differential (equality) constraint, corre-
sponding with the nonlinear WEC dynamics (11.3), by the al-
gebraic equation (11.23). Note that the latter characterises the
approximated moment-domain equivalent of the velocity of the
device ż = y (which is the key state variable involved in the
energy-maximising objective function (3.11)). In other words, the
approximated OCP posed in Problem 11.3.1 explicitly utilises an
approximation of the steady-state (output) behaviour of system
(11.3), parameterised in terms of Ȳ , i.e. żss(t) = yss(t) ≈ Ȳ ξ̄(t)
(see Remark 11.2.8), to solve for the corresponding optimal control
input ūopt, in terms of the signal generator (11.10).

Remark 11.3.2 Following Remark 11.2.10, if ι→∞, then the
steady-state output response of system (11.3) is exactly given by
yss(t) = Ȳ ξ̄(t), and the algebraic equality constraint in the OCP
of Problem 11.3.1 corresponds to the exact steady-state motion
of the device, without approximation.
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Based on Problem 11.3.1, a solution to the motion unconstrained
energy-maximising optimal control problem, i.e. (11.2) without con-
sidering input and state constraints (see Problem 11.3.1), can be
now proposed, in terms of a specific tractable finite-dimensional
nonlinear program (NP). This claim is formalised in the following
proposition.

Proposition 11.3.1 (Nonlinear moment-based unconstrained NP)
Suppose Assumptions 11.2.1, 7.1.1 and 7.1.2 hold, and let ξ̄(0) =
εν+ι. Then, for ι sufficiently large, the solution of the (motion
unconstrained) approximated energy-maximising OCP, posed in
Problem 11.3.1, can be computed as ūopt = L̄opt

u ξ̄, where

L̄opt
u = −

(
Ȳ

opt + vec{Fnl(g(Ȳ opt))}ᵀΦᵀΩ − L̄e
)

Φ̄−1ᵀ
R , (11.29)

and the matrix Ȳ opt is the solution of the finite-dimensional non-
linear program

Ȳ
opt = arg max

Ȳ
ᵀ∈Rν+ι

J̄QP(Ȳ ) + J̄nl(Ȳ ), (11.30)

with J̄QP : Rν+ι → R, J̄nl : Rν+ι → R defined as

J̄QP(Ȳ ) = −1
2 Ȳ Φ̄−1

R Ȳ
ᵀ + 1

2 Ȳ L̄
ᵀ
e ,

J̄nl(Ȳ ) = −1
2 Ȳ Φ̄−1

R ΦΩ vec{Fnl(g(Ȳ ))}.
(11.31)

Proof. The fundamental step towards this proof lies in Proposition
8.3.1. In particular, due to the (harmonic) nature of the signal
generator defined in equation (11.10), the objective function corre-
sponding with the approximated OCP, i.e. equation (11.28), can be
equivalently written as

J̄ = 1
T

∫
T
Ȳ ξ̄(τ)L̄uξ̄(τ)dτ = 1

2 Ȳ L̄
ᵀ
u, (11.32)

for ξ̄(0) = εν+ι. Substituting L̄u in (11.32), using the result of
Corollary 11.2.5, J̄ can be written exclusively as a function of Ȳ ,
i.e.

J̄ = −1
2 Ȳ Φ̄−1

R Ȳ
ᵀ + 1

2 Ȳ L̄
ᵀ
e −

1
2 Ȳ Φ̄−1

R ΦΩ vec{Fnl(g(Ȳ ))},

J̄ = J̄QP(Ȳ ) + J̄nl(Ȳ ),
(11.33)

where the optimal control input ūopt = L̄opt
u ξ̄ can be straightfor-

wardly recovered using equality (11.23), yielding equation (11.29),
which concludes the proof. �
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Proposition 11.3.1 explicitly uses the approximated moment-domain
equivalent Ȳ to propose a finite-dimensional tractable optimisation
problem, allowing for the computation of an energy-maximising
control solution for the approximated OCP posed in Problem 11.3.1,
when the WEC is subject to nonlinear dynamics. Note that there is
(almost) no restriction on the nature of the nonlinear mapping f , so
that a general class of nonlinear effects can be considered, including
complex hydrodynamic nonlinearities, such as those discussed in
Chapter 2.

Remark 11.3.3 The moment-based NP stated in Proposition
11.3.1 has to be solved over the approximated moment-domain
equivalent Ȳ ᵀ ∈ Rν+ι only, and can be solved using efficient state-
of-the-art numerical routines, such as14 14: Another suitable optimisation ap-

proach is that based on sequential
quadratic programming, i.e. so-called
SQP methods. The reader is referred
to, for instance, [210], for an in-depth
treatment of SQP.

interior-point methods
(IPMs) [208].

