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Abstract

Ocean waves represent a significant energy resource which can complement other
renewable energy technologies during the transition to a low-carbon energy mix.
Despite the large number of concepts suggested for the conversion of wave energy,
none of the technologies has yet demonstrated economic viability. To this end,
several solutions have been proposed in the literature, such as deploying Wave Energy
Converters (WECs) in large arrays or optimal control of WECs.
The majority of WEC optimal control strategies require knowledge of the previous,
current, and future excitation force acting on the device. However, for the WEC
case, the excitation force is an unmeasurable quantity and, therefore, must first be
estimated, based on available measurements, and then predicted in the future. The
main objective of this thesis is to analyse the estimation/prediction techniques proposed
for wave energy applications and to evaluate whether such techniques are ready to
be applied for real WEC control strategies. To this end, a critical comparison of the
available excitation force estimators is presented. Additionally, the performance of the
autoregressive model as a predictor is analysed, showing that, the obtained prediction
accuracy can get close to the theoretically best achievable prediction accuracy.
Based on the errors observed from the analysis of excitation force estimation/prediction
techniques, a sensitivity analysis of an optimal control strategy to such errors is
performed. As a result, this thesis provides an overview of the aspects which should be
considered at the stage of tuning estimation/prediction techniques, to not affect
the controller performance.
Since the estimation/prediction problem becomes more challenging for WEC arrays,
due to the hydrodynamic interactions, an important question is whether the extra
measurements from the array are sufficient to compensate for the greater complexity
of the wave field. Thus, a global estimator/predictor, considering information from
all the devices of the array, is developed and compared to a set of independent
estimators/predictors.
Finally, this thesis introduces an identification strategy to obtain a parametric model
of both the force-to-motion dynamics and/or the radiation force convolution term of
the device. The strategy allows for the identification of low-order parametric models
of WECs, which will simplify the implementation of optimal control strategies in
real-time. Additionally, the proposed strategy is compared to the other approaches
available in the literature.
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What you do makes a difference, and you have to decide
what kind of difference you want to make.

— Jane Goodall.
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It is well-known that access to energy is fundamental for social- and economical-welfare
development, as well as for poverty mitigation [157]. Therefore, providing everyone in
the world with enough energy access is an important challenge for global development.
Historically, current energy supply systems have been led by fossil fuels (coal, oil,
and gas), which have adverse environmental impacts. In particular, the use of such
fossil fuels produce carbon dioxide (CO2) and other greenhouse gases. Several studies
suggest that the emission of such greenhouse gases is a main contributor to the global
temperature increase [33]. In fact, 17 of the 18 warmest years occurred during the
first 17 years of the 21st century, with an increase of almost 1◦C in the average global
temperature, compared to the average temperature of the 20th century [124].
Nowadays, as shown in Figure 1.1, the global primary energy consumption is around
15 times higher than at the beginning of the 20th century, which is induced, in
part, by the increase in population. Additionally, the largest share of the primary
energy mix (approximately 85%) is filled by natural gas, crude oil, and coal which, as
mentioned before, have important negative environmental impacts. Considering the
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ever increasing worldwide energy demand, and the undeniable environmental impact
associated with the combustion of fossil fuels, modifying the current energy mix is one of
the most important challenges of this century [7]. Even including modern biofuels and
hydropower, renewable energies still represent less than ten percent of the consumed
primary energy, which means that there is a long way to go for a transition from a
fossil-fuel-dominated energy mix to a low-carbon, renewable-dominated one [157].
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Figure 1.1: Global primary energy consumption and the energy resources, providing the
energy per year, measured in TeraWatt-hours (TWh). Note that ’other renewables’ represent
renewable energy technologies not including hydropower and traditional biofuels (adapted
from [157]).

In order to make the energy mix transition possible, investment in renewable energy
technologies by public and private entities all over the planet is growing [157]. Such
investment is driven, not only by global environment reasons but, to a considerable
extent, by the increase in the price of the fossil fuels, which are more difficult and,
therefore, more expensive to harvest (due to the limited amount of easily-accessible
fossil fuels in the planet) [22].
Considering only global electricity production, the percentage contribution of renewable
energy sources is higher than that considering the total primary energy consumption,
with 30% of the worldwide power generation capacity and an estimate of 24.5% of
the total electricity demand supply in 2016 [154]. Additionally, it is worth highlighting
the contributions obtained by wind and solar Photo-Voltaic (PV) energies in different
countries, since 37.6%, 27%, and 24% of electricity demand was covered by wind energy
in Denmark, Ireland, and Portugal, respectively, in 2016; and 7.3%, 7.2%, and 6.4%
were covered by PV solar in Italy, Greece, and Germany, respectively, in 2016 [154].
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These trends in the global energy mix demonstrate the increasing contribution
of modern renewable energy sources which, as shown in Figure 1.1, account for
approximately 10% of the total energy consumption. However, in addition to the
well-established traditional renewable energy sources, i.e. hydropower, wind, and solar
energies, the contribution of other modern renewable sources in the energy mix is
crucial for a transition to a low-carbon energy mix.
Among the other modern renewable energy sources, offshore renewable energy tech-
nologies, such as offshore wind (fixed and floating), tidal energy, thermal ocean energy
conversion, and wave energy have the potential to significantly support traditional
renewable energy sources in the future. The European wind energy association
suggests that installed offshore wind power capacity could produce almost 2·104TWh
annually by 2050 [117], about 13% of current energy consumption. Regarding the other
offshore renewable energy systems (excluding offshore wind), the European commission
estimates that the contribution could be around 10% of the total power demand in
the European Union by 2050, with an annual energy production of around 350TWh
[64]. In particular, since this thesis focuses on wave energy, the available resource
estimate and the developed wave energy conversion technologies are introduced
in the following section.

1.1 Wave Energy

Wave energy, which is yet an unexploited renewable energy source, has a higher power
density than other renewable energy sources such as, for example, solar or wind energy
[34]. Several studies in the literature estimated the global wave energy resource to
be around 3.2·104TWh in [40, 118] or 1.8·104TWh in [82], which would cover 20%
or 12% of current global energy consumption, respectively. However, as shown in
Figure 1.2, a large proportion of the wave energy resource is located in remote areas
where, due to the long distance between energy conversion and consumption areas,
deployment of Wave Energy Converter (WEC) farms may be technically challenging.
Additionally, recent studies [152, 108] show that part of the estimated wave energy
resource may stem from storms, which are, usually, not exploitable. In fact, WECs
are designed to generate energy within an operational space, usually defined by a
specific range of wave heights, and, beyond such operational space, the strategy is
to protect the WEC to avoid any critical damage. Finally, analyses of the trend of
wave characteristics over the 20th century in different locations suggest that the wave
energy resource is growing, in particular during the last decades, which may also
cause more non-exploitable extreme events [175, 146].
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Figure 1.2: Approximation of the average annual wave energy (adapted from [87]).

Due to the uncertainty of the possible deployment areas, the early stage of development
of the wave energy industry, and the uncertainties of its evolution in the future, the
real exploitable wave energy resource potential is, as yet, unpredictable. Thus, future
developments of the wave energy industry in the near future will define the position
of wave energy within the global energy mix.

1.1.1 Wave Energy Converters

At this early stage of development, there is no profitable, standard WEC geometry
and, therefore, different developers, researchers, or inventors have proposed several
WEC concepts [53]. Given the large number of WEC concepts, different classifications
have been proposed in the literature to organise the devices into groups, such as by
their dimension and orientation with respect to the incoming waves, their working
principle, or their proximity to the coastline.
Based on the dimension and orientation of WECs with respect to the incoming waves
[38], as shown in Figure 1.3, three type of devices can be distinguished: point absorbers,
attenuators, and terminators. Point absorbers are small devices with respect to the
wavelength and are, in general, multi-directional devices. On the contrary, attenuators
and terminators are large devices (similar to, or greater than, a wavelength) whose
main dimensions are aligned with the waves direction, in the case of attenuators,
and facing the waves, in the case of terminators.
A further classification is possible, based on the proximity of the device to the coastline
[107]. Onshore devices refer to WECs located on the coastline, while WECs installed
in the ocean are known as near-shore devices, when they are located close to shore
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Incoming
waves

(a) (b) (c)

Figure 1.3: Different WEC configurations depending on their dimension and orientation
with respect to the incoming waves: (a) is a point absorber, (b) an attenuator, and (c) a
terminator. Adapted from [123].

and use the seabed as the reference point for motion, or as offshore devices, if located
far from the coastline (water depths of about 100m) and using loose mooring lines.
Based on the working principle [107], four different groups can be distinguished:
wave-activated floating bodies, pressure differential devices, overtopping devices, and
impact devices. Power capture of wave-activated floating bodies can be induced either
by a relative motion between two or more bodies, as shown in Figure 1.4(a), or by an
absolute motion between the floating body and a fixed reference, illustrated in Figure
1.4(d). Pressure differential devices can be divided into two groups: Archimedes effect
converters and Oscillating Water Columns (OWCs). Archimedes effect converters
are submerged point absorbers, typically fixed to the seabed, that use the pressure
difference generated between the wave crests and troughs over the device, shown in
Figure 1.4(b). In OWC devices, as can be observed from Figure 1.4(f), waves force
the water column in the bottom of the chamber to oscillate which, in turn, moves
the air trapped in the chamber, spinning an air-turbine located at the top-end of the
chamber. For overtopping devices, shown in Figure 1.4(c), ocean waves break on a
ramp, capturing the water of the waves in a reservoir and, using the potential energy
of the captured water, a turbine, located at the bottom of the floating structure,
spins. Finally, impact devices or Oscillating Wave Surge Converters (OWSCs) are
flaps, positioned perpendicular to the wave direction, which move back and forth
due to wave impact, as illustrated in Figure 1.4(e).
Different WEC prototypes have been developed based on the WEC working principles
shown in Figure 1.4. Remarkable examples comprise the Pelamis device [89] for the
attenuator of Figure 1.4(a), or the Archimedes Wave Swing [177] for the pressure
differential point absorber shown in Figure 1.4(b). It is also worth mentioning that,
based on the Pelamis device, the Blue Star and the Blue Horizon devices (from Mocean
Energy [43]) are two of the leading WEC concepts in the UK. Overtopping devices,
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Figure 1.4: Different types of WECs: (a) is an attenuator, (b) a pressure differential point
absorber, (c) an overtopping device, (d) a point absorber, (e) an OWSC, and (f) an OWC.
Note that (a,b,c) represent offshore devices, (d,e) near-shore devices, and (f) an onshore
device. The red part of each subfigure represents the PTO system.

illustrated in Figure 1.4(c), can be located offshore or onshore, such as the Wavedragon
[98] and the TAPCHAN device [111], respectively. Figure 1.4(e) illustrates an OWSC
located near-shore, which rotates around a reference point on the seabed, such as the
Oyster device [183], but it can also be floating and deployed offshore, such as the
Langlee concept [141]. The HPA shown in Figure 1.4(d), located near-shore as the
Seabased device [81], can also be located offshore, e.g. the OPT Powerbuoy [112].
While the near-shore HPA uses the seabed as its reference point, offshore HPAs usually
react against themselves (since are composed of two bodies). Finally, the onshore
OWC shown in Figure 1.4(f), such as the Mutriku power plant [174], can also be
floating and be deployed offshore, such as the Sparbuoy [79].
Even though the first WEC was patented in 1799 in Paris [158], the wave energy
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industry, as it is known nowadays, started to develop with the energy crisis originated
as a consequence of the oil crisis in 1973. In fact, oil price and wave energy industry
activity are strongly correlated, as can be observed from Figure 1.5, where both the
number of wave energy patents and oil price are shown. Interestingly, in the 1980s, oil
price became affordable again and, therefore, the number of patents decreased, as an
indicator for a diminished interest in wave energy research. However, since late 1990s,
driven by climate change awareness, governments, companies, and researchers are
focusing on renewable energy sources, increasing the number of wave energy patents.
Currently, there are over 1000 wave energy patents in the world. The interested reader
is referred to [10] for a thorough review of the historical development of WECs.
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Figure 1.5: Number of wave energy patents and oil price (adapted from [18]).

Despite the number of prototypes suggested so far, none of them has shown commercial
viability yet, and a significant number of important wave energy companies went into
bankruptcy (e.g. Pelamis, Wavestar, or Aquamarine). However, the reasons that
forced wave energy companies into bankruptcy may be their development strategy,
rather than their specific technologies. Due to investors pressure, the companies
installed their full-scale (or close to full-scale) prototypes in the ocean as soon as
possible, which requires large financial investments, without fully developing the
economical viability, i.e. without ensuring that their prototypes were cost-effective
(the interested reader is referred to [181] for a comprehensive definition of the different
technology development methodologies). In view of the economic bankruptcy of
previous companies, several wave energy companies, like Mocean Energy [43] or
Corpower Ocean [42], prioritise numerical modelling/optimisation and small-scale
tank testing, to increase the likelihood that the full-scale device (to be deployed
in the ocean) is economically viable.
To reduce the cost of energy associated with wave energy, different aspects of WECs
need to be improved before deploying new full-scale prototypes in the ocean. In
particular, three general challenges can be distinguished:
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Maximising energy extraction: In addition to optimising the WEC configuration,
such as the geometry or the operational Degrees of Freedom (DoF), which has
been a subject of study since the beginning of the wave energy development,
WECs can be controlled to maximise the extracted energy. Optimal control of
WECs is crucial since, in theory, it ensures maximal energy extraction at every
time instant, which should reduce the electricity generation cost. Additionally,
the design of a specific Power Take-Off (PTO) system that allows for an efficient
conversion from mechanical to electric energy is vital, since it strongly affects
the final cost of the produced energy.

Deploy WECs in arrays: Given the harsh conditions of the offshore environment,
construction, deployment, and maintenance of WECs is difficult and expensive.
By deploying WECs in large arrays, some of the infrastructural costs (such as
moorings or electrical connections) are shared within the devices of the array,
which reduces the cost per device, diminishing the total cost of the generated
electricity. Array configurations also need to be optimised, since the interactions
between devices can be constructive or destructive depending on several aspects
such as the array layout, inter-device distances, control strategy, etc.

Survivability: WECs have to survive in extreme conditions, such as storms. Therefore,
a survivability strategy that minimises structural damage under such harsh
conditions is essential to reduce the total cost. Several survivability strategies
can be found in the literature as, for example, locking the PTO to prevent
motion or life-extending control strategies [30].

Even though these specific issues individually affect the final cost of energy, they
cannot be analysed independently when developing a WEC concept, since some of the
issues are strongly connected. For example, the device geometry cannot be optimised
without considering the controller, since the optimal shape of the geometry might differ
when considering different control strategies, as shown in [180]. At the same time,
the chosen control strategy is strongly affected by the considered PTO system, due
to its speed capacities, constraints, etc. Similarly, a WEC configuration (dimensions,
PTO system, controller, etc.) cannot be optimised without considering that devices
will be deployed in an array since, depending on the inter-device distance of the WECs
composing the array, the interactions can be constructive or destructive, which may
affect the WEC configuration (mostly the controller). In particular, this thesis is
focused on aspects related to maximising energy extraction and deployment in arrays
and, therefore, survivability analysis is beyond the scope of this thesis.
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1.2 Motivation of the thesis

To determine the optimal control input of WECs, the majority of energy maximising
control strategies require knowledge of the instantaneous and future excitation force
acting on the device (the force that WECs experience due to waves) [155], which is
one of the inputs to the WEC system. However, excitation force is an unmeasurable
quantity for non-fixed floating bodies (such as most WECs) and, therefore, needs to be
estimated based on other related measurable quantities, such as device motion. Once
the excitation force is estimated, if required, prediction strategies can be applied in order
to supply the controller with future information of the excitation force. Given the large
number of excitation force estimation/prediction strategies available in the literature
[138], knowledge of their limitations as well as relative weaknesses and strengths
is necessary to know which strategy is best suited for a specific scenario, or WEC
configuration. Thus, by optimising the obtained excitation force estimate/prediction,
optimal controller performance can be obtained, which, as pointed out in Section 1.1,
is vital to reduce the cost involved with generating electricity.
Similarly, since WECs are likely to be deployed in arrays to reduce the final cost of
the converted energy, analysing how the interactions between the devices of the array
affect estimator/predictor performance is crucial, in order to ensure that, in the array
case, the performance of the WEC array controller is optimal.
An additional challenge for optimal control strategies is the computational effort. The
optimisation procedure associated with most of the optimal WEC controllers [45], in
addition to the computational burden required by the estimation/prediction processes,
can lead to computational requirements that exclude the real-time application of such
control strategies. Depending on the controller, different methods can be applied
to reduce the computational requirements [45]. A general approach consists of
approximating the non-parametric radiation convolution term of Cummins’ equation
[35] (used to describe the WEC dynamics) using a suitable parametric model1. Several
strategies can be found to obtain such a convolution term approximation; however, an
ideal radiation convolution term approximation strategy should, apart from obtaining
a good accuracy that monotonically decreases when increasing the order of the
final model, preserve the physical properties of the radiation convolution term [47].
Since none of the strategies currently available in the literature satisfies such ideal
characteristics, a development of a new identification application that fulfils those
features is undertaken as part of the work presented in this thesis.

1Note that this is often required, since most of the modern control strategies are based on the
availability of a state-space description of the system under analysis [45].
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1.3 Objectives and contributions of the thesis

The main objectives and novel contributions of this thesis are summarised as follows:

1 The main purpose of the present thesis is to critically analyse the existing
excitation force estimation and prediction strategies, and determine which of the
strategies can be used for accurate real-time excitation force estimation/predic-
tion for control purposes. In order to do so, the contributions regarding different
excitation force estimation/prediction strategies are summarised as follows:

1.1 In order to analyse the different excitation force estimation and prediction
strategies, it is of paramount importance to draw a complete picture of
the strategies available in the literature. To this end, a comprehensive
review of the state-of-the-art excitation force estimation and prediction
techniques is first carried out. Work published in [138, 139].

1.2 Given the large number of excitation force estimators available in the
literature, a critical comparison is performed to determine the relative
strengths and weaknesses of the different strategies. Work published in
[138].

1.3 Additionally, the difficulties associated with excitation force estimation
using real motion measurements are shown, along with the results from
real-time excitation force estimation obtained from physical wave tank
experiments. Work published in [74].

1.4 Since the AutoRegressive (AR) model is found to be one of the simplest and
most accurate predictors for wave energy applications by several researchers,
a thorough analysis of different aspects of the AR model is performed, in
order to determine its capabilities for excitation force or wave elevation
prediction. Work published in [139].

1.5 It should be noted that different estimation/prediction errors can affect
differently, and have more or less impact on, the performance achieved
by the controller. In order to understand how different estimation and
prediction errors affect the performance obtained by an optimal control
strategy and, thus, to be able to determine which estimation/prediction
strategies are the most convenient for control purposes, a sensitivity analysis
of an optimal control strategy to estimation and prediction errors is shown.
Work published in [50].
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2 A further objective of this thesis is to analyse if, for excitation force estima-
tion/prediction in WEC arrays, knowledge from all the bodies in the array is
enough to account for the more complex wave field, caused by the radiated and
diffracted waves from all the devices. To this end, an estimator/predictor that
uses measurements from all the devices of the array is developed, and compared
to a set of independent estimators/predictors that consider only measurements
local to each device. Work published in [138].

3 Given the importance of radiation convolution term approximation strategies
to obtain accurate low-order parametric models for control purposes, several
objectives and contributions regarding such strategies can be found in this thesis:

3.1 It is important that the approximation strategy, used to identify the radiation
convolution term, in addition to obtain accurate approximations that
monotonically decrease when increasing the order of the parametric model,
preserves the physical properties of the original system. Since, in the
literature, there is no specific strategy that guarantees all the previously
mentioned characteristics, a new identification strategy is introduced.
Additionally, a Matlab toolbox, termed Finite Order Approximation by
Moment-Matching (FOAMM), that systematically applies such approxi-
mation strategy in a user-friendly fashion is developed. Work published in
[47, 48, 134].

3.2 Since different researchers use different approximation strategies to obtain
the parametric model of the convolution term, it is of interest to see the
differences between all the available applications (including FOAMM), for
which a comparison of the available radiation convolution term approxima-
tion applications is performed. Work published in [47, 135, 136].

3.3 Given the interaction between the devices comprising WEC arrays, the
number of radiation convolution terms grows exponentially with the number
of bodies, which significantly increases the computational burden associated
with the simulation or the control of WEC arrays. To avoid such an issue,
the moment-matching-based approximation strategy is extended to include
the radiation convolution terms of all the devices comprising the array in a
single parametric model. Work published in [49, 137].

4 Finally, as an additional contribution, the inconsistency between the results
reported in two studies in the literature, with respect to the performance of AR
and the AutoRegressive Moving Average (ARMA) models for prediction in wave
energy applications, is clarified. Work published in [140].
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2017.
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• N. Faedo, Y. Peña-Sanchez, J. V. Ringwood, "Parameterisation of Radiation
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• N. Faedo, D. Garcia Violini, Y. Peña-Sanchez, J. V. Ringwood, "Optimisation-
VS non-Optimisation-based Energy-Maximising Control for Wave Energy Con-
verters: A Case Study", European Control Conference (ECC), Saint Petersburg,
Russia, pages 843–848, 2020.

• D. Garcia Violini, Y. Peña-Sanchez, N. Faedo, C. Windt, J. V. Ringwood
"LTI energy-maximising control for the Wave Star wave energy converter:
Identification, design, and implementation", IFAC World Congress, Berlin,
Germany, 2020.

1.3.1.2 Journal publications

• Y. Peña-Sanchez, A. Mérigaud, J. V. Ringwood, "Short-Term Forecasting of
Sea Surface Elevation for Wave Energy Applications: The Autoregressive Model
Revisited", IEEE Journal of Oceanic Engineering, 45(2), 462–471, 2018.

• Y. Peña-Sanchez, M. García-Abril, F. Paparella, J. V. Ringwood, "Estimation
and forecasting of excitation force for arrays of wave energy devices", IEEE
Transactions on Sustainable Energy, 9(4), 1672–1680, 2018.

• N. Faedo, Y. Peña-Sanchez, J. V. Ringwood, "Finite-order hydrodynamic
model determination for wave energy applications using moment-matching",
Ocean Engineering, 163, 251–263, 2018.

• Y. Peña-Sanchez, C. Windt, J. Davidson, J. V. Ringwood, "A Critical
Comparison of Excitation Force Estimators for Wave Energy Devices", IEEE
Transactions on Control Systems Technology (early access), 2019.

• N. Faedo, Y. Peña-Sanchez, J. V. Ringwood, "Parameterisation of radiation
forces for multiple degree-of-freedom wave energy converters using moment-
matching", International Journal of Ocean and Polar Engineering (IJOPE), in
press, 2019.

• N. Faedo, Y. Peña-Sanchez, J. V. Ringwood, "Receding-horizon energy-
maximising optimal control of wave energy systems based on moments", IEEE
Transactions on Sustainable Energy (early access), 2020.
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maximising Linear Time Invariant Controller (LiTe-Con) for wave energy devices",
IEEE Transactions on Sustainable Energy (early access), 2020.
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• N. Faedo, Y. Peña-Sanchez, J. V. Ringwood, "Parametric representation of
arrays of wave energy converters for motion simulation and unknown input
estimation: a moment-based approach", Applied Ocean Research, 98, 102055,
2020.

• D. Garcia Violini, Y. Peña-Sanchez, N. Faedo, C. Windt, J. V. Ringwood,
"Experimental implementation and validation of a broadband LTI energy-
maximising control strategy for the Wavestar device", submitted to IEEE
Transactions on Control Systems Technology, 2020.

1.4 Thesis layout

The thesis consists of eight additional chapters, laid out as explained in the following
part of this section:

• Chapter 2 introduces the theory behind the concepts used throughout this
thesis to describe the wave-structure hydrodynamic interaction. To this end, the
theoretical background of ocean waves, and how to (numerically) generate regular
or irregular waves, is explained. Then, the fundamental aspects of potential flow
theory are described in detail, along with the well-known Cummins’ equation
(for both a single device or a WEC array). Finally, the state-space representation
of the radiation subsystem and the complete WEC dynamics, which are used
throughout the thesis, are defined.

• Chapter 3 first explains why excitation force estimation and prediction is necessary
for optimal control of WECs. Then, the chapter provides a comprehensive
literature review of the excitation force estimation and forecasting strategies
available in the literature, and highlights some of the gaps in the literature that
this thesis aims to fill.

• Chapter 4 introduces the moment-matching-based approximation strategy
proposed in this thesis to identify a state-space representation (introduced
in Chapter 2) of the radiation subsystem and the WEC dynamics. Then, a
comparison of the proposed strategy against competing available applications
is provided and, finally, an extension of the moment-matching-based strategy
to account for multiple-input multiple-output systems (such as WEC arrays) is
described.

• In Chapter 5, all the excitation force estimation strategies available in the
literature (reviewed in Chapter 3) are compared. Additionally, the results for
real-time excitation force estimation carried out using physical wave tank data,
obtained using one of the best estimators of the comparison, are shown.
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• Chapter 6 provides a detailed analysis of the capabilities of the AR model
since, from the review of Chapter 3, the AR model is found to be one of the
simplest and more accurate predictors for wave energy applications. To this
end, a comparison is initially shown that addresses the inconsistency between
the results reported by two different researchers with respect to the relative
performance of AR and ARMA models for wave elevation prediction. Then,
the AR model is compared to two different theoretical accuracy limits of the
prediction, in order to analyse the efficiency of the AR model as a predictor for
wave energy applications.

• Chapter 7 shows the estimation and forecasting results for WEC arrays obtained
using one of the best estimators, from the comparison of Chapter 5, along with
the AR model for forecasting, analysed in Chapter 6. A comparison is performed
to assess if the extra information from all the devices in the array is sufficient to
compensate the more complex wave field resulting from the interactions between
the devices.

• In Chapter 8, a sensitivity analysis of a WEC optimal control strategy, to
excitation force estimation and prediction errors, is provided. To this end,
information about the possible estimation/prediction errors, obtained from the
analyses of Chapters 5 and 6, is used.

• Finally, the conclusions of the thesis are drawn in Chapter 9, along with a
summary and a discussion on the contributions and results, as well as a brief
discussion of future work.
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As mentioned in the introduction, one of the objectives of this thesis is to analyse the
wave excitation force estimation strategies available. Since WEC systems are yet on an
early-stage of development, the majority of excitation force estimation (and control)
strategies in the literature are based on linear hydrodynamic models of WECs. On the
contrary, several researchers have reported that, while linearised hydrodynamic models
represent accurately (to some extent) WEC systems when no control is applied, such
linear models are not representative any more under WEC control conditions1 [77].
Therefore, considering that the estimation (and prediction) of the excitation force
is carried out to be used by the WEC controller, and that under control conditions

1This is because control strategies tend to maximise WEC motion, while small device motion is
one of the linear potential flow assumptions (further explained in Section 2.2.2).
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linear models do not represent accurately the WEC system, one could argue that using
linear models to describe the excitation force estimators is not sensible.
Nevertheless, at this stage, it is important to assess the performance of the estimation
techniques using linear WEC models, before implementing nonlinear models for
excitation force estimation. An additional reason for the researchers to use linear
models for estimation is that, while no general nonlinear description of WECs can be
found in the literature (since the descriptions are device-specific), the linear Cummins’
equation (introduced in Section 2.2.3) can be considered as a general linear description
of WECs (since is widely used by the majority of the authors). Therefore, and in
order to assess such state-of-the-art estimation strategies, this chapter introduces
the linear Cummins’ equation, which is the model considered in this thesis and also
commonly by other researchers in the literature. Additionally, the sets of assumptions
the linearisation is based on, along with the linearisation process, are introduced, in
order to better understand the limitations of the final (linear) WEC model.
Note that the author do not discard the idea of using linear WEC models for the
estimators in a real scenario, since the sensitivity of the estimator to model uncertainties
has never been addressed yet (to the author’s knowledge) and, thus, it is unknown the
effects that such combination could have on the controller performance. Additionally,
it should be noted that, when considering nonlinear WEC models, the concept of
excitation force may not hold any more, since superposition is a linear concept and,
therefore, the forces acting on the device may not be divisible. However, such issues
are out of the scope of this thesis, since the objective is to analyse the excitation
force estimation problem from a linear perspective, in order to ease the transition
to the nonlinear estimation (for future work).

2.1 Ocean waves
Ocean waves, generated mainly by wind activity, can be produced in many different
ways. The simplest waves, from a signal-complexity point of view, are monochromatic
waves, described by a sinusoidal signal with a single (constant) amplitude and frequency.
On the contrary, an example of a more complex characterization of ocean waves would
be three-dimensional, irregular, fully nonlinear waves. Since this thesis focuses on
investigating WEC devices working in power production mode, only those waves that
are of importance for power production are considered. Under such assumptions,
extreme, highly nonlinear waves are not considered in this work. In fact, the wave
resource, associated with operational conditions, can be described, in most cases,
by linear wave theory [126].
It should be noted that, from now on, the dependence on the independent variable
(as, for example, t or x) is dropped when its clear from the context.
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2.1.1 Linear wave theory

Linear wave theory, or Airy’s wave theory, is often used to characterise the propagation
of waves on the free-surface [126]. For a better understanding of the definition of
Airy’s wave theory, Figure 2.1 presents a schematic of the wave characteristics, where
aη is the wave amplitude, Hη = 2aη the wave height, λη is the wavelength and hwd

the water depth. The coordinate system considered in this thesis is as in Figure 2.1,
where the waves propagate in the positive sense of the x-axis, the positive sense of
the y-axis is out of the page, and the z-axis is perpendicular to the free-surface, with
the origin on the undisturbed free surface, or the Still Water Level (SWL).

SWL

wave
trough

wave
crest

Figure 2.1: Schematic of the wave characteristics.

Airy’s wave theory assumes deep water depths (hwd > 0.5λη), and that the wave
height Hη is small compared to the wavelength λη. Additionally, it is assumed that
the fluid flow is inviscid, incompressible, and irrotational, assumptions that are recalled
and better explained in Section 2.2.2. Thus, the free surface elevation η can be
defined for monochromatic waves as

η(x, y, t) = real(aηeωηt−κη(x cosβη+y sinβη)+φη), (2.1)

or, equivalently as

η(x, y, t) = aη cos (ωηt− κη (x cos βη + y sin βη) + φη) , (2.2)

where the operator real ({·}) (and imag ({·})) refer to the real (and imaginary) part
of {·}, ωη is the oscillating frequency of the wave (in rad/s),  the imaginary unit
(which satisfies 2 = −1), βη the propagation direction of the incident wave (with
respect to the positive x-axis), φη the wave phase and κη is the wavenumber, which
is related to the wave frequency ωη via the dispersion relation

ω2
η

g
= κη tanh (κηhwd) , (2.3)
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which, since deep water depth is assumed, can be simplified to ω2
η/g = κη, where

g is the gravitational acceleration.
However, since regular waves do not represent real ocean wave scenarios, irregular
waves are commonly employed in the literature. The next subsection details the
mathematical description of the irregular waves employed in this thesis.

2.1.2 Irregular wave description

Irregular waves are usually generated based on a given Spectral Density Function
(SDF) that can represent a real sea state. Several formulations can be found in the
literature that, using empirical measurements and physical considerations, allow the
representation of spectral shapes under idealised conditions. Among such formulations,
the most widely considered SDFs are the JONSWAP spectrum for wind-generated seas
with fetch limitations [88], the Bretschneider spectrum for developing seas [20], and
the Pierson-Moskowitz spectrum for fully-developed seas [151]. By way of example,
Figure 2.2 shows how the JONSWAP spectrum varies when changing (a) the peak
period (Tp), (b) the significant wave height (Hs), and (c) the peak-shape parameter
(γ), which are the three parameters that characterise the JONSWAP spectrum as:

Sηη(ω) = αsg
2

ω5 e−
5
4(ωp

ω )4

γrs(ω) (2.4)

where rs(ω) = e
− (ω−ωp)2

2σ2
sω

2
p , ωp = 2π

Tp
, and αs and σs are constant values determined

using data collected during the JONSWAP experiment [88].
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(a) Hs =2m and γ = 3.3.
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(b) Tp =10 s and γ = 3.3.
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(c) Tp =10 s and Hs =2m.

Figure 2.2: Examples of JONSWAP SDFs with varying parameters (a) Tp, (b) Hs, and (c)
γ.

Once the target SDF is selected, several methods can be found in the literature to
generate a finite-duration wave time series (or realisation) with the statistical properties
of such a sea state. For example, irregular wave time series are approximated by
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superposing harmonic components, with frequency-dependent amplitudes (directly
derived from the target wave spectrum) and phases, which can be chosen randomly
[119]. Another well-known approach, is to compute the inverse Fourier transform
of a random spectrum derived from the objective SDF as

η(t) = F−1{Sηη(ω)Sww(ω)}, (2.5)

where F−1 denotes the inverse Fourier transform, and Sηη(ω) and Sww(ω) are the
power spectral densities of the wave (for example, the JONSWAP SDF) and a white
noise input signal, respectively, with the mean value of the white noise power spectrum
1
nω

∑nω
j=1 Sww(j) ≈ 1. In particular, the random irregular waves are generated using

the method of the inverse Fourier transform within this thesis, since it is a well-
known method in the literature, which retains the spectral characteristics of the
target SDF on every realisation [132].
By way of example, Figure 2.3 shows an irregular wave elevation η time series randomly
generated, using the method explained in Equation (2.5), from a JONSWAP SDF
with Tp =10 s, Hs =2m, and γ = 3.3.

m

s

Figure 2.3: Example of a wave elevation time series generated from a JONSWAP SDF
with Tp =10 s, Hs =2m, and γ = 3.3.

2.2 Linear WEC modelling

As will be introduced in Section 2.2.3, Cummins’ equation [35] is a linear differential
equation used to characterise the motion of a floating body or, more specifically, a WEC
in this case. However, in order to understand where the employed equations stem from,
and under which set of assumptions these equations are valid, the following subsections
describe what the Navier-Stokes equations and the potential flow theory are.
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2.2.1 Navier-Stokes equations

The motion of viscous fluids (also the interactions between a viscous fluid substance
and a solid structure, orqa between fluid substances) is described using a well-known
set of nonlinear differential equations, called the Navier-Stokes equations [55]. In
particular, the behaviour of such a fluid can be characterised using pressure and flow
velocity, which are derived via the continuity and impulse equations, describing the
conservation of mass and momentum, respectively

δρ

δt
+∇ · (ρuf) = 0 (2.6a)
δuf

δt
+ uᵀf∇uf = f − 1

ρ
∇p+ µf

ρ
∇2uf, (2.6b)

where ρ is the density of the fluid under analysis, uf the fluid flow velocity vector, f the
external force vector per unit mass, p the pressure, and µf the fluid dynamic viscosity.
The operators ∇, ∇·, and ∇2 denote the divergence, the gradient, and the Laplacian,
respectively, and {·}ᵀ denotes the transpose of {·}. Since the system of equations
(2.6) does not have an analytical solution, numerical discretization methods are
required in order to obtain a solution. To this end, mathematical modelling approaches
like the classic mesh-based Computational Fluid Dynamics (CFD) or the mesh-less
Smoothed-Particle Hydrodynamics (SPH) are commonly used in the literature [185].
To avoid the computational expense of approaches like CFD, linear potential flow
theory simplifies the system of equations (2.6) under a set of assumptions (introduced
in Section 2.2.2), to obtain a computationally more efficient technique to solve the
hydrodynamic wave-structure interaction.

2.2.2 Linear potential flow theory

In order to better understand the hypothesis proposed by linear potential flow theory
[127] to simplify the Navier-Stokes equations, Figure 2.4 shows a schematic view of a
floating body, where no denotes the unit vector normal to the body’s surface, Swet the
wetted surface of the floating body, and the equations refer to the different (linear)
boundary conditions that will be introduced throughout this section.
The assumptions considered in the linear potential flow model to simplify the Navier-
Stokes equations (Equation (2.6)) are the following:

AS.1 The fluid, in this case sea water, is incompressible
(
δρ
δt

= 0
)
,

AS.2 The fluid is inviscid (µf = 0),
AS.3 The flow is considered to be irrotational (∇× uf = 0),
AS.4 The amplitude of the body motion is small compared to its dimensions,
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Swet

Figure 2.4: Schematic of a floating body with the linear boundary conditions introduced in
Section 2.2.2.

AS.5 The wave amplitude is small with respect to the wavelength.

It should be noted that, though reasonable for an uncontrolled device case, some of
the assumptions do not hold when the device is under optimal control conditions. By
way of example, under optimal control conditions, the device motion is maximised
(which directly invalidates AS.4), and the relative velocity between body and η

increases, which raises the force that the device experiments due to the viscosity
of the water, making, thus, AS.2 is not a reasonable assumption. However, as
mentioned at the beginning of the chapter, the objective of this thesis is to analyse
the excitation force estimation problem from a linear perspective (in order to ease the
transition to nonlinear excitation force estimation) and, therefore, the same set of
assumptions considered for the standard Cummins’ equation (introduced in Section
2.2.3) are considered in this thesis.
Since the fluid is assumed incompressible (AS.1), Equation (2.6a) can be expressed as

∇ · uf = 0. (2.7)

Additionally, considering AS.2-3, there exists a scalar function Φf denoted as the
velocity potential, such that

uf = ∇Φf. (2.8)

Thus, by substituting Equation (2.8) into Equation (2.7), the velocity potential Φf

can be obtained by solving the Laplace equation

∇2Φf = 0, (2.9)
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and uf can then be calculated using Equation (2.8). Additionally, since the fluid is
considered inviscid (AS.2), the last term of Equation (2.6b) is 0. Then, by defining the
external force as the gravitational force

(
f = [0, 0,−ρg]T

)
, and integrating Equation

(2.6b), one can obtain the Bernoulli equation, defined as
p

ρ
+ δΦf

δt
+ 1

2 (∇Φf)2 + gz = Cint, (2.10)

where Cint is an integration constant.
In order to determine the velocity potential and fluid pressure, a set of boundary
conditions (shown in Figure 2.4) needs to be defined. The considered boundary
conditions are the following:

BC.1 The seabed is assumed to be impermeable, i.e. no fluid enters or leaves the
seabed, which means that the vertical component of the fluid velocity will be 0
at the seabed

δΦf

δz
= 0 on z = −hwd. (2.11)

BC.2 Similar to BC.1, the floating body is also assumed to be impermeable, which
means that, at the body surface the fluid velocity component normal to the body
surface (uno) must be equal to the velocity of the body in the same direction

δΦf

δno
= uno on the body surface. (2.12)

BC.3-4 Regarding the free surface η, two boundary conditions must be fulfilled: the
kinematic and dynamic boundary conditions. The kinematic boundary condition
states that a fluid particle on the free surface is assumed to stay on the free
surface and, therefore, the fluid velocity normal to the free surface must be equal
the free surface velocity in that direction. The dynamic boundary condition
states that the fluid pressure is equal to the atmospheric pressure (patm) on
the free surface. Both kinematic and dynamic boundary conditions are formally
defined as

δη

δt
+ δΦf

δx

δη

δx
+ δΦf

δy

δη

δy
− δΦf

δz
= 0 on z = η, (2.13a)

and
δΦf

δt
+ 1

2 (∇Φf)2 + gη = 0 on z = η. (2.13b)

BC.5 The last boundary condition specifies that, far away from the floating body,
the wave field should be identical to the incoming wave field (undisturbed by
the floating body). To this end, radiation and diffraction effects should fade out
as the distance to the floating body increases:

Φrd ≈ 0 as dr →∞, (2.14)
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where dr is the radial distance, and Φrd = Φr + Φd the potential of the
perturbation, related to radiation and diffraction effects, where Φr and Φd

are the radiation and diffraction potentials, respectively.