Remark 11.3.4 There is an intrinsic trade-off between the degree
of accuracy incorporated in the approximated OCP, controlled
by the parameter ι (see Remark 11.3.2), and the underlying
computational complexity of equation (11.30). In other words, a
higher ι results in improved energy absorption, but also intrinsically
increases the computational requirements of the strategy.

Remark 11.3.5 If J̄nl(Ȳ ) = 0, Proposition 11.3.1 recovers the
optimal moment-based control input proposed in Chapter 8 for
the linear WEC case. To be precise, if there are no nonlinearities
involved in (11.3), equation (11.30) is of a concave quadratic
type, i.e. a quadratic program (QP), written as

Ȳ
opt
l = arg max

Ȳ
ᵀ∈Rν+ι

−1
2 Ȳ Φ̄−1

R Ȳ
ᵀ + 1

2 Ȳ L̄
ᵀ
e , (11.34)

where the function J̄QP is strictly concave for any physically
meaningful parameters involved in the WEC equation (11.3).

Following Remark 11.3.5, it is straightforward to note that the
NP stated in Proposition 11.3.1 can be seen as a QP problem
characterised by the objective function J̄QP, and ‘perturbed’ by the
action of the nonlinear mapping J̄nl. Nevertheless, unlike the linear
moment-based energy-maximising OCP of Chapter 8 (recalled herein
in Remark 11.3.5), there is no guarantee that the nonlinear OCP
of Proposition 11.3.1 admits a global maximiser. Aiming to secure
the existence of a global solution to problem (11.30), the following
standing assumption is introduced, to later formalise an appropriate
proposition guaranteeing the existence of a global energy-maximising
solution to (11.30).
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Assumption 11.3.1 The mapping J̄nl : R1×(ν+ι) → R is bounded
by a parameter αnl ∈ R+, i.e.

sup
Ȳ
ᵀ∈Rν+ι

|J̄nl(Ȳ )| ≤ αnl < +∞. (11.35)

Proposition 11.3.2 Suppose Assumption 11.3.1 holds. Then, the
NP with objective function J̄ defined in Proposition 11.3.1 always
admits a global maximum Ȳ

opt.

Proof. The key concept behind this proposition lies in the decom-
position of J̄ as in equation (11.31), i.e. as the sum of a concave
problem J̄QP and, under Assumption 11.3.1, a bounded perturbation
J̄nl. To be precise, if J̄nl is bounded, then the function −J̄ is strictly
outer Γ-convex [259], for Γ ⊂ R1×(ν+ι), where the set Γ is given by

Γ = B (0, r) , r =
√

2αnl

minλ(H {Φ̄−1
R })

. (11.36)

Finally, given that the mapping J̄QP has a unique global maximiser15
15: See Remark 11.3.5.Ȳ

opt
l , and the set Γ ∩ R1×(ν+ι) is closed, the NP defined by the

objective function J̄ always admits a global optimal solution Ȳ opt

[262, Lemma 4.3]. �

Proposition 11.3.2 makes explicit use of the strictly outer Γ-convexity
of the function −J̄ to ensure existence of a global solution to the
moment-based energy-maximising OCP proposed in this chapter.
Moreover, recalling key theoretical results from [262], one can use
the following property of strictly outer convex functions, which
establishes a direct relationship between local and global maximisers
for J̄ , having strong practical implications.

Property 11.3.1 [262] Let Ȳ opt be a Γ-maximiser of J̄ , i.e.

J̄ (Ȳ opt) = max
Ȳ ∈B(Ȳ opt

,r)
J̄ (Ȳ ), (11.37)

with r as in (11.36). Then, Ȳ opt is a global maximiser of J̄ .

Property 11.3.1 acts as the analogue of the global optimality property
of concave functions (i.e. every local solution is a global solution).
In other words, if Ȳ opt is a maximiser for B(Ȳ opt

, r), a subset of
R1×(ν+ι), then it is automatically a global maximiser of J̄ . This
not only gives explicit conditions for global energy-maximisation
within the proposed nonlinear moment-based approach, but also
considerably reduces the ‘search’ space when numerically solving
(11.30), enhancing the efficiency behind the proposed moment-based
strategy.
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11.3.1 Handling of state and input constraints

As discussed throughout Chapter 3, any energy-maximising optimal
control strategy must take into account physical limitations, arising
from both the device itself, and the actuator (PTO system) dynamics.
Following the moment-based NP defined in Proposition 11.3.1, a
framework to incorporate the set of state and input constraints C ,
defined in Section 11.1, into the energy-maximising unconstrained
solution of Proposition 11.3.1, is now proposed.

To be precise, and in line with the linear moment-based control
framework proposed in Chapter 8, the set of constraints C is mapped
onto each respective moment-domain equivalent as

|z(t)| ≤ Zmax,

|ż(t)| ≤ Żmax,

|u(t)| ≤ Umax,

7→


|Ȳ S−1ξ̄(t)| ≤ Zmax,

|Ȳ ξ̄(t)| ≤ Żmax,

|L̄uξ̄(t)| ≤ Umax,

(11.38)

The set of mapped constraints (11.38) is enforced only at a finite set
of Nc uniformly-spaced time instants Tc = {ti}Nc

t=1 ⊂ T , i.e. using
a collocation approach. To that end, the matrices Λ̄ ∈ R(ν+ι)×Nc

and Ῡ ∈ R(ν+ι)×2Nc are defined as

Λ̄ =
[
ξ̄(t1) . . . ξ̄(tNc)

]
, Ῡ =

[
Λ̄ −Λ̄

]
. (11.39)

Finally, a moment-based energy-maximising constrained optimal
control solution for WECs, subject to nonlinear dynamics, can be
proposed as follows.

Proposition 11.3.3 (Nonlinear moment-based constrained NP)
Suppose Assumptions 11.2.1, 7.1.1 and 7.1.2 hold, and let ξ̄(0) =
εν+ι. Then, for ι sufficiently large, the solution of the approxi-
mated energy-maximising OCP, posed in Problem 11.3.1, subject
to the set of state and input constraints (11.38), can be computed
as ūopt = L̄opt

u ξ̄, where

L̄opt
u = −

(
Ȳ

opt + vec{Fnl(g(Ȳ opt))}ᵀΦᵀΩ − L̄e
)

Φ̄−1ᵀ
R , (11.40)

and the matrix Ȳ opt is the solution of the inequality-constrained
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finite-dimensional nonlinear program

Ȳ
opt = arg max

Ȳ
ᵀ∈Rν+ι

J̄QP(Ȳ ) + J̄nl(Ȳ ),

subject to:
ȲAz ≤ Bz,
ȲAż ≤ Bż,
ȲAu +Nu(Ȳ ) ≤ Bu,

(11.41)

where

Az = S̄−1Ῡ, Bz = Zmax11×2Nc ,

Aż = Ῡ, Bż = Żmax11×2Nc ,

Au = −Φ̄−1ᵀ
R Ῡ, Bu = Umax11×2Nc + L̄eAu,

Nu(Ȳ ) = −vec{Fnl(g(Ȳ ))}ᵀΦᵀΩAu.

(11.42)

Proof. Note that under the set of assumptions considered in this
proposition, equations (11.40) and (11.41) follow directly from
Proposition 11.3.1. With respect to the incorporation of the set
of state and input constraints defined in (11.38), consider first the
constraint associated with the control input, and note that

|L̄uS
−1ξ̄(t)| ≤ Umax ⇒ −Umax ≤ L̄uξ̄(t) ≤ Umax. (11.43)

Equation (11.43), enforced at the set of collocation instants Tc, can
be straightforwardly written in terms of the matrix Ῡ defined in
(11.39), i.e.

L̄uῩ ≤ Umax11×2Nc . (11.44)

The left hand side of equation (11.44) can be expanded using the
result of Corollary 11.2.5 as

L̄uῩ = ȲAu − L̄eAu + vec{Fnl(g(Ȳ ))}ᵀΦᵀΩAu, (11.45)

from where both the matrix Bu and the nonlinear mapping Nu follow
directly. Finally, the claim of this proposition follows by writing the
set of constraints associated with displacement and velocity, defined
in (11.38), as in equation (11.44), i.e. in terms of the matrix Ῡ. �

Remark 11.3.6 Note that, the set of inequality constraints as-
sociated with displacement and velocity are linear in Ȳ . This is
not the case for the control input-related constraint, which can
be decomposed as the sum of a linear and a nonlinear mapping
Nu : R1×(ν+ι) → R1×2Nc .
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11.4 Case study: A CorPower-like device

To demonstrate the performance of the nonlinear moment-based
controller proposed throughout this chapter, the CorPower-like wave
energy device, presented in Figure 6.2, is considered, constrained
to oscillate in heave16 16: Note that this is, effectively, the

DoF from where mechanical energy
is converted.