To linearise the nonlinear boundary conditions BC.3-4, two different simplifications are
considered, based on AS.4 and AS.5. The first simplification is to consider BC.3-4
on the undisturbed free surface (z = 0) instead of at the instantaneous free surface
(z = η), and, the second simplification, to neglect the higher order terms. Thus, as
shown in Figure 2.4, such equations can be linearised as

δη

δt
− δΦf

δz
= 0 on z = 0, (2.15a)

δΦf

δt
+ gη = 0 on z = 0, (2.15b)

respectively. Furthermore, Equations (2.15a) and (2.15b) can now be combined as

δ2Φf

δt2
+ g

δΦf

δz
= 0 on z = 0. (2.16)

Since linearity is assumed, the potential around the floating body can be decomposed
into incident (Φi), diffracted, and radiated potential, as

Φf = Φi + Φd + Φr. (2.17)

The incident wave field potential represents the incoming wave potential in the absence
of the body, while the diffracted potential defines the interaction between the incident
wave and the fixed body. Finally, the radiated potential results from the oscillations
of the body in the absence of an incident wave field.
As mentioned in Section 2.1.1, it is assumed that, for deep water depth, the solution
of the boundary problem takes a sinusoidal form. In fact, the velocity potential, which
oscillates harmonically in time with angular frequency ω, can be written as

Φf(x, y, z, ω, t) = real(Φ̂f(x, y, z, ω)eωt), (2.18)

where Φ̂f represents the complex amplitude of the velocity potential. Even though real
ocean waves are never truly monochromatic, Equation (2.18) considers a single wave
frequency to simplify the problem, for illustration purposes. However, the extension
to irregular waves can be done straightforwardly by superposing sinusoidal waves of
different frequency and amplitude2, as explained in Section 2.1.2.

2Note that this is just an approximation of real irregular waves, which are composed of an infinite
number of frequencies.
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According to Equation (2.18), the Laplace equation (2.9) can now be represented as

∇2Φ̂f = 0, (2.19)

and the boundary conditions of Equations (2.11), (2.12) and (2.16) as

δΦ̂f

δz
= 0 on z = −hwd, (2.20a)

δΦ̂f

δno
= uno on the body surface, (2.20b)

δ2Φ̂f

δt2
+ g

δΦ̂f

δz
= 0 on z = 0. (2.20c)

Thus, based on Equations (2.18) and (2.20), the complex amplitude of the velocity
potential of the incident wave can be computed following Equation (2.21) [61] as

Φ̂i(x, y, z, ω) = g

ω
aη(ω)cosh [κη(ω) (z + hwd)]

cosh (κη(ω)hwd) e−κη(ω)(x cosβη+y sinβη). (2.21)

It should be noted that, when hwd tends to infinity, the decay function cosh[κη(ω)(z+hwd)]
cosh(κη(ω)hwd)

of Equation (2.21) turns into the exponential function eκη(ω)z.
The diffracted waves are generated by the interaction between the incident wave
and the fixed body, and the diffraction potential must satisfy the boundary condition
over the wetted surface of the fixed body, specifically

− δΦ̂d

δno
= δΦ̂i

δno
on Swet. (2.22)

The radiation potential must satisfy the boundary condition (2.20b) while the body
oscillates in any Degree-of-Freedom (DoF). Thus, the radiation potential complex
amplitude can be described as

Φ̂r(ω) = ω
nDoF∑
i=1

χ̂iφri , (2.23)

where nDoF is the number of degrees-of-freedom (see Figure 2.5), χ̂i the complex
amplitude of the motion of the body in DoF i, and φri the unit-amplitude radiation
potential due to the motion in mode i.
According to Newton’s second law, in the time-domain, the equation of motion of
a floating body can be expressed as

Mχ̈(t) =
∑

fi(t), (2.24)
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Surge-1

Heave-3

Roll-4Pitch-5

Yaw-6

Sway-2

Figure 2.5: Schematic of the six degrees-of-freedom of a floating body, with their
corresponding index numbers for the matrix notation.

where fi(t) ∈ RnDoF are the vectors of forces and moments acting on the floating body
for the different modes of motion. M ∈ RnDoF×nDoF contains the mass (or inertia)
values for all the DoFs and interactions as

M =



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg ixx −ixy −ixz
mzg 0 −mxg −iyx iyy −iyz
−myg mxg 0 −izx −izy izz


, (2.25)

where m is the mass of the body, (xg, yg, zg) the coordinates of the centre of gravity,
and iij are the moments of inertia about the different axes if i = j, or the products of
inertia with respect to the centre of mass if i 6= j. It should be noted that the total
force acting on the device can be represented as a sum of different forces, because the
considered system is linear and, therefore, superposition holds. In particular, replacing
the hydrodynamic forces considered in this thesis, Equation (2.24) can be redefined as

Mχ̈(t) = fe(t) + fr(t) + fh(t) + fext(t), (2.26)

where fe(t) represents the excitation force (the force exerted by the incoming wave),
fr(t) the radiation force (the force of the waves generated by the oscillatory motion of
the body), fh(t) the hydrostatic force (results from the balance between the gravity
and the buoyancy forces), and any external force fext(t), such as the Power-Take-Off
(PTO) system force (fpto(t)), the mooring force (fmoo(t)), etc.
Since the motion of the waves and the floating body can be considered to oscillate
harmonically (because the system is linear), the body position, velocity, and acceleration
vectors can be expressed, respectively, as

χ(t) = real(χ̂eωt), (2.27a)
χ̇(t) = real(ωχ̂eωt), (2.27b)
χ̈(t) = real(−ω2χ̂eωt). (2.27c)



28 2.2. Linear WEC modelling

Equally, Equation (2.26) can also be defined in the frequency domain as

MẌ = Fe + Fr + Fh + Fext. (2.28)

The excitation force Fe(ω) can be divided into Froude-Krylov force (FFK(ω)) and
diffraction (Fd(ω)) force as

Fe(ω) = FFK(ω) + Fd(ω) = ωρ
∫

Swet
Φ̂inodSwet + ωρ

∫
Swet

Φ̂dnodSwet, (2.29)

where Swet refers to the wetted surface of the floating body (see Figure 2.4). The
radiation force in mode i can be expressed as

Fri(ω) = −ω2ρ
∫

Swet

nDoF∑
i′=1

Xi′(ω)φri′noidSwet, (2.30)

or, using an electrical/mechanical analogy, as

Fri(ω) = −ω
nDoF∑
i′=1

Kri i′ (ω)Xi′(ω), (2.31)

where Kri i′ (ω) is an element of the radiation impedance matrix Kr(ω), defined as

Kri i′ (ω) = −ωρ
∫

Swet
φri′noidSwet. (2.32)

The hydrostatic force Fh(ω) can be calculated from the integration of the hydrostatic
pressure over the instantaneous wetted surface of the floating body. Since calculating
the instantaneous wetted surface of the device is computationally demanding, a
linearised Fh(ω) is usually considered which, for small body motions (AS.4), provides
a reasonably accurate approximation of Fh(ω). Thus, Fh(ω) can be expressed as a
force proportional to the displacement of the body as

Fh(ω) = −ShX(ω), (2.33)

where Sh ∈ RnDoF×nDoF represents the hydrostatic stiffness.

2.2.3 Cummins’ equation

The displacement of a multiple-DoF floating body can now be defined, replacing
the different forces in Equation (2.28), as

Ẋ(ω) = (Fe(ω) + Fext(ω))H(ω), (2.34)

with the force-to-velocity3 frequency response H(ω) defined as

H(ω) =
[
Sh

ω
+ ω (M + Ar(ω)) +Dr(ω)

]−1

, (2.35)

3Note that the force-to-position or force-to-acceleration frequency responses can be obtained by
the integral or derivative (respectively) of Equation (2.35).
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where {Dr(ω), Ar(ω)} ⊂ RnDoF×nDoF and are the so-called radiation damping and
radiation added mass coefficients, respectively, which are the real and imaginary parts
of the radiation impedance. Additionally, the excitation force can be defined as a
function of the incident waves as Fe(ω) = aη(ω)F̂e(ω), where F̂e(ω) is a vector
containing the complex amplitudes of excitation force (or torques) of the different
DoF. The diagonal terms of the frequency response matrix H(ω) describe the inner
dynamics of each DoF, while the off-diagonal terms describe the interaction between
the different DoFs. The frequency response of the different terms in H(ω) depends,
mostly, on the geometry of the device, i.e. some WECs can be designed to enhance,
diminish, or cancel, the dynamics of specific DoFs and/or interactions [73].
All the hydrodynamic coefficients (Dr(ω), Ar(ω), F̂e(ω) and Sh) are normally computed
using Boundary Element Method (BEM) solvers. Such BEM solvers compute the linear
potential hydrodynamic coefficients by solving (for a set of user-selected frequencies)
the diffraction velocity potential of Equation (2.22) to obtain F̂e(ω), and the radiation
velocity potential of Equation (2.23) to obtain Dr(ω) and Ar(ω). To this end,
several software codes can be found that compute the linear BEM hydrodynamic
parameters, in the frequency or the time domain. Among the different available
BEM solvers, ACHIL3D [110] in the time domain, and the commercially-available
WAMIT [93] and the open-source NEMOH [12] in the frequency domain are the
most commonly used utilities.
As an example, Figure 2.6 shows the frequency domain hydrodynamic coefficients for
the heave motion of a 5m radius and 10m draft cylinder. Figures 2.6 (a) and (b)
depict the hydrodynamic coefficients related to the radiation force Dr(ω), and Ar(ω),
respectively, where µ∞ ∈ RnDoF×nDoF represents the infinite frequency added mass
coefficient, which is the value of Ar(ω) when ω → ∞ rad/s. Figures 2.6 (c) and (d)
show the magnitude and phase values of the complex coefficient F̂e(ω), respectively.
As first introduced by Cummins in [35], the time domain equivalent of Equation
(2.28) can be formulated as

(M + µ∞)χ̈(t) = −Shχ(t)−
∫ t

−∞
kr(t− τ)χ̇(τ)dτ + fext(t) + fe(t), (2.36)

where the excitation force can be computed from the free-surface elevation as

fe(t) =
∫ ∞
−∞

ke(t− τ)η(τ)dτ. (2.37)

The excitation force kernel ke(t) ∈ RnDoF can be computed by applying the inverse
Fourier transform to the excitation force frequency domain coefficients shown in Figure
2.6(a) and (b). Additionally, the radiation force kernel kr(t) ∈ RnDoF×nDoF can be
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Figure 2.6: Hydrodynamic coefficients for the heave mode of a 5m radius cylinder with
10m draft.

computed from the frequency domain hydrodynamic parameters Ar(ω) and Dr(ω)
through Ogilvie’s relations which are defined, from the frequency to the time domain, as

kr(t) = 2
π

∫ ∞
0

Dr(ω) cos(ωt)dω, (2.38a)

and from the time to the frequency domain as

Dr(ω) =
∫ ∞

0
kr(t) cos(ωt)dt, (2.38b)

Ar(ω) = µ∞ −
1
ω

∫ ∞
0

kr(t) sin(ωt)dt. (2.38c)

Solving a convolution integral at every time-step, to compute the radiation force,
is inconvenient for several reasons, as will be detailed in Section 2.2.4. Thus,
the convolution term is usually approximated using a Linear Time Invariant (LTI)
system, which can be defined using a State-Space (SS) representation. The next
subsection provides a brief literature review of the available methods to compute
the SS approximation for the convolution term.

2.2.4 Radiation convolution term approximation

The convolution term of Equation (2.36), accounting for the fluid memory effect
associated with radiation forces, can represent a drawback for several ocean engineering
applications. In particular, this convolution term represents a drawback from a simula-
tion point of view, given that computing the numerical solution of such a term requires
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a relatively high computational effort. Additionally, from an estimation/control point
of view, it can be inconvenient, since state-of-the-art model-based estimation/control
techniques are usually based on the availability of a parametric SS representation of the
system under analysis [45]. In order to overcome these drawbacks, researchers usually
approximate the non-parametric convolution term using a suitable parametric structure.
To this end, several options can be found in the literature, which attempt to compute
an approximating parametric model for the convolution term introduced by Cummins.
Regardless of the strategy used to identify the parametric model that approximates
the radiation convolution term, the obtained SS will be defined as

ẋr(t) = Arssxr(t) +Brssχ̇(t) (2.39a)
f c

r (t) = Crssxr(t) +Drssχ̇(t), (2.39b)

with the velocity of the device as input and the radiation force convolution term
(f c

r ) as output, where xr(t) ∈ Rnr is the state vector of the radiation convolution SS
representation, and the matrices Arss ∈ Rnr×nr , Brss ∈ Rnr×nDoF , Crss ∈ RnDoF×nr , and
Drss ∈ RnDoF can be obtained by any of the methods available in the literature. Ideally,
as explained in Section 4.1, the matrix Drss should be 0 if the physical properties
of the radiation convolution term are respected.
Additionally, as will be explained in Section 4.3, the SS of the radiation convolution
term of a multiple-DoF WEC, which is a Multiple-Input Multiple-Output (MIMO) SS
system, can be defined using set of Single-Input Single-Output (SISO) SS systems, or
identifying directly the MIMO frequency response of the radiation system. Due to its
structure, the dimension of the MIMO SS model generated using multiple SISO SS
systems is usually much larger than the dimension of the MIMO SS model identified
using the MIMO frequency response of the device.
One of the well-established parameterisation methods was developed in [148] at the
Norwegian University of Science and Technology and proposes a frequency-domain
parametric identification strategy. To this end, the frequency response that this
method attempts to identify can be obtained by computing the Fourier transform
of Equation (2.38a) as

Kr(ω) = Dr(ω) + w [Ar(ω)− µ∞] . (2.40)

One year after the theory of this strategy was presented, and as an independent
component of the Marine System Simulator [65], the authors developed a Matlab
toolbox to systematically apply the method [149], termed the Frequency-Domain
Identification (FDI) toolbox4. The toolbox acts as an user interface where the

4Note that this toolbox differs from the original Matlab toolbox (also termed FDI toolbox)
developed in [99].
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hydrodynamic coefficients are loaded, the different options of the toolbox (specified
better in Section 4.2.1) are selected, and the Matlab function invfreqs is called to
identify the system. However, since invfreqs is a general frequency domain identification
tool (it is not specifically developed for wave-energy applications), it has some problems
when identifying some of the radiation convolution systems, which leads to unstable
models, as shown in Section 4.2.3.
Another available application for the radiation parametric identification is associated
with the WEC motion simulator WEC-Sim [189]. This utility, termed Boundary
Element Method Input/Output (BEMIO) [171], is specifically used within WEC-Sim
to obtain a state-space approximation of the radiation force convolution term. Unlike
the FDI toolbox, which computes the SS approximated model using frequency domain
data, BEMIO identifies the parametric model using time domain data, i.e. the radiation
kernel krad(t). To this end, BEMIO uses the singular value decomposition on the
Hankel matrix of the radiation impulse-response function, as was first shown in [188].
Even though there is no specific general purpose software application developed for wave
energy applications based on Prony’s method [37], this method should be mentioned
here, since it is still commonly used within the ocean engineering literature. Briefly, this
strategy is based on identifying the radiation SS coefficients from the impulse response
function (similar to the BEMIO application), and it has been used in noteworthy
studies, such as those involving the SEAREV WEC [11] and the Spar-buoy WEC [79].
Finally, the only other available radiation convolution approximation utility, to the best
of the author’s knowledge, is the moment-matching-based identification method for
both the radiation convolution term and the complete force-to-motion (input-output)
dynamics, which has recently been developed by the Centre for Ocean Energy Research
(COER) [47]. This strategy has its foundation in recent advances on model order
reduction by moment-matching, developed over several studies such as [8] or [161].
This method allows for the computation of a model that exactly matches the frequency
response of the original (target) system at a set of user-selected frequencies, providing
an efficient method to compute a state-space representation for the dynamics of
floating bodies with zero forward speed. In 2019, the Finite-Order Approximation
by Moment-Matching (FOAMM) Matlab application was developed within the
COER [134], that systematically applies the moment-based strategy using, as the
FDI toolbox, frequency-domain data.
The theory behind the FOAMM application, along with the different options and
modes of operations that it comprises, and a comparison with the aforementioned
other available applications, is provided in Section 4.1.
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2.2.5 WEC state-space representation

The approximation of the non-parametric convolution term in Equation (2.36) with a
suitable parametric model, allows the representation of the complete WEC dynamics
in a SS form. The continuous-time SS analogue of Equation (2.36) can be defined as

ẋ(t) = Assx(t) +Bssfe(t) (2.41a)
y(t) = Cssx(t) +Dssfe(t), (2.41b)

where x(t) =
[
χ(t) χ̇(t) xr(t)

]ᵀ
∈ Rnss , y(t) =

[
χ(t) χ̇(t) χ̈(t)

]ᵀ
∈ Rqss , and the

matrices Ass ∈ Rnss×nss , Bss ∈ Rnss×pss , Css ∈ Rqss×nss , and Dss ∈ Rqss×pss are given by

Ass =

 0 InDoF 0
−M∗Sh 0 −M∗Crss

0 Brss Arss

 , Bss =

 0
M∗

0

 ,

Css =

 InDoF 0 0
0 InDoF 0

−M∗Sh 0 −M∗Crss

 and Dss =

 0
0
M∗

 ,
(2.42)

where M∗ = (M + µ∞)−1. The symbol InDoF denotes an identity matrix of size
nDoF, the symbol 0 stands for any zero element dimensioned according to the context,
with pss = nDoF and qss = 3nDoF.
It should be noted that the formulation of System (2.41) can represent a general
SS system, corresponding to a multiple DoF WEC. However, the definition of such
a system can change throughout this thesis, according to the device or the case
analysed in each section. For example, the most common variation is to consider
a single DoF, which considerably reduces the size of System (2.41), simplifying the
problem. Another variation is not to consider position, velocity, and acceleration as
outputs, but just some of them (for example, position and velocity only), which is
done by modifying the dimensions of matrices Css and Dss. If necessary, the performed
variations will be indicated when referring to System (2.41).

2.2.6 WEC array modelling

This subsection aims to introduce the expansion of the single WEC equation of
motion (2.36), to consider an array of nb bodies. Since Equation (2.36) is already
defined as multiple-input multiple-output, the expansion to consider multiple bodies
is straightforward. The displacement vector of the ith body (χi(t)) can be included
into a new vector containing all the states as

χ(t) =
nb∑
i=1

e
nb
i ⊗ χi(t), (2.43)
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where χ(t) ∈ Rn, n = nbnDoF, the symbol eqi ∈ Rq denotes a vector with 1 in the ith

component and 0 elsewhere (similarly, eqpij ∈ Rq×p denotes a matrix with 1 in the ijth

component and 0 elsewhere), and the symbol ⊗ denotes the Kronecker product [21].
Thus, the equation of motion for an array of nb bodies can be expressed as

(M + µ∞)χ̈(t) = −Shχ(t)−
∫ t

−∞
kr(t− τ)χ̇(τ)dτ + f ext(t) + f e(t). (2.44)

Note that the bold symbols in Equation (2.44) are used to represent the WEC array
equivalents of the symbols in Equation (2.36). Thus,M = Inb ⊗M ∈ Rn×n contains
the information of the mass (or inertia) of the different bodies, and Sh = Inb ⊗ Sh ∈
Rn×n the hydrostatic coefficients. Similarly, µ∞ ∈ Rn×n and kr(t) ∈ Rn×n contain
the infinite added mass and radiation kernel, respectively, of each device’s DoFs inner
dynamics in the diagonal terms, and the interactions between the different DoFs of
the bodies composing the array in the off-diagonal terms.
In the frequency domain, the displacement of the different devices of the array
is expressed as

Ẋ(ω) = (F e(ω) + F ext(ω))H(ω), (2.45)

where Ẋ(ω), F e(ω), and F ext(ω) are the frequency domain analogues of χ̇(t),
f e(ω), and f ext(ω). The force-to-velocity frequency response of the array H(ω)
can be defined as

H(ω) =
[
Sh

ω
+ ω (M +Ar(ω)) +Dr(ω)

]−1

, (2.46)

with {Dr(ω),Ar(ω)} ⊂ R(nDoFnb)×(nDoFnb) containing the radiation damping and
radiation added mass coefficients, respectively, of all the devices of the array (in
the diagonal terms) and interactions between devices (in the off-diagonal terms).
By way of example, consider a 4 heaving spherical device (5m radius and 5m draft)
array arranged in a square layout, with an inter-device distance, along one side of the
square, of db =20m (see Figure 2.7). As shown in Figure 2.7, due to the specific layout
geometry, only three dynamics are differentiated: the inner dynamics of each body
(diagonal terms), and two different interactions (off-diagonal terms). The different
colours of Figure 2.7 show how the different dynamics are arranged in the frequency
domain matrices as in, for example, Ar(ω), Br(ω) or H(ω).
Figure 2.8 shows the frequency response of the force-to-velocity dynamics (computed
as shown in Equation (2.46)) for the array layout depicted in Figure 2.7, using the
same colour code of Figure 2.7. One could notice that the motion of a given device
is driven (mainly) by its inner dynamics, since the amplitude of the inner dynamics,
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Figure 2.7: Example array layout of 4 spherical bodies of 5m radius and 5m draft, and an
inter-device distance (along one side of the square) of db =20m.
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Figure 2.8: Force-to-velocity frequency responses of (a) the inner dynamics of each device
of the array, (b) the closest interactions, and (c) the interaction with the device on the other
diagonal of the array for the array introduced in Figure 2.7.

shown in Figure 2.8(a), is larger than the amplitude of the interactions, shown in
Figures 2.8(b) and (c). However, since the inter-device distance is only 20m (i.e. two
device diameters), the interactions with the other bodies of the array have considerable
influence on the motion of different WECs. Depending on the array design, the
interactions between the devices can be constructive or destructive [72], i.e. can
increase or diminish the motion of the devices. Thus, optimising the design of the
complete WEC array (which includes the design of the layout, device geometry, control,
moorings, etc.) is of paramount importance in order to maximise energy extraction
and, therefore, improve wave energy profitability.
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3.1 Overview

The majority of the energy maximising control strategies require knowledge of the
instantaneous and future excitation force fe acting on the WEC, in order to determine
the optimal control input f opt

pto [155]. For a fixed body, fe can be derived from a total
pressure measurement or by integrating the pressure over the submerged body surface.
However, for a non-fixed body, fe is an unmeasurable quantity, since the integrated
pressure over the submerged body surface represents the excitation force plus other
hydrodynamic forces, e.g. radiation force fr, hydrostatic force fh, etc. Therefore, for
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a moving device, such as a WEC, fe can only be estimated. To this end, various
strategies have been proposed in the literature, which attempt to estimate fe based
on measurable quantities, such as the device position and velocity (as exemplified in
Figure 3.1 for a typical control loop) or the pressure on the WEC hull.

Controller

e

+
-

WEC Estimator Predictor
+ -

e

pto
opt

e hor

Figure 3.1: Example of a control loop diagram, where the estimator uses position and
velocity of the WEC. The controller requires estimated and predicted fe, as well as position
and velocity of the WEC.

Figure 3.1 shows an example of a WEC control loop diagram, where the inputs to
the WEC block are fe(t) and f opt

pto (t). The measurements of the device motion are
used to estimate the instantaneous excitation force (f̃e(t)). Then, using f̃e(t), a
predictor1 is used to forecast future excitation force values (f̄e(t + t∗hor|t)), where
f̄e(t+ t∗hor|t) is the excitation force value at t+ t∗hor predicted from the time instant t,
t∗hor ∈ {0, ..., thor}, and thor is the prediction horizon. The controller of the example
shown in Figure 3.1 needs both f̃e(t) and f̄e(t+ t∗hor|t), along with estimated position
and velocity of the device, to calculate the optimal control force f opt

pto (t). This is further
explained in Chapter 8 where, for the presented energy-maximising optimal control
strategy, energy maximisation can only be achieved by having full (instantaneous and
future) knowledge of the excitation force. In other words, the external input fe(t)
has to be known over the time window in which energy absorption is being optimised.
However, it should be noted that Figure 3.1 shows just one possible control loop
diagram as an example, but different researchers have shown different approaches
to calculate the optimal control force [45].
A possible variation of the diagram in Figure 3.1 is to change the measurements used
by the estimator. As shown in Section 3.2, the measurements used by the estimator
do not necessarily have to be position and velocity of the device, although most of the
fe estimators in the literature use position and velocity measurements of the device.
It should be noted that, the estimation strategy to be applied on a real WEC should

1Note that the words forecast and predict (as well as their derived forms) are used interchangeably.
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be chosen at the design stage of the device, since the measurements required by the
estimator could affect the equipment installed on the device.
Another possible variation of the diagram in Figure 3.1 is that the controller may
not require knowledge of future fe (as shown, for example, in [70, 122, 164]) and,
in such a case, the block with the predictor can be omitted. However, since the
majority of the energy maximising control strategies require knowledge of fe in the near
future [45, 155], short-term fe predictors are essential and, hence, different available
short-term forecasting strategies should be studied.
A review of the different fe estimation and short-term forecasting techniques available
in the literature is carried out in Sections 3.2 and 3.3, respectively. In the case of
the forecasting techniques review, it should be noted that most of the fe predictors
available in the literature are adapted from studies focused on wave elevation η

prediction, which is a wider topic. Therefore, not only short-term fe forecasting
techniques are reviewed in Section 3.3, but also short-term η forecasting strategies.
Finally, it should be clarified that, in this thesis, only short-term η or fe forecasting
is addressed, which differs from mean sea water level [178], significant wave-height
[44] or, more generally, sea-state forecasting [153]. Sea-state forecasting consists of
predicting wave statistics, for time horizons ranging from 1 to 48 hours, as opposed to
short-term wave elevation forecasting, which predicts η a few seconds into the future.
The reader interested in sea-state forecasting is referred to [153] for a comparison
between methods based on meteorological models and time series-based approaches,
for significant wave-height forecasting.

3.2 Excitation force estimation

For the sake of clarity, the fe estimation strategies reviewed here are separated into
three groups, depending on the measurements they use. To this end, the first set
of estimators only consider wave elevation measurements to estimate fe, while the
estimators belonging to the second group only consider measurements of the device
motion (χ, χ̇, and/or χ̈). Finally, the third group of estimation strategies consider
both device motion, and pressure measurements measured over the hull of the device.

3.2.1 Estimators using η measurements

The first estimation strategy, which only considers η measurements, is based on the
convolution product between the wave elevation η and the excitation force kernel ke,
as shown in Equation (2.37). In spite of the simplicity associated with obtaining the
fe estimate by solving a convolution product, this estimator has three main drawbacks,
which hampers its implementation in a real sea scenario:
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1. The excitation force kernel ke is non-causal [54]. Hence, future η values (at the
device location) are required in order to estimate the instantaneous fe acting
on the device and, therefore, η must be predicted. For the prediction, the
required prediction horizon time thor depends on the causalisation time (tcaus) of
ke(t). The causalisation time is the time that ke(t) has to be shifted, to move
all the non-zero values to positive t values; i.e. ke(t) = kcaus

e (t + tcaus), with
a sufficiently large tcaus so that kcaus

e (t) = 0 for any t < 0. In practice, tcaus

depends on the geometry (and the size) of the device under analysis.
2. For non-axisymmetric bodies, ke will be different, depending on the wave

direction. Therefore, in a real sea-state scenario, the different directional
components of η need to be known (or estimated) to estimate fe.

3. Obtaining reliable η measurements in a real, multi-directional, sea scenario is a
non-trivial task [5]. In fact, for floating devices, it is not possible to measure η
at the WEC location, for obvious reasons. Therefore, it has to be estimated
based on other measurable quantities from the device, or η measurements taken
in the near proximity of the WEC (as explained in Section 3.3).

The estimator that only uses η measurements to compute the fe estimate is further
exemplified in Figure 3.2. It is shown that, using only past η measurements, the
estimator first predicts future η values and then computes an estimate of the excitation
force by solving a convolution term defined by the excitation force kernel ke.

Estimator

Wave
predictor e

ehor

Figure 3.2: Diagram of a fe estimator that uses wave elevation measurements to compute
the excitation force estimate.

Due to its estimation principle, the strategy based on solving a Convolution with Pre-
dicted Wave Elevation is referred to as CPWE hereinafter. Despite the aforementioned
drawbacks, the CPWE strategy is used in [83] and [84] to successfully estimate fe

in real tank tests, for a 0.15m radius and 0.25m draft cylinder. Due to the small
scale of the device, the required casualisation time is around 1 s, for which an AR
model gives reasonably accurate predictions of η, using only past values. However,
by way of example, it should be noted that the causalisation time required for a 5m
radius and 10m draft cylinder is ≈6 s, for which, depending on the sea state, an AR
model may not provide an accurate enough η prediction. In [84], the η measurements
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are obtained by measuring η on a sensor placed laterally with respect to the WEC,
perpendicular to the wave direction, where the wave measurement can be assumed
equal to η at the WEC location, since unidirectional waves are considered.
In [25], the CPWE strategy is used to estimate not only actual, but future, values of fe

(between 8 and 24 s in the future), for a floating WEC subject to multidirectional waves.
To this end, the prediction of η is carried out using up-wave information, provided by
a Doppler radar positioned at the WEC location, using an Ensemble Kalman Filter
(EnKF). Thus, the predicted η is used to estimate the actual and future fe, which is then
used to calculate the optimal control force f opt

pto , using Model Predictive Control (MPC).
Generally, it can be stated that the accuracy of the fe estimate, using the CPWE
strategy, depends on both the accuracy of the η prediction, and the precision of ke. ke

can be calculated via the inverse Fourier transform of the frequency response function
of the excitation force F̂e(ω) which, in turn, can be computed using BEM codes, as
for the example shown in Figure 2.6 (c) and (d); or it can be directly identified from
physical or numerical wave tank tests, as shown in [78].

3.2.2 Estimators using WEC motion measurements

Omitting the use of η, the following estimation techniques require WEC motion
measurements only to estimate fe. Given the similarities between the estimation
strategies which use motion measurements, they can all be described by the diagram
shown in Figure 3.3. The only possible difference between the generic diagram and
the strategies introduced in this subsection are the required measurements, which do
not necessarily have to be the full set of three (position, velocity, and acceleration), as
exemplified in Figure 3.3. It is shown that the observer estimates both fe and motion
of the WEC and, by use of the error in the estimate of the WEC motion (the motion
estimate is compared with the real motion information), the fe estimate is corrected.

Estimator

Observer
system

e+

-

Figure 3.3: Example of a fe estimation diagram that uses motion measurements from the
WEC to compute the fe estimate.

The first strategy, introduced in [121], considers fe as an unknown input to the
system, and estimates the force based exclusively on the device motion measurements,
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using a Kalman Filter (KF). The position and velocity of the device (along with its
corresponding fe) are estimated and compared to the measured position and velocity
which, based on internal model principle [66], provides a surrogate measure of the
accuracy of the fe estimate. Therefore, the accuracy of the obtained fe estimate
depends on how accurate the model, used in the KF, represents the actual WEC.
Since the dynamical model used to describe fe is given by a Random Walk (RW)
model, this strategy is termed KFRW. The KFRW strategy is also used in [190], in
order to validate the estimator proposed in that study.
While the KFRW estimator uses a RW model to describe the fe dynamics, the
KFHO estimator uses a KF, in conjunction with a Harmonic Oscillator (HO) model,
to describe the dynamics of fe. This is the most commonly used excitation force
estimation strategy in the literature. In [71, 106], the KFHO strategy is used along
with a fe predictor to illustrate how the estimated fe can be used to predict future
excitation force values, to be used for control purposes. Additionally, [105] proposes
an extension of [106], where an approach for the calculation of the best parameters
for the KFHO estimator, based on an optimisation process, is introduced. In [100],
the KFHO estimator is used, in wave tank tests, to obtain a fe estimate to apply
observer-based control to a scaled Wave Star device [109]. The KFHO approach is
used, along with a MIMO model of a WEC array in [138]2 and [193], to estimate
the excitation force of different bodies of an array.
In [71, 105], a modification of the KFHO estimator is included, where the HO model
is described by time-varying frequencies, allowing for estimation of the dominant
frequencies of fe. Since, for the treatment of time-varying frequencies, an Extended
KF (EKF) needs to be employed, this strategy is hereinafter referred to as EKFHO.
It should be noted that, in [71, 105], the researchers conclude that there is no
significant improvement in performance using the EKFHO estimator, compared to
the KFHO strategy. In addition to estimating the frequency of the instantaneous
fe, Fusco et al. [70] adapt the EKFHO approach to also estimate its instantaneous
amplitude, which is required by their controller. A further extension is presented
in [116], where the amplitude, frequency, and phase of the different components
of the fe signal are estimated.
Also considering fe as an unknown input, the Receding Horizon Estimation (RHE)
strategy estimates the excitation force without assuming any dynamical model for
fe, employing a receding horizon approach [121]. The authors of [121] claim that
avoiding a dynamical model for fe improves the obtained results. To this end, at
each receding window, fe is estimated by minimising a Quadratic Programming (QP)

2Note that the array expansion, along with the obtained estimation results, of [138] are shown in
Chapter 7.
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problem or, if no constraint for the device motion or control force is considered, the
QP problem can be solved analytically.
Abdelrahman et al. [5] introduce the Fast Adaptive Unknown Input Estimation
(FAUIE) strategy, which attempts to ensure fast and accurate estimation of fe, by
using proportional and integral terms of the state estimation error. The observer,
which is designed by solving a set of Linear Matrix Inequalities (LMIs), is based on a
fault estimation technique and considers nonlinear Lipschitz systems, which can be
used to account for nonlinearities in the WEC device. In [5], the obtained fe estimate
is used as a reference signal for the proposed tracking control system.
The authors of the FAUIE present another estimation strategy, termed the Unknown
Input Observer (UIO) [3]. The UIO strategy is designed by solving a set of LMIs, to
robustly estimate the excitation force, along with other system states, while considering
model uncertainties. Such an estimator is also used in [84] where, as in [3], fe is
estimated along with the velocity of the device, using measurements of the WEC
position and the electric current of the PTO.
Coe et al. introduce, in [29], the Unified Linear Input & State Estimator (ULISE), which
can be considered as a generalisation of the KF for systems with unknown inputs [187].
While a standard KF is composed of two stages (a time update and a measurement
update) [32], the ULISE approach has a third stage, to account for estimation of the
unknown input. Two variants of the ULISE strategy are presented in [29], one using
only WEC motion information and another one using pressure measurements. For the
estimator using pressure measurements, a model that relates total pressure to fe is
required which, in [29], is identified through wave tank tests (as detailed in [14]).
Using position and velocity measurements, the Adaptive Sliding Mode Observer
(ASMO) strategy estimates fe using an adaptive sliding mode observer [190]. The
authors of this approach claim that the observer is robust to model uncertainties
and that the estimate convergence time is low. In [190] and [191], the ASMO is
compared to the KFRW and KFHO estimators, respectively, and, in both studies,
the ASMO is shown to outperform the KF-based strategies.

3.2.3 Estimators using motion and pressure measurements

Among the set of estimators using measurements of both device motion and pressure
over the WEC hull, the first strategy is termed EKFPS, since it uses an EKF along with
Pressure Sensors measurements [1, 2]. Here, fe estimation is carried out recursively
by an EKF, using measurements of device position and pressure on the WEC hull. fe

is then modelled as the integration of the excitation pressure over the wetted WEC
surface (Swet in Figure 2.4), which assumes that fe is given only by the Froude-Krylov



44 3.3. Excitation force and η prediction

force, neglecting the diffraction forces (see Equation (2.29)). Note that the EKFPS
estimator is also described by the diagram shown in Figure 3.3, if only position χ(t)
and pressure p(t) measurements are considered (as opposed to position, velocity,
and acceleration of the device).
The final estimation technique found in the reviewed literature is the Pressure
Acceleration Displacement Estimation (PADE), proposed in [84]. As shown in Figure
3.4, PADE estimates fe by subtracting all hydrodynamic forces (estimated using the
measured WEC motion), other than fe, from the total wave force (fw), which can be
calculated by integrating the pressure over the wetted surface of the WEC [84].
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Figure 3.4: Diagram describing the PADE estimation strategy, as shown in [84].

3.3 Excitation force and η prediction

As mentioned in Section 3.1, most of the short-term forecasting strategies developed
for wave energy applications deal with forecasting of η, rather than fe. However, the
strategies for η prediction can also be applied, in an analogous mode, for the prediction
of fe. In fact, the only studies that directly predict fe, namely, [69, 103, 120, 138]
and [163], use forecasting techniques that have been previously developed for short-
term η forecasting as, for example, in [67]. Therefore, in order to provide a more
comprehensive review of the short-term forecasting strategies developed for wave
energy applications, this section focuses on the approaches developed for short-term
η forecasting, although the studies that predict fe are also mentioned.
In the literature, two main approaches are found for short-term η forecasting [67]. The
first method predicts future η values at the WEC location, based on measurements
taken at one or more points located at a certain distance from the WEC, as shown in
Figure 3.5(a). The number of measurement points, required to obtain an accurate
prediction, depends mainly on the directional spreading of the incoming waves and,
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for unidirectional sea-states, a single up-wave measurement point would lead to a
deterministic prediction of η [115].
The second method, shown in Figure 3.5(b), uses only past measurements at the
WEC location to predict η; that is, considering the measurements of η as a time
series, future values can be predicted as a function of past values. From a hardware
requirement point of view, the second method is simpler, mainly because it uses only
measurements from the WEC itself, while the first method requires more equipment
to measure η at different points. However, knowledge of up-wave information may
improve the prediction, compared to that achieved by using only past measurements
taken at the WEC location.

Measuring
points

Predicted
wave

WEC

Incoming waves

(a) Using distant measurements.

Measuring
point

Predicted
wave

WEC

Incoming waves

(b) Based on the measurements of a single point.

Figure 3.5: Schematic of the two main methods to forecast free surface elevation: (a)
using distant measurements and (b) based on the measurements of a single point.

Since several prediction strategies can be found in the literature for the two the
methods shown in Figure 3.5, both methods are reviewed separately in the subsequent
sections. To this end, Section 3.3.1 reviews the strategies using up-wave measurements,
while the forecasting strategies that consider only past η measurements taken at the
WEC location are mentioned in Section 3.3.2.

3.3.1 Strategies using up-wave measurements

Starting with the strategies using up-wave measurements, most of the approaches
in the literature do not consider multidirectional waves, with the exception of [25]
and [115]. In [25], an EnKF is used to predict the wave elevation at the WEC
location, using wave elevation data in the vicinity of the WEC recorded with a Doppler
radar. The strategy used in [115], which uses information of the wave spectrum,
should theoretically lead to the optimal prediction of η, as explained in Section 6.2.1
for the unidirectional wave case.
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Regarding the strategies using up-wave measurements, but without considering multi-
directional waves, three different prediction strategies are found in the literature. The
first two predictors are based on using a Finite Impulse Response (FIR) model [57, 114,
130, 131, 169], which only considers up-wave information, or using an AutoRegressive
with eXogenous variables (ARX) model [114, 130, 131, 138], which considers both
up-wave measurements and past η values at the WEC location. The third strategy
decomposes the wave elevation into individual frequencies using the Fast Fourier
Transform (FFT), propagates each frequency component using the dispersion relation,
and reconstructs η at a different temporal and spatial point, as shown in [85, 86, 179].