(translational motion). The corresponding
hydrodynamic characteristics, in terms of Br(ω) and Ar(ω), are
those presented in Figure 8.1.

In the remainder of this section, irregular waves generated stochasti-
cally from a JONSWAP spectrum (see Section 2.1.2), are considered.
The corresponding SDF Sw is fully characterised by a significant
wave height H̄w of 2 [m], varying peak period T̄w ∈ [5, 12] [s], and
peak shape parameter γ = 3.3. The total time-length (fundamental
period) of each wave is set to T = 120 [s]. The corresponding
spectral density functions are illustrated, for reference, in Figure 8.3.
Since the waves are generated from sets of random amplitudes (see
Remark 2.1.3), it is found that a mean of ≈ 40 simulations (per
sea state) is necessary to obtain statistically consistent performance
results for the nonlinear moment-based controller presented in this
chapter.

11.4.1 Characterisation of nonlinear hydrodynamic
effects

In this section, the nonlinear effects considered for the CorPower-like
device of this case study are characterised in terms of the mapping fnl
in (11.1). In particular, two main hydrodynamic forces are considered:
viscous effects fv, and the presence of a nonlinear restoring force
fnl

re , so that fnl = fv + fnl
re .

Viscous effects, arising from vortex shedding and turbulence, are
particularly present in heaving point absorber devices [263], such
as the CorPower-like WEC considered. These are included via a
Morison-like equation17 17: See Section 2.5.2 for further de-

tail.
, i.e.

fv(ż) = −βv|ż|ż, (11.46)

where βv = 1
2ρCdD, Cd ∈ R+ is the so-called drag coefficient, and

D is the characteristic area of the device. The drag coefficient is
set to Cd = 0.35, based on the analysis performed in [179] for the
device of Figure 6.2. Figure 11.1 (right axis, dashed line) illustrates
the output of the mapping fv.

The mapping fnl
re , characterising nonlinear restoring effects, due to

a non-uniform device cross-sectional area, is computed based on the
experimental results presented in [239] for this CorPower-like device.
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In particular, inspired by the results presented in [239], the following
definition is provided

fnl
re (z) = βr1z

2 + βr2z
3, (11.47)

where the coefficients {βr1 , βr2} ⊂ R are determined based on
a least-squares fit, using the experimental results of [239] as a
target set, giving a final result of βr1 = −1.55× 104 [kg/ms2] and
βr2 = 0.82× 104 [kg/m2s2]. The output of the nonlinear restoring
force mapping fnl

re is presented in Figure 11.1 (left axis, solid line).
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Figure 11.1: Nonlinear hydrody-
namic effects considered in this chap-
ter: hydrostatic force (displacement-
dependent, left axis), and viscous
force (velocity-dependent, right axis).

Note that both nonlinear effects, as described in equations (11.46)
and (11.47), fulfill Assumption 7.1.1. To show that Assumption
11.3.1 holds, recall that the energy-maximising optimal control law
is such that the state-variables w1 = z and w2 = ż have maximum
allowed values Zmax and Żmax, respectively (see equation (11.38)).
Then, the following inequality, involving the nonlinear mapping
fnl = fv + fnl

re ,

|fnl(w)| = βv|w2|2 + βr1 |w1|2 + βr2 |w1|3

≤ βvŻmax + (βr1 + βr2Zmax)Z2
max = α̃nl,

(11.48)

holds for all t ∈ T . Using equation (11.48), and considering well-
known (Euclidean) norm properties, it is straightforward to show
that

‖vec{Fnl(g(Ȳ ))}‖2 ≤ (ν + ι)α̃2
nl. (11.49)

Recalling, from the set of moment-domain constraints (11.38), that
|Ȳ ξ̄(t)| ≤ Żmax for all t ∈ T , and, if ξ̄(0) = εν+ι, then ‖ξ̄‖22 =∑ν+ι
i=1〈ξ̄i, ξ̄i〉 = T (ν + ι)/2, one can directly obtain the following

estimate for αnl in equation (11.35):

|J̄nl(Ȳ )| ≤ 1
2T

(
Żmax

∥∥∥Φ̄−1
R ΦΩ

∥∥∥
F
α̃nl
)2

= αnl < +∞, (11.50)

and, hence, the moment-based energy-maximising OCP always ad-
mits a global maximiser under the effect of the nonlinear dynamics
defined in fnl (see Proposition 11.3.2).
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11.4.2 Results and discussion

Based on the CorPower-like device of Figure 6.2, subject to the
nonlinear effects described in Section 11.4.1, results from applying
the nonlinear moment-based energy-maximising control strategy
developed throughout Section 11.3 are now presented and discussed,
under the effect of irregular wave excitation.