3.3.2 Strategies using only past measurements

Regarding the methods that consider only past η (or fe) measurements taken at
the WEC location, shown in Figure 3.5(b), a number of forecasting approaches
have been proposed as, for example, grey models [102, 104], cyclical models [114],
sinusoidal extrapolation with an EKF [67], neural-networks [103], Direct Multi-Step
(DMS) models [59, 139], ARMA models [76, 140], orthogonal basis function models
[162], Gaussian process models [165] or, the most commonly used approach, the
AR model [68, 69, 84, 120, 176].
In [67], a comparison between different prediction strategies (cyclical models, sinusoidal
extrapolation using EKF, AR, neural networks, ARMA and particle filters) is carried
out, and the simple AR model is found to achieve the most accurate predictions
for the case of low-frequency swell waves, which are the most energetic waves and,
thus, offer the most potential for wave energy conversion. In fact, since [67] was
published, several researchers that propose new prediction strategies compare their
results with those obtained using an AR model, usually concluding that there is no
significant improvement with respect to the AR [114, 130, 162, 166]. However, even
though Fusco and Ringwood [67] conclude that using an ARMA model does not
result in any significant improvement with respect to the AR model, in [76], the
authors claim that the predictions obtained using an ARMA model are more accurate
than those obtained using an AR model.

3.4 Conclusions

After reviewing the state-of-the-art of the estimation and prediction of excitation
force (or η in the case of prediction) for wave energy applications, it is possible
to identify several areas for which further investigation is required. Some of these
areas were addressed by the author during the course of the PhD, and compose
the main contributions of this thesis.
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• Given the large number of published excitation force estimation strategies,
knowledge of their relative strengths and weaknesses is important and, to
the author’s knowledge, such a comprehensive comparison has not yet been
performed. Reviews of different fe estimators have been presented in [71, 84, 121]
and [190]; however, these existing reviews only consider a maximum of three
different estimation strategies. Additionally, most of the methods are evaluated
using different sea data, making quantitative comparison impossible. Therefore,
a critical and fair comparison of all estimation strategies available in the literature
(11 strategies in total) is carried out, which is presented in Section 5.1.

• In Section 3.3.2, some inconsistency within the η forecasting results obtained in
[67] (AR model) and [76] (ARMA model) is reported. To clarify the identified
inconsistency and determine the advantages and disadvantages of the two
approaches under the same conditions, a critical comparison of the AR and
ARMA models is carried out in Section 6.1. Real wave data from three different
locations is used in the comparison to test the models under realistic conditions.

• In [67], the AR model is found to be one of the most accurate η predictors. To
assess the capabilities of the AR model for wave energy applications, an analysis
of the performance of the AR models is carried out in Section 6.2. To this end,
two accuracy limits for the theoretical best achievable prediction are used to
evaluate to what extent the AR model can be improved.

• Finally, given that the objective of estimating and forecasting the excitation
force is to provide an input to optimal control strategies, it is important to know
the sensitivity of such an optimal control strategy to the accuracy of the fe

estimate and forecast. Thus, Chapter 8 studies how the fe estimation/forecasting
errors, which are reported in Chapters 5 and 6, affect the performance of a
receding-horizon moment-matching-based optimal control strategy.
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As introduced in Section 2.2.4, several methods can be found in the literature that
attempt to approximate the radiation convolution term of Cummins’ equation (Equation
(2.36)), which accounts for the memory effects of the fluid. Among the different
identification utilities, the Finite Order Approximation by Moment-Matching, or
FOAMM, toolbox is, to the author’s knowledge, the most recent one. The following
section (briefly) introduces the theory behind FOAMM, along with an application case.
Note that, for brevity, the details of the structure, organisation, characteristics,
operation modes, and options of the toolbox, along with a step-by-step example and
some using recommendations are given in Appendix A.
A comparison between FOAMM and the other available radiation convolution ap-
proximation utilities is detailed in Section 4.2. Finally, in Section 4.3, an application
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case of the extension of the moment-based identification strategy for MIMO systems,
which is yet not included in the FOAMM toolbox, is presented.

4.1 Finite-Order Approximation by Moment-Matching

The identification application FOAMM is based on recent advances in model order
reduction by moment-matching, which has been developed over several studies (see,
for example, [8, 161]), and is able to compute a parametric model of both the radiation
convolution term and the complete force-to-velocity WEC dynamics (wave excitation
force to device velocity) [47]. The main characteristic of the moment-matching strategy
is that the identified parametric model exactly matches the frequency response of
the target system, at a set of user-selected frequencies. Additionally, this moment-
based strategy preserves some of the physical properties of the identified model,
such as input-output stability.
In the following subsections, the theoretical background behind the moment-based
strategy, along with an application case, are given.

4.1.1 Moment-based theory

For an extensive discussion on the specific underlying mathematical principles, the
interested reader is referred to [47]. First, the theory of the force-to-velocity approxima-
tion is defined and, then, the theory of the radiation convolution term approximation.
Similar to other available identification utilities, the FOAMM toolbox is developed for
SISO systems and, therefore, when referring to the WEC equations of Section 2.2.3,
it should be noted that a WEC with a single DoF is considered.

4.1.1.1 Force-to-velocity approximation

Since the development of model order reduction by moment-matching theory is
based on a state-space representation of the target system, Equation (2.36) needs
to be re-written in a more suitable structure, for which the following state-space
representation is proposed:

ẋMM(t) = AMM
ss xMM(t) +BMM

ss fMM
ext (t), (4.1a)

yMM(t) = CMM
ss xMM(t), (4.1b)

where xMM(t) = [χ(t), χ̇(t)]ᵀ ∈ R2 is the state-vector of the continuous-time model
and yMM(t) = χ̇(t) ∈ R1 the output of the system, assuming velocity as the measurable
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output of the device. Since the radiation convolution term is non-parametric, at this
point, it is included as one of the inputs of System (4.1), fMM

ext (t) ∈ R, as

fMM
ext (t) = fe(t)−

∫ t

−∞
kr(t− τ)χ̇(τ)dτ, (4.2)

while the matrices AMM
ss ∈ R2×2, BMM

ss ∈ R2 and CMM
ss ∈ R2 are given by

AMM
ss =

[
0 1

−M∗Sh 0

]
, BMM

ss =
[

0
M∗

]
, CMM

ss =
[
0
1

]ᵀ
, (4.3)

respectively. Note that if the WEC under analysis has any other linear stiffness or
damping term, it should be included in the definition of System (4.1), to allow for an
identification of the complete force-to-velocity dynamics. The input fe is expressed
as a signal generator, written in implicit form as

ẋMM
e (t) = AMM

sg xMM
e (t), (4.4a)

fe(t) = CMM
sg xMM

e (t), (4.4b)

where xMM
e (t) ∈ Rnss , AMM

sg ∈ Rnss×nss , CMM
sg ∈ Rnss and the triple

(
CMM

sg , AMM
sg , xMM

e (0)
)

is assumed to be minimal1. The matrix AMM
sg can be written, in a real block-

diagonal form, as

AMM
sg =

βMM⊕
i=1

[
0 ωi
−ωi 0

]
, (4.5)

where nss = 2βMM, with βMM > 0 the number of interpolation frequencies, and the
matrix CMM

sg is chosen so that
(
CMM

sg , AMM
sg

)
is observable. In Equation (4.5), the

symbol ⊕βMM

i=1 stands for the direct sum of βMM matrices. Note that each ωi > 0
represents a desired interpolation frequency for the moment-matching-based model
reduction process, i.e. a frequency where the transfer function of the parametric model
exactly matches the transfer function of the target system.
Following the theory developed in [47], the family of models (parametrised on GMM)
for the force-to-velocity response of the target WEC, achieving moment-matching at
the set of frequencies F = {ω1, ..., ωβMM}, can be described as

H̃F :

Θ̇MM(t) = (AMM
sg −GMMCMM

sg )ΘMM(t) +GMMfe(t),

θMM(t) = V MMΘMM(t),
(4.6)

1The minimality of the triple
(
CMM

sg , AMM
sg , xMM

e (0)
)
implies the observability of

(
CMM

sg , AMM
sg
)

and the excitability of
(
AMM

sg , xMM
e (0)

)
[129].
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where θMM(t) ≈ χ̇(t), and V MM represents the so-called moment-domain equivalent
of the velocity of the device χ̇(t) [47], which can be computed using the frequency-
domain data, obtained by BEM solvers, as

V MM = CMM
e ΦMM, (4.7a)

ΦMM =
[(
Inss + φMMRMMᵀ

)−1
φMM

]ᵀ
, (4.7b)

φMM = (Inss ⊗ CMM
ss )

(
AMM

sg ⊕̂AMM
ss

)−1
(Inss ⊗−BMM

ss ). (4.7c)

In Equation (4.7), the symbol ⊕̂ denotes the Kronecker sum [21] and RMM ∈ Rnss×nss

is a block-diagonal matrix defined by

RMM =
βMM⊕
i=1

[
real (Kr(ωi)) imag (Kr(ωi))

−imag (Kr(ωi)) real (Kr(ωi))

]
, (4.8)

where Kr is defined as shown before in Equation (2.40). It should be noted that the
model of System (4.6) has the same dimension of the final finite order parametric
model, nss = 2βMM. In order to better understand the concept of family of models,
Figure 4.1 shows the frequency response of different models contained in the same
family, along with the target frequency response. It can be observed that all the
frequency responses coincide at the interpolation frequency (≈2 rad/s).
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Figure 4.1: Example of a family of models, along with the target frequency response
(dashed-black line), and the interpolation frequency (orange dot).

The additional flexibility provided by GMM, can be exploited to arbitrarily assign the
eigenvalues of the reduced order model of System (4.6). In FOAMM, the set of desired



4. Radiation convolution term approximation 53

eigenvalues is chosen within an optimisation formulation, which minimises the Euclidean
distance between the device force-to-velocity frequency response H(ω), shown in
Equation (2.35), and the frequency response of the parametric family of Equation (4.6)
H̃(ω) which, for the set of frequencies F , can be obtained from the transfer function

H̃F(s) = V MM
[
sInss − (AMM

ss −GMMCMM
sg )

]−1
GMM. (4.9)

Note that the frequency-dependent device parameters Ar(ω) and Br(ω) are calculated
at a finite number of user-defined frequencies, using BEM solvers. However, the
approximation of the parametric model can be computed on a reduced (also user-
selected) frequency range, with a frequency step of ∆ω, and lower and upper bound
frequencies of the range given by ωl and ωu, respectively. As further discussed in
Section 4.1.2, the definition of such a frequency range depends explicitly on the
application under analysis. Defining the complex-valued vectors Hfr and H̃fr as,

Hfr =
[
H(ωl) H((ωl + ∆ω)) · · · H((ωu))

]
,

H̃fr =
[
H̃F(ωl) H̃F((ωl + ∆ω)) · · · H̃F((ωu))

]
,

(4.10)

respectively, the proposed optimisation procedure to assign the eigenvalues ΣMM
opt

of the parametric model of System (4.6) can be formulated using least-squares
optimization, via:

ΣMM
opt = arg min

ΣMM
‖Hfr − H̃fr‖2

2, (4.11)

where the elements of the set ΣMM
opt are chosen to have a negative real part, so

that System (4.6) is internally stable.

4.1.1.2 Radiation convolution term approximation

Since the radiation convolution term represents an LTI system by itself, with the
velocity of the device χ̇ as input, an analogous procedure to the one presented for
the force-to-velocity identification can be applied to such a system. To this end, the
velocity can be expressed as a linear signal generator, as shown for fe in System (4.4),

ẋMM
χ̇ (t) = AMM

sg xMM
χ̇ (t), (4.12a)

χ̇(t) = CMM
sg xMM

χ̇ (t). (4.12b)

Thus, as in System (4.6), a family of models can be defined for the convolution term
subsystem, that achieve moment-matching at the set of frequencies F , as

K̃rF :

Θ̇MM(t) = (AMM
sg −GMMCMM

sg )ΘMM(t) +GMMχ̇(t),

θMM(t) = Y MM
K ΘMM(t),

(4.13)
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where, for the radiation convolution term approximation, θMM(t) ≈ f c
r (t), and the

moment-domain equivalent of the output (radiation convolution force), is now given as
Y MM
K = CMM

sg RMM. Finally, the new GMM can be obtained solving the following
optimisation procedure

ΣMM
opt = arg min

ΣMM
‖Krfr − K̃rfr‖2

2, (4.14)

where, as shown in Equation (4.10), the vectors Krfr and K̃rfr can be obtained from
the frequency response Kr(ω) (defined as shown in Equation (2.40)) and from the
frequency response of the identified model, respectively.

4.1.2 Application Case Study

To illustrate the performance of the moment-matching-based identification method,
the float body of an OPT-like (Ocean Power Technologies) [112] full-scale heaving
point absorber WEC is selected as application case, which is shown in Figure 4.2.
The hydrodynamic coefficients Dr(ω) and Ar(ω), computed using the BEM solver
WAMIT, along with the force to velocity and the radiation convolution frequency
responses H(ω) and Kr(ω), respectively, are shown in Figure 4.3.

1.5m
1.5m 3m

6m

9.5m

SWL

Figure 4.2: Sketch of the float of an OPT-like device, with the considered dimensions.

It can be seen in Figure 4.3 that the hydrodynamic coefficients have been computed
over a frequency range from 0.01 to 10 rad/s. However, ocean peak periods are
usually between 3 and 16 s [145], which implies that the frequency range of the
input of the system, lies, approximately, between 0.4 and 2.1 rad/s. Therefore, by
choosing a frequency range from ωl =0.3 rad/s and ωu =3 rad/s for the frequency domain
identification method, it can be ensured that the identified models will accurately
represent the target system for all the relevant input frequencies.
The irregular waves, considered in this application case, are generated from a
JONSWAP spectrum (Hs = 2m, Tp = 8 s, and γ = 3.3). As shown in Figure
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Figure 4.3: Device characteristics: (a) radiation damping, (d) radiation added-mass, force-
to-velocity frequency response H(ω) ((b) magnitude, (e) phase), and radiation convolution
frequency response Kr(ω) ((c) magnitude, (f) phase).

4.4, all the non-zero values of the spectrum lie in the frequency range selected
to approximate the parametric model, which is highlighted with a white area in all
the following graphs of this section.

rad s

m
 s

Figure 4.4: JONSWAP SDF with Hs = 2m, Tp = 8 s, and γ = 3.3.

4.1.2.1 Force-to-velocity parametric model identification

In this subsection, the results obtained for the model order reduction of the force-to-
velocity frequency response H(ω) are discussed. After the frequency range is selected,
which is done by inspecting the spectrum of the input, depicted in Figure 4.4, the
first step of the moment-matching-based identification technique is to select a set of
suitable interpolation frequencies. A sensible choice for a first interpolation point can
be made by inspecting H(ω) (Figures 4.3 (b) and (e)): the resonant frequency of
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the device represents a key interpolation point, which, in this case, is approximately
2.3 rad/s. Figure 4.5(a) shows the target frequency response of the WEC H(ω),
computed with the hydrodynamic coefficients, along with the frequency response of
the parametric model obtained by applying the moment-matching technique H̃{2.3}(ω).
It can be immediately observed that the approximated model exactly matches the target
frequency response at the chosen interpolation point (2.3 rad/s). Furthermore, when
choosing three interpolation points, the approximation of H(ω) improves significantly,
as illustrated in Figure 4.5(b).
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(a) Approximation using a single interpolation
frequency (orange dot). MAPE≈0.25.
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(b) Approximation using three interpolation fre-
quencies (orange dots). MAPE≈0.002.

Figure 4.5: Force-to-velocity frequency response computed with the target frequency-
domain hydrodynamic coefficients and the moment-matching parametric model frequency
response for (a) one and (b) three interpolation frequencies (orange dots).

Figure 4.6 shows the time-domain response of the reduced order model H̃{1,1.8,2.3}
for irregular waves, along with the steady-state response computed from H(ω) for
the same wave input. It can be observed that, after the transient response, the
steady-state behaviour of the approximated model converges to the target steady-state
output. Note that, since FOAMM is a frequency-domain identification method, it can
only guarantee steady-state matching for a set of user selected frequencies, and not
transient behaviour. However, if required, such transient behaviour can be shaped
with an appropriate selection of the internal dynamics of the computed model.

4.1.2.2 Radiation impulse response parametric model identification

In this subsection, the moment-matching identification framework is applied to
obtain a parametric form for the radiation kernel Kr(ω), as defined in Equation
(2.40). Figure 4.7(a) shows the Bode diagram of the radiation convolution frequency
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Figure 4.6: Comparison between the time-domain output of the reduced order model
H̃{1,1.8,2.3}(ω) (solid-blue), and the force-to-velocity frequency response H(ω) (dashed-
black).

response computed from the frequency-domain hydrodynamic coefficients and the
obtained parametric model frequency response considering a single interpolation
point K̃r{1.75}(ω). From Figure 4.7, the improvement on the approximation accuracy
when considering three interpolation points (Figure 4.7(b)), as opposed to a single
approximation frequency (Figure 4.7(a)), can be observed.
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(a) Approximation using a single interpolation
frequency (orange dot). MAPE≈0.63.
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(b) Approximation using three interpolation fre-
quencies (orange dots). MAPE≈0.004.

Figure 4.7: Radiation impulse frequency response computed with the target frequency-
domain hydrodynamic coefficients and the moment-matching parametric model frequency
response for (a) one and (b) three interpolation frequencies (orange dots).

As mentioned in Section 2.2.4, the frequency response of the radiation kernel has a
set of particular properties [148] which, ideally, the identified parametric model should
preserve. Among the implication of those physical properties, the transfer function of
the device has the following structural characteristics. To begin with, since the impulse
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response kernel of the radiation should tend to 0 (limt→∞ kr(t) = 0), the first property
of the radiation subsystem is that it should be input-output stable. Furthermore, since
the radiation frequency response is 0 when ω tends to 0 or infinity (limω→0Kr(ω) = 0
and limω→∞Kr(ω) = 0, respectively), the obtained model should have a zero at the
origin, and be strictly proper. Figure 4.8(a) depicts the pole-zero map of the transfer
function of the approximated model obtained using three interpolation frequencies. It
can be seen that such a parametric model displays all the desired properties: a zero
in the origin, one pole more than the number of zeros (therefore, is strictly proper),
and all the poles have a negative real part (the model is stable).
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(a) Pole-zero map of K̃r{0.8,1.75,2.6}(ω), where
the set si indicates the set of poles of
K̃r{0.8,1.75,2.6}(ω).
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(b) Nyquist diagram of K̃r{0.8,1.75,2.6}(ω).

Figure 4.8: (a) Pole-zero map, and (b) Nyquist diagram, of the moment-matching
parametric model of the radiation force kernel K̃r{0.8,1.75,2.6}(ω).

The last, but no less important, of the properties of the radiation convolution subsystem
is passivity. Provided that the results obtained from the BEM solver are accurate,
Kr(ω) should be passive and so should K̃r(ω). To demonstrate that the models
approximated by the moment-matching technique are usually inherently passive, Figure
4.8(b) depicts the Nyquist diagram of K̃r{0.8,1.75,2.6}(ω). It is shown that the real-part
of the approximated frequency response is always positive and, therefore, the system
is passive (the reader is referred to [97] for a comprehensive demonstration on the
passivity conditions for a linear system). Note that passivity is not explicitly ensured
by FOAMM; however, as discussed in [48], a nonlinear constraint can be added to
the optimisation process defined in Equation (4.14) to explicitly guarantee passivity,
which will be included in FOAMM in the future.
In Figure 4.9, the quality of the time-domain response of the approximated model is fur-
ther exemplified, where the similarities of both radiation impulse responses, computed
using the target Kr(ω) and the reduced order model K̃r{0.8,1.75,2.6}(ω), are shown.
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Figure 4.9: Comparison between the radiation impulse response computed with the target
frequency-domain data and the impulse response of K̃{0.8,1.75,2.6}.

From Figures 4.5 and 4.7, one can notice that, for the same model order, the
approximation error obtained for H(ω) is usually lower2 than that obtained for Kr(ω).
This can be reasoned by the fact that the dynamics of the radiation convolution
system are absorbed by the force-to-velocity dynamics of the device [47].
Additionally, as shown in System (2.41), two states more have to be added to the
radiation convolution SS model in order to define a SS model that characterises the
complete WEC dynamics, while the force-to-velocity SS model represents the complete
WEC system. Therefore, considering the two extra states, needed to express the
complete force-to-motion dynamics of the device, in addition to the higher order,
usually required to accurately parametrise Kr(ω) as opposed to H(ω), using the
force-to-velocity mode of FOAMM represents a more sensible choice than using
approximating the radiation convolution subsystem. However, it should be noted that
the choice of the approximation mode (force-to-velocity or radiation subsystem) of
FOAMM highly depends on the application case. For example, even though low-order
force-to-velocity SS models are optimal for WEC motion simulation due to their
computational requirements, they may not be valid for some optimal control strategies,
for which an accurate definition of the radiation convolution system is required.

4.2 Comparison of identification methods

In order to show the comparative performance of FOAMM, this section provides a
critical comparison, both in the frequency and time domain, between the different
utilities available to identify parametric models of radiation convolution subsystems,
namely, FDI toolbox, BEMIO application, and Prony’s method, which have been

2Such difference is more clear for the example provided in Section A.2, where an order two SS
system is enough to characterise the complete force-to-velocity dynamics, while (at least) 4 states
are necessary to approximate the radiation subsystem.
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previously introduced in Section 2.2.4. The methods are compared in terms of
approximation quality, model order, and preservation of the physical characteristics of
the radiation subsystem. To cover a broad range of application cases and highlight
potential shortcoming of identification methods, a total of six different WEC systems
is considered.

4.2.1 Radiation subsystem parameterisation utilities

In this subsection, the options that the different radiation convolution subsystem
parameterisation utilities, currently available in the literature, comprise are introduced.
It should be noted that the underlying theory of each different method is kept to
minimum herein and, therefore, the reader is referred to the relevant references
(mentioned in each subsection). Additionally, the different utilities are introduced in
order of release date, starting with the earliest strategy3.

4.2.1.1 FDI toolbox

This software runs in Matlab, and it requires the user to have the commercially
available signal processing toolbox in order to operate it. However, as explained in
[149], alternative functions can be implemented by the user in order to avoid using
the signal processing toolbox. The application can be downloaded for free from [172].
The FDI toolbox requires the user to provide the vectors containing the frequency-
domain hydrodynamic coefficients Ar(ω) and Br(ω), along with a vector containing
the corresponding set of frequencies ω. Additionally, the infinite-frequency added
mass µ∞ and a structure containing information about the options of the software
can also be defined.
The FDI toolbox allows the user to choose a desired frequency range over which to
perform the parametric approximation and to remove any outliers in the frequency
data. Such option aims to remove any possible information that the user considers
unrealistic, as could happen for irregular frequencies [143].
Subsequently, the FDI toolbox explicitly calls the Matlab function invfreqs to identify
the system. Invfreqs identifies a continuous-time transfer function defined as

K̃rfdi(s) = bfdi(1)s(nnum
ord ) + bfdi(2)s(nnum

ord −1) + · · ·+ bfdi(nnum
ord + 1)

afdi(1)s(nden
ord ) + afdi(2)s(nden

ord−1) + · · ·+ afdi(nden
ord + 1)

, (4.15)

where the scalars nnum
ord and nden

ord are the orders of the numerator and denominator,
respectively, with nnum

ord < nden
ord to ensure the obtained parametric model is strictly

3Note that Prony’s method is introduced at the end of this subsection since there is no specific
application for wave energy that applies such method.
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proper. To identify the numerator and denominator coefficients, bfdi and afdi re-
spectively, a nonlinear LS fitting optimisation technique is considered in the FDI
toolbox. As shown in [149], three different methods can be followed to solve such
a nonlinear optimisation problem

• Linearise the optimisation problem and solve a LLS problem.
• Solve an Iterative LS (ILS) problem.
• Use the linear LS solution to initialise a Nonlinear LS (NLS) problem (solved

using a Gauss-Newton method).

The FDI toolbox automatically estimates the final order of the approximation, by
linearly increasing the model order and computing the corresponding approximation
error, as a function of both the approximated and the target radiation added mass, as
well as damping coefficients. Once this approximation error falls below a predefined
threshold, or the maximum order (specified by the user) is reached, the software stops
increasing the order and the obtained model output is plotted along with the target data.
As output, the FDI toolbox returns the numerator and denominator coefficients of the
estimated transfer function for the radiation force subsystem, as well as the estimate of
µ∞ (if it was not supplied by the user). Thus, in order to obtain the SS representation
of the radiation impulse response, the user needs to compute a realisation of the
obtained transfer function (for example, by computing any canonical realisation [167]).

4.2.1.2 BEMIO toolbox

In contrast to the FDI toolbox, the BEMIO toolbox identifies the parametric model
of the radiation convolution term using time-domain data, i.e. kr(t). There are
both Matlab and Python versions available. However, since the conversion
from Python to Matlab was specifically made to implement BEMIO in WEC-
Sim (which only runs in Matlab), the Python-based BEMIO code is no longer
supported by the developers. It is important to highlight that BEMIO does not
require any other additional toolbox to run, and can be downloaded for free from
[62] for Matlab or from [63] for Python.
BEMIO is capable of reading the output files from NEMOH, WAMIT, or AQUA [92]
and converts them into a standardised format. After pre-processing the hydrodynamic
data, the utility computes kr(t) following Ogilvie’s relations, shown in Section 2.2.3,
which is then used to compute the SS model of the radiation impulse response. As
mentioned in Section 2.2.5, the BEMIO application computes the realisation of the
radiation SS system following the Hankel singular value decomposition procedure, as

Γkr(t) =
[
UH

1 UH
2

] [ΣH
1 0

0 ΣH
2

] [
V Hᵀ

1
V Hᵀ

2

]
≈ UH

1 ΣH
1 V

Hᵀ

1 , (4.16)
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where Γkr(t) is the Hankel matrix [150] defined using kr(t). Then, the matrices UH
1

and V Hᵀ

1 are partitioned into three matrix blocks as

UH
1 =


UH

11

UH
12

UH
13

 V Hᵀ

1 =


V H

11

V H
12

V H
13

 . (4.17)

Finally, the matrices of the radiation convolution SS model are given by

Assr = ΣH−
1
2

1

[
UH

11

UH
12

]ᵀ [
UH

12

UH
13

]
ΣH−

1
2

1 , Bssr = ΣH−
1
2

1 V H
11,

Cssr = UH
11ΣH−

1
2

1 , Dssr = kr(0).
(4.18)

The only mode offered by BEMIO is the automatic order selection mode, where the
user selects the maximum order, and the accuracy threshold for the fit, of the SS
realisation. With this approach, the code increases the model order until the selected
maximum order is reached. Though the computational time, required by the toolbox
is relatively low, the implemented method is inherently sub-optimal with regard to
its computational capabilities, given that the software always computes the totality
of the parametric models ranging from order 1, up to the final order.

4.2.1.3 FOAMM toolbox

FOAMM is based on the moment-matching-based identification strategy developed
in Section 4.1. It is developed for Matlab and it does not require any additional
toolbox to run. As the FDI toolbox, FOAMM identifies the parametric models in
the frequency-domain (using Kr(ω)), and it requires the user to provide the vectors
containing the frequency domain hydrodynamic coefficients.
Unlike the other two toolboxes, FOAMM can not only identify a parametric model of
the radiation convolution subsystem, but also the complete force-to-velocity dynamics
of the device which, as shown in Section 4.1.2, have some advantages with respect
to parametrising the radiation convolution term.
Note that detailed information on the theory behind FOAMM and on the options that
FOAMM provides can be found in Section 4.1 and Appendix A, respectively.

4.2.1.4 Prony’s method

As mentioned in Section 2.2.4, even though there is no specific toolbox developed
to apply Prony’s method in wave energy systems, this method is included in this
comparison, since it is broadly used in the community [11, 79]. Regarding the algorithm,
it can be coded by the user (as performed for the current comparison), or the Matlab
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built-in function prony.m can be used. Prony’s method assumes that the radiation
impulse response kr(t) can be expressed as

k̃r(t) =
nss∑
i=1

αp(i)e−βp(i)t, (4.19)

where αp and βp are the amplitude and phase components, respectively, and can
be obtained by solving two linear LS problems, as explained in [90]. Then, the
matrices of the SS model are defined as

Assr = diag(−αp(1),−αp(2), · · · ,−αp(nss)),

Bssr =
[
βp(1) βp(2) · · · βp(nss)

]ᵀ
,

Cssr = 11,nss .

(4.20)

4.2.2 Test cases

The geometries considered for the comparison performed in this section are depicted
in Figure 4.10 along with all relevant dimensions. The first geometry (G1), shown
in Figure 4.10(a), is a CETO-like device [58], a device similar to the float of the
OPT WEC [112] (used for the application case of Section 4.1.2) is chosen for the
second geometry (G2), as illustrated in Figure 4.10(b). The third geometry (G3)
is an ISWEC-like device [19], depicted in Figure 4.10(c), the fourth (G4) and fifth
(G5) devices are a spherical and a cylindrical device, shown in Figures 4.10(d) and
(e), respectively. Finally, the last geometry considered (G6) is a CorPower-like device
[170], shown in Figure 4.10(f).
G1 and G2 are chosen due to the complexity of their frequency responses, while
G3 and G6 are chosen because they are based on well-known state-of-the-art WECs.
Finally, even though G4 and G5 are not based on any real WEC prototype, and their
frequency responses are not especially complex, they are chosen since, due to their
geometrical simplicity, they are widely used devices within the researchers.
Table 4.1 shows the selected DoF, mass m, Sh, µ∞, and Dpto (which defines the PTO
force as fpto(t) = Dptoχ̇(t)) of the different geometries considered in this section. The
units of m, Sh, µ∞, and Dpto are given in kg, N/m, kg, and Ns/m, respectively, except
for the pitching device G3, for which the units are kgm, Nm/rad, kgm, and Nms/rad,
respectively. Note that Dpto is only considered to reduce the convergence time of the
simulated results of this comparison, and that the values of Dpto are selected to be
proportional to the magnitude of the radiation damping Dr(ω) of each device.
The frequency responses of the different geometries are shown in Figure 4.11. As
depicted in Figure 4.11(a), the frequency response of G1 has two resonance frequencies
(at, approximately, 1 and 2 rad/s), which increases its complexity when it comes to
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(f) CorPower-like device (G6), with the con-
sidered dimensions.

Figure 4.10: Sketches of all the devices considered in this chapter, where the blue-dotted
line in each sketch represents the SWL.

parametric approximation, as shown in [47]. Similarly, the moon-pool of G2 also makes
the identification of a parametric model for the radiation subsystem more complex [135],
as depicted in Figure 4.11(b). Finally, even though the frequency responses of G3, G4,
G5, and G6 appear to be ’simpler’ than those of the previous cases, it is attractive to
evaluate the capabilities of the identification applications to approximate the radiation
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Table 4.1: Considered DoF, m, Sh, µ∞, and Dpto values of the different geometries.

G1 G2 G3 G4 G5 G6
DoF 1 3 5 3 3 3
m 1.79·106 4.79·104 4.62·106 3.35·104 8.05·105 3.35·105

Sh 0 4.28·105 1.51·107 1.97·105 1.55·106 5.56·105

µ∞ 4.39·105 4.46·104 1.69·106 1.68·104 2.46·105 5.74·104

Dpto 4·104 1·104 1·105 4·103 2·103 5·103

force frequency response of such devices, since they are widely used geometries.
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Figure 4.11: Radiation impulse response kernel kr for the different geometries considered.

Finally, Figure 4.12 depicts the impulse response function kr(t) for each of the six
different geometries, obtained through Ogilvie’s relations, as shown in Section 2.2.3. It
can be seen how, for G3, G4, G5, and G6, the impulse response function diminishes
to 0 in approximately 10 s while, for G1 and G2, keeps oscillating until around 30 s and
50 s, respectively. Additionally, from the oscillations of each kr(t), G4 has the slowest
dynamics, followed by G6 and G5, G3, G1, and G2 with the fastest dynamics.
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Figure 4.12: Radiation impulse response kernel kr for the different geometries considered.

4.2.3 Comparison results

In this subsection, the results obtained by the different identification toolboxes are
discussed. First, an analysis is carried out on how the different options of each
application affect the obtained results. Finally, the comparison of the results obtained
by the different toolboxes is provided, along with a discussion of such results.
It should be noted that the accuracy of the frequency, or time, responses of the identified
models is given in terms of the Normalised Root Mean Square Error (NRMSE),
which is defined as follows:

NRMSEf =

√√√√√∑ndat
i=1

(
f(i)− f̃(i)

)2

∑ndat
i=1 f(i)2 , (4.21)

where ndat is the number of points used to evaluate the approximation error, f repre-
sents the target frequency response Kr(ω) or the impulse response kr(t), depending
on the context, and f̃ stands for the approximated f .

4.2.3.1 FDI toolbox

The first step when using the FDI (and FOAMM) toolbox is choosing the frequency
range within which the approximation is computed. As explained in Section 4.1.2,
the choice of the frequency range depends on the input ocean waves frequencies.
Since the BEMIO application or the Prony’s method do not have the option to
select the frequency range over which the approximation is computed, the complete
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frequency range (shown in Figure 4.11) is selected for the approximation by FDI
and FOAMM toolboxes. Note that this is also the frequency range over which
the NRMSEKr(ω) is computed.
Figure 4.13 depicts the accuracy of the obtained approximating model for the different
identification methods contained in the FDI toolbox, and different model orders, for
the six geometries under analysis. For the comparison, the maximum model order is
set to 14, since the obtained parametric models of order 14 are (usually) sufficiently
accurate for all the cases, and considering higher orders does not bring any significant
improvement. It can be observed that the LLS method gives, overall, the highest
errors. Furthermore, even though the ILS and NLS methods give similar results, it can
be seen that for G2, G4, and G5, for some model orders, the performance obtained by
the NLS is worse than that obtained by the ILS. Furthermore, since the NLS is based
on solving a nonlinear LS problem, it requires higher computational time than the other
two methods. Therefore, the ILS is the identification method used in the reminder of
this comparison, which is also the method recommended by the developers of the FDI
toolbox in [149], due to its good trade-off between computational speed and accuracy.
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Figure 4.13: NRMSEKr(ω) for different model orders using the different identification
methods of the FDI toolbox, for all the geometries considered.

Additionally, from Figure 4.13, it can be observed that the results obtained for G1
and G2 are, overall, less accurate than the results obtained for the other geometries;
which is due to the complexity of their frequency responses, shown in Figure 4.11(a)
and (b), respectively.
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4.2.3.2 BEMIO toolbox

Since, as mentioned in Section 4.2.1, BEMIO has no other user-defined option than the
fitting accuracy threshold and the maximum model order, the quality of the obtained
model depends only on the calculation of kr(t). In fact, since the time-length of the
kr(t) functions is given by the time for which the function is approximately 0 (as
shown in Figure 4.12), the only variable that can affect the parametric model obtained
by BEMIO is the time-step4 used for the definition of kr(t).
Figure 4.14 shows, for G15, how the accuracy of the approximation varies when
considering different time-steps for the definition of kr(t). As shown in Figure 4.14(a),
the accuracy improvement in the time-domain (NRMSEkr(t)) is not significant when
reducing the time-step to less than 0.04 s (all the lines overlap behind the 0.04 s
line). However, as shown in Figure 4.14(b), the approximation error of the frequency
response of the obtained parametric model (NRMSEKr(ω)) is, indeed, improving when
reducing the time-step more than 0.04 s. Therefore, the time-step selected for the
definition of kr(t) is 0.01 s, since further reducing the time-step does not improve the
accuracy of the approximated model in the time or frequency domain.
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Figure 4.14: NRMSEkr(t) and NRMSEKr(ω) for different model orders and time-steps using
the BEMIO toolbox for G1.

4.2.3.3 FOAMM toolbox

For the FOAMM toolbox, the most characteristic frequencies of each frequency
response are preselected, which are shown in Table 4.2. In fact, the interpolation

4Note that both the time-length and the time-step of kr(t) are strongly related with the frequency
discretisation considered for the calculation of Kr(ω). Therefore, the hydrodynamic data used for
the analysis of this section is defined until a sufficiently high frequency, in order to ensure that the
time-step of the definition of kr(t) can be reduced consistently, guaranteeing that the FFT of Kr(ω)
is calculated correctly [128].

5Note that only the results obtained for G1 are shown, because similar accuracy improvement
(with respect to the time-step) is obtained for the other devices.
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frequencies shown in Table 4.2 correspond to the peak values of the frequency responses,
shown in Figure 4.11. Since the frequency response of G1 and G2 have two peaks,
two different interpolation frequencies are preselected; while a single interpolation
frequency is preselected for the rest of the devices. For the model orders that require
more interpolation frequencies than those specified in Table 4.2, the automatic mode
of FOAMM is utilised to optimise their position. Note that this identification method
is selected for FOAMM since, for this case, the value of the interpolation frequencies,
apart from those specified in Table 4.2, is not important.

Table 4.2: Interpolation frequencies considered by FOAMM for the different devices.

G1 G2 G3 G4 G5 G6

FKr(ω)
1 1.75 1.37 1.78 0.78 1.1
2 0.8

4.2.3.4 Prony’s method

As for the BEMIO toolbox, the only variable that can affect the approximation for
Prony’s method is the time step used to define kr(t). However, unlike for the BEMIO
toolbox, using small time-steps leads to numerically ill-conditioned LS problems (as
discussed in [56] and [96]) and, therefore, to incorrect parametric models. Such an
ill-conditioning problem arises from the fact that, to solve the LS problem, a matrix
(generated using the values of kr(t)) needs to be inverted and, when decreasing the time-
step, the differences between the values of the rows/columns of the regression matrix
decreases and becomes nearly rank-deficient. Thus, in order to avoid such numerical
instabilities while, at the same time, having a sufficiently accurate discretisation
ok kr(t), the time-step considered to compute the radiation impulse response used
for Prony’s method is set to 0.04 s. Note that the results obtained using Prony’s
method could be potentially improved (for some model orders) by further reducing
the time-step used to compute kr(t). However, as explicitly discussed before in this
subsection, reducing the time-step can lead to numerically ill-conditioned LS problems
(especially for high model orders), potentially generating convergence problems in
the corresponding minimisation procedure.

4.2.3.5 Comparison of the approximation applications

As shown in Figure 4.15, in the frequency domain, the results obtained by FOAMM and
FDI are similar for all the cases analysed, especially for G3 and G4, illustrated in Figures
4.15(c) and (d), respectively. Additionally, overall, FOAMM and FDI obtain a lower
NRMSEKr(ω) than BEMIO and Prony’s method, which stems from the fact that both
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FDI and FOAMM identify the radiation convolution parametric model by minimising
the error in the frequency-domain. It should be highlighted that, while the results
obtained using the BEMIO application are slightly less accurate than those obtained
using FOAMM and FDI, one can notice that the results obtained by applying Prony’s
method are significantly less accurate than those obtained by the other three strategies.

Model order

N
R
M

S
E

(a) NRMSEKr(ω) for different
model orders, considering G1.

Model order

N
R
M

S
E

(b) NRMSEKr(ω) for different
model orders, considering G2.

Model order

N
R
M

S
E

FDI
BEMIO
FOAMM
Prony

(c) NRMSEKr(ω) for different
model orders, considering G3.

Model order

N
R
M

S
E

(d) NRMSEKr(ω) for different
model orders, considering G4.

Model order

N
R
M

S
E

(e) NRMSEKr(ω) for different
model orders, considering G5.

Model order

N
R
M

S
E

(f) NRMSEKr(ω) for different
model orders, considering G6.

Figure 4.15: NRMSEKr(ω) for different model orders, for the different toolboxes and
geometries.

In Figure 4.15, it is shown that the obtained NRMSEKr(ω) for G3-6 is below 0.05 for
orders higher than 4, for all the utilities except Prony’s method. On the contrary, for G1-
2, apart from the fact that a model order of 6-8 is required to get a NRMSEKr(ω) which
is below 0.05, the obtained accuracy is, overall, worse than that obtained for G3-6.
Figure 4.16 shows the error on the obtained parametric model impulse response kr(t)
for the different identification utilities, model orders and geometries. Since Prony’s
method and BEMIO applications identify the parametric model by minimising the
error between target and obtained impulse response function, the error obtained by
such methods should decrease considerably with respect to the error shown in Figure
4.15. However, it is noteworthy that the results obtained using Prony’s method do
not improve as expected. This is not the case for the BEMIO toolbox, which obtains,
overall, the lowest NRMSEkr(t) among the different strategies. Regarding the FDI and
FOAMM toolboxes, the obtained NRMSEkr(t) are, overall, worse than the NRMSEKr(ω)

shown in Figure 4.15. This can be reasoned by the fact that these strategies minimise
the error between target and approximated frequency responses, rather than kr(t).
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Figure 4.16: NRMSEkr(t) for different model orders, for the different toolboxes and
geometries.

In particular, among the results obtained with the FDI toolbox, there are some cases
where the obtained NRMSEk(t) is particularly high, which happens especially for high
model orders or for the geometrically simplest devices (G4-6). This has been already
reported in [149], where the developers specify that, if the order of the proposed
model is too large, there will be over-fitting and, therefore, the approximation error
will increase. In such cases, the obtained parametric model is unstable, which leads
to divergence of the impulse response and, thus, the obtained NRMSEkr(t). It should
be noted that, as mentioned in [149], such over-fitting problems can be avoided
by selecting a different frequency range , which can be selected using the built-in
frequency-range-selection option of the toolbox. Finally, as shown in Figure 4.15, the
NRMSEkr(t) obtained using BEMIO decreases faster for G3-6 than for G1-2, due
to the simplicity associated, this time, with the radiation impulse response kernels
of G3-6, shown before in Figure 4.12(c)-(f).
Figure 4.17 shows the NRMSEχ̇(t) obtained by the different toolboxes, for each of
the geometries analysed, which is the error between the velocity obtained by the
simulation of the device motion using the identified parametric models (constructing
the WEC system as in Equation (2.41)) and the steady-state response computed
using the frequency domain data. Such simulations are carried out using irregular
waves described by a JONSWAP spectrum (Tp = 6 s, Hs = 1.5m and γ = 3.3)
and the results are averaged using 50 random simulations (computed as explained
in Section 2.1.2), in order to get representative results.
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As explained for Figure 4.16, there are some model orders for which, due to over-fitting,
the result obtained from the FDI toolbox diverges. However, it should be noted that,
for all the geometries where over-fitting happens, the NRMSEχ̇(t) obtained by the
FDI toolbox for the highest model order before the divergence, is as low (or lower)
as the NRMSEχ̇(t) obtained by the other methods. Unsurprisingly, as for figures 4.15
and 4.16, the NRMSEχ̇(t) obtained using Prony’s method is the highest among the
different toolboxes. Note that, for G6, the parametric models of order 12 and 14
obtained using Prony’s method are unstable since, as the FDI toolbox, stability is not
enforced in the employed Prony’s method formulation. Finally, the results obtained
by both BEMIO and FOAMM are similar for all the model orders and geometries
analysed obtaining, always, stable parametric models. It should be highlighted that,
even though all the SS models obtained by both FOAMM and BEMIO are stable,
FOAMM is the only toolbox that, as explained in Section 4.1, explicitly enforces
stability in the identification process.
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Figure 4.17: NRMSEχ̇(t) for different model orders, for the different toolboxes and
geometries analysed.

4.2.3.6 Preservation of physical properties

In this subsection, the models identified in Section 4.2 are analysed, to assess to
what extent the different toolboxes are able to preserve the properties of the radiation
subsystem. The first property analysed is input-output stability. As mentioned before,
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both FOAMM and BEMIO obtain always stable SS models6, however, stability is not
preserved for some of the cases when using the FDI and Prony’s methods.
Even though the FDI toolbox is the only utility enforcing the parametric model to
have a zero at the origin, the models obtained by BEMIO and FOAMM always have a
zero close to the origin; on the contrary, most of the models obtained using Prony’s
method do not have a zero at the origin. It should be noted that, even though is
not implemented in FOAMM yet, it is possible to enforce a zero at the origin within
the moment-based formulation, as shown in [48]. Regarding the property that the
model should be strictly proper, all but the BEMIO toolbox are able to preserve it,
which being the only utility that employs a feed through matrix Dss on the final SS
model, does not provide strictly proper models.
Finally, even though none of the toolboxes explicitly guarantee passivity, BEMIO and
FOAMM are the ones obtaining the higher number of passive models (around 75%
of the cases). In fact, for the case of the FOAMM toolbox, a particular selection
of the interpolation frequencies can be used to obtain a passive model, since there
exists a relation between the interpolation frequencies, the spectral zeros of a system,
and its passivity which, as for the zero at the origin, can be enforced (though is not
implemented within the FOAMM toolbox yet) [48].

4.3 MIMO approach

As mentioned in Section 2.2.6, commercial WECs are likely to be deployed in arrays
to minimise the Levelized Cost of Energy (LCOE) associated with WECs [159].
Additionally, most of the WECs are not expected to move in a single DoF, due to the
cost related to building a structure to restrict the other DoFs. However, the majority
of the literature only considers the SISO WEC case and the researchers that consider
MIMO WEC cases compute the MIMO SS system as a set of SISO SS systems, where
the different radiation subsystems are identified separately and gathered together
in an augmented SS model [192, 193]. Such multi-SISO WEC systems require a
separate impulse response function for each cross-coupling component (arising from
inter-device and inter-DoF interactions) and, therefore, the number of radiation SS
models increases quadratically with the number of bodies7.
Even though the multi-SISO approach is still computationally more efficient than solving
all the convolutions, the dimension of the final SS system still increases exponentially,
which can hamper global control techniques to the point of being intractable for

6Although FOAMM is the only strategy that explicitly ensures stability.
7Note that it does not increase quadratically with respect to the number of DoF since the

interactions between DoF can be 0 for some cases.
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real-time applications [45]. Additionally, the structure of the SS system obtained by
the multi-SISO approach is suboptimal, since it ignores any connection between the
different subsystems. To address such an issue, an extension of the moment-matching-
based identification framework, presented in Section 4.1, for MIMO systems was
developed in [137] and [49]. The following subsection shows, through an application
example, the advantages of this new MIMO identification strategy compared to the
approach of defining the MIMO WEC SS system as a multi-SISO SS system.

4.3.1 Application case

For the application case showing the advantages of using the MIMO moment-matching
identification approach, the same WEC array system used as an example in Section
2.2.6 is considered, shown in Figure 2.7, with four spherical heaving devices (5m radius
and 5m draft) arranged in a square layout with an inter-device distance, along one
side of the square, of db = 20m. It should be noted that, for the numerical examples
of this subsection, the irregular waves are described by a JONSWAP spectrum with
Tp = 6 s, Hs = 1.5m and γ = 3.3.
To test the MIMO identification strategy, the results obtained using identified
parametric models of different orders are compared. As explained in Section 4.1.2
for the SISO case, the selection of the interpolation frequencies has to be done in a
sensible manner, picking the most representatives frequencies. By way of example,
four different interpolation frequency sets F are considered:

F1 = {1.45}, F3 = {1.45, 1.89, 1.14},

F2 = {1.45, 1.89}, F4 = {1.45, 1.89, 1.14, 2.2}.

Figure 4.18 presents the target force-to-velocity frequency response H(ω) of the
WEC array computed as shown in Equation (2.45), along with the identified frequency
response of the model H̃F1 . In particular, Figure 4.18(a) presents the Bode diagram
for the element {1, 1} (the inner dynamics of the bodies), 4.18(b) the Bode diagram
for the element {1, 2} (the interactions with the direct neighbours), and Figure 4.18(c)
the bode diagram for the element {1, 4} (the interactions between the bodies in
the diagonal). For F1, the interpolation point is chosen as the frequency where the
maximum amplitude peak of the target frequency response occurs (≈ 1.45 rad/s). Even
though the approximation of H̃F1 seems to be poor, especially in the case of the
{1, 4} element, the model is able to capture the most significant dynamics of the
array, as a consequence of the sensible choice of the interpolation point, obtaining
an approximation error of NRMSEH(ω) = 0.24.
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Figure 4.18: Frequency response of the MIMO parametric model considering a single
frequency (dashed line, following the colour code of Figure 2.7) along with the target
frequency domain data (solid-black-line), and the interpolation frequencies (orange-dots).
Obtained NRMSEH(ω) = 0.24.

Similarly, Figure 4.19 shows the approximation results, obtained with the parametric
model that uses the set of interpolation frequencies F4. In this case, the set of inter-
polation frequencies naturally includes F1, and increases the number of interpolation
points by adding the frequency where the second peak occurs (≈ 1.89 rad/s), along
with lower and higher frequency components (arbitrarily chosen). The approximation
error decreases, from H̃F1 to H̃F4 , can be appreciated directly from Figures 4.18
and 4.19, or more precisely from Table 4.3.
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Figure 4.19: Frequency response of the MIMO parametric model considering 4 frequencies
(dashed line, following the colour code of Figure 2.7) along with the target frequency
domain data (solid-black-line), and the interpolation frequencies (orange-dots). Obtained
NRMSEH(ω) = 0.04.
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Figure 4.20 shows the time-domain response of H̃F4 for an irregular wave input. Due
to the layout of the array (and the wave direction βη), the velocity of devices 1 and
2 (Figure 4.20(a)), and devices 3 and 4 (Figure 4.20(b)) are the same. It can be
observed that, in steady-state, the output of the identified MIMO parametric model
coincides with the motion results obtained from the target model frequency response.
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Figure 4.20: Comparison between the time-domain outputs of the identified parametric
model H̃F4 (dashed-light-blue) and the steady-state response computed from H(ω) (solid-
dark-blue). Note that only two graphs are shown since, due to the layout of the array, the
velocity of devices 1 and 2 (a), and devices 3 and 4 (b) are the same.

Finally, Table 4.3 shows the results of the numerical evaluation of each of the
computed models in terms of the following characteristics:

Dim Dimension of the identified force-to-velocity parametric model.
NRMSEH(ω) Approximation error computed against the target MIMO WEC array

frequency response (for ω ∈ [0.3,2.5] rad/s).
NRMSEχ̇(t) NRMSE computed against the target steady-state responses averaged

over 10 different simulations.
N-Time The time required8 for the time-domain simulation normalised against the

fastest model, in this case the one computed with H̃F1 .

The results of NRMSEH(ω), shown in Table 4.3, represent the mean of theNRMSEH(ω)

obtained for the different cross-coupling components ofH(ω). Similarly, theNRMSEχ̇(t)

is the mean of the approximation error in the velocity χ̇(t) of the four bodies.
As mentioned in Section 4.1.2 for the SISO case, the dynamics of the radiation
force subsystem often require a higher order approximation, than the force-to-motion
dynamics, to successfully represent its relevant features. Therefore, as can be observed
from Table 4.3, the multi-SISO model (of dimension 104) obtains similar force-to-
motion results to those computed by H̃F1 (of dimension 8), while requiring more
than twice the computational time required by H̃F1 .

8Measured using the Matlab functions Tic and Toc.
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Table 4.3: Results obtained with the different identified MIMO and the multi-SISO
parametric models of the force-to-velocity of the WEC array.

Model Dim NRMSEH(ω) NRMSEχ̇(t) N-Time
multi-SISO 104 0.2007 0.0998 2.3670
H̃F1 8 0.2391 0.1043 1
H̃F2 16 0.0914 0.0658 1.0070
H̃F3 24 0.0552 0.0233 1.0581
H̃F4 32 0.0383 0.0126 1.0951

Additionally, it should be highlighted that, when considering a parametric form
for each of the radiation force subsystems, the dimension of the model increases
quadratically with the number of bodies of the array while, with the proposed MIMO
identification strategy, the order increases linearly. Therefore, the differences shown
in Table 4.3 would be more significant when considering arrays larger than the one
considered for this example.

4.4 Conclusions

One of the main conclusions that can be drawn from this chapter is the importance of
choosing the correct identification mode (force-to-motion or radiation force subsystem)
for each application. As shown in Section 4.1.2, higher order parametric models
are usually required to represent the WEC SS model using the parametric model of
the radiation convolution system, as opposed to directly identifying the complete
force-to-motion dynamics of the device. However, such approach is not optimal
for every application since, even though the obtained force-to-motion dynamics
approximation is correct, it is not guaranteed that the definition of the radiation
force subsystem is accurately described. Thus, while SS models identified using
the force-to-velocity approach are optimal for WEC motion simulation (due to their
computational requirements), identifying the radiation force subsystem separately may
be necessary for some optimal control strategies, for which an accurate definition
of the radiation subsystem is required.
The main argument of some researchers in the literature against identifying the
complete force-to-motion dynamics is that, by identifying the radiation force subsystem
separately, they are able to introduce nonlinearities into the WEC description, such
as nonlinear restoring, Froude-Krylov, or viscous damping forces. However, as shown
in [46], it is possible to include nonlinear terms into force-to-motion parametric
models, as feedback terms, thus obtaining an accurate and computationally efficient
nonlinear representation of WEC systems.
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With regard to the force-to-motion dynamics identification, it is worth to highlight that,
among the parametric identification utilities developed for wave energy applications,
FOAMM is the only one including such an identification mode. Additionally, it
should be noted that, while none of the radiation subsystem identification utilities is
able to preserve all the radiation convolution system properties, the only properties
that FOAMM does not explicitly enforce are passivity and the zero at the origin.
However, as demonstrated in [48], both passivity and the zero at the origin can be
ensured by using a nonlinear optimisation procedure within the moment-matching-
based identification scheme, which will be added to the FOAMM toolbox in the
future, making FOAMM the only identification application capable of preserving all
the physical properties of the radiation system.
Finally, to characterise a WEC array using a SS representation, it is important to
directly identify the MIMO SS model from the complete array MIMO system, as
opposed to compute the MIMO SS model a set of multiple SISO SS systems. The
number of radiation convolution terms increases proportional to the square of the
number of bodies of a WEC array, and so does the number of radiation SISO SS
models required to describe the WEC array MIMO SS system. In contrast, by directly
identifying the WEC array MIMO force-to-motion system, the order of the final model
increases linearly with the number of bodies composing the array, representing, thus,
a more suitable identification method to characterise large WEC arrays.
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5.1 Comparison of excitation force estimators

As introduced in Section 3.2, several excitation force fe estimators (11 strategies
in total) can be found in the literature. Given the large number of fe estimators,
knowledge of the relative strengths and weaknesses of each strategy is important;
however, an exhaustive comparison has not yet been performed. Thus, this section
aims to compare all the different wave excitation force estimation techniques available
in the literature. Nevertheless, comparing different estimators is not a trivial task.
Since, as explained in Section 3.1, the fe on a moving body is an unmeasurable
quantity, the definition of an unbiased reference for the comparison poses a challenge.
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Therefore, a CFD simulation is employed to measure the excitation force, from pressure
measurements in the hull, used as a benchmark for the comparison presented in this
section. As further explained in Section 5.1.3, since the description of the model used
for the CFD simulation differs from the model used in the estimators, using CFD
allows the definition of an unbiased fe reference and, therefore, the execution of a
critical and fair comparison of the different estimation techniques. A 5m diameter
heaving sphere point absorber WEC (see Figure 4.10(d)) is chosen as the case study
for the presented comparison. The device is exposed to irregular waves, and a nonlinear
hydraulic PTO [142], with a resistive controller, is implemented in the model.
It should be noted that, even though CFD is used to simulate the motion of the device,
the considered case reduces the motion of the WEC, such that the simulation can
be considered linear. This is necessary since the only way to define an unbiased fe

reference is to perform a diffraction test (as further explained in Section 5.1.3) which,
as introduced in Section 2.2.2, only holds for linear systems. This is consistent with the
fact that most of the excitation force estimators only consider linear WEC dynamics
and, therefore, considering nonlinear WEC dynamics would hamper the application of
most of the estimation strategies. However, it should be noted that, if required, some
of the estimation strategies can directly accommodate non-linearities on the WEC
description. In particular, the estimators able to consider non-linear WEC models
are the EKFHO, FAUIE, EKFPS, and PADE strategies. Additionally, the KFRW,
KFHO, and ULISE estimators can be extended to account for a non-linear WEC model
by using an EKF. Finally, it should be further noted that the UIO strategy can be
designed to be robust to model uncertainties, which could be enough to account for
the differences between linear and non-linear WEC model.

5.1.1 Estimation strategies

The theory behind every different fe estimation technique is introduced in the following.
Information on the theory of the different estimation strategies is kept concise, for
brevity. The interested reader is referred to the references, provided for each strategy,
for a more comprehensive description of the approaches.
The SS model describing the WEC device is defined as in System (2.41). Since
most of the estimation strategies are defined for SISO systems, a single-DoF WEC is
considered. Moreover, even though the default outputs of System (2.41) are position,
velocity, and acceleration of the device, matrices Css and Dss are changed according
to the measurements (within the set of position, velocity, and acceleration) used
by the different estimators. The discrete-time equivalent of System (2.41) (which
can be computed as shown in [26]) is represented using the superscript {·}d, with
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a discrete-time index k (t = kts) and a sampling period ts. Finally, as explained in
Section 5.1.3, in order to dampen the motion of the device and keep the simulation
of the comparison relatively linear, a resistive controller proportional to the WEC
velocity is considered. Therefore, a damping coefficient for the PTO force, defined
as fpto(t) = Dptoχ̇(t), has to be added to the SS model describing the WEC system,
in particular, to the Ass matrix of Equation (2.42).

5.1.1.1 Convolution with Predicted Wave Elevation - CPWE

As shown in [84], having identified the excitation force kernel ke (which, as explained
in Section 3.2.1, can be obtained from BEM codes or from wave tank tests), the
estimated fe(t) for the CPWE strategy (f̃CPWE

e (t)) is given by

f̃CPWE
e (t) =

∫ t+tcaus

0
kcaus

e (t+ tcaus − τ)η∗(τ)dτ, (5.1)

where kcaus
e (t+ tcaus) = ke(t) is the casualised ke(t) and, as explained in Section 3.2.1,

tcaus is sufficiently large so that kcaus
e (t) = 0 for any t < 0 or, in other words, is causal.

In Equation (5.1), η∗(τ) refers to past values of η(t) for τ < t, instantaneous η(t)
for τ = t, and predicted values of η(t) for τ > t. Equation (5.1) is defined using the
causalised kernel kcaus

e , instead of ke, as in Equation (2.37), since the causalised kernel
can be approximated using a finite order parametric model which, as shown in [84],
reduces the computational burden associated with evaluating the convolution product.

5.1.1.2 Kalman Filter with Random Walk - KFRW

As shown in [121], the dynamical model describing the excitation force, which is
given by a RW model, is defined as

fKFRW
e (k + 1) = fKFRW

e (k) + εfe(k), (5.2)

where εfe(k) is a random number (independently and identically distributed in size).
This random walk model assumes that, at each sampling time k, fKFRW

e (k) takes a
random step (εfe) away from its previous value, at k − 1. As mentioned in Section
3.2, this strategy is based on the internal model principle and, therefore, the model,
describing the excitation force, needs to be included into the WEC system state
space. Thus, the augmented SS model of the WEC system, including the dynamical
description of fKFRW

e (k), is defined as

xa(k + 1) = Ad
axa(k) + εn(k) (5.3a)

y(k) = Caxa(k) + µn(k). (5.3b)
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Here, the subscript {·}a refers to the augmented {·}, xa(k) ∈ R(nss+1), Ad
a ∈

R(nss+1)×(nss+1), and Ca ∈ Rqss×(nss+1) are given by

xa(k) =
[

x(k)
fKFRW

e (k)

]
, Ad

a =
[
Ad

ss Bd
ss

0 1

]
, Ca =

[
Css 0

]
. (5.4)

In Equation (5.4), εn(k) and µn(k) are the process and measurement white-noises,
whose covariance matrices are Qεn and Rµn , respectively. Additionally, Css is modified
in this strategy to obtain just position and velocity as outputs. Once the augmented sys-
tem is described, it is possible to define the linear, discrete-time KF used by KFRW as

Time Update (A Priori) :
x̃−a (k) = Ad

ax̃a(k − 1), (5.5a)
P−kf (k) = Ad

aPkf(k − 1)Ad
a
ᵀ +Qεn . (5.5b)

Measurement Update (A Posteriori) :
Kkf(k) = P−kf (k)Cᵀ

a (CaP
−
kf (k)Cᵀ

a +Rµn)−1, (5.5c)
Pkf(k) = (Inss+1 −Kkf(k)Ca)P−kf (k), (5.5d)
x̃a(k) = x̃−a (k) +Kkf(k)

(
y(k)− Cax̃

−
a (k)

)
. (5.5e)

In Equation (5.5), the superscript {·}− denotes the a priori estimate of {·}. Kkf and
Pkf stand for the Kalman gain and the error covariance matrices, respectively. The
reader is referred to [32] for more information on the KF.

5.1.1.3 Kalman Filter with Harmonic Oscillator - KFHO

The same process introduced for KFRW can be used for KFHO, with an adaptation of
the matrices of the augmented SS model, shown in Equation (5.4), which now include
a HO model (instead of the RW model) to describe the dynamics of fKFHO

e . Thus, the
matrices of the augmented WEC system for the KFHO estimator are now given by:

Ada =
[
Adss Bd

ssC
HO

0 ΩHO

]
, xa(k) =

[
x(k)
Θ(k)

]
, (5.6)

where CHO = 11,nω ⊗
[
1 0

]
, and the matrix 1i,j ∈ Ri×j is a matrix of ones of size

i × j. In Equation (5.6), ΩHO ∈ R2nω×2nω and Θ(k) ∈ R2nω are defined as

ΩHO =
nω⊕
i=1

[
0 ωi
−ωi 0

]
, Θ(k) =

nω∑
i=1

e
nω
i ⊗

[
fKFHO
eωi

(k)
ḟKFHO
eωi

(k)

]
, (5.7)

where fKFHO
eωi

(k) are the different components of the HO model describing fKFHO
e (k),

and ωi are the frequencies of those components, with i = (1, 2, ...nω). Thus, the
estimated excitation force from the KFHO estimator is given by

f̃KFHO
e (k) = CHOΘ̃(k). (5.8)



5. Excitation force estimation 83

It should be noted that, by using a KF, both KFRW and KFHO can optimally
handle the measurement noise (if the measurement noise is Gaussian, which is usually
a good approximation of the noise generated by the sensors in many real-world
applications [133]).

5.1.1.4 Extended Kalman Filter Harmonic Oscillator - EKFHO

As mentioned in Section 3.2, several variations of the EKFHO estimators can be
found in the literature. In particular, the most complete variation is chosen for the
comparison in this work, estimating the amplitude, frequency, and phase of fe [116].
With that, fEKFHO

e is defined using multiple harmonic signals as

fEKFHO
e (t) =

nω∑
i=1

aeisin(ωeit+ φei), (5.9)

where aei , ωei , and φei are the amplitudes, frequencies and phases of the harmonic
signals defining fEKFHO

e .
The only difference between the continuous-discrete EKF1, used by the EKFHO
strategy, and the KF shown in System (5.5), is the Time Update part (Equations
(5.5a) and (5.5b)). In the EKFHO, x̃−a (k) is obtained by propagating the state at
the previous measurement time, x̃a(k − 1), as

˙̃xa(t) = Aax̃a(t) +Baf̃
EKFHO
e (t) + ε(t), (5.10)

where Aa ∈ R(nss+3nω)×(nss+3nω) and x̃a(t) ∈ R(nss+3nω) are defined as

Aa =
[
Ass 0
0 0

]
, x̃a(t) =

[
x̃(t)ᵀ Λ̃(t)ᵀ Ω̃(t)ᵀ Φ̃(t)ᵀ

]ᵀ
. (5.11)

Λ̃(t), Ω̃(t), Φ̃(t) ∈ Rnω are vectors containing the estimates of ae, ωe, and φe,
respectively. The a priori estimate of the covariance matrix P−kf (k), is propagated
from the previous measurement time, Pkf(k − 1), using the following algebraic
Riccati equation:

Ṗkf(t) = Υ(x̃a(t))Pkf(t) + Pkf(t)Υ(x̃a(t))ᵀ +Qεn , (5.12)

where Υ is the Jacobian matrix defined as

Υ(x̃a(t)) =
[
Ass BssΨ(x̃a(t))
0 0

]
, (5.13)

which is evaluated at x̃a(k − 1), as

Ψ(x̃a(t)) =
[
∂fEKFHO

e
∂Λ

ᵀ ∂fEKFHO
e
∂Ω

ᵀ ∂fEKFHO
e
∂Φ

ᵀ]∣∣∣
x̃a(t)=x̃a(k−1)

. (5.14)
1Note that the continuous-discrete EKF combines continuous-time nonlinear models with discrete-

time measurements and, therefore, the notation corresponding to both continuous- and discrete-time
are mixed in the definition of the strategy, as shown in [2] and [32].
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5.1.1.5 Receding Horizon Estimation - RHE

In receding horizon estimation, at every time instant k > nw, fe is estimated by
minimising a QP problem over the receding window (of size nw), as shown in [121].
Since no constraint is considered for the estimator comparison, as mentioned in Section
3.2, the unique analytical solution of the QP problem of RHE can be obtained as:

ξ̃∗(k) = (PRHE + Ψᵀ
sR

RHEΨs)−1
[
SRHEᵀ Ψᵀ

sR
RHEᵀ

] f̃
RHE
e (k − nw)
x̃(k − nw)
Y RHE(k)

 , (5.15)

where RRHE ∈ Rqssnw×qssnw is a diagonal weighting matrix to account for the mea-
surement noise, Y RHE(k) ∈ Rqssnw a vector containing all the values of y from
k − nw + 1 to k (assuming position and velocity as outputs), Ψs =

[
Ψy Φy Γy

]
∈

Rqssnw×(nw+nss+nssnw), and the matrices PRHE ∈ R(nw+nss+nssnw)×(nw+nss+nssnw), Γy ∈
Rqssnw×nssnw , Φy ∈ Rqssnw×nss , Ψy ∈ Rqssnw×nw , and SRHE ∈ R(1+nw)×(nw+nss+nssnw)

are defined as

PRHE =

Λ1 0 0
0 P−1

0 0
0 0 QRHE

 , Γy =


Css 0 · · · 0

CssAss Css · · · 0
... ... . . . ...

CssA
nw−1
ss CssA

nw−2
ss · · · Css

 ,

Φy =


CssAss
CssA

2
ss...

CssA
nw
ss

 , Ψy =


CssBss 0 · · · 0

CssAssBss CssBss · · · 0
... ... . . . ...

CssA
nw−1
ss Bss CssA

nw−2
ss Bss · · · CssBss

 ,

SRHE =
[
Q−1

0 0 0 0
0 0 P−1

0 0

]
, Λ1 =



Q−1
0 + λs −λs 0 · · · 0
−λs 2λs −λs · · · 0

0 −λs 2λs · · · 0
... ... ... . . . ...
0 0 0 · · · λs

 .

(5.16)

P−1
0 ∈ Rnss×nss and QRHE ∈ Rnssnw×nssnw are diagonal weighting matrices, penalising

the error in the state estimate and process noise, respectively, and Q−1
0 ∈ R a scalar,

penalising the error in the fe estimate. The size of the second column of SRHE (which
is full of zeros) is (nss + 1) × (nss + 1), and λs ∈ R is a scalar to exploit the fact
that fe is smooth, which was first considered in [121]. Finally, the value of f̃RHE

e (k) is
given by the nth

w value of the vector ξ̃∗(k) ∈ R(nw+nss+nssnw) of Equation (5.15).

5.1.1.6 Unknown Input Observer - UIO

The UIO strategy, proposed in [3], uses WEC position and PTO current measurements
to estimate fe and χ̇. However, since no PTO current measurements are available in
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the comparison carried out here, the UIO strategy is adapted to use device position
and velocity measurements. Before defining the required observer, the following
augmented system needs to be formulated:

ẋa(t) = Aaxa(t) +Dad
UIO(t, xa), (5.17a)

y(t) = Caxa(t), (5.17b)

where xa(t) ∈ Rnss+2, Aa ∈ R(nss+2)×(nss+2), Da ∈ R(nss+2)×3, and Ca ∈ Rqss×(nss+2)

are defined as

xa(t) =

 x(t)
FUIO

e (t)
ξ∗(t)

 , Aa =

Ass Bss 0
0 0 0
0 0 0

 , Da =

D
∗ 0 0

0 1 0
0 0 1

 ,
Ca =

[
Css 0 Ξ∗

]
, D∗ =

[
0 1

]ᵀ
, Ξ∗ =

[
−2 2

]ᵀ
.

(5.18)

The term dUIO(t, xa) can represent a model disturbance, while ξ∗(t) ∈ Rnsf stands for
any measurement noise or sensor fault, with nsf = 1, for this work, representing
only measurement noise. The following observer is then used to estimate the
augmented state xa(t):

ζ̇UIO(t) =MUIOζUIO(t) + LUIOy(t), (5.19a)
x̃a(t) = ζUIO(t) +HUIOy(t), (5.19b)

where the matrices MUIO ∈ R(nss+1+nsf)×(nss+1+nsf), LUIO ∈ R(nss+1+nsf)×qss , and
HUIO ∈ R(nss+1+nsf)×qss are obtained by solving a set of LMIs. In particular, the
set of LMIs to be solved for the UIO estimator are shown in Equation (5.20). Thus,
the system associated with the error dynamics defined by ex(t) = x(t)− x̃(t) (denoted
ΣUIO
e ) is stable and H∞ performance is guaranteed2, with an attenuation level of

γUIO > 0, i.e. ‖ΣUIO
e ‖∞ < γUIO, if there exists a symmetric positive definite matrix

PL ∈ R(nss+1+nsf)×(nss+1+nsf) and the following LMI constraint holds:he(PLAa −M1CaAa −M2Ca) PLDa Cᵀ
a

? −γUIO
I(qss+1+nsf) 0

? ? −γUIO
Iqss

 < 0, (5.20)

where M1 = PLH
UIO, M2 = PLL1, LUIO = L1 + L2, L2 = (EUIOAa − L1Ca)HUIO,

EUIO = I(nss+1+nsf)−HUIOCa,MUIO = EUIOAa−L1Ca, and ? denotes the symmetric
image components of the matrix.
The two main advantages of the UIO strategy are that the LMIs can be designed
such that the observer is robust against model uncertainties, and that measurement
noise can be accounted for.

2Which means the gain LUIO is designed such that the effect of the exogenous input dUIO on the
estimation error ex(t) is attenuated below certain level γUIO.
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5.1.1.7 Adaptive Sliding Mode Observer - ASMO

The adaptive sliding mode observer, proposed in [190], is defined as

ḣsl(t) = Sh

M∗χ(t) + Crss

M∗xr(t)−
1
M∗ f̃

ASMO
e (t), (5.21a)

ssl(t) = χ̇(t) + hsl(t), (5.21b)
ċsl(t) = sign(ssl(t)), (5.21c)

f̃ASMO
e (t) = M∗

(
Rsl|ssl(t)| 12 ċsl(t) +Qslcsl(t)

)
, (5.21d)

where ssl is the sliding variable and the gains Rsl and Qsl are defined as

Rsl(t) = |χ̇(t)||ssl(t)|, (5.22a)
Qsl(t) = 0.5µslRsl(t) + 0.5µsl2 + 0.5κsl, (5.22b)

respectively, with µsl and κsl as positive scalar values. In Equation (5.21), the radiation
force state vector xr(t) is obtained, as shown in System (2.39), using the measured
device velocity χ̇(t) as input. The main disadvantage of this approach, as for some of
the other estimation strategies introduced before, is that there is no term to account
for the measurement noise and, therefore, the accuracy of the estimated fe can be
significantly affected by such measurement noise.

5.1.1.8 Unified Linear Input & State Estimator - ULISE

As mentioned in Section 3.2, there is a variant of the ULISE strategy using pressure
measurements. However, since the model that relates the total pressure on the
hull and fe would have to be identified from CFD experiments (in [14] the model
is identified through wave tank tests), the estimator using such model would have
an advantage over the other strategies. Therefore, only the ULISE estimator using
motion measurements is employed in this comparison. The three-phase filter proposed
in [29] for the ULISE approach is defined as:

Time Update:
x̃−(k) = Ad

ssx̃(k − 1) +Bd
ssf̃

ULISE
e (k − 1), (5.23a)

P−x (k) = Ad
ssPx(k − 1)Ad

ss
ᵀ +Bd

ssPxfe(k − 1)ᵀAdᵀ + Ad
ssPxfe(k − 1)Bd

ss
ᵀ

+Bd
ssPfe(k − 1)Bd

ss
ᵀ +Qεn , (5.23b)

Ř−(k) = CssP
−
x (k)Cᵀ

ss. (5.23c)

Measurement Update:
Ľ(k) = P−x (k)Cᵀ

ssŘ
−(k)−1

(
Inss −Dss(Dᵀ

ssŘ
−(k)−1Dss)−1Dᵀ

ssŘ
−(k)−1

)
, (5.23d)

x̃(k) = x̃−(k) + Ľ(k)
(
y(k)− Cssx̃

−(k)
)
, (5.23e)

Px(k) =
(
Inss − Ľ(k)Css

)
P−x (k)

(
Inss − Ľ(k)Css

)ᵀ
+ Ľ(k)RµnĽ(k)ᵀ. (5.23f)
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Estimation of unknown input:
Ř(k) =

(
Inss − CssĽ(k)

)
Ř−(k)

(
Inss − CssĽ(k)

)ᵀ
, (5.23g)

Pfe(k) =
(
Dᵀ

ssŘ(k)−1Dss
)−1

, (5.23h)
f̃ULISE

e (k) =
(
Pfe(k)Dᵀ

ssŘ(k)−1
)

(y(k)− Cssx̃(k)) , (5.23i)
Pxfe(k) = −Px(k)Cᵀ

ss

(
Pfe(k)Dᵀ

ssŘ(k)−1
)ᵀ

+ Ľ(k)Rµn

(
Pfe(k)Dᵀ

ssŘ(k)−1
)ᵀ
, (5.23j)

where Px(k) ∈ Rnss×nss , Pfe(k) ∈ R, and Pxfe(k) ∈ Rnss are the covariance matrices
related to the state, fe, and the relation between the state and fe, respectively. Since
only position and acceleration measurements are used by ULISE, only the 1st and
3rd row of Css and Dss, from System (2.41), are considered.

5.1.1.9 Fast Adaptive Unknown Input Estimation - FAUIE

The observer proposed for the FAUIE strategy [5], which uses proportional and integral
terms of the state estimation error, is defined as3:

˙̃x(t) = Assx̃(t) +Bssf̃
FAUIE
e (t)− L1ey(t)− L2ėy(t), (5.24a)

ỹ(t) = Cssx̃(t), (5.24b)

where the estimated excitation force is given by

f̃FAUIE
e (t) = −ΓFAUIEL3C(ėx(t) + σ∗ex(t)), (5.25)

and the output and state errors can be obtained as ey = ỹ − y and ex = x̃ − x,
respectively. ΓFAUIE ∈ R is the user defined learning rate, L2 ∈ Rnss×qss and σ∗ ∈ R
are design parameters, and both L1 ∈ Rnss×qss and L3 ∈ Rqss are obtained by solving
the following set of LMIs:

Π11 Π12 PL 0
? Π22 0 BssPL
? ? −α∗Inss 0
? ? ? Π44

 < 0, (5.26a)

[
ν∗Inss BssPL − L3Css
? ν∗Inss

]
> 0. (5.26b)

Here, Π11 = he(PLAss−YLCss), YL = PLL1, Π12 = γ∗

σ∗
(Cᵀ

ssY
ᵀ

L Bss−Aᵀ
ssPLBss), Π22 =

−2γ∗
σ∗
Bᵀ

ssPLBss + GL
σ∗µ∗

, Π44 = −β∗σ∗

γ∗
Inss , he({·}) = {·}+{·}ᵀ, and {α∗, β∗, µ∗, γ∗} >

0 ∈ R are design parameters. Although the matrix Css of Equation (5.24) is modified
to obtain only position and velocity, measurements of the WEC acceleration are also
needed due to the term ėy. To this end, the observer of Equation (5.24) will give

3Since the model considered in this thesis is linear, the Lipschitz term in [5], accounting for the
nonlinearities, has been removed.
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bounded estimation errors, ex and efe , if positive definite matrices PL ∈ Rnss×nss

and GL ∈ R exist, and the constraints imposed in Equation (5.26) hold while, at
the same time, ν∗ > 0 ∈ R is minimised.
The main drawback of the FAUIE estimator is that there is no term to account for the
measurement noise, which may significantly affect the accuracy of the estimated fe.

5.1.1.10 Extended Kalman Filter with Pressure Sensors - EKFPS

The EKFPS [1, 2], assumes that f̃EKFPS
e is defined as

f̃EKFPS
e (t) = ρg

np∑
j=1

Ss
jnoj

nω∑
i=1

aeie
κeiz

s
jcos(κeix

s
j − ωeit+ φei), (5.27)

where the wavenumber, κei = ω2
ei/g, is calculated as shown in Equation (2.3)4, Ss

j is
the surface area around the sensor j, noj the normal vector to Ss

j, and xs
j and zs

j are
the coordinates of the jth sensor in the x and z axes, respectively. It is also assumed,
for this fe estimator, that the pressure at each sensor can be described as

pj(t) = ρg
nω∑
i=1

aeie
κeiz

s
jcos(κeix

s
j − ωeit+ φei)− ρg(χ(t) + xs

j)−
Crxr(t)
Swet

, (5.28)

and the output vector is given by ỹ(t) =
[
χ̃(t)ᵀ p̃1(t)ᵀ · · · p̃np(t)ᵀ

]ᵀ
, with np

the number of pressure sensors.
The continuous-discrete EKF, used by the EKFPS, differs from that used for the
EKFHO strategy. While the outputs of the EKFHO (χ(t) and χ̇(t)) are part of the
state vector, the output of the EKFPS strategy is given by the nonlinear combination
of the states shown in Equation (5.28). Therefore, the estimation process required
by the EKFPS can be summarised as:

• Propagate the state x̃a, to obtain x̃−a (k) from x̃a(k − 1), using

˙̃xa(t) =


˜̇χ(t)

M∗f̃tot(t)
Brss

˜̇χ(t) + Arssx̃r(t)
0

 , (5.29)

where ftot(t) is the sum of all the forces, including f̃pto(t), f̃EKFPS
e (t), f̃r(t) =

Crssx̃r(t), and f̃h(t), which for the EKFPS is given by

f̃h(t) = −ρg
np∑
i=1

Ss
inoi(χ̃(t) + zs

i ). (5.30)

4Note that this definition of κ only holds for deep water depth which, as introduced in Section
2.1.1, is assumed throughout this thesis.
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• Propagate the covariance matrix to get P−kf (k) using the Riccati equation (5.12).
However, the Jacobian Υ(x̃(t), t), shown in Equation (5.13), is now computed
considering f̃EKFPS

e (t) (instead of f̃EKFHO
e (t)), and the new description of f̃h(t)

(instead of the term Sh of the matrix Ass of Equation (5.11)).