Let the maximum allowed displacement and velocity values be chosen
as Zmax = 2 [m] and Żmax = 2 [m/s]. For this case study, the wave
excitation force fe is computed using ν = 60 components in (11.8),
while the order of the extended signal generator (11.10) is set to
ν+ι = 100. The constrained moment-based optimal control problem,
stated in Proposition 11.3.3, can be solved using a variety of state-
of-the-art numerical routines, belonging to the families of both local
and global optimisation methods.

In this chapter, a local IPM is chosen, where explicit advantage of
the strict outer convexity of the energy-related objective function,
when mapped to the moment-domain, is used: Property 11.3.1 can
be used to numerically ensure that the (potentially local) solution
computed with interior-point methods is, effectively, a global energy-
maximiser. In particular, the following simple algorithm is proposed,
written in pseudo-code.

1: init algorithm
2: Set initial guess Ȳ opt

0 = Ȳ
opt
l ;

3: global = 0;
4: while global 6= 1 do
5: Ȳ

opt ← Solve the OCP (11.41) using IPM with Ȳ opt
0 ;

6: Generate a random set P = {Ȳ i}Pi=1 with P ∈ N≥1 elements,
such that P ⊂ B(Ȳ opt

, r) and where Ȳ i is such that the set
of constraints defined in (11.41) hold for all i ∈ NP ;

7: if J̄ (Ȳ opt) ≤ J̄ (Ȳ i) for all Ȳ i ∈P then
8: global = 1;
9: else if ∃Ȳ i ∈P such that J̄ (Ȳ i) ≤ J̄ (Ȳ opt) then
10: Ȳ

opt
0 = Ȳ i;

11: end if
12: end while
13: L̄opt

u = −
(
Ȳ

opt + vec{Fnl(g(Ȳ opt))}ᵀΦᵀΩ − L̄e
)

Φ̄−1ᵀ
R ;

14: ūopt = L̄opt
u ξ̄;

15: end algorithm.

Starting from the linear solution Ȳ opt
l of the concave QP problem

of Corollary 11.3.3, i.e. with Fnl(g(Ȳ )) = 0, this heuristic attempts
to compute a local solution using IPMs, and simply uses function
evaluation at a finite set of P random points, contained in the
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set B(Ȳ opt
, r), to (approximately) determine whether the solution

corresponds to a global maximiser, using the result expressed by
Property 11.3.1. If one can find an element Ȳ i, contained in the set
P, such that J̄ (Ȳ i) ≤ J̄ (Ȳ opt), then the algorithm is re-started,
but now updating the initial guess for the IPM to Ȳ i.

Remark 11.4.1 For the nonlinear mapping associated with the
CorPower-like device defined in Section 11.4.1, the heuristic dis-
cussed above provides a global solution virtually always after a
single iteration18 18: Comparisons have been carried

out against global optimisation rou-
tines based on genetic algorithms (GA),
to determine whether the solution ob-
tained with the proposed heuristic
effectively coincides with that com-
puted by GA.

. The interior-point method utilised to solve
(11.41) is based on [209].

Remark 11.4.2 The moment-based controller normalised run-
time, i.e. the ratio between the time required to compute the
energy-maximising optimal control input for the duration of the
simulation, and the length of the simulation itself, is always less
than one for the totality of the preceding simulations, being is
consistent with the typical sampling time of a full-scale WEC (≈ 1
[s]), hence achieving real-time performance19 19: Implemented in Matlab R©. Fur-

ther computational savings can be
easily achieved by implementing this
controller in, for instance, C or C++.

.
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Figure 11.2: Constrained (displace-
ment and velocity) power absorption
for the nonlinear moment-based en-
ergy maximising controller proposed
in this chapter (black circles), and its
linear counterpart (grey diamonds).

Performance results, for the proposed nonlinear moment-based con-
troller, are now presented, in terms of energy absorption, under both
displacement and velocity constraints. Figure 11.2 explicitly shows
the value of J̄ (black circles), for sea states with H̄w = 2 [m] and
T̄w ∈ [5, 12], where the displacement and velocity of device are
constrained to Zmax = 2 [m] and Żmax = 2 [m/s], respectively. In
addition, Figure 11.2 demonstrates the performance of the linear
moment-based controller (grey diamonds), i.e. solving the OCP in
Proposition 11.3.3 assuming that J̄nl is zero20 20: Also equivalent to the moment-

based OCP defined in Chapter 8.
, applied to the non-

linear system described by (11.3). It can be readily appreciated that
the performance of the proposed nonlinear approach significantly
outperforms its linear counterpart, for the totality of the sea-states
analysed in this study, with differences of up to ≈ 45% in total
power absorption. In addition, note that, though not penalised in
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the results of Figure 11.2 (to offer a best-case scenario for the
linear controller), the solution based on linear assumptions can often
violate the physical limitations imposed as state constraints, as a
direct consequence of ignoring nonlinear effects in the computation
of such an energy-maximising control law. This is illustrated and
discussed in the following paragraph, where the capabilities of the
nonlinear moment-based control strategy, presented in this chapter,
are fully exposed.
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106 Figure 11.3: Motion and control re-
sults for irregular wave excitation with
H̄w = 2 [m] and T̄w = 10 [s], for
both linear (dotted black) and nonlin-
ear (solid black) moment-based con-
trollers. (a) shows displacement, (b)
velocity and (scaled) wave excitation
force input (dash-dotted blue), whilst
(c) presents the corresponding con-
trol inputs, used to elicit the motion
results. The dash-dotted horizontal
lines represent constraint values.

Figure 11.3 presents time histories of displacement (a), velocity (b)
and control input (c), for a specific example of sea-state realisation
with T̄w = 10 [s], and where a maximum control (PTO) force
constraint Umax = 1× 106 [N] is also included. Some key features
associated with the presented moment-based strategy can be directly
appreciated from Figure 11.3, as discussed in the following. To begin
with, the state and input limits, under the action of the nonlinear
moment-based control strategy (solid black), are being consistently
respected throughout the complete simulation, hence illustrating
the capability of the approach to maximise energy absorption for
WECs subject to nonlinear hydrodynamic effects, whilst respecting
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the physical limitations of both device and actuator (PTO). This
is clearly not the case for the solution based on linear assumptions
(dotted black), where a consistent violation can be appreciated,
for both displacement and velocity (state constraints). Though not
significant (in magnitude) for this particular sea state, this violation
happens consistently in time and can potentially damage device
components.

Finally, note that, as can be appreciated in Figure 11.3 (b), the
velocity of the device under optimal control conditions, for both linear
and nonlinear moment-based controllers, remains ‘in-phase’21 21: The term ‘in-phase’ is used here

to denote synchronisation of two sig-
nals in terms of instantaneous phase.

with
the (scaled) wave excitation force (dash-dotted blue), agreeing with
well-known theoretical results for unconstrained energy-maximisation
of WECs (presented in Chapter 3).

11.5 Conclusions

This chapter introduces a nonlinear moment-based energy-maximising
control framework for wave energy converters, subject to both state
and input constraints. The use of nonlinear moments, in conjunction
with an appropriate approximation method (based on the family
of weighted residual methods), allows the objective function, as-
sociated with the energy-maximising OCP, to be mapped to a
finite-dimensional nonlinear program, which can be solved efficiently
by state-of-the-art numerical solvers.

Unlike the current state-of-the-art in WEC control, the existence
of a globally optimal solution within the presented framework is
guaranteed, under mild assumptions. In addition, explicit conditions,
which relate local and global optima, are given. These are effec-
tively exploited in the numerical implementation, further enhancing
the computational efficiency behind this nonlinear moment-based
control solution. The performance of this method is illustrated by
means of a case study, where a CorPower-like device is considered,
subject to nonlinear hydrostatic restoring force and viscous forces.
Physical limitations are shown to be consistently respected within
this nonlinear moment-based framework, maximising absorbed en-
ergy while effectively minimising the risk of component damage.
Comparisons are presented with its linear counterpart, consistently
showing improved performance for the totality of the sea states
analysed, with up to ≈ 45% of increase in energy absorption.
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A fundamental stepping stone towards the commercialisation of wave
energy technology is the availability of appropriate control technology:
regardless of the type of WEC considered, energy conversion must
be performed as economically as possible, aiming to minimise the
delivered energy cost, while also maintaining the structural integrity
of the device, minimising wear on WEC components, and operating
across a wide range of sea conditions. Energy-maximising control
design for WECs, based on an optimal control approach, inherently
requires both control-oriented dynamical models, and appropriate
approximation methods, to solve for the energy-maximising control
law efficiently, while guaranteeing globally optimal performance.