• The Kalman gain is now given by

Kkf(k) = P−kf (k)Ξ̌(x̃−a (k))ᵀ
(
Ξ̌(x̃−a (k))P−kf (k)Ξ̌(x̃−a (k))ᵀ +Rµn

)−1
, (5.31)

where Ξ̌(x̃−a (k)) = δy
δxa

∣∣∣
x̃−a (k)

∈ R(np+1)×(nss+3nω) is the Jacobian matrix of the
output, evaluated using x̃−a (k).

• Finally, update the covariance P−kf (k) and the current state x̃−a (k) using:

x̃a(k) = x̃−a (k) +Kkf(k) (y(k)− ỹ(k)) , (5.32a)
Pkf(k) =

(
Inss+3nω −Kkf(k)Ξ̌(x̃−a (k))

)
P−kf (k). (5.32b)

5.1.1.11 Pressure Acceleration Displacement Estimation - PADE

The last estimation technique considered in the comparison of this section, the
PADE strategy proposed in [84], assumes that the instantaneous excitation force
can be approximated as:

f̃PADE
e (t) = fw(t)− fr(t)− fh(t)− gm, (5.33a)

fw(t) =
np∑
j=1

pj(t)Ss
jnoj , (5.33b)

where pj is the total pressure measured by the jth sensor. Although the product
between the gravitational constant and the mass of the device gm is not included in [84],
it was found that this term is required to cancel out an offset on the total pressure p.
The main disadvantage of PADE is that, since it computes the hydrodynamic forces
directly from the motion measurements, it does not handle measurement noise.

5.1.2 Classification of estimators

From the review of the fe estimators given in Sections 5.1.1.1-5.1.1.11, different
classifications of the estimators can be proposed. A first class distinguishes between
open-loop and closed-loop estimators. While CPWE and PADE are the only open-loop
strategies, the remaining estimators are closed-loop. It can be argued that closed-loop
estimators have an advantage since, due to the feedback mechanism, closed-loop
estimators can better handle possible measurement or process uncertainty (noise).
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Another possible classification is linear vs. nonlinear. Some estimators require a
nonlinear combination of the states to characterise fe. Thus, the group of linear
estimators is composed of the CPWE, KFRW, KFHO, RHE, UIO, ASMO, ULISE,
FAUIE, and PADE strategies, while the EKFHO and EKFPS estimation techniques
are inherently nonlinear.
A final classification relies on the required measurements. Three different groups of esti-
mators can be distinguished via this classification scheme: using η measurements, using
device motion measurements, or using device motion and pressure measurements. The
group of estimators using η measurements includes just the CPWE. The group using
only WEC motion measurement embraces the KFRW, KFHO, EKFHO, RHE, ASMO,
UIO, ULISE, and FAUIE strategies. Using WEC motion and pressure measurements,
the EKFPS and the PADE strategies constitute the last group of this class.
Since the availability of measurement data is defined at the stage of device design
and construction, some measurements, required for the fe estimator, may not be
available and, hence, rule out some strategies. Consequently, Section 5.1.5 follows
the classification based on the required measurements, since this appears to be most
important for the practical implementation of the estimator.

5.1.3 Comparison methodology

To compare the performance of the fe estimators, the calculation of a reference value
for the ‘true’ excitation force is required, to determine the accuracy of each strategy.
However, as mentioned before, the excitation force is, in general, an unmeasurable
quantity for an oscillating device. To date, common practice in the literature for the
determination of a fe reference, is to simply generate a random fe signal or calculate
the signal from η data. By using a (linear or nonlinear) hydrodynamic model for
motion simulation, the corresponding response of the device is determined using the
fe reference signal as an input to the simulation model. fe is subsequently estimated,
from the simulated motion of the device, and compared to the fe reference.
Although this procedure is common practice in the field, an important drawback can
be identified. Assuming that a specific hydrodynamic model is used for the simulation
of the device motion and an identical model is also used within the estimation
strategy, an unbiased comparison of these estimators to those with different underlying
hydrodynamic models is impossible. Therefore, to avoid the use of the same model in
both the WEC motion simulation and the fe estimation stages, a CFD-based Numerical
Wave Tank (CNWT) is employed for motion simulation of the analysed WEC. This
not only decouples the reference definition and estimation stages, but delivers more
realistic results, compared to commonly used hydrodynamic models, since the CNWT
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inherently captures all the relevant nonlinearities by directly solving the Navier-Stokes
equations (Equation (2.6)) [186, 185]. Thus, for the fe reference definition, the
following methodology, adopted from [78, 100] and [121], is used in this comparison:
A set of waves is generated in the CNWT, in which the device is fixed in its equilibrium
position. For this diffraction test case, since the device is not moving, radiation and
hydrostatic forces are zero and the total wave force fw, measured on the device, is
fe. Since fw and, thus, fe is given by the integral of the pressure over the wetted
surface of the device, it can be measured using numerical pressure gauges at specific
locations on the hull of the device. For that, a finite number of numerical pressure
probes is used, to mimic a realistic, physical, test setup. A detailed description of
the CNWT, and the case study, is given in Section 5.1.4.
Using the same input wave series, as for the above described wave diffraction test,
simulations are performed with an unconstrained device, free to move5. From these
simulations, measurements of the required quantities for the different estimators
are taken, i.e. η, WEC motion (χ, χ̇, χ̈), and pressure over the hull of the WEC.
The acquired data are then used in the different fe estimators, and the results are
compared to the fe measured in the wave diffraction tests.
It is important to note that the calculation of fe, obtained from the wave diffraction
test, as a reference for the motion simulation, only holds under linear conditions. For
large amplitude relative motion between the body and η, the excitation force may
become nonlinear, and equality between fe in the wave diffraction, and motion tests,
will not hold since, as explained in Section 2.2.2, linear potential flow assumes small
relative motion between the body and η. To ensure and verify linear behaviour, some
metrics and methodologies are provided in the literature, detailed in Section 5.1.4.
In order to quantify the accuracy of the analysed strategies, the estimation error is
given in terms of the NRMSE (see Equation (4.21)). However, in order to avoid
the estimation transient times, and obtain meaningful results, only the last 40% of
the simulation time (the last 60 s) is considered to compute the NRMSE. Since the
NRMSE is used to quantify both estimation and prediction errors in this section, for
the sake of clarity, in addition to the subscript specifying the variable over which the
error is computed, a superscript is added to specify if the error is computed using
estimated or forecasted data; by way of example, the estimation error of fe is referred
to as NRMSEest

fe , or NRMSEpred
η for the predicted η.

Throughout the comparison, fe is not only estimated using the noiseless measures of η,
WEC motion (χ, χ̇, χ̈), and pressure from the CNWT. The numerical measurements
are artificially polluted, in a post-processing step to the motion simulation, to deliver

5Note that unconstrained here does not necessarily imply motion in all six DoFs, but rather
motion in the design DoFs.
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more realistic characteristics of the input data, simulating real measurement from
physical sensors. In particular, the noise added to the measurement signals is normally
distributed, with zero mean, and standard deviations as specified in Table 5.1.

Table 5.1: Standard deviation of the measurements noise.

Measurement η [m] χ [m] χ̇ [m/s] χ̈ [m/s2] p [Pa]

Standard deviation 0.003 0.003 0.005 0.007 100

5.1.4 Case study

In this section, the case study for the critical comparison of the fe estimators will be
described. As mentioned in the introduction of the comparison, the chosen device
is a heaving sphere point absorber WEC (see Figure 4.10(d)), with a diameter of
5m and a draft of 2.5m. The hydraulic PTO system is modelled using the nonlinear
wave-to-wire model proposed in [142]. Resistive control, with a damping factor of
Dpto = 170 kNs/m, is employed on the PTO system6. The sea state is chosen to be
representative of real sea conditions, with waves generated based on a JONSWAP
spectrum, with Hs = 1.5m, Tp = 8 s, and γ = 3.3. It should be noted that both the
PTO system and the sea state are selected so that the obtained simulation is linear, as
explained in Section 5.1.3. The water depth is set to hwd = 70m (deep water waves),
and the simulation length is 160 s, with a sampling period of ts = 0.01 s.

5.1.4.1 CNWT

Numerical Wave Tanks (NWTs) are commonly used in ocean engineering to analyse
wave-structure interaction [168]. Lower-fidelity NWTs are useful tools for parametric
studies, which require fast computation. Reduction of the computational burden, when
solving the wave-structure interaction problem, is achieved by linearising the governing
equations, which can be carried out using a BEM framework, as shown in Chapter
2. Commonly solving the Laplace equation in a BEM framework, to account for the
wave-structure interaction, and, therefore, requiring relatively modest computational
power, lower-fidelity models cannot fully replicate realistic conditions. In contrast, high-
fidelity CNWTs are able to provide a realistic, numerical, test bench for wave-structure
interaction experiments, but are associated with relatively high computational cost.
However, with the continuing increase in high-performance computing power, CNWTs
for WEC experiments are nowadays more commonly implemented (see review in [184]).

6The damping factor Dpto is optimised to maximise energy absorption via exhaustive search
algorithm [142].
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The CNWT model in this chapter is based on the open-source CFD software Open-
FOAM [182]. The hydrodynamics in the CNWT are captured by solving the incom-
pressible Navier-Stokes equations, introduced before in Equation (2.6), describing the
conservation of mass and momentum. The Volume of Fluid (VoF) method, proposed
by Hirt [91], is used to capture the water wave advection following

∂αwat

∂t
+∇ · (αwatuf) = 0 (5.34a)

Φq
tot = αwatΦq

wat + (1− αwat)Φq
air, (5.34b)

where αwat denotes the volume fraction of water and Φq
{·} is a quantity of the fluid

{·}, such as density or viscosity. The turbulence is modelled using a standard k-ω
Shear Stress Transport (SST) turbulence model [113], with standard wall functions for
the turbulent kinetic energy ke, the turbulence frequency ωt, and the eddy viscosity.
Regarding wave generation and absorption in a CNWT, a range of numerical wave
makers are available [184]. For the present case study, the relaxation zone method
is employed, implemented as in the waves2FOAM toolbox [95]. The relaxation zone
layout is depicted in Figure 5.1(a). The symmetry of the test case is exploited by
implementing a symmetry boundary condition in the domain, which reduces the
computational burden, while retaining the accuracy of the results. A schematic of
the CNWT domain, with all relevant dimensions, is depicted in Figure 5.1(b). For
more details on the spatial and temporal problem discretisation, as well as the mesh
layout, the interested reader is referred to [142].
To measure η, the CNWT is equipped with numerical wave probes. Wave Probe
1 (WP1) is located in line with the device centre, at a distance of 5m in the y
direction, perpendicular to the wave direction. WP2 is located up-wave from the
WEC’s centre, at a distance of 20m. The measurements for the WEC position,
velocity, and acceleration are directly given from the motion solver implemented in
OpenFOAM. For the pressure measurements, numerical pressure probes are positioned
at specific locations on the WEC hull, as illustrated in Figure 5.2.
Although the CNWT is used for the diffraction and motion simulation, BEM hydro-
dynamic coefficients, required by the different estimators, also have to be computed.
This is done using the open-source software NEMOH. Additionally, the SS model,
to approximate the radiation convolution term, has been calculated using FOAMM,
following the method shown in Section 4.1.
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Figure 5.1: (a) Relaxation zone and (b) domain layouts of the considered CNWT, where
the orange dot represents the WEC.
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Figure 5.2: (a) Side- and (b) top-view of the considered WEC, with the locations of the
numerical pressure probes, where the still water line is located at z = 0m.

5.1.4.2 Linearity of the case study

It was stated, in Section 5.1.3, that linear conditions are required in order to use the
fe obtained from the wave diffraction tests as a reference for the case of a moving
WEC. To verify the linearity of the considered case study, the nonlinearity measure
proposed by [144] can be consulted. By comparing the steady-state response of
a model against the best linear approximation, identified through a minimisation
problem, the nonlinearity of the wave-device interaction can be quantified. The
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obtained nonlinearity measure is 0.01 (with a range from 0 to 1) for the case study
at hand, confirming that the case is practically linear7.
To further validate the linearity of the case study, a linear hydrodynamic model, based
on Equation (2.36), was developed using data obtained from a BEM solver. The
device is excited with the fe measured from the CNWT wave diffraction test. The
resulting device motion from the linear model can then be compared to the motion
measured in the CNWT. If the models coincide, linearity is further validated. In Figure
5.3, the position and velocity, obtained using both the BEM model and the CFD
simulation, are plotted. A relatively small deviation in the peaks of the signal can be
seen, which is expected due to some nonlinear effects, such as nonlinear Froude-Krylov
forces (note that the spherical WEC has a non-uniform cross-sectional area) or viscous
effects, which are neglected in the linear hydrodynamic model.
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Figure 5.3: Comparison between the position (a) and velocity (b) obtained from CFD and
from the simulation with the linear BEM-based model for polychromatic waves.

5.1.5 Comparison results

For the sake of clarity, the results obtained by the different fe estimators are shown
in three different subsections, classified by the required measurements (as explained

7Even though the case is practically linear, as explained in Section 5.1.3, the use of CFD is
necessary to define an unbiased fe reference for the comparison.
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in Section 5.1.2). The first subsection (Section 5.1.5.1) only considers fe estimators
requiring η measurements, while in the following Section 5.1.5.2, estimators using
measurements of the WEC motion only are analysed. The third subsection, Section
5.1.5.3, considers fe estimators using measurements of the WEC motion and pressure
on the WEC hull. Additionally, in Section 5.1.5.4, a summarising table along with
some discussion is presented.

5.1.5.1 Using η(t) measurements

Although only one estimator uses η measurements (CPWE), three different approaches
are analysed here, to show how the forecasting accuracy of η affects the estimation
(of fe) accuracy for this strategy:

• CPWEperf - Assuming perfect knowledge of η at the WEC location,
• CPWEpast - Considering only past η values at the WEC location,
• CPWEup - Using up-wave measurements.

It should be noted that the η values used for CPWEperf are measured in a simulation
with no body present. Additionally, the CPWEpast requires knowledge of η values
at the WEC location which, since in the analysed case waves are unidirectional,
can be considered approximately equal to the wave elevation measured at probe
WP1 (placed laterally with respect to the WEC, as defined in Section 5.1.4.1).
Finally, due to the same assumption of unidirectional waves, a unique up-wave
measurement point can provide full information of the expected η at the WEC, for
which measurements at probe WP2 are used.
As mentioned in Section 5.1.1, when computing the convolution between ke and η,
shown in Equation (5.1), the value at t = 0 s of ke(t), shown in Figure 5.4, is multiplied
by the instantaneous η. The ke values for positive time instances are multiplied by
past η values, and the forecasted η is multiplied by the ke values at negative time
instances. Thus, the required thor is defined by the non-zero components of ke for
negative time instances. For this case, as shown in Figure 5.4, shifting the response
thor = 4 s is enough to move all the non-zero components of ke to positive time
instances or, in other words, to causalise it (tcaus = thor = 4 s).
As explained in Section 2.2.4 for the radiation force, the convolution term required
by the CPWE estimator to obtain f̃CPWE

e can be approximated using a parametric
model. However, as explained in [84], the excitation force kernel needs to be causal in
order to approximate it with a parametric model (see kcaus

e in Figure 5.4). It should be
noted that, in the comparison carried out in this chapter, f̃CPWE

e is computed solving
the convolution shown in Equation (5.1), and not with a parametric model, in order
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Figure 5.4: The non-causal and causalised ke(t) for the analysed spherical WEC device.

to avoid any possible error associated with the approximation of such a parametric
model. However, as shown in Section 5.1.5.4, even solving the convolution term, the
CPWE estimator is the fastest strategy of this comparison.
The forecasting strategy used for the CPWE is the ARLLS predictor8, introduced in
Section 6.1.1.1. In order to reduce the size of the predictor, η is re-sampled with
ts = 0.1 s (from ts = 0.01 s), as explained in Section 7.3.2.
As shown in Figure 5.5(a), the best predictor orders are 15, for the CPWEpast, and 60
for the CPWEup, achieving NRMSEest

fe values of 0.143 and 0.128, respectively. One
could argue that the results obtained by both the CPWEpast and the CPWEup are
similar while, in theory, using up-wave measurements should lead to considerably better
results, compared to using only past information [115]. However, CPWEpast achieves
accurate estimation because, even though NRMSEpred

η increases faster than for the
CPWEup, the results obtained over thor = [0,1] s are better (see Figure 5.5(b)); i.e.
where the values of ke are higher and, therefore, where the prediction accuracy has
more effect on the NRMSEest

fe (see time 0 to -1 s in Figure 5.4). Additionally, it should
be noted that the NRMSEest

fe achieved by the CPWEperf estimator is 0.124, which
means that the CPWEup obtains almost the same estimation accuracy as CPWEperf,
where perfect knowledge of η is considered.
Figure 5.6 shows the estimated fe obtained using the CPWEpast, the CPWEup and the
CPWEperf strategies, when no measurement noise is considered. It can be observed
that, although the achieved accuracy is similar for the three CPWE variations, the
estimated fe signals show some differences.
Surprisingly, even though the CPWE strategies do not have a term to account for the
measurement noise, the obtained results, when considering measurement noise (see
Figure 5.7), are similar to those obtained when no noise is considered, only increasing
the NRMSEest

fe by 0.003 and 0.001 for the CPWEpast and CPWEup, respectively. This
can be explained by the fact that the AR prediction strategy acts as a low pass
filter, if the order is correctly chosen.

8Note that, a variation of the AR model, termed ARX model (shown in Section 7.2.2), is employed
for the CPWEup estimator, which uses up-wave η values.
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Figure 5.5: (a) The estimation error depending on the order used for the predictor, and
(b) prediction error for different thor obtained using CPWEpast and CPWEup. The orange
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Figure 5.6: fe(t) estimation, when no measurement noise is considered, using CPWEpast,
CPWEup, and CPWEperf with an obtained estimation error of 0.143, 0.128, and 0.124,
respectively.
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5.1.5.2 Using motion measurements

For the shake of clarity, the results obtained by the strategies that use motion
measurements are shown in three different sets.
First, an analysis of the effect of the HO model order nω on estimation accuracy is
carried out, when using the KFHO and the EKFHO strategies. As shown in Figure
5.8, while the NRMSEest

fe achieved by the KFHO approach decreases when increasing
nω, no corresponding decrease can be observed for EKFHO. This is consistent with
the findings in [70]. Compared to the EKFHO estimator, where the frequencies ω
are adaptive, the KFHO strategy has an additional potential pitfall, which is the
choice of the frequencies of the HO. For the presented test case, these frequencies
are chosen to be linearly spaced between 0.5 and 2 rad/s. However, the NRMSEest

fe

shown in Figure 5.8 may decrease further, if the value of the frequencies used by
KFHO is optimised for every nω [138].

es
t

e

Figure 5.8: The obtained NRMSE by the KFHO and EKFHO strategies for different HO
orders nω. The chosen orders for KFHO and EKFHO are nω = 5 and 1, respectively
(orange-dots).

Starting with the KF-based estimators, one can notice, from Figure 5.9, that the KFRW,
KFHO, and EKFHO estimators obtain accurate estimates of fe (NRMSEest

fe =0.109,
0.093 and 0.097, respectively) for the case without measurement noise. Furthermore, it
can be seen that the three strategies obtain very similar values of NRMSEest

fe ; however,
this is not the case when measurement noise is introduced.
As depicted in Figure 5.10, the EKFHO shows the highest error among the three,
being the most affected by measurement noise (the NRMSEest

fe is 0.066 higher when
considering noise). Although the NRMSEest

fe achieved by the KFRW is only increased
by 0.026, when introducing noise, the resulting estimated fe is the noisiest among
the three signals (see Figure 5.10). In contrast, since the model of the HO gives
the KF some information about the expected fe dynamics, the KFHO estimate is
the least noisy, resulting in an increase in the NRMSEest

fe of 0.005 with respect to
the result obtained when no noise is considered.
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Figure 5.9: fe estimation, when no measurement noise is considered, using the KFRW,
KFHO, and EKFHO strategies obtaining a NRMSEest

fe
of 0.109, 0.093, and 0.097, respectively.
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Figure 5.10: fe estimation, considering measurement noise, using the KFRW, KFHO, and
EKFHO strategies obtaining a NRMSEest

fe
of 0.135, 0.098, and 0.163, respectively.

Even though the UIO approach includes a term to account for the measurement noise,
from a visual inspection of Figures 5.11 and 5.12, it can be seen that the UIO estimate
is significantly affected by the presence of measurement noise and, thus, the NRMSEest

fe

increases by 0.04. For the RHE strategy, the window length is selected such that,
for the chosen design parameters and for the case where no noise is considered, the
obtained NRMSE is minimised. For this case, with nw = 8, a NRMSEest

fe of 0.153 is
obtained. The NRMSEest

fe achieved by the RHE strategy is relatively unaffected by the
introduction of measurement noise and only increases from 0.153 to 0.172.
For the ASMO estimator, shown in Figure 5.12, even with no measurement noise the
obtained estimation appears noisy at some time instances (as in the first zoomed-
window of Figure 5.12). This is due to a well-known phenomenon, in the sliding-mode
literature, called chattering [41]. As can be observed from Figure 5.11, the chattering
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phenomenon gets amplified when considering measurement noise, increasing the
obtained NRMSEest

fe by 0.155.
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Figure 5.11: fe estimation, considering measurement noise, using the RHE, UIO, and
ASMO strategies obtaining a NRMSEest

fe
of 0.172, 0.144, and 0.257, respectively.
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Figure 5.12: fe estimation, when no measurement noise is considered, using the RHE, UIO,
and ASMO strategies obtaining a NRMSEest

fe
of 0.153, 0.104, and 0102. respectively.

The effectiveness of the ULISE to handle measurement noise is highlighted, with
an increase of the NRMSEest

fe of only 0.002 when measurement noise is considered,
which is also indicated when comparing the time traces in Figures 5.13 and 5.14.
The effectiveness could be due to the fact that, as shown in Section 5.1.1, the
ULISE strategy is based on a KF which, as mentioned before, can optimally handle
measurement noise (if the noise is Gaussian, as it in this case).
As shown in Figure 5.14, the FAUIE strategy produces a relatively noisy estimate, and
the NRMSEest

fe increases by 0.125 compared to the noise free case (see Figure 5.13).
This is expected, since there is no explicit term to account for the measurement noise,
as shown in Section 5.1.1. The results obtained by FAUIE could possibly be improved
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by low-pass filtering the measurements in a pre-processing step; however, due to
the phase delay of a realistic filter, it would increase the delay of the excitation
force estimate significantly.
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Figure 5.13: fe estimation, when no measurement noise is considered, using the ULISE
and FAUIE strategies obtaining a NRMSEest

fe
of 0.097 and 0.188, respectively.
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Figure 5.14: fe estimation, considering measurement noise, using the ULISE and FAUIE
strategies obtaining a NRMSEest

fe
of 0.099 and 0.312, respectively.

5.1.5.3 Using motion and pressure measurements

Regarding the set of estimators using motion and pressure measurements, it has been
found that, for the PADE strategy, the number of pressure sensors directly affects
the accuracy of the total wave force fw estimate. In the present test case, the error
in the estimation of fw leads to an offset in f̃PADE

e compared to fe (see Figures
5.15 and 5.16). However, even though the noisy measurements are directly used to
estimate fe, the obtained results are not affected, which may be explained by possible
destructive interference of the different noisy signals.



5. Excitation force estimation 103

90 100 110 120 130 140 150
s

2

1

0

-1

-2

e

x105

e

e

e

Figure 5.15: fe estimation, when no measurement noise is considered, using the PADE
and EKFPS strategies obtaining a NRMSEest

fe
of 0.207 and 0.128, respectively.

In contrast, the EKFPS strategy (of order nω = 4) gives a more accurate estimate,
obtaining a NRMSEest

fe of 0.128 (compared to the 0.207 obtained by PADE) for the
case where measurement noise is not considered, and 0.178 for the case where noise
is included (compared to the 0.208 obtained by PADE).
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Figure 5.16: fe estimation, considering measurement noise, using the PADE and EKFPS
strategies obtaining a NRMSEest

fe
of 0.208 and 0.178, respectively.

5.1.5.4 Comparison summary

This subsection summarises the results presented above in tabulated form. For each
fe estimator, Table 5.2 shows the measurements required and the obtained error for
the cases with, and without, measurement noise. Furthermore, Table 5.2 includes the
time delay of f̃e, relative to the reference fe, obtained via cross-correlation. Finally,
the required time for estimation, normalised against the fastest strategy, is listed
(N-Time). In terms of delay time, one can notice that the open-loop estimators
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(CPWE and PADE) are the only strategies obtaining a negative delay9, while the
KFHO, EKFHO, ASMO, and ULISE estimators are in phase with respect to fe, and
the rest of the analysed strategies are delayed.

Table 5.2: Comparison table with the results obtained by the different estimators.

Name
Input Data NRMSEest

fe Delay [s] N-Time
η χ χ̇ χ̈ p without noise with noise

CPWEpast • – – – – 0.143 0.146 -0.03 1
CPWEup • – – – – 0.128 0.129 -0.06 1
KFRW – • • – – 0.109 0.135 0.04 25
KFHO – • • – – 0.093 0.098 0 28
EKFHO – • • – – 0.097 0.163 0 4·103

RHE – • • – – 0.153 0.172 0.07 30
UIO – • • – – 0.104 0.144 0.09 117
ASMO – • • – – 0.102 0.257 0 377
ULISE – • – • – 0.097 0.099 0 98
FAUIE – • • • – 0.187 0.312 0.16 1·103

EKFPS – • – – • 0.128 0.178 0.03 9·103

PADE – • • • • 0.207 0.208 -0.01 29

Regarding the estimation time, it is found that CPWE is the fastest strategy to estimate
fe, requiring about 1·10−6s for one fe estimate update10, with ts = 0.01 s. Note
that, for the CPWE strategy, the convolution term is computed, so it could be even
faster if the convolution is approximated using a parametric model [84]. The CPWE
is followed by the KFRW, KFHO, PADE, RHE, ULISE, UIO, and ASMO strategies
which, although they are slower than CPWE, may still be considered fast, in absolute
terms, since they are still significantly below real time. Finally, FAUIE, EKFHO,
and EKFPS are the slowest strategies which, in the case of EKFHO and EKFPS, is
expected, since the estimators are inherently nonlinear and require linearisation of
the function describing fe at each step. In the FAUIE estimator, the computational
burden is associated with the derivative error ėy (see Equation (5.24)), which creates
an algebraic loop, slowing down the estimation process11.
In terms of measurement requirements, WEC motion measurements are the eas-
iest/cheapest to obtain using, for example, Inertial Measurement Units (IMUs).

9Note that a delay of −tdel represents that the estimated fe is, overall, tdel seconds ahead on
time with respect to the reference fe.

10The tests have been carried out using Matlab, on a desktop computer with an intel CORE i7
and 8GB of RAM.

11Note that a new version of the FAUIE estimator is presented in [4], where the algebraic loop is
avoided. Therefore, the results shown in this chapter for the FAUIE estimator may improve if the
version presented in [4] is implemented.
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In contrast, it should be noted that pressure sensors are relatively expensive (and
potentially unreliable) and the estimators using pressure measurements do not show
any particular improvement with respect to the strategies using motion measurements
alone. Additionally, past η values, at the WEC location, are physically unmeasurable
and, therefore, in a real sea scenario, the estimate has to be calculated based on either
up-wave measurements or WEC motion. In order to estimate/predict η, based on
up-wave measurements in a real-sea scenario, several measurement points are required
[115], which can be expensive to install. Additionally, using motion measurements to
estimate η is suboptimal, since two estimation stages errors are accumulated, while
directly estimating fe based on WEC motion is a more straightforward approach.

5.2 Estimation in a physical environment

This section shows the results obtained during experimental tank tests, carried
out at Aalborg University, Aalborg, Denmark, in Summer 2019. First, in Section
5.2.1, information on the experimental WEC system and the test facility is provided.
Then, Section 5.2.2, shows the identification experiments that were carried out to
characterise the system and, finally, in Section 5.2.3, the obtained estimation results
are presented and discussed.

5.2.1 System description

The device, investigated during the tank tests, is a 1:20th scale version of the Wave
Star device [109], shown in Figure 5.17. The device consists of a hemispherical hull
with a single DoF in pitch (which oscillates around point A, see Figure 5.17(a)), with
an electrical direct drive actuator as a PTO system. At equilibrium, the floater arm
stands at (approximately) 30◦ with respect to the still water level. The interested
reader is referred to [156] for a more detailed description of the physical system.
Since the motion of the device is rotational, but the PTO force acts always at the
same point of the device arm (point C in Figure 5.17(a)), the angle between the motor
axis and the floater arm (the angle ACB in Figure 5.17(a)) varies. Therefore, the
model of the considered WEC is nonlinear, since the PTO torque explicitly depends on
the angular position of the arm. To simplify the problem, avoiding the representation
of such mechanical nonlinearities, instead of considering the motion of the device, only
the linear displacement along the PTO axis (χpto) is considered. Thus, instead of the
angular position of the device, the linear position of the motor is considered, given by
the relative distance between points B and C of Figure 5.17(a), with 0 the distance
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(a) Sketch of the scaled Wave Star device. (b) Picture of the scaled Wave Star device.

Figure 5.17: (a) Sketch and (b) picture of the scaled Wave Star device used for the tank
test experiments.

at equilibrium. Similarly, instead of the excitation torque acting on the device hull,
the equivalent excitation force acting on the PTO axis is considered.
Finally, Figure 5.18 shows a schematic of the tank in which the experiments were
carried out, including all relevant dimensions. The water depth of the tank was 0.9m.
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Figure 5.18: Sketch with the approximate dimensions (in meters) of the physical wave
tank. The black dots represent the wave gauges, and the orange circle the WEC.
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5.2.2 System characterisation

The force-to-motion model of the device (at the motor axis) is identified using a
black-box-identification methodology, as explained in [75]. For the force-to-position
system identification, a set of four different classical up-chirp experiments were
performed, where the system is forced into motion by a chirp control force fpto, while
no incident waves are present. Knowing the approximate location of the natural
resonance frequency of the system a-priori (≈ 7 rad/s), fpto is defined as a linear
frequency sweep in the range12 [0.7, 30] rad/s. Additionally, it should be noted that, to
check for nonlinearities, chirps of different amplitudes are considered, in particular,
[5, 7.5, 10, 15]N. The performed control force chirps, along with the obtained motor
position results, are shown in Figure 5.19(a) and (b), respectively.
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(a) The applied control force chirp, with different amplitudes.
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(b) The obtained motor position, for the different chirp amplitudes.

Figure 5.19: The set of (a) control force chirps performed to identify the system, along
with (b) the obtained motor position.

The estimate of the empirical transfer function of the force-to-position system can then
be computed using the chirp control force and the corresponding motor position as

H̃emp
fptoχpto(ω) = Xpto(ω)

Fpto(ω) , (5.35)

where Xpto(ω) and Fpto(ω) represent the frequency-domain equivalent of the motor
position (χpto(t)) and force (fpto(t)). As shown in Figure 5.20, the obtained frequency

12Note that covering the resonance frequency of the system with a decade below and above is
usually recommended but, due to the limitations of the system, it was not possible to run the chirp
signal up to 70 rad/s.
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responses (magnitude and phase) for the four different amplitudes are similar, indicating
linear behaviour of the system. Finally, and in order to reduce the measurement
uncertainty of the frequency responses shown in Figure 5.20, the four signals are
averaged. The obtained frequency response is then utilised to identify a parametric
model of the system (also shown in Figure 5.20), using the frequency-domain moment-
matching-based identification method introduced in Section 4.1. An 8th order model is
enough to identify a parametric model with an approximation error of NRMSE=4.13%.

M
ag

n
it
u
d
e 

[d
B
]

Ph
as

e 
[ 

]

-40

-60

-80

-100

90

0

-90

-180

Chirp 1 - Amp = 5.0N
Chirp 2 - Amp = 7.5N
Chirp 3 - Amp = 10N
Chirp 4 - Amp = 15N
Identified model

rad s
10-1 100 101

Figure 5.20: Frequency response of the obtained empirical transfer functions for the
different chirp amplitudes based on the experimental data.

Note that the estimator used for this experiments is the KFHO since, as shown earlier
in Section 5.1.5, this strategy is one of the most accurate estimators among the
different strategies available in the literature. The only difference with respect to the
KFHO used for the comparison is that no velocity measurements were used, since
the motor position was the only directly available measurement.

5.2.3 Estimation results

The waves used for the experiments were generated based on three different JONSWAP
SDFs (generated following Equation (2.4)), shown in Figure 5.21, inspired by the
International WEC Control Competition (WECCCOMP) [156]. From Figure 5.21,
one can see that the energy content of the three sea states is different, with S1

ηη

and S3
ηη being the least and most energetic sea states, respectively. In full scale,

the peak period and significant wave height of S1
ηη, S2

ηη, and S3
ηη correspond to

(Tp ≈ 4.4 s and Hs ≈ 0.4m), (Tp ≈ 6.3 s and Hs ≈ 1.3m), and (Tp ≈ 8.7 s
and Hs ≈ 2.1m), respectively.
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(b) S2
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(c) S3
ηη: γ = 3.3, Tp = 1.936 s,

and Hs = 10.42 cm.

Figure 5.21: The three JONSWAP SDFs considered for the tank tests.

Due to time constraints, the fixed body experiments, from which a measured fe can
be obtained (as explained in Section 5.1.3), were only run for one realisation of each
of the sea states of Figure 5.21, which are shown in Figures 5.22 and 5.23.
In Figure 5.22, it can be seen that the performance of the KFHO estimator, using
experimental tank test data, is not as good as the performance shown in the comparison
of Section 5.1.5. In particular, it is worth highlighting the high-frequency content of
the estimated fe, which is more visible when the Hs of the sea state decreases. This
is mainly due to the signal-to-noise ratio of the motor position measurements used
for the estimator. For the sea state with the smallest Hs, S1

ηη, the signal-to-noise
ratio is lower (higher noise content) and, therefore, the estimated fe is significantly
noise-polluted. In contrast, for S3

ηη, the device motion is larger and, hence, the
signal-to-noise is higher, thus, obtaining a less noisy fe estimate.
Figure 5.23 shows the measured and estimated position of the motor in the same
time window shown in Figure 5.22. For S1

ηη, shown in Figure 5.23(a), one can notice
that, at some time instances (as, for example, t ≈ 50.5 s or t ≈ 58.4 s), the noise
amplitude is larger than the motor position. Thus, even though the estimated χpto can
be considered smooth, which indicates that the KF was effectively filtering out a large
part of the measurement noise, the small high-frequency content of the estimated
χpto is amplified in the estimated fe, as shown in Figure 5.22(a).
In contrast, as shown in Figure 5.23(c) for S3

ηη, the maximum χpto is around 1.5 cm,
compared to the 3mm of S1

ηη, and, therefore, the signal-to-noise ratio is not as
significant as for S1

ηη. Hence, the obtained fe estimate, shown in Figure 5.22(c),
is also more accurate and less noise-polluted than the estimate obtained for S1

ηη,
shown in Figure 5.22(a).
For the cases shown in Figure 5.22, the estimation could probably be improved by
more accurately tuning the KF weighting matrices; however, such rigorous tuning
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of 0.202.

Figure 5.22: Estimated and measured fe for the three JONSWAP SDFs analysed.

was not possible during the time-limited experimental campaign. Additionally, the
frequencies used for the HO description of the KF are [3.25, 4.45, 6.36] rad/s, which
correspond to the peak periods of the three sea states. The choice of a specific set
of frequencies for each sea state (or choosing more frequencies) could also improve
the obtained estimation accuracy. However, the decision of choosing a constant
set of frequencies was made to simulate a real scenario, where the HO description
would not change for different sea states.

5.3 Conclusions

From the results shown in the comparison of Section 5.1, it can be concluded
that estimation techniques using WEC motion measurements are the most feasible
techniques, specifically the KFHO, ULISE, and UIO approaches. In particular, the
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(b) Estimated and measured motor position for S2
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(c) Estimated and measured motor position for S3
ηη, obtaining a NRMSEest

χpto
of 0.114.

Figure 5.23: Estimated and measured χpto for the three JONSWAP SDFs analysed.

KFHO and ULISE approaches show good performance in terms of achieved accuracy
and no phase shift between the estimated and the reference signal. Regarding the UIO
method, even though this strategy is not the most accurate, it is the only approach able
to consider model uncertainty, which could be important in a real WEC device scenario.
Additionally, from the comparison, three different estimation errors can be distinguished:
a delay in the obtained f̃e, a difference in the amplitude between the estimated and
actual fe, and noise (variance) in the obtained f̃e. Chapter 8 presents an investigation
on how such estimation errors affect the performance of a moment-matching-based
receding horizon optimal control strategy.
From the results obtained using physical tank experiments, shown in Section 5.2, it
is important to highlight the difficulty associated with estimating fe (or any other
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non-measurable quantity) for small-scale devices. In the shown case, using a 1:20th

scale device, the amplitude of the position measurement noise is comparable to
the actual position measurement at some time instants, which challenges the fe

estimation. However, it is expected that, when increasing the scale of the device,
the motion amplitude of the device should increase proportionally with the scale,
while the amplitude of the noise added by the sensors should increase at a lower
rate. Therefore, the signal-to-noise ratio should increase, leading to an improvement
in the estimation accuracy.



6
Short-term forecasting of excitation force

and free surface elevation

Contents
6.1 AR and ARMA model comparison . . . . . . . . . . . . . . 112

6.1.1 Prediction strategies . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Wave data . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.3 Comparative results . . . . . . . . . . . . . . . . . . . . 117

6.2 Analysis of AR models . . . . . . . . . . . . . . . . . . . . . 121
6.2.1 Prediction strategies . . . . . . . . . . . . . . . . . . . . 122
6.2.2 Wave signal filtering . . . . . . . . . . . . . . . . . . . . 127
6.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . 128
6.2.4 Results using real wave data . . . . . . . . . . . . . . . 132

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

As mentioned in Chapter 3, this chapter considers short-time forecasting strategies that
were first applied (within the wave energy community) to η prediction, and afterwards
to fe prediction. Therefore, the results shown in this chapter are for η forecasting,
rather than fe forecasting. However, as mentioned in Section 3.3, the same strategies
introduced and analysed in this chapter can be applied for fe prediction, as shown
in Chapters 7 and 8 for some of the forecasting strategies. Specifically, this chapter
investigates the comparative performance of the η forecasting methods shown in
references [67] and [76] in Section 6.1 and analyses the performance of autoregressive
AR models for wave energy applications in Section 6.2.
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6.1 AR and ARMA model comparison

As mentioned in Section 3.3.2, the results shown in [67] and [76] are inconsistent
since, in [67], the ARMA model is shown not to provide any improvement for the η
prediction, compared to simple AR models while, in [76], the ARMA model is shown
to outperform the AR model introduced in [67]. To clarify the observed inconsistency,
the current section aims to critically compare both forecasting strategies (AR and
ARMA models) under the same conditions, to determine potential differences in the
performance and, thereby, the comparative advantages and disadvantages of the two
predictors for wave energy applications.
In order to compare the AR and ARMA models under the same conditions, a number
of processes must be carried out in the same way for the two models as, for example,
the identification method used to determine the coefficients of the models. To this
end, different identification procedures can be found in the literature [23], such as the
Yule-Walker or Hannan-Rissanen (HR) methods. However, none of those methods
can be used for both AR and ARMA models since, as will be explained in Section
6.1.1.2, for the ARMA model, future η values not only depend on the past measurable
values of η, but also on the unmeasurable values of the process noise and, therefore,
requires two identification stages as opposed to the AR model which, as explained in
Section 6.1.1.1, are identified from a single identification stage, in this case, solving
a linear least square LLS problem. The most similar approach for both predictors
is to identify the AR model parameters from a LLS method and, for the ARMA
model, use a variation of the HR algorithm which includes two LLS problems, which
is also the identification strategy adopted in [76]. By identifying the coefficients of
both models using similar processes, the impact of the identification method on the
performance of the prediction models is minimised, enabling, thus, a fair comparison
of the model structures for η prediction.
Section 6.1.1 introduces the theory behind the AR and ARMA models, used for the
comparison, the real wave time series are introduced in Section 6.1.2, and, in Section
6.1.3, the results obtained for the comparison are presented and discussed.