This thesis proposes a comprehensive framework for model reduction
and energy-maximising optimal control for WECs, based on the
concept of moments. Moments are intrinsically connected to the
input-output characteristics of the dynamical system describing the
motion of the WEC, and provide a very specific parameterisation
of the steady-state output response of such a system. This thesis
demonstrates that moment-based theory perfectly fits with the wave
energy control application, and can be exploited both to produce
control-oriented models, via model reduction by moment-matching,
and to efficiently transcribe the energy-maximising OCP for WECs,
subject to state and input constraints.

The main conclusions1 1: Note that specific conclusions are
also offered at the end of each chap-
ter, offering both qualitative and quan-
titative details.

that stem from this thesis are encompassed
in Section 12.1, while future directions, both for model reduction,
and optimal control cases, are discussed in Section 12.2.

12.1 Main conclusions

Following a critical analysis of the state-of-the-art of model reduction
techniques considered (and utilised) in the wave energy research field,
this thesis presents a model reduction by moment-matching frame-
work tailored for the WEC application. The proposed framework,
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which inherits steady-state response characteristics, includes both
linear, and nonlinear WEC systems, in SISO and MIMO formulations.
For the case of linear systems (where parameterisation of Cummins’
equation is fundamental for control/estimation applications)2 2: The methodology is proposed both

to compute a reduced order model for
the input-output (force-to-motion),
and radiation dynamics.

, this
moment-based formulation allows the user to exactly match the
steady-state behaviour of the device under analysis at a set of key
frequencies, including, for instance, the resonant frequency3

3: Note that for MIMO systems this
concept translates to the frequency
characterising the H∞-norm of the
WEC.

, retain-
ing important physical properties of the studied WEC. As a matter
of fact, and unlike the state-of-the-art model reduction strategies
reviewed, specific methodologies are presented to preserve all the
physical properties associated with radiation effects.

Additionally, given the intrinsic connection between moments, and
the steady-state response characteristics of the WEC, a specific
relationship between the unknown-input wave excitation force esti-
mation problem, and the moment-based model reduction framework
presented in this thesis, is shown and exploited by a sensible selec-
tion of the set of interpolation points, in synergy with the internal
model principle, commonly utilised to estimate the wave excitation
effect. Such a relationship allows for the computation of control-
oriented models tailored for a particular sea state, with relatively
mild computational requirements, hence providing parametric rep-
resentations that are especially suited to the design of real-time
energy-maximisation strategies.

Recognising the necessity of control/estimation-oriented nonlinear
models in the WEC application, this thesis presents a nonlinear model
reduction framework for wave energy applications, based on moment-
matching techniques, which inherently preserve steady-state response
characteristics, with substantial computational savings. This is, to the
best of the author’s knowledge, the first systematic nonlinear model
reduction technique proposed in the wave energy field. The proposed
framework is based on mild assumptions, which virtually always hold
in practice. This, in turn, allows for the computation of control-
oriented models from a large class of nonlinear WEC structures,
potentially featuring complex nonlinear hydrodynamic effects, and
non-ideal PTO dynamics. The degree of complexity of the computed
control-oriented models can be fully manipulated by the user, hence
having full control on the underlying characteristics of the reduced
structure. Practical aspects behind this approximation framework are
given and discussed, illustrating the use of the proposed technique
in various wave conditions.

In addition to the moment-based model reduction framework (dis-
cussed in the previous paragraphs), and following the critical review
on the state-of-the-art WEC optimal control strategies, this thesis
introduces an energy-maximising optimal control framework based
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on moments, tailored for the WEC application. In particular, the
moment-based parameterisation of the steady-state response of the
WEC system is shown to provide a significant simplification of the
target OCP, transcribing such an infinite-dimensional problem to a
finite-dimensional nonlinear program. This thesis proposes, to the
best of the author’s knowledge, the first application of moment-based
theory to solve a constrained optimal control problem.

The proposed optimal control framework includes both linear, and
nonlinear WEC systems, featuring SISO and MIMO formulations.
In the linear case, the corresponding OCP is transcribed to a finite-
dimensional quadratic program, which is always strictly concave:
unlike most of the linear WEC control strategies reviewed, the
proposed moment-based parameterisation systematically guarantees
a unique globally optimal solution for the energy-maximising OCP,
subject to both state and input constraints. This allows for the
utilisation of state-of-the-art QP solvers, which, in turn, provide
a computationally efficient framework to solve the WEC OCP in
real-time.