6.1.1 Prediction strategies

For the sake of clarity, the different forecasting strategies are termed using the predictor
structure as name and the identification method in the subindex. For example, the
forecasting strategy which has the AR predictor structure and identifies the parameters
solving a LLS problem is referred to as ARLLS.
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6.1.1.1 AR model

The AR model assumes that η(k) depends linearly on its own previous values through
the parameters ϕAR ∈ RnAR

ord, with nAR
ord being the order of the model, following

η(k) =
nAR

ord∑
i=1

ϕAR(i)η(k − i) + ε(k), (6.1)

where ε(k) is the modelling error (or a disturbance term). Therefore, the n∗hor-step-
ahead predicted value of the wave elevation (η̄(k+n∗hor|k)), where n∗hor ∈ {1, ..., nhor}
and thor = tsnhor, can be expressed as

η̄(k + n∗hor|k) =
nAR

ord∑
i=1

ϕAR(i)η̄(k + n∗hor − i|k). (6.2)

In Equation (6.2), η̄(k + n∗hor − i|k) = η(k + n∗hor − i) when (k + n∗hor − i) ≤ k, since
the value of η(k + n∗hor − i) is known and there is no need for prediction. Thus, the
process to calculate the n∗hor-step-ahead predicted η is an iterative process, where all
the values of η(k) from k = 1 to (n∗hor − 1) have to be predicted first.
Several methods to determine the optimal order nAR

ord of an AR model (e.g. Akaike’s
Information Theoretic Criterion [6]) can be found in the literature. However, the
different methods for the optimal order determination are not discussed in this thesis
since the aim is to show how the AR model performs for different orders, rather
than how the best order can be obtained.
Given a set of training data of dimension ntr, the coefficients ϕAR are identified by
minimising the following cost function

JAR
LLS =

ntr∑
i=nAR

ord+1
(η(i)− η̄(i|i− 1))2 , (6.3)

which is a LLS problem, and can be solved by the following matrix product

ϕAR
LLS =

(
ηAR

LLS
ᵀ
ηAR

LLS

)−1
(ηAR

LLS
ᵀ
η∗LLS), (6.4)

where ηAR
LLS ∈ R(ntr−nAR

ord−1)×nAR
ord and η∗LLS ∈ R(ntr−nAR

ord−1) are defined as

ηAR
LLS =


η(nAR

ord) η(nAR
ord − 1) · · · η(1)

η(nAR
ord + 1) η(nAR

ord) · · · η(2)
... ... . . . ...

η(ntr − 1) η(ntr − 2) · · · η(ntr − nAR
ord)

 , (6.5a)

η∗LLS =
[
η(nAR

ord + 1) η(nAR
ord + 2) · · · η(ntr)

]ᵀ
. (6.5b)

Thus, the AR model based forecasting strategy, whose coefficients are identified by
minimising the one-step-ahead prediction error, solving the LLS problem of Equation
(6.4), is termed ARLLS.
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6.1.1.2 ARMA model

The ARMA model, considered in this thesis and proposed in [76]1, assumes that
η(k) can be expressed as

η(k) =
nARma

ord∑
i=1

ϕARma(i)η(k − i) +
narMA

ord∑
j=1

ϕarMA(j)ε(k − j) + ε(k), (6.6)

where ϕARma ∈ RnARma
ord and ϕarMA ∈ RnarMA

ord are the coefficients of the AR and MA parts
of the ARMA model, respectively. As in Equation (6.1), ε stands for the modelling
error (or a disturbance term) [76] in Equation (6.6). Thus, the n∗hor-step-ahead
predicted value of η can be expressed as

η̄(k+n∗hor|k) =
nARma

ord∑
i=1

ϕARma(i)η̄(k+n∗hor−i|k)+
narMA

ord∑
j=1

ϕarMA(j)¯̃ε(k+n∗hor−j|k), (6.7)

where, as explained for Equation (6.2), η̄(k + n∗hor − i|k) refers to η(k + n∗hor −
i|k) for (k + n∗hor − i) ≤ k, and ¯̃ε(k + n∗hor − j|k) refers to estimated values of ε
(ε̃(k + n∗hor − j|k)) for (k + n∗hor − i) ≤ k.
Since the disturbance cannot be measured, two LLS problems have to be solved
to identify the parameters of the ARMA model [76]. With the first LLS problem,
neglecting the moving average part, the parameters of the autoregressive part are
obtained as shown in Equation (6.4), by considering nARma?

ord instead of nAR
ord as

ϕARma?
LLS =

(
ηARma

LLS
ᵀ
ηARma

LLS

)−1
(ηARma

LLS
ᵀ
η∗LLS), (6.8)

where ηARma
LLS ∈ R(ntr−nARma?

ord −1)×nARma?
ord and η∗LLS ∈ R(ntr−nARma?

ord −1) are defined as

ηARma
LLS =


η(nARma?

ord ) η(nARma?
ord − 1) · · · η(1)

η(nARma?
ord + 1) η(nARma?

ord ) · · · η(2)
... ... . . . ...

η(ntr − 1) η(ntr − 2) · · · η(ntr − nARma?
ord )

 , (6.9a)

η∗LLS =
[
η(nARma?

ord + 1) η(nARma?
ord + 2) · · · η(ntr)

]ᵀ
. (6.9b)

Note that, since the obtained ϕARma
LLS are not the final coefficients, they are denoted

as ϕARma?
LLS ∈ RnARma?

ord . Once the parameters ϕARma?
LLS are determined, the estimate

of the noise ε(k) can be obtained as

ε̃(k) = η(k)−
nARma?

ord∑
i=1

ϕARma?
LLS (i)η(k − i). (6.10)

1Note that the definition of the ARMA model is adopted from [76] since, even though it was first
proposed in [67], no model or identification method description is provided in [67].
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With ε̃, the parameters of both AR and MA parts can be identified by minimising
the following cost function

JARMA
LLS =

ntr∑
i=nARMA

max +1
(η(i)− η̄(i|i− 1))2, (6.11)

where nARMA
max = max{nARma

ord , narMA
ord }. Equation (6.11), which is again a LLS problem,

can be solved by the following matrix product

ϕARMA
LLS =

(
ηARMA

LLS
ᵀ
ηARMA

LLS

)−1
(ηARMA

LLS
ᵀ
η?LLS), (6.12)

where ϕARMA
LLS =

[
ϕARma

LLS ϕarMA
LLS

]
∈ RnARMA

ord , with nARMA
ord = nARma

ord +narMA
ord , and ηARMA

LLS ∈
RnARMA

ord ×(ntr−nARma?
ord −nARMA

max −1) includes now the ε estimates as

ηARMA
LLS =



η(nARma?
ord + nARMA

max ) · · · η(ntr − 1)
... . . . ...

η(nARma?
ord + nARMA

max − nARma
ord + 1) · · · η(ntr − nARma

ord )

ε̃(nARma?
ord + nARMA

max ) · · · ε̃(ntr − 1)
... . . . ...

ε̃(nARma?
ord + nARMA

max − narMA
ord + 1) · · · ε̃(ntr − narMA

ord )



ᵀ

, (6.13a)

η?LLS =
[
η(nARma?

ord + nARMA
max + 1) η(nARma?

ord + nARMA
max + 2) · · · η(ntr)

]ᵀ
.

(6.13b)

Once the parameters ϕARma
LLS and ϕarMA

LLS are identified, the ARMA model can be
expressed by the following discrete-time SS

xARMA(k + 1) = AARMA
ss xARMA(k) +BARMA

ss ε(k + 1), (6.14a)
yARMA(k) = CARMA

ss xARMA(k), (6.14b)

where xARMA(k) ∈ RnARMA
ss , AARMA

ss ∈ RnARMA
ss ×nARMA

ss , BARMA
ss ∈ RnARMA

ss , and CARMA
ss ∈

RnARMA
ss , with nARMA

ss = max{nARma
ord , narMA

ord + 1}, are defined as

xARMA(k) =
[
η̄(k) η̄(k − 1) · · · η̄(k − nARMA

ss )
]ᵀ
, (6.15a)

AARMA
ss =



ϕARma
LLS1 ϕARma

LLS2 · · · ϕARma
LLS

nARMA
ss

1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 0

 , (6.15b)

BARMA
ss =

[
1 0 · · · 0

]ᵀ
, (6.15c)

CARMA
ss =

[
1 ϕarMA

LLS1 · · · ϕarMA
LLS

nARMA
ss −1

]
. (6.15d)

In AARMA
ss and CARMA

ss , ϕARma
LLSi = 0 for i > nARma

LLS and ϕarMA
LLSi = 0 for i > narMA

LLS .
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With System (6.14), the n∗hor-step-ahead predicted value of η can be obtained using
a discrete-time linear KF. To this end, the steady-state error covariance matrix P∞kf

can be obtained by solving the discrete algebraic Riccati equation defined as

P∞kf =AARMA
ss P∞kf A

ARMA
ss

ᵀ +BARMA
ss Q̃ARMA

ε BARMA
ss

ᵀ

− AARMA
ss P∞kf C

ARMA
ss

ᵀ(CARMA
ss P∞kf C

ARMA
ss

ᵀ)−1CARMA
ss P∞kf A

ARMA
ss

ᵀ
,

(6.16)

while the steady-state Kalman gain (K∞kf ) can be computed as

K∞kf = (P∞kf C
ARMA
ss

ᵀ)(CARMA
ss P∞kf C

ARMA
ss

ᵀ)−1, (6.17)

and, as shown in [76], the process covariance matrix QARMA
ε can be estimated as

Q̃ARMA
ε = JARMA

LLS
ntr − nARma?

ord − nARMA
max

. (6.18)

Thus, the KF can now be defined using just two equations as

Time Update (A Priori) :

x̃ARMA−(k) = AARMA
ss x̃ARMA(k − 1). (6.19a)

Measurement Update (A Posteriori) :

x̃ARMA(k) = x̃ARMA−(k) +K∞kf

(
yARMA(k)− CARMA

ss x̃ARMA−(k)
)
, (6.19b)

and, once the state x̃ARMA is determined, it is possible to recursively predict fu-
ture η values as

η̄(k + n∗hor|k) = CARMA
ss AARMA

ss
n∗horx̃ARMA(k). (6.20)

6.1.2 Wave data

Real sea η measurements, used for the comparison, were measured at three dif-
ferent locations:

• The Pico WEC plant, which is located on Pico island, approximately at global
coordinates (38.56, -28.45), in the Azores. This data has been recorded using
an Aquadopp sensor [80] with a sampling frequency of 2Hz. Data consist of 30
minutes sets recorded continually.

• Belmullet is located off the west coast of Ireland, approximately at global
coordinates (54.27, -10.28). Data consist of 30 minutes sets recorded with a
Waverider buoy [36] with a sampling frequency of 1.28Hz. The data are provided
by the Irish Marine Institute [94].
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• Galway Bay, west coast of Ireland, data are provided by the Irish Marine
Institute [94]. This data consist of 20-minute records for each hour, measuring
values with a sampling frequency of 2.56Hz recorded with a Waverider buoy
[36]. The buoy is located approximately at global coordinates (53.23, -9.26).

The selected data fragments, from the three locations, are chosen so that the prediction
strategies are tested for a diverse set of sea states. Figure 6.1 shows the SDFs2 of the
selected data fragments. Note that the data fragments are named with the initial of
the location they were recorded at; i.e. data recorded at the Pico plant is referred
to as P, data from Belmullet as B, and data from Galway bay as G.
Figure 6.1 indicates that the spectra of the Pico plant wave data are narrow banded
at low-frequencies, showing that the sea state is mainly composed of swell waves,
with small high-frequency components. The SDFs of η from Belmullet are also narrow
banded at low frequencies, but with larger high-frequency components. Finally, the
wave data fragments selected for Galway Bay are mostly composed of wind waves
which, though not optimal for WEC power extraction, are chosen to assess the
performance of the predictors in a wider set of sea conditions.

6.1.3 Comparative results

Identification of the forecasting coefficients is carried out using the first half of every
data fragment, while the second half is used to assess the performance of the predictors
on unseen data. By way of example, considering P3, Figure 6.2 shows how the obtained
NRMSEpred

η , defined as shown in Equation (4.21), changes for different model orders,
in the case of (a) the AR model and (b) the ARMA model.
As shown in Figure 6.2(a), the minimum prediction error (NRMSEpred

η ≈ 0.11) for the
AR model occurs at a model order of nAR

ord ≈ 40 and, for higher orders, the obtained
NRMSEpred

η increases. This can be justified by the fact that, real sea wave conditions,
characterised by the wave spectrum, vary in time and, hence, the wave condition
evolves between the η data fragment during which the coefficients are identified and
the one over which the models are used to perform prediction. In this case, as shown in
Figure 6.2(a), for orders higher than 40, the AR model identifies characteristics of the
signal that are in the first half of the data fragment (with which the identification is
performed), but not in the second half (where the performance is assessed). However,
it should be highlighted that the NRMSEpred

η only varies from 0.11 to 0.15, so the
order of the model does not significantly affect the obtained error.

2To create the smoothed spectra shown in Figure 6.1, the wave time series data is processed as
explained in [36].
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Figure 6.1: The SDFs of the data fragments selected for the comparison, obtained from η

time series recorded at (a-c) Pico island, (d-f) Belmullet, and (g-l) Galway bay.

Similarly, the NRMSEpred
η obtained using the ARMA model does not vary significantly

for a large set of nARma
ord and narMA

ord combinations, as shown in Figure 6.2(b). Additionally,
one can notice that there is a minimum nARma

ord required (approximately nARma
ord > 15) to

obtain reasonably accurate results. However, the obtained NRMSEpred
η is not affected

if small narMA
ord are chosen, which means that, while a minimum order of 15 is needed

for the AR part of the ARMA model to obtain reasonable results, the MA part does
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obtains prediction errors higher than 100%.

Figure 6.2: Variation of the one-step-ahead (0.5 s) NRMSEpred
η for different model orders

of both (a) AR and (b) ARMA models, for P3. The orange dots denote the selected orders.

not significantly affect the obtained performance. The order nARma∗
ord , as explained in

[76], does not affect the obtained NRMSEpred
η as long as is higher than nARma

ord and,
therefore, nARma∗

ord = 110 is selected for all the ARMA models.
The considered AR and ARMA model orders (selected such that the obtained NRMSE
is minimised) and the obtained one-step-ahead NRMSEpred

η for all the analysed sea
states are shown in Table 6.1. It is shown that the one-step-ahead NRMSEpred

η achieved
by the AR model is always slightly lower than that obtained using the ARMA predictor.

Table 6.1: Model orders and obtained one-step-ahead NRMSEpred
η for the different data

sets considered. Since the sampling frequency differs for each location, the one-step-ahead
refers to 0.5 s, 0.78 s, and 0.39 s for the data-sets from Pico, Belmullet, and Galway Bay,
respectively.

Pico Belmullet Galway
P1 P2 P3 B1 B2 B3 G1 G2 G3 G4 G5 G6

AR nAR
ord 89 40 40 62 66 55 7 38 41 42 26 31

NRMSEpred
η 0.05 0.08 0.11 0.22 0.34 0.36 0.32 0.2 0.23 0.27 0.23 0.29

ARMA nARma
ord 58 14 49 46 22 16 7 7 28 19 19 16
narMA

ord 29 21 37 10 16 7 4 16 37 25 16 13
NRMSEpred

η 0.07 0.1 0.15 0.32 0.52 0.57 0.37 0.23 0.28 0.28 0.28 0.34

The differences between the NRMSEpred
η obtained using the AR and ARMA models is

further visualised in Figure 6.3, which shows the obtained NRMSEpred
η for different n∗hor

for all the considered time series. It is shown that, overall, the results obtained using
the AR and ARMA models are similar for all the analysed cases. The most accurate
predictions are obtained for η recorded at the Pico plant, obtaining a NRMSEpred

η
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of around 60% for thor = 5 s (averaged over the three sea states), compared to the
80% and 100% of error obtained for Belmullet and Galway, respectively. This can be
explained by the fact that, as shown in Figure 6.1, the SDFs of the time series recorded
at Pico plant are narrow banded, with almost no high-frequency content, while the
SDFs from Belmullet have more high-frequency components and, finally, the SDFs of
the waves recorded at Galway Bay have significant high-frequency components.
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Figure 6.3: The obtained NRMSEpred
η for the different sea states.
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Finally, regarding the time needed by both models to predict future η values, it should
be noted that, even though both AR and ARMA compute the η predictions quickly,
the AR model is slightly faster than the ARMA model (approximately 1.3 times faster).
However, this is not a problem for any of the models, since both are around three
orders of magnitude below real time and, therefore, there will not be any issue to
apply these predictors for online η or fe prediction.
In summary, this section shows that, while the ARMA model is significantly more
complex than the AR model, the obtained results are similar for both models and,
therefore, the conclusion presented in [67] is confirmed. With the discrepancy on the
results of [76] and [67] solved, the next section, Section 6.2, analyses the capabilities
of the AR model by comparing the obtained results to two theoretical prediction
accuracy limits.

6.2 Analysis of AR models

Since Fusco and Ringwood compared different short-term η prediction strategies in [67],
the AR model is been one of the most popular predictors for wave energy applications.
In fact, as explained in Section 3.3.2, several new η prediction techniques have been
proposed since [67], often concluding that there is no significant improvement with
respect to the results obtained using the AR model in [67].
To assess the capabilities of the AR model for wave energy applications, this section
proposes the following three analyses:

• The results obtained with the AR model are compared with two theoretical
accuracy limits for the prediction. The first one is given by a predictor that, by
directly identifying the forecasting parameters from the SDF, yields, in theory,
the best achievable prediction of η. While the AR predictor structure uses a
single set of parameters (for the one-step-ahead prediction), and multi-step-
ahead prediction is carried out iteratively, the theoretically-optimal predictor
has a different set of coefficients for each n∗hor and, thus, directly predicts the
multi-step ahead wave elevation with no need for iteration. In the following, the
predictor structure with a different set of coefficients for each prediction horizon
will be termed DMS model. Additionally, since the theoretically optimal predictor
identifies the parameters from the wave spectrum, it is referred to as DMSSDF

hereinafter. The second theoretical limit is given by the Kolmogoroff-Szego’s
formula [132], and provides the theoretical lowest one-step-ahead prediction
error associated to a given SDF, under a set of assumptions specified in Section
6.2.1.4.
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• Two different identification methods for the AR predictor are compared. The
first one, termed ARLLS and introduced in Section 6.1.1.1, is based on solving a
LLS problem, which minimises the one-step-ahead forecasting error. In contrast,
the second identification method, proposed in [67], optimises the n∗hor-step-ahead
prediction through a NLS problem, termed Long-Range Predictive Identification
(LRPI) [67, 131] and, therefore, termed ARLRPI.

• Additionally, the idea of using filtered η values for the prediction is investigated.
In some studies [67, 131], it is shown that, when using an AR model, offline
filtering can improve the forecasting accuracy. However, for real time operation,
since online filters add a delay to the filtered signal (tdel), online filtering may
not improve the overall forecasting accuracy. To assess the filtering problem, the
prediction accuracy obtained using online and offline filtering of η are compared.

An additional forecasting strategy is introduced which, having the DMS model structure
(as the theoretical optimal predictor DMSSDF), identifies the parameters from a time
series by solving a LLS problem. Finally, since in real conditions the data available for
identification are imperfect and the sea-state is not perfectly stationary, the relative
performance of the different strategies may differ. Therefore, for the analysis of this
section both simulated and real wave data is used.
Section 6.2.1 introduces the LRPI identification method for the AR model, the DMSSDF

strategy, the one-step-ahead theoretical prediction accuracy limit, and the forecasting
strategy that, with the DMS structure, identifies the parameters from a LLS (termed
DMSLLS). The idea of filtering η before using it for prediction is investigated in
Section 6.2.2, while the results obtained using simulated and real η data are shown
and discussed in Sections 6.2.3 and 6.2.4, respectively.

6.2.1 Prediction strategies
6.2.1.1 LRPI identification strategy

Since, usually, the required prediction horizons are longer than one-step-ahead, an
identification method which minimises the n∗hor-step-ahead prediction error may be more
pertinent. To this end, the LRPI technique can be applied to identify the forecasting
parameters of the AR model (introduced in Section 6.1.1.1). The LRPI identification
method is based on minimising the following multi-step ahead cost function

JAR
LRPI =

nhor∑
j=1

ntr∑
i=nAR

ord+1
(η(i)− η̄(i|i− j))2 . (6.21)

Since Equation (6.21) represents a NLS problem, the minimisation problem is compu-
tationally more complex than solving Equation (6.4). Thus, the time needed to identify
the parameters of ARLRPI (ϕAR

LRPI) is significantly longer than the time needed to solve
the LLS problem of Equation (6.4) for the coefficients of the ARLLS strategy (ϕAR

LLS).
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6.2.1.2 DMS model

While the AR model structure uses a single set of parameters (for one-step-ahead
prediction), and the multi-step ahead prediction is carried out iteratively, the DMS
model has nhor different sets of coefficients, one set for each n∗hor, and, thus, directly
predicts the n∗hor-step-ahead η, with no need for iteration. The structure of the
DMS predictor is defined as follows:

η̄(k + n∗hor|k) =
nDMS

ord∑
i=1

ϕDMS(n∗hor, i)η(k − i). (6.22)

As for the AR model, the parameters of Equation (6.22) can be identified using
previous η values. To this end, the identification is carried out by minimising a
separate cost function for each n∗hor defined as

JDMS
LLS (n∗hor) =

ntr∑
i=nDMS

ord +1
(η(i+ n∗hor)− η̄(i+ n∗hor|i))

2 (6.23)

which, as in Equation (6.11), is a LLS problem. In fact, the only difference with
respect to Equation (6.4) is the vector η∗LLS, which is now given by a matrix (η∗LLS ∈
RnDMS

ord ×(ntr−nDMS
ord −1)) defined as

η∗LLS =


η(nDMS

ord + 1) η(nDMS
ord + 2) · · · η(nDMS

ord + nhor)
η(nDMS

ord + 2) η(nDMS
ord + 3) · · · η(nDMS

ord + nhor + 1)
... ... . . . ...

η(ntr − nhor + 1) η(ntr − nhor + 1) · · · η(ntr)

 . (6.24)

Henceforth, the forecasting strategy, that is based on the DMS structure and identifies
the parameters using past η values, is termed DMSLLS.

6.2.1.3 DMSSDF – A theoretically-optimal predictor

As mentioned in Chapter 2, in the vast majority of cases within the power production
region of WECs, ocean waves can be described as a Gaussian, zero-mean, linear process,
only excluding shallow water conditions (for a more detailed discussion, see Chapter 9
of [126]). Additionally, if a short duration time signal is considered, with respect to
the typical time-length in which the sea condition changes (typically 30 minutes to
3 hours), the wave elevation process can be considered stationary [126]. Finally, the
wave elevation process is also considered to be ergodic, which means that the statistics
of the process, obtained from a time series, are equal to the ensemble statistics [126].
A stationary, ergodic, Gaussian process is fully described by its mean, which is 0
for the case of ocean waves, and its Auto-CoVariance Function (ACVF), which
is defined as follows:

Rηη(τ) = lim
t→∞

1
2t

∫ t

−t
η(t)η(t+ τ)dt. (6.25)
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One can notice that Rηη only depends on τ , due to the stationarity of the process.
Additionally, the maximum of Rηη(τ) is at τ = 0, where Rηη(0) = σ2

η, the variance
of the process.
The ACVF can be obtained directly from the SDF, since they are a Fourier transform
pair, according to the Wiener-Khintchine theorem [31]. Therefore, the statistical
properties of a stationary Gaussian sea are fully characterised by its ACVF or,
equivalently, by its SDF [115]. By way of example, Figure 6.4 shows (a) a JONSWAP
spectrum (Hs = 2m, Tp = 10 s and γ = 3.3) and (b) its corresponding ACVF.

m
s

rad/s

(a) SDF.
s

m

(b) ACVF.

Figure 6.4: Example of (a) a JONSWAP spectrum with Tp = 10 s, Hs = 2m and γ = 3.3
and (b) its corresponding ACVF.

Once the statistical properties of ocean waves are well-defined, and assuming perfect
knowledge of the SDF, it is possible to derive a theoretically-optimal predictor, in
a mean-square error sense. Define the sequences of vectors ηord(k) ∈ RnDMS

ord and
ηhor(k) ∈ Rnhor , which contain, respectively, nDMS

ord past consecutive measurements
and nhor consecutive forecast samples, as

ηord(k) =


η(k)

η(k − 1)
...

η(k − nDMS
ord + 1)

 , ηhor(k) =


η(k + nhor)

...
η(k + 2)
η(k + 1)

 , (6.26)

for any positive integer k > nDMS
ord , and let η∗(k) ∈ RnDMS

ord +nhor be a vector containing
both ηord(k) and ηhor(k) as

η∗(k) =
[
ηord(k)
ηhor(k)

]
. (6.27)

From the definition of a Gaussian process, η∗(k) follows a multivariate normal
distribution, characterised by its mean, which is 0, and its variance-covariance matrix,
Σηη ∈ R(nDMS

ord +nhor)×(nDMS
ord +nhor), whose components Σηηij are defined as:

Σηηij = E [η(k + nhor + 1− i)η(k + nhor + 1− j)] , (6.28)
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where the operator E[·] stands for the expected value, and i, j ∈ {1, 2, ..., nDMS
ord +nhor}.

All the diagonal elements of Σηηij are equal to the variance of the process (σ2
η). Defining

rηη(k) = Rηη(kts), each row of Σηη is a discretised and time-shifted version of the
ACVF (see Equation (6.25)), as

Σηη =


rηη(0) rηη(1) · · · rηη(nDMS

ord + nhor − 1)
rηη(1) rηη(0) · · · rηη(nDMS

ord + nhor − 2)
... ... . . . ...

rηη(nDMS
ord + nhor − 1) rηη(nDMS

ord + nhor − 1) · · · rηη(0)

 .
(6.29)

Splitting Σηη into past-measurement and forecasting blocks as

Σηη =
[
Σηhorηhor Σηhorηord

Σηordηhor Σηordηord

]
, (6.30)

where Σηhorηhor ∈ Rnhor×nhor , Σηordηord ∈ RnDMS
ord ×n

DMS
ord , Σηhorηord ∈ Rnhor×nDMS

ord , and Σηordηhor ∈
RnDMS

ord ×nhor are defined as

Σηhorηhor =


rηη(0) · · · rηη(nhor − 1)

... . . . ...
rηη(nhor − 1) · · · rηη(0)

 ,

Σηordηord =


rηη(0) · · · rηη(nDMS

ord − 1)
... . . . ...

rηη(nDMS
ord − 1) · · · rηη(0)

 ,

Σηordηhor = Σᵀ
ηhorηord

=


rηη(nDMS

ord ) · · · rηη(nDMS
ord + nhor − 1)

... . . . ...
rηη(1) · · · rηη(nDMS

ord )

 .

(6.31)

The conditional distribution of ηhor(k) and ηord(k) (from Equation (6.26)), ηhor(k)|ηord(k),
is a multivariate Gaussian process [39]. Since the mean of ηhor(k) and ηord(k) is 0,
the mean µηhor(k)|ηord(k) and variance Σηhor(k)|ηord(k) are given as follows:

µηhor(k)|ηord(k) = ΣηhorηordΣ−1
ηordηord

ηord(k), (6.32a)
Σηhor(k)|ηord(k) = Σηhorηhor − ΣηhorηordΣ−1

ηordηord
Σηordηhor . (6.32b)

Furthermore, the best predictor of ηhor is given by µηhor(k)|ηord(k) as,

η̄hor(k) = µηhor(k)|ηord(k) = ΣηhorηordΣ−1
ηordηord

ηord(k) (6.33)

and the corresponding mean-square prediction error value, for every prediction horizon
from 1 to nhor, is given by the diagonal terms of Σηhor(k)|ηord(k).
Explicitly, the set of optimal parameters ϕDMS

SDF ∈ Rnhor×nDMS
ord , which gives the best

linear combination of the measurements of the vector ηord(k), is obtained by solving
the following system of linear equations

ϕDMS
SDF = ΣηhorηordΣ−1

ηordηord
, (6.34)
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and the model structure is as defined in Equation (6.22).
Given the Gaussian nature of ocean waves, DMSSDF can be considered as an upper
bound for the prediction accuracy of any linear or nonlinear forecasting method which
predicts η by a function of the same set of previous values, provided that Equation
(6.34) can be accurately solved.

6.2.1.4 Theoretical 1-step-ahead accuracy limit

If the spectrum of a stationary process is zero up to some frequency f1, and then,
from f2, zero up to infinity (being non-zero for the complete frequency range [f1, f2],
with f1 < f2), the spectrum is defined as Band-Limited (BL) spectrum [132]. For
time series generated from BL spectra, there exists a linear predictor whose one-step-
ahead prediction error is less than ε for any ε > 0 and, therefore, the prediction
error could be made arbitrarily small by increasing the order of the predictor [132].
This is not a reasonable assumption for ocean waves, since they are composed of
an infinite number of frequency components and, therefore, are non-Band-Limited
(nBL) processes. Furthermore, any realistic wave elevation measurement or estimation
method would carry some level of measurement noise. In view of those considerations,
it is reasonable to assume that the process, as recorded by a measurement device,
would present some degree of unpredictability.
One can notice, from Figure 6.4(a), that the simulated JONSWAP spectral values are
zero for low and high frequencies and is, therefore, band-limited (i.e. the one-step-
ahead prediction error should tend to zero when increasing the predictor order). In
order to make simulations more realistic, an arbitrarily small white-noise component
(for example 1 · 10−10 of amplitude) can be added to the SDF used to generate η.
Note that, when spectra are computed from real wave data, no such modification is
necessary since the recorded low-frequency spectral content is non-zero.
Provided that the SDF is nBL and that its logarithm is integrable (Paley-Wiener
condition [132]), the Kolmogoroff-Szego’s mean square error formula [132] can provide
the theoretical lowest one-step-ahead prediction error, which would be obtained by
increasing the predictor order to infinity, as

ε2
∞ = e2

∫ π
0 log SDF(ω)dω (6.35)

or, equivalently, the one-step-ahead NRMSE formula corresponding to the Kolmogoroff-
Szego formula can be derived as

NRMSEKS =
√√√√ε2

∞
σ2
η

. (6.36)
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Similar to the theoretically optimal predictor, introduced in Section 6.2.1.3, the
theoretical one-step-ahead accuracy limit NMSEKS can be considered as an upper
bound for the one-step-ahead prediction accuracy. Thus, both accuracy limits are
used to characterise the performance of AR models for η prediction and show how
different configuration of the AR model affect the obtained prediction accuracy.

6.2.2 Wave signal filtering

It is well known that, if a signal is decomposed into a part containing the low-frequency
content and another part containing the high-frequency content, the signal with the
higher frequencies is less predictable [160]. Since the low-frequency wave components
are the most energetic [125], some studies [131, 67] apply, offline3, a low-pass filter
to the η signal before the prediction process. However, for online filtering, the filtered
signal (ηf) is delayed with respect to the original signal η [128]. Note that, if a
prediction of thor seconds is required, thor + tdel needs to be predicted, where tdel refers
to the delay time added by the filtering process. Even though the phase distortion
added by the filter does not necessarily have to be a pure delay (since the filter delays
some frequency components more than others), for this analysis, such distortion is
approximated using a pure delay of tdel seconds.
tdel depends mostly on the cut-off frequency (ωc) and the order of the filter. By way
of example, Figure 6.5 shows how ηf is delayed with respect to η for (a) different
orders of a Butterworth filter and (b) different ωc. The wave elevation time series
of this section are generated from a JONSWAP SDF with Hs = 2m, Tp = 10 s and
γ = 3.3, with a sampling period of ts = 1 s.
For the example shown in Figure 6.5(a), η is filtered by using 3rd, 6th and 9th order
Butterworth filters with ωc = 1 rad/s, corresponding to a tdel of, approximately, 2.3,
3.9 and 6.2 seconds respectively. Additionally, Figure 6.5(b) illustrates the differences
between η and ηf using a 6th order Butterworth filter with various ωc. It is clear that
the delay added by the filter increases when the order increases or when ωc decreases,
i.e. when more high-frequency components are filtered out.
As shown in Figure 6.6(a), the obtained NRMSEpred

η using an ARLLS model, comparing
η̄f(t+ t∗hor|t) with ηf(t+ thor), improves when increasing the order of the filter, since
the roll-off rate of the filter increases (i.e. the sharpness of the frequency separation)
and, therefore, more high-frequency components are filtered out. This is due to the
fact that, as mentioned at the beginning of this section, low-frequency signals are
more predictable than high-frequency signals.

3The main difference between online and offline filtering is that, while online filtering always
adds a phase distortion on the filtered signal, there are techniques to avoid such distortion when
considering offline filtering.
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s

(a) ηf filtered with different order Butterworth filters (ωc = 1 rad/s).

s

(b) ηf filtered with different cutting frequencies Butterworth filters (6th order filter).

Figure 6.5: Section of ηf using (a) Butterworth filters of 3rd, 6th and 9th orders with
ωc = 1rad/s, and (b) the same section of ηf filtered with a 6th order Butterworth filter with
ωc = 0.85, 1 and 1.15 rad/s.

However, if η̄f(t + t∗hor|t) is compared to η(t + thor), as shown in Figure 6.6(b), the
obtained NRMSEpred

η decreases with the order of the filter. This can be explained
by the fact that, when increasing the order of the filter, the differences between
ηf and η increase, as shown before in Figure 6.5(a). Therefore, even though the
prediction of ηf is more accurate, since the differences between ηf and η are more
significant, the obtained predicted signal looks less like the original, unfiltered η,
which increases the prediction error.
Furthermore, Figure 6.6(c) shows the performance of the ARLLS forecasting strategy
when using ηf, with the filtering carried out online. It is shown that the NRMSE of the
prediction is higher than the NRMSE of the prediction using non-filtered η, which is
due to the combination of two effects: firstly, because η̄f(t+ t∗hor|t) is compared with
η(t+ thor); and, secondly, the delay introduced by the filter tdel is taken into account.
The results shown in this subsection clearly illustrate how real-time filtering fails to
improve the prediction of the non-filtered η. However, the above considerations do
not discard the idea of online filtering within the scope of real-time measurement or
estimation of the wave elevation, especially in the presence of measurement noise.

6.2.3 Simulation results

The data sets of the simulated η are 30 minutes long and both the identification of
the parameters and the prediction are carried out using a complete (and different)
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η of the predicted

ηf, compared to η, and consider-
ing the delay added by the filter.

Figure 6.6: The NRMSEpred
η of the prediction computed with an ARLLS model (nAR

ord = 100)
for filtered η (using Butterworth filters with ωc = 1rad/s) when comparing the results with
(a) ηf, (b) η, or (c) with η and considering the added tdel.

data-set (ntr = 1800 points). The ARLLS, ARLRPI, and DMSLLS strategies require
that the identification of their prediction coefficients is carried out using a sufficiently
large learning data set. Typically, regardless of the method, it is found that, to obtain
accurate identification of the forecasting coefficients, the length of the training data
should be 15 times the order of the model (ntr ≈ 15nord), and using more learning
data points does not lead to any significant improvement of the prediction accuracy.
In addition to the NRMSE, a Multi-Step Performance Index (MSPI) is used for this
analysis, which takes into account all the prediction horizons considered between 1
and nhor. Therefore, the MSPI provides an overview of the performance achieved by a
given forecasting strategy for all time horizons at once. The MSPI is expressed as

MSPI = 1− 1
σ2
ηnhor

nhor∑
i=1

 1
ndat

ndat∑
j=1

(η(j + i)− η̄(j + i|j))2

 . (6.37)

Some authors use correlation as a performance metric to quantify the accuracy of
their forecasting strategies [16]. However, since correlation principally represents the
phase difference between two signals, the amplitude differences are not reflected in
the obtained correlation measure and is, therefore, not used in the current study.
Note that the two performance metrics used in this analysis, NRMSE and MSPI,
are based on the root-mean-square error between actual and predicted values of η.
Therefore, both NRMSE and MSPI statistically measure the magnitude of the difference
between actual and predicted η values, instead of measuring only the difference in
amplitude or phase, giving a more realistic measure of the prediction error.
Figure 6.7 illustrates the MSPI obtained for the different prediction strategies. For
the analysed predictors, the achieved prediction accuracy increases with the model
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order, up to a given order, beyond which the MSPI does not improve significantly.
The order, beyond which the MSPI improvement is not significant, is similar for all the
strategies analysed, as can be seen in Figure 6.7. One can notice that the DMSSDF

and DMSLLS strategies perform identically below nord ≈ 80, and outperform the
two AR-model-based strategies. Moreover, for nord > 110, the DMSLLS, ARLLS, and
ARLRPI strategies achieve the same prediction accuracy, while the DMSSDF strategy
performs slightly better than the other three.

SDF

ord

Figure 6.7: The MSPI obtained by the different forecasting methods for different nord.

In Figure 6.8, the comparison between the forecasting strategies is further exemplified
in terms of NRMSE. Figure 6.8(a) shows that, for nord = 50, the DMSSDF and
DMSLLS strategies perform identically and, again, outperform the ARLLS and ARLRPI

strategies, which achieve the same NRMSE. Note that the difference between the
DMS and AR predictors increases with thor, due to the error accumulated within the
iterations, required by AR models to obtain the nhor-step-ahead forecast. Additionally,
Figure 6.8(b) shows that, for nord = 150, all strategies perform virtually identically,
although the DMSSDF strategy is slightly more accurate. It should further be noted
that the ARLRPI strategy achieves almost the same results as the ARLLS, while requiring
significantly more time for identification. For example, for nord = 50, solving the LRPI
nonlinear problem is typically around 20 times slower than solving the LLS problem
of ARLLS, and the relative difference increases with the order.
Since, as explained in Section 6.2.1.4, the SDF used for the simulation is a nBL
SDF, it is possible to compute the theoretical minimum one-step-ahead NRMSE by
using Equation (6.36), and compare it to the one-step-ahead NRMSE obtained by the
DMSSDF, DMSLLS, ARLLS, and ARLRPI strategies. As shown in Figure 6.9, the four
strategies achieve almost identical one-step-ahead NRMSE (identical for the case of
ARLLS and DMSLLS). In fact, the difference between the NRMSEKS related to the
SDF and the one-step-ahead NRMSE achieved by the DMSSDF, DMSLLS, ARLLS, and
ARLRPI strategies decreases asymptotically when the order increases.
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Figure 6.8: The NRMSEpred
η obtained by the different forecasting strategies with (a)

nord = 50 and (b) nord = 150.
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Figure 6.9: The one-step-ahead prediction of the different forecasting strategies for different
orders and the theoretical best one-step-ahead prediction associated to the SDF.

6.2.3.1 Use of a band-limited spectrum

The use of a BL simulated spectrum for η generation requires a brief discussion. In this
section, as opposed to the previous subsections, no white-noise component is added
to the JONSWAP SDF and, therefore, the η time series utilised are BL processes.
Figure 6.10(a) shows the one-step-ahead prediction obtained by ARLLS (or DMSLLS)
for different model orders, using wave data generated from both the nBL and BL
JONSWAP spectra. It can be seen that, while for the nBL spectrum the minimum
one-step-ahead NRMSE is achieved with an order of nord ≈ 60, for a BL spectrum
the one-step-ahead NRMSE continues decreasing up to an order of nord ≈ 250.
Additionally, Figure 6.10(b) shows the MSPI obtained by the different strategies, in
order to show how their prediction accuracies are affected by the use of a simulated
noisy spectrum. The prediction accuracy achieved by the DMSLLS strategy continues
to increase up to orders larger than nord ≈ 300. Additionally, one can notice that the
DMSSDF strategy does not achieve an accuracy as good as the other three strategies
while, when using a nBL spectrum, it is always the most accurate. The reason
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(a) The one-step-ahead NRMSE of the prediction
achieved by ARLLS (or DMSLLS) using different
orders, when using wave data generated from a
nBL or from a BL spectrum.

ord

SDF

(b) The MSPI obtained by the different forecast-
ing methods using simulated wave data generated
from a BL spectrum.

Figure 6.10: Results obtained for wave data generated from a BL spectrum.

for the increased error in the prediction obtained by DMSLLS is that, when using
a nBL spectrum, the result obtained from Equation (6.34), although theoretically
consistent with the assumption of stationary Gaussian waves, may be subject to
numerical inaccuracies. Indeed, since the process is BL, the SDF used for the
calculations is zero for some frequency intervals and, therefore, the covariance matrix
in Equation (6.34) is ill-conditioned.
The simulated results obtained from a nBL spectrum depend, to some extent, on the
level of white noise added to the JONSWAP formulation. However, as will be shown
in Section 6.2.4, the results obtained using real data are closer to those obtained from
the nBL spectrum than to those obtained from the BL spectrum.

6.2.4 Results using real wave data

In Section 6.2.3, identification and prediction are performed on different data sets,
generated from the same wave spectrum (shown in Figure 6.4(a)), thus, both data sets
share identical statistical properties, characterised by the wave spectrum. In such a case,
the use of higher-order models always results in a more accurate prediction, because
more statistical information from the spectrum can be taken into account. However,
real sea wave conditions, and therefore the wave spectrum, vary in time. Hence, the
forecasting strategies may be subject to some additional errors, due to the fact that
the wave condition evolves, between the η data-set during which the coefficients are
identified and the data-set over which the models are used to perform prediction. In
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particular, high-order models may be more affected by the inherent non-stationarity of
ocean waves. Overall, the impact of using real wave data is assessed in this section.
The data used in this subsection is representative for Belmullet, Ireland, and has been
provided by the Irish Marine Institute [94]. As explained in Section 6.1.2, the η time
series have been recorded using a Datawell Waverider [36] data buoy, and each data
set is 30-minute long, recorded at a sampling frequency of 1.28Hz. In particular, the
results shown in this subsection are for December 2010.
To derive the DMSSDF parameters, it is important to use an appropriate procedure
for wave SDF estimation. By considering a 30-min wave signal window, it can be
assumed that the sea is purely stationary, i.e. that the wave spectrum does not evolve
over time. This 30-min signal carries some statistical characteristics of the underlying
wave spectrum, but also has some inherent randomness. Therefore, in theory, to
obtain a perfect estimate of the spectrum, an infinitely long record would be necessary.
However, if only a 30-min data set is available, applying signal processing techniques,
such as windowing and smoothing, can help to separate the effects of the short-term
variability from the statistical information specific to the underlying spectrum [147].
For real sea records, it can be considered that the underlying wave spectrum slowly
evolves over time, but such an underlying, slowly evolving spectrum must still be
distinguished from the effect of short-term randomness. In order to compute the
half-hourly SDF, the same procedure as introduced in [36] is used. Each 30-min data
set is divided into tw-second overlapping windows, with each section multiplied by
a windowing function (such as, for example, a Tukey windowing function), before
applying a FFT to obtain a SDF estimate. Then, the half-hourly SDF is computed as
the average of the SDFs of all sections. The resulting SDF is smoother when reducing
tw (and, consequently, increasing the number of overlapping sections). However,
a smaller tw also implies a lower frequency resolution for the SDF (ωs = 2π/tw).
For this case, it has been found that tw = 5minutes gives the best estimate of
the underlying wave spectrum.
The DMSSDF parameters are derived from the SDF computed in the half-hourly data
set previous to the data set where such parameters are used to predict η, so that,
overall, only past information is used to forecast η. Similarly, for the strategies whose
identification is based on a time series of η, the parameters are identified in the
half-hourly data set previous to that used for wave prediction. It should be noted that
the results from the ARLRPI strategy are not shown since they are identical to ARLLS,
while requiring a computationally expensive identification procedure.
As shown in Figure 6.11, for orders lower than nord < 60, the DMSSDF and DMSLLS

strategies achieve very similar prediction accuracies, and ARLLS obtains less accurate
results. For nord = 60 the three methods perform almost identically and, for
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Figure 6.11: The MSPI obtained by the different forecasting methods for different nord
using real η data.

orders larger than nord > 60, DMSSp obtains the most accurate results among
the three strategies.
For the strategies for which the identification is based on time series (ARLLS and
DMSLLS), there is an order nord beyond which the model seems to ’over learn’ statistical
information due to the short-term randomness (as opposed to the underlying spectrum),
thus decreasing the prediction accuracy. As far as DMSSDF is concerned, since the
effect of short-term randomness is mitigated by the appropriate SDF computation
methodology, the prediction accuracy does not decrease once the maximum accuracy
is achieved (see Figure 6.11).
A significant difference between predicting simulated or real waves using a forecasting
strategy identified based on previous values of η (ARLLS and DMSLLS) is that, compared
to the simulated waves case, the choice of the order of the model nord can have a
greater impact on the prediction performance for the case where real waves are used.
In particular, for simulated waves, the performance is similar for any chosen order
higher than the ‘optimal’ order (nopt

ord) which, for the simulated waves in the previous
section is nopt

ord ≈ 80 (as shown in Figure 6.7). However, when using real waves,
the performance decreases if the chosen nord is greater than the ‘optimal’ order, in
this case nopt

ord ≈ 40 (see Figure 6.11).
Overall, one can notice that the predictions obtained using real data are significantly less
accurate than those achieved using simulated data, which may be due to several reasons:

• The sea-state is non-stationary, which implies that the statistical characterisation,
learned in one given data set by any model is, in general, not the same in the
next data set.
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• The SDFs of real wave data have significantly more high-frequency content than
idealised sea-states, such as JONSWAP spectra (see the difference between the
SDF of Figure 6.4(a) and Figures 6.12(a-c)).

• Finally, real wave data may be subject to measurement noise, which influences
the frequency content of the signal.

To assess the relative importance of the above factors in the performance of the
predictors, the following comparison is performed and illustrated in Figure 6.12. For
three different real-data sea states (shown in Figures 6.12(a-c)), the empirical NRMSE
achieved by DMSSDF, identified using the SDF from the previous half-hourly data
set, is compared to the theoretical best NRMSE, associated to the SDF of the data
set where the prediction is carried out (using Equation (6.32b)), which is shown in
Figures 6.12(d-f). In other words, the solid curve indicates how the optimal predictor
would perform, assuming perfect knowledge of the underlying spectrum. It can be
observed that the difference between the two NRMSEs is minimal, thus suggesting
that the difference between simulated and actual prediction performances is mainly
induced by the fact that real wave spectra have more high-frequency content, rather
than resulting from the non-stationarity of wave conditions.
Although the considered data is from a single location, the results obtained for real
sea states confirm the results obtained for simulated data, since all the strategies
perform similarly and, in particular, the results obtained using the AR model are as
accurate as those obtained with the theoretically optimal predictor.

6.3 Conclusions

From the comparison between AR and ARMA models, generally, it is fair to say that
both models achieve similar performance, which is not surprising due to the fact that
the ARMA model is a sum of an AR model and a noise which is estimated using
another AR model [24]. Therefore, the conclusion presented in [67], stating that,
for wave energy applications, ARMA models do not provide any improvement on η
prediction compared to AR models, is confirmed.
It is demonstrated that the spectra used to generate simulated η time series should
be nBL, in order to avoid unreasonably optimistic prediction results.
Considering the results obtained by the DMSSDF strategy as an upper bound for the
achievable prediction accuracy (provided that the method is free of numerical issues),
the DMSLLS, ARLLS, and ARLRPI strategies yield results close to the best achievable
prediction, if their parameters are correctly identified. From this point of view, all
strategies studied here seem to be suitable tools for short-term wave forecasting.
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Figure 6.12: (a-c) Three different half hourly SDFs, and (d-f) the NRMSE of the prediction
achieved by DMSSDF and the theoretical best NRMSE.

In particular, the ARLLS strategy and its multi-step analogous, the DMSLLS, are
particularly simple and are not significantly outperformed by DMSSDF representing,
thus, convenient forecasting strategies for η or fe prediction. Regarding computational
requirements, even though all methods compute η prediction relatively fast (2-3 orders
of magnitude below real time), the identification process of the ARLRPI strategy is
computationally more expensive than for the other strategies analysed.
It should be noted that, even the best achievable predictions remain relatively
inaccurate, with a NRMSE higher than 50% for one wave period ahead in the favourable
case of simulated data, and 80% in real sea-states. Such high values are in contrast to
the results of [67, 131] (which obtain 0-10% of error for predictions of more than one
wave period ahead), suggesting that the accuracies obtained from data, filtered offline,
are unreasonably optimistic. Based on simple numerical examples, it is demonstrated in
this chapter that the use of online filtered wave elevation data for the prediction always
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leads to inferior results compared to non-filtered wave elevation data. This can be
explained by the fact that any realisable online filter is necessarily causal and, therefore,
consists of some (usually linear) function of the previous measurements. Indeed, the
use of a filter, combined with an AR model, simply results in some other function of the
past values, which is then necessarily sub-optimal with respect to DMSSDF (provided
that the same set of previous measurements is used and that DMSSDF avoids numerical
inaccuracies). In view of the results shown in Section 6.2.3, showing the performance
of the DMSSDF strategy, it should not be possible to obtain results as favourable as in
Figure 6.6(a), when using an online filter. Therefore, more accurate predictions may
require the use of several measurement points in the vicinity of the WEC [115].
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As mentioned in Section 2.2.6, commercial WECs are likely to be deployed in arrays,
in order to minimise total infrastructural and operational costs [159]. Similarly to
the WEC array control problem [13], the estimation and forecasting problem for
arrays can either be considered from an independent device perspective, where
each device has no knowledge of the other devices (distributed or independent
control/estimation/forecasting) or from a coordinated, or global, perspective, where
the global controller/estimator/forecaster has complete knowledge of the motion
of all the devices in the array.
Compared to the isolated WEC case (i.e. an ’array’ of just a single device), the
wave field for multiple devices in an array is significantly more complex, due to the
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diffraction of the incident waves by each device and the waves which are radiated by
each device, by virtue of their motion. A question exists as to whether the increase
in information available for the full array is sufficient to counteract this increased
wave field complexity for the estimation and forecasting problems. To this end, an
estimation and forecasting model, with the ability to utilise the full set of WEC
device motion available in the array, is designed in this chapter, and compared to
the estimation/forecasting model utilising only motion measurements from a single
device. For the control case, several studies (e.g. [13]) demonstrate that global array
control always outperforms independent control.
The analysed array configurations are introduced in Section 7.1, while Section 7.2
describes the chosen fe estimation and forecasting strategies. Section 7.3 shows the
obtained results and, finally, in Section 7.4, some conclusions are drawn.

7.1 Arrays configurations

In this chapter, four different array layouts, shown in Figure 7.1, are examined. In
addition, three different wave directions βη and 18 different inter-device distances
db are considered for each layout. The examined arrays comprise a set of cylindrical
bodies, and all devices are assumed to be identical, with a diameter of 10m, a draft of
10m, and a mass of m = 7.9 · 105 kg, representing a full-size scale case. In addition,
it is assumed that each device is limited to heave-only motion.
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Figure 7.1: The different array layouts considered for the analysis.

The colour boxes to the right of each layout in Figure 7.1 show the symmetries of
the transfer function matrices (defined as shown in Equation (2.44)) of the MIMO
systems. By way of example, for the simplest layout, L1, since the geometry of
the two bodies is the same, so are the inner dynamics of each device (the diagonal
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terms of the transfer matrix); furthermore, for the same reason, the interactions
from body 1 to body 2, and vice-versa, are also identical (cross-coupling terms of
the transfer matrix are symmetric).
Note that the dynamics of the devices of the array do not vary with the wave direction
βη, since they only depend on the geometry of the devices and the layout of the array,
rather than the incident wave field. The wave direction, along with the diffraction
effects on the different devices, is included in the excitation force frequency-domain
parameter F̂e(ω). As an example, Figure 7.2 shows how the F̂e(ω) coefficients change,
for L21 with inter-device distance db = 20m, for different wave directions. For this
array layout, when βη = 90◦, following the convention of the wave direction βη shown
in Figure 7.1, the incoming wave affects the three bodies at the same time. Therefore,
as shown in Figure 7.2(b), both magnitude and phase of the excitation force for the
three devices is similar to the magnitude and phase of the isolated body.

(a) F̂e(ω) coefficients for βη = 0◦.

N
  
m

e

Isolated
Device 3
Device 2
Device 1

rad  s

ra
d

e

(b) F̂e(ω) coefficients for βη = 90◦.

Figure 7.2: Magnitude and phase of the excitation force coefficients for the different bodies
of L2 (with db = 20m), for (a) βη = 0◦ and (b) βη = 90◦, along with the coefficients for
the isolated WEC case.

In contrast, for βη = 0◦, two different effects can be observed in Figure 7.2(a). First,
the magnitude of F̂e for Device 1 is the most disturbed one between the three devices,

1Note that L2 is shown in Figure 7.2 since, due to its geometry, it adequately shows the effect of
the wave direction on the excitation force coefficients F̂e(ω).
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which is due to the waves diffracted from Devices 2 and 3, and Device 3 is the
most similar to the F̂e magnitude of the isolated device. Note that the differences
between the F̂e magnitude for Device 3 and the isolated body are (mainly) due to the
shadowing effect from the previous devices [17]. Secondly, by looking at the phases of
the different devices in Figure 7.2(a), it can be seen that Device 1 and the isolated
device have similar phases (since the isolated body is located at the location of Device
1), while the phase of Devices 2 and 3 tend to negative angles. This is because the
excitation force of the three devices is computed from the same η signal (using the
convolution calculation shown in Equation (2.37)) and, therefore, the different phases
of F̂e add the time delays on the fe signals associated with the location of the devices,
i.e. a phase delay is added to the fe signal of Device 1 (which is the same as the
isolated device) to obtain the fe acting on Devices 2 and 3.
It should be noted that, for some coupling terms, the hydrodynamic coefficients are
expected to be equal. For example, the excitation force coefficients of the two bodies in
L1, with βη = 90◦, or some of the Ar(ω) coefficients of L3 for any βη, etc. However, in
practice, the coefficients obtained from BEM solvers, like NEMOH or WAMIT, are not
exactly the same. Those small differences between the coefficients of the model may be
magnified during simulation, estimation, and forecasting, resulting in a disparity of up
to 10% between the forecasting NRMSE of devices whose NRMSE would be expected
to be identical, due to symmetry. In this chapter, that issue is addressed by equalizing
the values of the coefficients that should be equal, from symmetric considerations.

7.2 Excitation force estimation and forecasting

For each of the analysed cases, two alternative estimation and forecasting models are
tested, both global (using all the available measurements) and independent (where
the fe estimate/forecast for a WEC depends only on the motion information local
to the specific WEC). For the independent estimator, no information from radiated
or diffracted waves from other devices is explicitly taken into account, and each
device cannot distinguish between such waves and the incident (far field) waves. With
regard to the forecasting models, the independent model only takes into account
past fe values of one device to forecast the future fe acting on that specific body.
In contrast, the global forecasting model uses past fe values of all the bodies of the
array to forecast the fe acting on a given device.
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7.2.1 Global and independent estimation

The fe estimation strategy selected for this analysis is the KFHO scheme since, as
shown in the comparison of Section 5.1, this strategy is one of the most accurate
and simple estimation approaches available for wave energy applications. The main
difference between the independent and the global estimator analysed in this chapter
is the model used to describe the WEC array and the fe dynamics within the KF. On
the one hand, the independent estimator utilises a different KFHO estimator for each
body of the array (i.e. nb different estimators, with nb bodies in the array), defined
as explained in Section 5.1.1.3, and using a SS model describing the single-DoF
WEC shown in System (2.41).
On the other hand, for the global estimator, even though the KF process is as
introduced in Section 5.1.1.3, the description of the model and the dynamical model
of the fe differs. In order to compare the independent and global estimator under
similar conditions, the array SS model of the global estimator is defined as a set
of multi-SISO SS systems, as opposed to directly identifying the complete MIMO
array system using moment matching which, as shown in Section 4.3, provides a
lower order representations of the array. By using the multi-SISO approach, the
same SISO models used to define the models of the independent estimator can be
used and, therefore, minimise the effect that the used model has on the final results.
However, a brief analysis showing the advantages of using the MIMO models, identified
using the moment-matching identification approach for the global estimator, is shown
in Section 7.3.3. Note that the order of the SS model used to approximate the
different radiation subsystems is nr = 4, obtaining final MIMO array systems of order
(narray

ss = 2nb + nrn
2
b) 20, 42, and 72 for the cases of 2, 3, and 4 devices, respectively.

For the HO describing the excitation force of the global estimator, the following
changes have to be made to the matrices shown in Equation (5.7):

ΩHO = Inb ⊗
nω⊕
i=1

[
0 ωi
−ωi 0

]
,

Θ(k) =
nb∑
j=1

e
nb
j ⊗

 nω∑
i=1

e
nω
i ⊗

fKFHO
ejωi

(k)
ḟKFHO
ejωi

(k)

 . (7.1)

Here, fKFHO
ejωi

are the different components of the HO describing the excitation force
of the device j, and CHO is now defined as CHO = 11,nωnb ⊗

[
1 0

]
.
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7.2.2 Global and independent forecasting

For the fe prediction, the AR model is used since, as shown in Chapter 6, it is
simple and (if correctly identified) yield prediction accuracies close to those obtained
by the theoretically optimal predictor. The independent estimator is, basically, the
ARLLS model introduced in Section 6.1.1.1, but operating on fe instead of η. Note
that the LLS is dropped in this chapter, since no identification method, other than
LLS, is employed.
For the global predictor, a variation of the AR model is used, termed autoregressive
with exogenous variable, or ARX, model in the literature [27]. The ARX predictor
not only uses past fe estimated values from the device under analysis, but also
the fe estimated by the other devices as ‘external’ inputs. Thus, the ARX model
assumes that fe is defined as

feb∗ (k) =
nARx

ord∑
i=1

ϕARXb∗
b∗ (i)feb∗ (k − i) +

nb∑
j=1
j 6=b∗

narX
ord∑

i2=1
ϕARXjb∗ (i2)fej(k − i2) + ε(k), (7.2)

where feb∗ (k) ∈ R is the excitation force of the body b∗, with b∗ = {1, ..., nb}, and
ϕARXjb∗ are the regression coefficients of body b∗ for the past values of body j. In
Equation (7.2), nARx

ord and narX
ord refer to the number of past values considered of the

device under analysis (the order of the autoregressive part) and for the other devices
(the order of the exogenous input part), respectively.
The coefficients of the ARX for the body i can be identified by solving a set of nb

LLS problems, described by the matrix product

ϕARX
i =

(
fARXᵀ

ei fARX
ei

)−1 (
fARXᵀ

ei f ?ei

)
, (7.3)

where f ?ei ∈ R(ntr−nARX
max −1), with nARX

max = max{nARx
ord , n

arX
ord}, is a vector containing

the fe(k) values of body i from k = nARX
max + 1 to ntr, and the matrix fARX

ei ∈
R(ntr−nARX

max −1)×(nARx
ord +(nb−1)narX

ord ) is defined as follows:

fARX
ei =

[
fARx
ei f arX

e(i−1+αb)
· · · f arX

e(i−(nb−1)+αb)

]
, (7.4)

where

fARx
ei =


fei(nARX

max ) · · · fei(nARX
max − nARx

ord )
fei(nARX

max + 1) · · · fei(nARX
max − nARx

ord + 1)
... . . . ...

fei(ntr − 1) · · · fei(ntr − nARx
ord )

 , (7.5)

f arX
ei =


fei(nARX

max ) · · · fei(nARX
max − narX

ord )
fei(nARX

max + 1) · · · fei(nARX
max − narX

ord + 1)
... . . . ...

fei(ntr − 1) · · · fei(ntr − narX
ord )

 . (7.6)
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In Equation (7.4), for the subindices defined as i − j + αb, αb is defined as

αb =

0 if i− j > 0,
nb if i− j ≤ 0,

(7.7)

which ensures that, regardless of the value of i, the excitation force from all the
devices is included in the matrix fARX

ei .

7.3 Results

It should be noted that the order of the estimator/predictor could be optimised for
each case, which would improve the results presented in this section. However, it
is appealing, from comparison purposes, to keep such estimator/predictor orders
constant for every case analysed (selected as explained in Sections 7.3.1 and 7.3.2
for the estimator and predictor, respectively). Additionally, for estimation, instead of
showing the NRMSE obtained by the different estimation techniques, the Relative
Error (RE) is shown, which relates the results obtained within the WEC to the results
obtained for the isolated WEC case as:

REi = NRMSEarray
i

NRMSEisol , (7.8)

where NRMSEarray
i refers to the estimation NRMSE obtained for device i and NRMSEisol

to the comparable estimation NRMSE obtained for the isolated WEC case.
The η time series are generated from a JONSWAP SDF with Hs = 1.5m, Tp = 8 s,
and γ = 3.3. Each time series consists of 450 s, with ts = 0.01 s. In order to obtain
meaningful results, it is found that the average of 35 simulations is necessary (according
to the central limit theorem [28]). The coefficients of the predictors are identified
during the first 150 s of the simulation, which is one third of the total length (450 s).
The prediction is carried out over the remaining 300 s.
It should be noted that, for the graphs showing results as a function of the inter-device
distance db, such distances are shown using integer multiples of the device diameter
øb. Finally, in order to simulate the electrical noise on the real motion measurement
sensors, the position and velocity measurements of the devices are artificially polluted
with white noise, with standard deviations of 0.02m and 0.08m/s, respectively.

7.3.1 Estimation results

As shown in Section 5.1.1.3, the accuracy of the estimator increases with the number
of frequencies considered in the HO model describing fe. As shown in Figure 7.3(a), for
this case, the NRMSEest

fe improvement, when considering more than 7 frequencies, is not
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γ = 3.3, along with the frequencies chosen for the
HO of the KFHO (orange dots).

Figure 7.3: (a) The variation of the NRMSEest
fe

for different nω, and (b) the JONSWAP
SDF considered to generate η with the frequencies of the HO (nω = 7).

significant. Therefore, for this case, seven frequencies are used, which are chosen evenly
spaced and include the peak frequency of the sea state, as shown in Figure 7.3(b).
Note that the results shown in Figure 7.3(a) are obtained for the isolated WEC case.
For the array case, such results could be improved by optimising both the number of
frequencies and their value for each array layout, separation distance db, and wave
direction βη. However, it is appealing to use the same HO configuration for all the
cases of this comparison and, therefore, nω = 7 is the order chosen for both global or
independent estimators with the frequency values shown in Figure 7.3(b).
Figure 7.4 shows the RE on the estimation obtained using the global and independent
estimators for the four layouts in Figure 7.1, averaged over the three wave directions2.
Note that the RE values, shown in Figure 7.4, represent the values of the RE averaged
over the different devices of the array. As the distance between devices increases, the
power density of the radiated and diffracted waves decreases, reducing the magnitude
of the interactions. Therefore, as shown in Figure 7.4, the global and independent
estimator accuracies converge towards that achieved in the isolated body case, i.e.
limdb→∞RE = 1. Figure 7.4 also shows that, overall, the magnitude of the interaction
increases for a larger number of bodies in the array, which decreases the performance of
the independent estimator, increasing the obtained NRMSEest

fe and the RE. In contrast,
the RE obtained by the global estimator is always close to unity. Therefore, one can
deduce that the extra complexity due to interactions among devices is balanced by
the provision of the extra information available to the global estimator.
Table 7.1 shows the estimation RE obtained for L1 with different βη and db. When
βη = 0◦ and βη = 45◦, the two bodies of the array achieve similar RE using global
estimation. However, there is a difference on the performance obtained for the two

2The average RE over βη = 0◦, 45◦, and 90◦ is shown in Figure 7.4, due to the similarities of the
results obtained for three wave directions analysed.
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Figure 7.4: The relative error of the estimation for the different layouts L1–L4, averaged
over the three wave directions, for the global and independent estimator.

devices when using the independent estimator for close spacing (db < 6.5øb). When
βη = 90◦, both bodies achieve almost identical RE results for all db with global and
independent estimators, due to the symmetry of that case3. As for Figure 7.4, Table
7.1 demonstrates that the global estimator always achieves a NRMSEest

fe comparable to
the one obtained in the isolated body case, while the independent estimator achieves
significantly poorer estimates, particularly for small db values.

3Note that if the results obtained for both devices are not exactly the same is due to the
randomness of the noise added to the position and velocity measurements at the estimation stage.
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Table 7.1: The RE of estimation for L1, for different distances and wave directions

Global estimator Independent estimator
db 2øb 3øb 6.5øb 21øb 200øb 2øb 3øb 6.5øb 21øb 200øb

βη = 0◦ Device 1 0.964 0.980 0.976 0.984 0.988 1.348 1.148 1.048 1.004 0.984
Device 2 0.988 0.992 0.996 0.976 0.976 2.272 1.484 1.104 0.988 1.000

βη = 45◦ Device 1 0.984 0.976 0.992 0.984 1.000 1.260 1.084 1.088 1.268 0.996
Device 2 0.992 0.996 0.988 0.992 0.988 1.936 1.48 1.076 1.036 0.988

βη = 90◦ Device 1 0.984 0.980 0.988 0.995 0.990 1.584 1.251 1.096 1.012 0.988
Device 2 0.984 0.980 0.988 0.996 0.989 1.584 1.250 1.096 1.013 0.986

7.3.2 Forecasting results

As shown in Chapter 6, the accuracy of the prediction obtained with AR models
depends (mostly) on the amount of past signal history considered to predict future
values, which is given by the order of the model and the sampling period of the
signal. Since, for this case, the AR model order giving the best prediction accuracy is
nAR

ord = 160, the estimated fe is re-sampled, in order to reduce the order of the predictor.
By way of example, Figure 7.5 shows the NRMSEpred

fe , for thor = 4 s, computed for
different re-sampled sampling periods using the isolated WEC case. Note that the
minimum prediction error for each ts occurs approximately when 16 s of past values
are taken into account, equivalent to two times Tp. Therefore, the estimated fe is
re-sampled to ts = 0.04 s before using it at the prediction stage. Even though Figure
7.5 is computed for the isolated WEC case, the best nAR

ord remains the best order for
an independent predictor in the array case and, therefore, nAR

ord = 40 is chosen.
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Figure 7.5: The different array layouts considered for the analysis.

Regarding the global predictor, the model order which gives the most accurate
prediction varies depending on the layout, spacing db, and wave direction βη. It is
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appealing, for comparison purposes, to use a consistent order for all cases, with an
overall best choice of nARx

ord = 40 and narX
ord = 40.

Figure 7.6 illustrates the variation in the prediction performance when the f̃e signal
used to identify the forecasting parameters is obtained from global and independent
estimators, illustrated in Figure 7.6(a) and (b), respectively. Even though only the
case for L2, with βη = 0◦ and db = 20m, is shown in Figure 7.6, this case is
representative of all the considered array layouts. Three main details are highlighted
in Figure 7.6. Firstly, the NRMSEpred

fe obtained by the predictor using f̃e from the
global estimator (Figure 7.6(a)) is, overall, lower than that obtained using f̃e from the
independent estimator. This is due to the error added by the independent estimator.
Note that the lowest prediction errors start at around NRMSEpred

fe = 0.2, which
correspond to the estimation error.
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Figure 7.6: Comparison of the NRMSEpred
fe

of the forecasting using the values obtained
from the global estimator and independent estimator for L2 with (a) βη = 0◦ and (b)
db = 20m.
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Secondly, the NRMSEpred
fe obtained by the independent predictor4 is always similar to

that obtained in the isolated WEC case, or worse in the case of using f̃e from the
independent estimator. Finally, since incoming waves first impact Device 1 and, later,
Devices 2 and 3, the knowledge of f̃e acting on Device 1 leads to an improvement of
the prediction accuracy for Devices 2 and 3. The degree of improvement depends on
the distance between the devices, i.e. the amount of time in advance the incoming
wave is known. Thus, Device 3 achieves the best prediction performance, while the
prediction performance of Device 1 is similar to that achieved in the isolated body case.
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Figure 7.7: Comparison of the NRMSEpred
fe

of the forecasting using the values obtained
from the global estimator for L2, with db = 20m, for (a) βη = 0◦, (b) βη = 45◦, and (c)
βη = 90◦.

Figure 7.7 illustrates the prediction NRMSEpred
fe for different βη, with L2 and db = 20m.

For such case, when the incident wave direction is perpendicular to the main axis
4Note that a single trace is shown for the independent predictor, representing the NRMSEpred

fe

averaged over the three bodies.
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of the array, βη = 90◦ (see Figure 7.7(c)), all devices are affected by the wave
front at the same time. Therefore, there is no significant extra information from the
array motion, compared to the information from any single device. Consequently,
the global forecaster achieves a similar NRMSEpred

fe compared to the independent
forecaster, and to the isolated single WEC case.
However, as explained for Figure 7.6, the NRMSEpred

fe for some devices improves
when the incoming wave affects the other bodies of the array first. Thus, for βη =
45◦, the fe estimated from Device 1 helps Devices 2 and 3 to obtain better fe

predictions than for the isolated WEC case. This NRMSEpred
fe is further improved

for βη = 0◦, since the distance between Device 1 and Devices 2 and 3 is larger
compared to the case of βη = 45◦.
A section of simulated, estimated, and predicted fe, for a specific sea state realisation,
is shown in Figure 7.8, when using (a) an independent estimator/predictor and (b)
a global estimator/predictor, for Device 2 of L1 with db = 20m, βη = 0◦, and
thor = 4 s. Figure 7.8 again confirms that the estimation of fe is more accurate when
using the global estimator. Additionally, it is shown that, when using the global
predictor, the prediction achieved is quasi-identical to the estimated fe, due to the
anticipative information provided by Device 1.
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(b) Using the global estimator along with the global predictor.

Figure 7.8: Section of simulated, estimated, and predicted fe using two different
combinations of estimator/predictor, for a specific realisation. The device shown is Device 2
of the L1 with db = 20m and βη = 0◦. The prediction shown is for thor = 4 s.
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Finally, as explained in Section 7.2.1, for the independent estimation case, an estimator
is used in each device and, therefore, the computational time will not change if larger
arrays are considered. In contrast, since the global estimator takes into account
the interactions between all the bodies of the array, the size of the Ass matrix for
the global estimator increases with nb. In fact, by defining the MIMO SS model of
the array as a set of multi-SISO SS systems, the Ass matrix increases proportionally
with n2

b, which could hamper the online application of the global estimator in a
real sea-state scenario with large arrays. However, Section 7.3.3 details how the
MIMO parametric models, introduced in Section 4.3, can reduce the computational
time required by the global estimator.

7.3.3 Using the moment-based MIMO identification strategy

One can notice that the HO model, used in the KFHO estimator, is defined exactly
like the dynamical model used to describe the excitation force input in the moment-
matching based identification approach (see Equation (4.4)). This means that there
is a natural synergy between the moment-matching-based parameterisation strategy,
introduced in Section 4.1.1, and the KFHO estimation technique. This mathematical
connection can be exploited to substantially improve the performance of the KFHO,
through a wise selection of the set of interpolation points of the parametric model
describing the WEC system.
In particular, for the array case, if the MIMO SS model is directly identified from
the original MIMO system by interpolating the same set of frequencies used in the
HO model, the performance of the global KFHO estimator improves, compared to
the case where the standard multi-SISO MIMO SS model is used to describe the
system (which is the model used for the global estimator of the previous section). It
should be noted that such an improvement in performance is given in terms of not
only computational effort required by the observer, but also of estimation accuracy,
as demonstrated in the remainder of this section.
To illustrate the advantages of using the MIMO moment-based parameterisation
method within the global KFHO estimation technique, the same four body array
configuration used in the previous section, L4, is used. Thus, the array is composed
of four cylindrical devices (10m diameter and 10m draft), laid out in the square
layout L4 with db = 20m and βη = 0◦ (see Figure 7.1).
In order to emphasise the effect of the WEC model used in the estimator, rather than
the capacity of the KFHO estimator to deal with measurement noise, no measurement
noise is considered in this analysis. Additionally, to accentuate the effect of choosing
the correct frequencies for the HO model of the KFHO estimator, HO models composed
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of a maximum of two frequencies are considered for this section, instead of using
seven frequencies as for the analysis of the previous section. To this end, the global
KFHO estimator is designed using the following set of frequencies:

F est
1 = {0.79},

F est
2 = {0.79, 1.17},

(7.9)

where the selection of the frequencies is made using explicit knowledge of the SDF
of the wave input, since 0.79 rad/s corresponds to the peak period of the JONSWAP
spectrum shown in Figure 7.3(b). The second interpolation frequency, 1.17 rad/s,
represents the largest peak of the MIMO frequency response of the force-to-velocity
dynamics of the array (shown later in Figure 7.9).
Using the frequency sets defined in Equation (7.9), the moment-based MIMO SS
models H̃Fest

1
and H̃Fest

2
are identified, as shown in Section 4.3. Additionally, another

two moment-based MIMO SS models are identified, termed H̃F sim
1

and H̃F sim
2
, where

the interpolation frequencies are selected so that the approximation error between
the frequency responses of the target MIMO system and obtained parametric model
is minimised. In particular, F sim

1 and F sim
2 are defined as:

F sim
1 = {1.17},

F sim
2 = {1.17, 1.11},

(7.10)

where 1.11 rad/s represents the location of the second largest peak of the MIMO
frequency response of the dynamics of the array. It should be clarified that, for
the estimators using the models H̃F sim

1
and H̃F sim

2
, the set of frequencies defining

the HO model are also F est
1 and F est

2 .
Table 7.2 shows the estimation results obtained with the different identified MIMO
models, as well as with the multi-SISO parametric model, of the force-to-velocity
relationship of the WEC array. Note that Table 7.2 shows the results in terms of
the following characteristics:

Dim Dimension of the MIMO force-to-velocity parametric model.
NRMSEH(ω) Approximation error computed against the target MIMO WEC array

frequency response (for ω ∈ [0.3,2.5] rad/s).
NRMSEest

fe NRMSE of the fe estimate, averaged over 35 randomly-generated realisa-
tions of the JONSWAP SDF.

N-Time The time required5 for the fe estimation, normalised against the slowest
model, in this case the model computed with the multi-SISO approach (2·10−4s
for one time step ts = 0.001 s).
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Table 7.2: Estimation results obtained with the different identified MIMO and the multi-
SISO parametric models of the force-to-velocity of the WEC array.

Model Dim NRMSEH(ω) NRMSEest
fe N-Time

multi-SISO 72 0.0076 0.0437 1
H̃F sim

1
8 0.0482 0.2359 0.1984

H̃Fest
1

8 0.3112 0.0982 0.1984
H̃F sim

2
16 0.0044 0.0428 0.3108

H̃Fest
2

16 0.0502 0.0204 0.3108

One can notice, by analysing H̃Fest
1

and H̃F sim
1

that, even though the order of both
models is exactly the same, the performance results are significantly different. Figures
7.9 and 7.10 show the frequency responses obtained by H̃F sim

1
and H̃Fest

1
, respectively.

From visual inspection of Figures 7.9 and 7.10, it can be observed that H̃F sim
1

obtains
a more accurate representation of the target frequency response. This is further
confirmed in Table 7.2, showing that H̃F sim

1
obtains a NRMSEH(ω) ≈ 0.05, compared

to a NRMSEH(ω) ≈ 0.31 obtained by H̃Fest
1
.

However, the performance of the estimation obtained using H̃F sim
1

is significantly worse
than that obtained using H̃Fest

1
(NRMSEest

fe ≈ 0.24 against NRMSEest
fe ≈ 0.10). This

can be explained by the fact that H̃Fest
1

has exactly the same steady-state response as
the WEC array at the frequency points selected to represent the HO of the estimator,
which contains the majority of the spectral content of the input signal.
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Figure 7.9: Frequency response of H̃F sim
1
, along with the target frequency domain data

and the interpolation frequencies (orange-dots). NRMSEH(ω) ≈0.05.

Note that, using H̃Fest
1
, the fe estimate is computed five times faster than using the

multi-SISO model, while the obtained NRMSEest
fe is only 0.06 worse (NRMSEest

fe ≈ 0.04
5Measured using the Matlab functions Tic and Toc.
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Figure 7.10: Frequency response of H̃Fest
1
, along with the target frequency domain data

and the interpolation frequencies (orange-dots).NRMSEH(ω) ≈0.31.

against NRMSEest
fe ≈ 0.10). However, if two interpolation frequencies are chosen

for the identification of the MIMO SS, as shown for the results using H̃est
F2 , the

obtained estimation error is half the error compared to the multi-SISO approach,
while being more than three times faster. In contrast, if the frequencies are not
chosen to specifically match those of the HO model in the KFHO estimator, as
shown for H̃ sim

F2 , the estimate is as accurate as that obtained by the multi-SISO
approach, while being also three times faster. Therefore, regardless on the way in
which the interpolation frequencies are selected, it is important to use SS models
identified using a MIMO identification strategy, in order to reduce the computational
effort required by the global estimator.
Finally, it should be highlighted that, as explained in Section 4.3, the difference in
the computational time required by the multi-SISO model and the MIMO moment-
matching based identified models will increase with the size of the array since, while the
order of the multi-SISO model increases quadratically with nb, the order of the obtained
model using the moment-based MIMO identification will increase linearly with nb.