Furthermore, motivated by the ubiquitous presence of input and
system uncertainty in the WEC energy-maximising optimal control
problem, a robust moment-based energy-maximising technique is
proposed, allowing the user to explicitly consider both system, and
input uncertainty, in the computation of the energy-maximising
optimal control input. This constitutes, to the best of the author’s
knowledge, the first energy-maximising optimisation-based frame-
work, within the WEC control literature, which is robust with respect
to uncertainty in the wave excitation force input. This robust ap-
proach incorporates a suitable defined uncertainty set4 4: In particular, this set is assumed

to be a polytope defined over R.
, and exploits

the underpinning concept of the worst-case performance method.
The proposed control law is computed in terms of an optimisation
procedure, formulated as a minimax problem, which has to be solved
only at a small number of points in the uncertainty set5 5: i.e. the vertices of the uncertainty

polytope.
, as a result

of the nature of the objective function in moment-domain. This
minimax optimisation problem is shown to have a unique globally
optimal control solution which, in turn, provides a computation-
ally efficient robust optimal control framework, able to consistently
respect state and input constraint limitations under the presence
of uncertainty. In addition, and further adding practical value to
the proposed robust strategy, different procedures are proposed to
compute the uncertainty set, both for the case of input, and system
uncertainty. For the latter, a data-driven method, to characterise
the uncertainty in terms of unmodelled nonlinear effects, is also
presented, which is only based on the knowledge of the output of
the ‘target’ nonlinear WEC model. This, in turn, gives the user the
possibility of using high-fidelity numerical solvers (such as those
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based on CFD), to characterise the uncertainty in terms of a large
class of unmodelled dynamic effects, with mild assumptions.

Finally, given that WECs are, by their nature, prone to show signifi-
cant and diverse nonlinear effects, this thesis introduces a nonlinear
moment-based energy-maximising control framework, subject to
both state and input constraints. The use of nonlinear moments,
in conjunction with the proposition of an appropriate approxima-
tion method, allows the objective function, associated with the
energy-maximising OCP, to be mapped to a finite-dimensional non-
linear program. Unlike the current state-of-the-art in WEC control,
the existence of a globally optimal solution within the presented
framework is guaranteed for a large class of nonlinear effects, under
mild assumptions. In addition, explicit conditions, which relate local
and global optima, are given. These are effectively exploited in the
numerical implementation, enhancing the computational efficiency
behind this nonlinear moment-based control solution.

12.2 Future directions

This section outlines future work and potential research directions,
for both model reduction, and optimal control procedures, based on
moments.

12.2.1 Model reduction

I A potential direction is to move from a real- to a complex-
valued convention. To be precise, suppose the input is charac-
terised by a single frequency component ω ∈ R+. Then, the
following representations are equivalent:

(1): ξ̇ =
[

0 ω

−ω 0

]
ξ, (2): ξ̇ = jωξ.

Both (1) and (2) generate the same class of inputs, but they
are defined over different (isomorphic) spaces, i.e. R2 and
C, respectively. The latter provides a compact representa-
tion, which can be potentially useful in simplifying analytical
manipulations6

6: An additional advantage of this
complex-valued convention is high-
lighted in Section 12.2.2.

. Nonetheless, with this convention, the ap-
proximating model is represented by complex-valued matrices,
hence potentially losing any ‘physical’ meaning.

I Finally, a further direction is that related to data-driven nonlin-
ear model reduction: the model reduction procedure, described
in Chapter 7, depends upon the availability of an analytical
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expression of the system to be reduced, which can be limit-
ing in certain cases. To circumvent this issue, a data-driven
method can be proposed, using the very same approximating
mapping Ωk, and slightly changing the Galerkin-like approach
proposed. This, in turn, would allow the consideration of input-
output data directly, generated either experimentally, or via
high-fidelity hydrodynamic solvers, such as those based in
CFD.

12.2.2 Optimal control

I Recall the real- and complex-valued conventions (1) and (2),
presented in Section 12.2.1. Let f be the number of frequencies
used to represent the wave excitation input: if (1) is considered,
the corresponding energy-maximising OCP is parameterised in
R2f while, if (2) is adopted, then the OCP is parameterised in
Cf . Though, clearly, R2f is isomorphic to Cf , recent research
suggest that further computational savings could be achieved
by solving the optimisation problem directly using a complex
convention (see, for instance, [264]).

I The optimal control solutions presented in Part III of this thesis
lies on what one could call ‘the solution space’, presenting
results for a general class of systems (devices), and where
the mathematical assumptions adopted along the way are
consistent with the physical ‘reality’, being always driven by
the practical WEC control problem. That said, even though
some features of this moment-based approach have been
assessed in a high-fidelity (CFD) environment (see [265]),
‘real-world’ validation of these strategies clearly constitutes a
future research direction.
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