7.4 Conclusions

The results of this chapter show that the complex wave field of a WEC array degrades
the independent estimator performance, compared to the global estimator, whose
performance is relatively consistent with that of the isolated body case for all the
layouts, distances, and wave directions analysed. This allows WEC array designers
to optimise the array layout for any optimisation objective (such as, for example,
enhancing constructive interaction between devices or maximising the absorbed power
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by each device) since, regardless of the final array layout, the global estimator always
performs to a level comparable with the isolated body case.
Regarding forecasting of fe, it has been demonstrated that the global forecaster not
only achieves better prediction accuracy than the independent forecaster, but also
outperforms the isolated body case for the devices positioned down-wave, since they
get information of the incoming wave from the WECs positioned up-wave. In a real-sea
scenario with large arrays and multidirectional waves, by using the global predictor,
the devices in the middle of the array (which, depending on the layout, could be the
majority of the devices) will always obtain better fe prediction than in the isolated
WEC case. Additionally, the prediction accuracy obtained by the devices located
at the edges of the array, in the worst-case-scenario, will enjoy the same prediction
accuracy as for the isolated WEC case. However, since waves potentially come from
every direction, even the devices located at the edges of the array will have extra
information of the incoming waves and, therefore, obtain a more accurate fe prediction
than for the isolated WEC case. However, since no location has an equal distribution
of incidence angles around the compass rose, the prediction accuracy obtained by the
different devices would depend on their location within the array.
It should be highlighted that, since no control strategy is employed for this analysis,
stronger interaction can be expected when an optimal control strategy is implemented,
due to the fact that the motion of the devices may increase considerably, with
a consequent increase in the amplitude of radiated waves. Therefore, in case
of an array under optimal control, there may be a greater disparity between the
independent estimator model’s performance and that achieved by the global estimator,
or isolated body case.
The only drawback, regarding the global estimation/prediction techniques, is the com-
putational time they would require for large WEC arrays. However, it is demonstrated
that, when using the moment-based MIMO identification approach, the order of the
final model only increases linearly with the number of devices composing the array (as
opposed to quadratically, if the multi-SISO approach is used to generate the MIMO
SS models of the array), which eases the implementation of the global strategies for
large arrays in real-time. Nevertheless, if necessary, computational simplification (e.g.
parallelising the estimators/predictors onto several processors or simplification of such
models can be computed, considering only the interactions with the closest devices)
could be effected, while retaining the spirit of the global approach.
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As shown in Chapters 5 and 6, considerable uncertainties can intrinsically arise in
the estimated/predicted excitation force. Therefore, it is important to analyse the
effects that such uncertainties can potentially have on the performance of the control
strategy. To this end, this chapter shows how the estimation/prediction errors affect
a receding-horizon WEC optimal control strategy. Section 8.1 introduces, briefly,
the WEC energy maximising control problem and, in particular, the receding-horizon
WEC optimal control strategy considered in this chapter. Then, in Section 8.2, the
sensitivity analysis of the controller to both estimation and prediction errors is shown
and, finally, some conclusions are drawn in Section 8.3.

8.1 Energy maximising control
Energy-maximising control for WECs can be clearly divided into two categories:
Optimisation-Based (OB) and non-Optimisation-Based (nOB) controllers [45]. In

159
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the case of OB controllers, the control objective is treated as an optimal control
problem, for which both input and state variables are often discretised using different
criteria, aiming to translate the WEC control problem into a computationally tractable
nonlinear program. Model predictive control techniques are a typical example for OB
controllers [45]. In contrast, nOB controllers do not rely on numerical routines but
are mostly based on the fundamental principle behind maximum power transfer in
electric circuits: the impedance-matching principle [60].
Naturally, OB and nOB control strategies have distinct differences, with individual
strengths and weaknesses. An immediate advantage of OB approaches is that constraint
handling becomes straightforward, i.e. limits on device motion and PTO force are
naturally handled within a constrained optimisation problem. A clear disadvantage,
however, is that the real-time capabilities of solving the required optimisation depend
on a number of factors, primarily on the discretisation technique utilised to parameterise
the state and input variables, as well as the hardware available for implementation
[45]. Examples can be found in [101] for MPC, in [15] for spectral optimal control,
or in [51, 52] for moment-matching-based control.
For the analysis in this chapter, an OB control strategy is chosen since, for most
of the OB control strategies, energy-maximisation can only be achieved by having
full (past, instantaneous, and future) knowledge of the wave excitation force fe and,
therefore, rely on estimation/prediction techniques1. In particular, a receding-horizon
moment-matching-based energy-maximising optimal control strategy is applied, which
was recently published in [50]. Such control strategy is a real-time version of the
moment-based WEC control strategy, proposed in [51, 52], which assumes a sufficiently
long time interval for which fe is known in the future. However, as shown in Chapters
6 and 7, the fe (or η) prediction error increases rapidly with the prediction horizon
thor when considering realistic sea-state conditions, which limits the applicability of
the original (non-receding-horizon) moment-matching-based controller. Hence, there
is a trade-off between a long receding window (which is desired for control) and
the fidelity degradation associated with longer prediction horizons. The moment-
matching-based control strategy has the capability to effectively solve the energy
maximising problem, guaranteeing existence and uniqueness of the optimal PTO force
f opt

pto , with real-time performance. The energy-maximising optimal control formulation
to be solved by OB controllers is defined as

f opt
pto = argmax

fpto

1
tw

∫ tw

0
χ̇(t)fpto(t)dt,

subject to:
WEC dynamics,
state and input constraints,

(8.1)

1Note that some nOB control strategies also need a fe estimate to calculate the optimal control
force but, usually, they do not require future knowledge of fe.
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with tw ∈ R, and tw > 0, the receding time window over which the control force
is optimised. As for the case of moment-based identification introduced in Section
4.1.1, the moment-based energy-maximising control strategy, introduced in [51, 52],
provides an efficient and convenient way to parameterise the input and state variables
in terms of the concept of moments [8]. Moments are intrinsically connected to
the steady-state response characteristics of the system under analysis, allowing for a
parameterisation of the problem, shown in Equation (8.1), in terms of the steady-state
response of a suitably defined system.
As shown in Equation (4.4), the excitation force fe, and now the control input fpto,
can be expressed as the solution of the signal generator

ẋMM
e (t) = AMM

sg xMM
e (t), (8.2a)

fe(t) = CMM
sg xMM

e (t), (8.2b)
fpto(t) = CMM

sgpto
xMM

e (t). (8.2c)

With the parameterisation of Equation (8.2), and the matrices AMM
ss , BMM

ss , and CMM
ss

of the SS model describing the WEC dynamics, shown in Equation (4.3), the optimal
control problem of Equation (8.1) can be defined as a QP optimisation problem. In
other words, the optimal energy-maximising control input, f opt

pto (t) = CMMopt
sgpto

xMM
e (t),

can be computed as the unique global solution of the inequality-constrained concave
quadratic optimisation problem defined as

CMMopt

sgpto
= arg max

CMM
sgpto

− 1
2C

MM
sgpto

ΦMM
pto C

MMᵀ

sgpto
+ 1

2C
MM
sg ΦMM

pto C
MMᵀ

sgpto
,

subject to:
AχCMMᵀ

sgpto
≤ Bχ, Aχ̇CMMᵀ

sgpto
≤ Bχ̇, AfptoC

MMᵀ

sgpto
≤ Bfpto ,

(8.3)

where ΦMM
pto contains both the WEC dynamics and input description as

ΦMM
pto =

(
Inss ⊗ CMM

ss

)
φMM

pto

(
Inss ⊗−BMM

ss

)
,

φMM
pto = Asg⊕̂AMM

ss −RMM ⊗BMM
ss CMM

ss .
(8.4)

Note that, as shown in Equation (4.8), the matrix RMM characterises the non-
parametric impulse response function associated with radiation forces, using moment-
based theory, without the need to pre-compute a parametric approximation (which is
the case for most of the OB methods reported in the literature [45]). Additionally,
as shown in [51, 52], the constant matrices (Aχ,Bχ), (Aχ̇,Bχ̇), and (Afpto ,Bfpto)
characterise the displacement, velocity, and control force constraints, respectively.
Given the concave nature of the QP expressed in Equation (8.3), the optimal control
force f opt

pto can be effectively computed in real-time [51]. Nevertheless, this optimal
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control formulation requires knowledge of past, actual, and future wave excitation
force fe to compute the optimal control law. The associated estimation and prediction
techniques increase the overall computational demand.
Every given receding window can be decomposed into two different parts: the first
one with estimated fe (of length test

w ), and a second part containing the predicted fe

(of length tpred
w and, therefore, thor = tpred

w ). Note that, without loss of generality, the
current time instant is located at the centre of the receding window and, therefore,
test
w = tpred

w ; however, different window configurations can be designed [50]. Thus, at
every time instant t, the estimated and predicted fe are used to calculate the optimal
fpto over the receding window, defined from t− test

w to t+ tpred
w . The obtained f opt

pto

is applied from t to t + tsw , with tsw denoting the receding sampling period. Then,
at t + tsw , a new, optimal fpto is calculated using a new receding window.
This strategy assumes that the excitation force is periodic within the receding window
where the optimal fpto is computed. This can be ensured by multiplying the fe

of the receding window by a windowing function, which forces both ends of the
fe of the receding window to 0, as shown in [9]. By way of example, Figure 8.1
shows a fragment of fe, with the estimated and predicted fe signals composing the
receding window, multiplied by the windowing function. Since tw = 60 s, the excitation
force of the receding window is composed of test

w = tpred
w = 30 s of estimated and

predicted fe. It is shown that, due to the windowing function, both the beginning
of the estimated fe and the end of the predicted fe go to zero, making, thus, fe

periodic inside the receding window.
Note that the results shown in Figure 8.1, as well as the rest of the results shown in this
chapter, are obtained for a η time series generated from a JONSWAP SDF (with Tp =
8 s, Hs = 2m, and γ = 3.3) and using a CorPower-like device, shown in Figure 4.10(f).

8.2 Sensitivity Analysis

This section performs a sensitivity analysis of the moment-based controller, introduced
in Section 8.1, to estimation and forecasting errors. For the sensitivity analysis to
estimation errors, the excitation force signal is modified based on typical errors arising
from the estimation process, observed in the comparison reported in Section 5.1.
Regarding prediction, the possible errors arising from the prediction process, observed
in Chapter 6, are simulated by changing the order of the predictor. To this end, an
AR model is considered since, as shown in Section 6.2, if correctly identified (using a
sensible order and sufficiently large identification data set), the obtained prediction
accuracy is almost the same as the theoretically best achievable prediction.
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Figure 8.1: Target excitation force, along with the estimated and predicted fe multiplied
by the windowing function (yellow line, with the right axis).

In order to obtain meaningful results, it is found that, according to the central limit
theorem [28], a mean of 30 simulations is required. The time-length of each simulation
is set to 200 s, with a sampling period of ts = 0.01 s. The motion of the device is
constrained to 2m and 2m/s for position and velocity, respectively. The receding
horizon length tw is set to 60 s, i.e. 30 s of both estimated and forecasted fe, which
provides sufficiently accurate results with mild computational requirements [50]. The
windowing sampling period is set to tsw = 1 s, which means that the control force,
optimised over a given receding window, is applied for 1 s, before a new receding
window is considered, over which a new optimal control force is calculated.

8.2.1 Sensitivity to estimation errors

As discussed in the fe estimators comparison, shown in Section 5.1, there are three
main sources of errors affecting f̃e, arising from improper tuning of the estimator:
errors in instantaneous amplitude (i.e. constant deviations in envelope), instantaneous
phase errors (i.e. time-delays), and noise-polluted fe estimation. Regarding the
latter, the presence of measurement noise in f̃e, stems from the estimator tuning,
such that high frequency noise (affecting motion sensors) is not filtered. Since the
moment-domain representation of the input is composed of the frequencies in AMM

sg

(see Equation (4.4)), any high frequency component in such input can be efficiently
filtered out by a suitable selection of the frequencies in AMM

sg . Therefore, the effect
that a noisy fe estimate could have on the controller is not analysed herein.
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The imperfections, within the estimation stage, related to errors in instantaneous
amplitude and phase are represented using the following criteria. First, define Fae ∈ ΩF

and Fφe ∈ ΩF as the error factors associated with the amplitude and phase of f̃e,
respectively, with ΩF ∈ [0.75, 1.25]. Additionally, few ∈ Rnw denotes the approximated
wave excitation input in the receding window, composed of estimated and forecasted
values (see Figure 8.1). The three following error sources are defined:

A: few(t) 7→ Faefew(t).
P: few(t) 7→ few(t+ (Fφe − 1)Tp).

AP: few(t) 7→ Faefew(t+ (Fφe − 1)Tp).

Case A assumes that2 the amplitude of the estimated fe is not estimated correctly,
i.e. fe is multiplied by a factor Fae , while case P considers the existence of a time
delay (positive or negative) between estimated and true excitation force, proportional
to the peak period Tp. Lastly, case AP combines both sources of error, by assuming
that the estimated excitation force has both amplitude and phase errors, for all
possible combinations of Fae and Fφe .
Figure 8.2 presents an illustrative example of an excitation force signal affected by
amplitude and phase uncertainties, representing cases A and P, for a time-window tw.
In particular, the estimated and forecasted excitation force with Fae = Fφe = 1, i.e.
error-free, and for various values of Fae and Fφe from 0.75 to 1.25, are shown.
It should be noted that, due to the underlying linearity of the AR model considered
for the prediction, if few is modified either by scaling, shifting in time, or superposing
both cases for the estimation time window, this modification propagates within the
forecasted time-window in the exact same manner. In other words, the sources
of estimation error described in cases A, P, and AP affect the forecasted signal
in the exact same proportions.
Lets define now the performance indicator Eest

rel (Fae ,Fφe) = Eabs(Fae ,Fφe )/Eabs(1,1), where
Eabs(Fae ,Fφe) is the absorbed energy, throughout the complete simulation time, for any
pair of values (Fae ,Fφe), and Eest

rel represents the ratio between the absorbed energy under
the moment-based control strategy, with and without the presence of estimation errors.
Figures 8.3(a) and (b) show the performance results for cases A and P, in terms
of Eest

rel (Fae , 1) and Eest
rel (1,Fφe), respectively. For case A, it can be observed that,

even under an amplitude deviation of 25% from its true value, the absorbed energy
always remains above 90% of its optimal achievable performance (computed without
any estimation amplitude or phase errors). In other words, deviations in amplitude,
for the estimated wave excitation force, generate only small deviations in absorbed

2Note that, from now on, the instantaneous amplitude and instantaneous phase are referred to as
amplitude and phase, respectively.
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Figure 8.2: Illustrative example of cases (a) A and (b) P, for a particular few .

energy under controlled conditions. This is clearly not the case for phase deviations,
i.e. case P, where a delay of ±10% of the peak period (around 0.8 s, for this case
study) not only dramatically affects the energy absorption, but actually generates
negative power (the device absorbs energy from the electric grid). This clearly
indicates that great care should be taken to tune the estimator to guarantee phase
synchronisation with the target wave excitation signal, hence achieving optimal energy
absorption, under controlled conditions.
Finally, Figure 8.4 shows results for case AP, where errors in amplitude and phase
are analysed simultaneously. Similarly to case P, Figure 8.3(b), it is clear that the
presence of a time delay (positive or negative) has a much greater impact on energy
absorption than any existing differences in estimated amplitude. Interestingly, while
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Figure 8.3: Eest
rel (Fae ,Fφe) for cases (a) A and (b) P. A Eest

rel value below zero indicates
negative energy absorption, as illustrated with the grey area in (b), with the dashed-orange
line representing the zero energy absorption limit.

positive or negative delays have an almost symmetric effect, under-prediction of the
wave excitation force amplitude has less impact on performance than over-prediction.
Note that this behaviour is consistent with that of Figure 8.3.

F
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e

Figure 8.4: Eest
rel (Fae ,Fφe) for case AP. A Eest

rel value below zero indicates negative energy
absorption, delimited with the orange plane.

8.2.2 Sensitivity to forecasting errors

This section considers errors arising purely from the forecasting procedure, i.e. assuming
that the estimator is well tuned (achieving convergence towards the target fe), and
that any potential mismatch is only present within the forecasted window. Figure
8.5 presents performance results in terms of the indicator Epred

rel (t0.99
pred) = Eabs(t0.99

pred)/Eabs(5),
where the operator Eabs(t0.99

pred) refers to the energy absorbed, assuming a forecast
accuracy within 99% and 100%, for t0.99

pred seconds. In other words, Epred
rel is the ratio

of absorbed energy, under controlled conditions, between energy extraction assuming
different t0.99

pred and with a forecast with more than 99% of accuracy 5-seconds-ahead,
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obtained using (in this case) an AR model order nAR
ord = 200. Note that, even

though the simulation sampling period is ts = 0.01 s, as explained in Section 6.2,
the data is re-sampled to ts = 0.1 s for the prediction stage, in order to reduce
the order of the required AR model.
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Figure 8.5: Sensitivity analysis with respect to forecasting errors in terms of the performance
indicator Epred

rel .

By way of example, Figure 8.6 illustrates a section of forecasted excitation force signal,
predicted using an AR model of different orders. One can notice that, even with
nAR

ord = 50, i.e. considering five seconds of past values to predict future values, the
prediction error over the first 3-4 seconds is close to zero. This can be explained by the
fact that fe can be considered as a low-pass filtered representation of η, since the high-
frequency components of η are absorbed by the dynamics of the device. Therefore, as
discussed in Section 6.2.2 (in Figure 6.6), where the accuracy obtained for the prediction
of filtered and non-filtered η is compared, if the signal to be predicted does not contain
significant high-frequency components, the predictor behaves accurately for a longer
time horizon, which is clearly not the case for signals with high-frequency content.
Unlike the estimation case discussed in Section 8.2.1, where it is shown that deviations
from the target excitation force can effectively generate negative power absorption,
the impact of forecasting errors alone, for the moment-based controller considered
in this chapter, is almost negligible. Even with t0.99

pred = 1 s, the controller is able to
perform within 99% of its optimal performance. This can be explained by the fact
that, even though the optimal fpto is calculated for the complete receding window,
only the first tsw seconds are applied. Therefore, even though the fe prediction is not
accurate for large thor, it does not significantly affect the obtained f opt

pto for the first
seconds of the predicted window, provided that the first tsw seconds of the predicted
fe represent (to some extent) accurately the target fe.
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Figure 8.6: Illustrative example of a forecasted (and windowed) predicted excitation force
signal for different AR model orders.

8.3 Conclusions

Two main conclusions can be directly drawn from this chapter: fe forecasting errors
have a negligible impact on the overall performance of the control strategy, while errors
induced by the fe estimators can effectively generate negative power absorption. This
chapter shows that, for the analysed control strategy, errors in the fe instantaneous
phase are more important than errors in instantaneous amplitude or noise in the
fe estimate. In particular, phase errors (positive or negative) in the estimated
excitation force have a substantial impact on the energy maximising performance of
the controller, suggesting that great care should be taken in tuning the estimator such
that (instantaneous) phase synchronisation is achieved with the target excitation force.
Since the optimal control force is only applied over the first tsw seconds, the forecasting
accuracy for prediction horizons larger than thor > tsw does not significantly affect
the performance of the absorbed energy. Therefore, using a simple AR model, which
obtains accurate results over the first seconds of fe prediction, even though the
prediction accuracy fades out to zero relatively quickly, it is shown to be sufficient
to obtain similar energy absorption to that obtained using almost one peak period of
perfect knowledge of fe (decreasing the energy absorption by less than 1%).
Finally, it should be noted that a separate sensitivity analysis (as the one shown in
this chapter) should be carried out for the different control strategies, depending on
the sensitivity of such control strategy to different estimation/prediction errors, to
choose the most appropriate estimator/predictor strategy.
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9.1 Conclusions
The conversion of the current global energy mix, from a fossil-fuel-dominated energy
mix to a low-carbon energy mix, is one of the most important challenges of this
century. To this end, wave energy can provide a significant complement to other
renewable energy technologies. Despite the significant development of different wave
energy converter technologies during the recent decades, none of the technologies
has yet demonstrated economical viability. In order to reach such economic feasibility,
several proposals can be found in the literature as, for example, optimal control of
wave energy converters or the deployment of devices in large arrays.
As introduced in Chapters 1-3, the majority of WEC optimal control strategies
require knowledge of previous, current, and future excitation force fe acting on the
device, which is an unmeasurable quantity for the WEC case. Thus, in order to
provide the controller with knowledge of fe, such force is usually estimated based
on other measurements (such as WEC motion) and then predicted in the future
using prediction strategies.
In essence, this thesis provides a comprehensive analysis of the estimation/prediction
techniques available in the literature, in order to evaluate whether they are ready to be
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applied in real WEC control strategies or not. To this end, such estimation/prediction
techniques, which have been developed mostly for linear hydrodynamic models, are
investigated as a previous step to the analysis of estimation/prediction techniques
under nonlinear conditions. From the sensitivity analysis of the controller to estima-
tion/prediction errors it can be deduced that, since prediction errors have negligible
impact on the controllers performance, simple and linear prediction strategies, such as
the AR model, may provide sufficiently accurate results even under nonlinear conditions,
avoiding the use of any nonlinear prediction strategy. On the contrary, while the
necessity of extending the estimation techniques to include nonlinear WEC models
is uncertain, this thesis highlights the estimation errors which affect the controller
performance the most. As a result, the thesis provides an overview of the aspects
which should be taken into account at the stage of tuning an estimation/prediction
technique, in order to not affect the performance of the controller.
From the fe estimators comparison, provided in Chapter 5, it is concluded that estima-
tion techniques using WEC motion measurements are the most feasible techniques. In
particular, the KFHO and ULISE approaches, which show good performance in terms of
achieved accuracy and no phase shift between the estimated and the reference fe, and
the UIO method, which is the only approach able to consider model uncertainty, are
found to be the most feasible estimators. However, from the sensitivity analysis shown
in Chapter 8, it is found that the error in the fe instantaneous phase is more important
than the error in instantaneous amplitude or obtaining a noisy fe estimate. Therefore,
using other estimation techniques with the controller, such as EKFHO and ASMO,
which, although they obtain higher estimation errors (2 or 3 times higher than the
KFHO estimator, respectively), would obtain similar energy absorption performances
to those obtained using the KFHO or ULISE estimators. On the contrary, the highest
instantaneous phase delay reported in Table 5.2 is 0.16 s (obtained using the FAUIE
estimator) which, for the moment-matching-based receding-horizon control strategy,
would suggest a decrease of around 10% of the energy absorption, compared to the
case where no phase delay is considered.
Regarding prediction strategies, Chapter 6 shows that the AR model is not only a simple
and accurate predictor but, if correctly identified (using a large enough training dataset),
the obtained prediction accuracy is close to the theoretically best achievable accuracy.
Furthermore, Chapter 8 shows that, for the moment-matching-based receding-horizon
controller, the fe prediction obtained using an AR model is accurate enough for the
controller to obtain a performance comparable to that obtained from exact knowledge
of fe. This can be reasoned by the fact that, even though the optimal control force is
optimised over the entire receding window, only the first tsw seconds of the control
force is applied to the WEC. Chapter 6 shows that the AR model usually obtains



9. Conclusions 171

accurate prediction for prediction horizons relatively small compared to the wave peak
period (as, for example, 1 or 2 s for a peak period of 8 s) and, then, the prediction
accuracy fades to zero relatively quickly. Therefore, if tsw is also chosen to be relatively
small compared to the wave peak period, the performance obtained by the controller is
similar to that obtained from exact knowledge of fe over the whole receding window.
For WEC arrays, Chapter 7 shows that, while the complex wave field of a WEC
array degrades the independent estimator performance, the performance of the global
estimation strategy is relatively consistent with that of the isolated body case. This
is important, since it allows for optimisation of the array layout, considering any
optimisation objective, without affecting the obtained fe estimation performance. The
global predictor not only achieves better prediction accuracy than the independent
predictor, but also outperforms the isolated body case for the devices of the array
positioned down-wave (if there are any), since they get advance information of the
incoming wave from the WECs positioned up-wave. As shown in Chapter 8, fe

prediction has almost negligible impact on the moment-matching-based receding-
horizon controller and, therefore, the controller performance obtained using either
independent or global predictors would be almost the same. However, this might
not be the case for other controllers, for which longer prediction horizon are required
and, hence, a global prediction technique may be necessary.
A moment-matching-based frequency-domain identification strategy is developed in
Chapter 4, which obtains a monotonically decreasing error with the increasing order
of the parametric model. Additionally, it is able to preserve almost all the physical
properties of the radiation convolution term subsystem, which none of the other
identification techniques available in the literature achieves. Additionally, by using
the MIMO extension of the moment-matching-based identification strategy for WEC
arrays, Chapter 7 shows how the computational time required by the global estimator
strategy can be reduced without affecting the obtained estimation accuracy.

9.2 Future work

The work presented in this thesis highlights several direction for further work:
• The comparison of estimators, presented in Chapter 5, considers linear WEC

models for the estimators along with a CFD simulation. However, due to the
reduced motion of the device, the simulation can be considered linear. Thus,
it would be beneficial to investigate the effect that considering a nonlinear
simulation of a WEC device under control conditions would have on the
performance of the different estimators. One of the difficulties of such a
comparison is that, under control conditions, the WEC motion is maximised and,
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therefore, the definition of a reference fe, as used in Chapter 5, does not hold
any more, since linear potential flow assumes small WEC motion (as explained
in Chapter 2). Thus, a new way to address the performance of the estimators
has to be considered. Additionally, how the estimation errors (arising from using
a linear WEC model for the estimator on a nonlinear WEC system) affect the
performance of the controller should be investigated, to assess if the analysed
estimators have to be extended to include nonlinear WEC models.

• The sensitivity analysis shown in Chapter 8 should be carried out for other WEC
control strategies, to see how the different estimation/prediction errors affect
the obtained performance of the WEC. By doing so, it would be possible to
select the most appropriate estimation/prediction strategy for each controller.

• As explained in Chapter 4, two extensions have been proposed for the moment-
matching-based identification strategy: the first one to preserve passivity and,
the second one, to consider multiple-input multiple-output systems. However,
none of those extensions have been yet implemented in the FOAMM toolbox
and, therefore, are part of pertinent future work.
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This appendix provides a description of the FOAMM toolbox, with all the different
operation modes and options, along with a step-by-step example and some using
recommendations to illustrate how to fully exploit its potential.
Note that some of the variables recalled in this appendix have been previously introduced
in the description of the moment-matching theory, in Section 4.1.1.
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A.1 Toolbox description
In this section, how to get and install FOAMM, and which are the provided files is shown.
Additionally, the different identification methods and options that FOAMM comprises
are introduced and, finally, which are the input variables required by FOAMM, along
with the provided output variables are detailed.

A.1.1 Platform requirements and installation

Even though, as shown in Equations (4.11) and (4.14), FOAMM requires of an
optimisation procedure to obtain the final parametric model, since the application is
created using the Matlab compiler, FOAMM runs on a plain Matlab distribution,
i.e. no other toolboxes/applications are required. At the time of writing, two versions
of FOAMM are available, one for the Windows Operating Systems (OSs) (tested
for Windows 7, 8, and 10), and another one for Linux OSs (tested for Ubuntu 18,
and CentOS 6.10 and 7.4). In both OSs, different Matlab versions have been
tested (years 2012, 2015, 2017, and 2018).
The files can be downloaded from [173] for free. Since FOAMM is an executable,
having the correct Matlab runtime version installed on the computer is required1, for
which the installer is provided in the folder “Matlab Runtime” (among the downloaded
files, as explained in Section A.1.2). After installing the Matlab runtime, for
which an active internet connection is needed, the application effectively runs in a
stand-alone fashion on a plain Matlab.
It should be noted that the first run of the application is considerably slower than the
subsequent ones, which is indeed a known issue, when using the Matlab compiler.
Additionally, for the Linux version, administrative access is required for both the
installation of the Matlab Runtime, and the use of the application.

A.1.2 Provided files

In this subsection, the files compressed in “FOAMM.rar” are listed and explained:

MatlabRuntime This file, located inside the “Matlab Runtime” folder, is the exe-
cutable, required to install the correct version of the Matlab runtime.

Main.m This is the main file and the user interface to the application. The file
loads the frequency-domain data contained in Data.mat, used to perform the
identification, and allows to change between the different modes and options of
the application. ‘Main.m set-ups the required variables, and explicitly calls the
executable file FOAMM. It should be noted that this file provides the only way
to select between the different modes of the application.

1Note that installing the Matlab runtime will not change any other functionality of the computer.
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FOAMM This is the executable file of the application and is explicitly called by
“Main.m”. For the Windows version, the extension of the file is “.exe”.

Data.mat This file contains the frequency-domain data to be identified (computed
with any BEM code) and it should be provided by the user, following the specific
input format, detailed in the following subsections. In “FOAMM.rar” an example
Data.mat file is provided, with the hydrodynamic coefficients of a cylinder with
5 m radius and 10 m draft.

A.1.3 Identification methods

In order to select the interpolation frequencies F , FOAMM offers the following
three identification methods:

Manual method The user selects the desired set of frequencies to achieve moment-
matching. The order will be twice the number of frequencies selected.

Automatic method The user selects a final number of interpolation points (βMM)
and, additionally, a subset of frequencies to interpolate (with size denoted
by αMM). This method optimises the value of the βMM − αMM interpolation
frequencies. It should be noted that, if the user does not pre-select a set of
frequencies i.e. αMM = 0, all the βMM interpolation points are optimised by
FOAMM.

Optimised-automatic method This method is essentially the automatic method
for the selection of the matching frequencies, but it also selects the number of
interpolation points βMM automatically. Starting from αMM, this method keeps
adding (and optimising) interpolation frequencies until the approximated model
satisfies both an absolute and a relative error thresholds specified by the user in
the “Options” structure.

A.1.4 Application options

Every option of the application can (only) be changed using the structure Options
from the Main.m file. The different variables stored in the structure can be accessed
and tuned as follows:

Options.Mode (integer)
default 0 Identify the radiation impulse response Kr(ω) of the device.

1 Identify the force-to-velocity dynamics H(ω) of the device.
Options.Method (integer)

default 0 Manual identification method.
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1 Automatic identification method.
2 Optimised-automatic identification method.

Options.FreqRangeChoice (string or float)
default ’G’ Select the frequency range from a plot.

’C’ When asked, enter a vector with the lower and upper bounds of the
frequency range in Matlab’s command window, as [ωl, ωu].
VEC Directly enter a vector with the lower and upper bounds of the
frequency range as VEC=[ωl, ωu].

Options.FreqChoice (string or float)
default ’G’ Select the set of desired interpolation frequencies from a plot.

’C’ When asked, enter the desired set of interpolation frequencies in
Matlab’s command window as a vector,

[
ω1, ... , ωβMM

]
.

VEC Directly enter a vector with the set of interpolation frequencies as
VEC=

[
ω1, ... , ωβMM

]
.

Options.FreqNumChoice (string or integer) (if Options.Method = 1)
default ’C’ When asked, enter the number of frequencies to interpolate βMM > 0

in Matlab’s command window.
INT Directly enter the desired number of interpolation frequencies
βMM > 0.

Options.Optim (optimisation-related options)
integer Options.Optim.InitCond Number of initial conditions considered on

the optimisation. Default = 50.
float Options.Optim.Tol Tolerance on the final value of the optimisation.

Default = 1e−5.
integer Options.Optim.maxEval Maximum number of evaluations considered

for the optimisation. Default = 1e3.
integer Options.Optim.maxIter Maximum number of iterations considered for

the optimisation. Default = 200.
float Options.Optim.StepTol Step tolerance value for the optimisation.

Default = 1e−6.
float Options.Optim.ThresRel (if Options.Method = 2) Relative error

threshold. Default = 0.03.
float Options.Optim.ThresAbs (if Options.Method = 2) Absolute error

threshold. Default = 0.1.

If any of the labels inside the structure Options is changed, the application will not
recognise the variables and the default values will be used. Additionally, if the selected
value is wrong, the application will ask the user to correct it.
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A.1.5 Input and output variables

The frequency-domain data, used to perform the moment-matching-based identifica-
tion, is loaded from the user supplied file Data.mat. This file with “.mat” extension
must contain all the information regarding the frequency-domain data, considered
for the identification process. In the following, a detailed description of the required
format is provided, so that the application can load the data correctly.
†A (vector, float, nω × 1) Radiation added mass (Ar(ω)).
†B (vector, float, nω × 1) Radiation damping (Br(ω)).
†w (vector, float, nω × 1) Frequency vector (ω).
Mu (scalar, float, if Options.Mode = 0) Radiation infinite added mass (µ∞). If

this value is not supplied, the application will automatically calculate its value
using Ogilvie’s relations. However, the author recommends users to provide it in
order to reduce possible inaccuracies.

Mass (scalar, float, if Options.Mode = 1) Sum of mass terms (usually the mass of
the structure under analysis, M).

K (scalar, float, if Options.Mode = 1) Sum of stiffness terms (such as, for example,
the sum of Sh and Spto).

D (scalar, float, if Options.Mode = 1) Sum of damping terms (such as, for example,
Dpto).

Note that, if any of the variables denoted with † is named differently, the appli-
cation will halt. Once the identification process is finished, FOAMM will return
the following variables:

A_ss (matrix, float, 2βMM × 2βMM) Dynamic matrix of the final model.
B_ss (matrix, float, 2βMM × 1) Input matrix of the final model.
C_ss (matrix, float, 1× 2βMM) Output matrix of the final model.
MAPE (scalar, float) Mean absolute percentage error MAPE of the approximation,

which is defined as
MAPE = 1

n

n∑
i=1

∣∣∣∣∣f(i)− f̃(i)
f(i)

∣∣∣∣∣, (A.1)

where f and f̃ are the frequency responses of the target and the final model,
respectively, and n is the number of frequencies contained in the considered
frequency-range. Note that the obtained MAPE will vary from 0 to 1, being 1 a
100% of error.

Frequencies (vector, float, 1× βMM) Value of the chosen frequencies.
FreqRange (vector, float, 1× 2) Value of the minimum and maximum frequencies

of the chosen frequency range.
Mu (scalar, float, if Options.Mode = 0 and Mu not provided) Automatically

calculated radiation infinite added mass.
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A.2 Application example

In this subsection, a step-by-step example is shown of how to use FOAMM to identify
a finite order parametric model of the radiation impulse response and complete force-
to-motion dynamics. The hydrodynamic parameters used, correspond to a heaving
cylinder with a 5 m radius, representing the example case provided in the data.mat
file (see Section A.1.2). In the following, the three identification methods are explained
and the options are varied between the subsections, in order to exemplify all the
different operating modes and options.

A.2.1 Manual method

In the following, an example of how the Main.m file is shown, for the operation of
the toolbox in the manual mode. For the sake of clarity, the majority of the comments
and spaces of the original Main.m file are omitted:

Listing A.1: Example code of the main.m file.
1 %% Load hydrodynamic pa ramete r s −−−−−−−−−−−−−−−−−−−−−−−−−−
2 c l e a r a l l ; c l c
3 l o ad ( ’ data . mat ’ )
4 K = Sh ;
5

6 %% Opt ions s t r u c t u r e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 Opt ions .Mode = 0 ;
8 Opt ions . Method = 0 ;
9 Opt ions . FreqRangeChoice = ’G ’ ;

10 Opt ions . F reqCho i ce = ’G ’ ;
11 Opt ions . FreqNumChoice = [ ] ;
12 Opt ions . Optim . I n i tCond = 50 ;
13 Opt ions . Optim . Tol = 1E−6;
14 Opt ions . Optim . maxEval = 100 ;
15 Opt ions . Optim . StepTol = 1E−6;
16 Opt ions . Optim . Thre sRe l = 0 . 1 ;
17 Opt ions . Optim . ThresAbs = 0 . 0 3 ;
18

19 %% Run a p p l i c a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 save ( ’ t emp_ f i l e . mat ’ )
21

22 system ( ’FOAMM’ ) ;
23

24 l o ad ( ’ t emp_ f i l e . mat ’ )
25 d e l e t e ( ’ t emp_ f i l e . mat ’ )
26 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As shown in Listing A.1, the file Main.m is composed of three different parts. The
commands in the first part (from line 1 to 5) clear the variables of the Matlab
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workspace, and load the hydrodynamic parameters saved in data.mat. Since no
PTO is considered, the only stiffness term in this example is the hydrostatic stiffness
and, therefore, the variable K is defined by Sh (line 4). For the same reason, no
damping term (D) needs to be defined. In the middle section of the code in Main.m
(from line 6 to 18), the different working options are defined. Finally, at the end
(from line 19 to 26), all the variables are saved in a temporary file (temp_file.mat),
which is loaded by FOAMM to subsequently compute the identification. After the
identification process is finished, the updated temporary file, which contains all the
results obtained by the application, is loaded and deleted.
For this example, the parametric model of the radiation impulse response is identified
(Options.Mode=0, line 7), using the manual method (Options.Method=0, line
8). Both, the frequency range and the frequencies are chosen, using the graphical
interface (Options.FreqRangeChoice=’G’, line 9, and Options.FreqChoice=’G’,
line 10, respectively). Therefore, when Main.m is run, a graph, as the one shown in
Figure A.1, will appear, asking the user to specify the frequency range2.

Select the lower and upper bounds of the frequency range and press enter

Frequency [rad/s]
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Frequency response
Selected frequency

Figure A.1: Graphical interface to select the frequency range for the approximation.

As explained in Section 4.1.2, the frequency range will depend on the frequency
distribution of the input signal. Thus, as shown in Figure 4.4, choosing a frequency
range from around 0.1 to 2.75 rad/s, the whole input frequency spectrum is covered and,
therefore, for any possible operational point, the identified model will behave as
the original system.

2It should be noted that the graphs shown by FOAMM are not exactly as shown in this thesis,
for which the aspect ratio, colours and line-thicknesses are changed according to the format of the
thesis.
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Once the frequency range is correctly specified, another graphical interface appears,
asking for the interpolation frequencies, showing the radiation impulse response just
for the previously chosen frequency range (see Figure A.2). For this case, only a point
around the resonant frequency is chosen as interpolation frequency.
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Select the desired frequencies and press enter

Frequency response
Selected frequency

Figure A.2: Graphical interface to select the desired set of interpolation frequencies for the
approximation.

While FOAMM is optimising the value of the eigenvalues, a wait bar, as shown in
Figure A.3, is displayed. The wait bar shows the progress of the optimisation, along
with a cancel button, which allows the user to stop the optimisation process. In
case of stopping the optimisation (by pressing the cancel button), FOAMM will
return the best model obtained before stopping the process. In the particular
case of using the optimised-automatic method and cancelling the optimisation, the
predefined error thresholds of such method (specified in Options.Optim.ThresRel
and Options.Optim.ThresAbs) would not be taken into account, and the order
which gives the best fitting accuracy will be returned as the resulting model.

Fitting the system...

Cancel

Figure A.3: Waiting bar showing the progress of the optimisation.

After the optimisation is finished, the resulting model, along with the target system,
and the interpolation frequencies are displayed, as shown in Figure A.4. For this case,
since a unique frequency was chosen, the error of the obtained model is MAPE≈0.22.
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Radiation kernel frequency response approximation
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Figure A.4: Frequency response of the obtained parametric model of the radiation
convolution term (dashed-blue), along with the target frequency response (solid-dark-blue)
and the interpolation frequency (orange-dot) using the manual method. MAPE≈0.22.

A.2.2 Automatic method

In this subsection, apart from showing how to use the automatic method, which is
selected by defining Options.Method=1 (line 8 of Listing A.1), the force-to-velocity
frequency response of the WEC is identified, instead of the radiation impulse response.
Thus, in order to approximate the force-to-motion frequency response, the option
Options.Mode needs to be set to 1 (line 7 of Listing A.1). Additionally, the following
changes are made with respect to Listing A.1:

Listing A.2: Extra changes of the code shown in Listing A.1.
1 %% Opt ions s t r u c t u r e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Opt ions . FreqRangeChoice = ’C ’ ;
3 Opt ions . F reqCho i ce = [ ] ;
4 Opt ions . FreqNumChoice = 1 ;

In this case, the following message will appear in the command window of Matlab,
asking for the frequency range: “Introduce a vector containing the lower and upper
bounds of the desired frequency range (min=0.03, max=3):”, where the shown
minimum and maximum values correspond to the minimum and maximum values of
the provided frequency vector. Then, the frequency range must be defined as a size 2
vector, with its values being inside the provided frequencies defined by the vector w
from the file data.mat. If, as for this example case, enter is pressed without specifying
anything (or writing an empty vector as [ ]), the whole vector of frequencies will be
taken into account for the identification. Additionally, since no frequencies have been
defined in Options.FreqChoice, the value of all the frequencies will be optimised.
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Since Options.FreqNumChoice=1 (βMM = 1), a parametric model with a single
frequency is returned as result, depicted in Figure A.5, and with MAPE≈0.02.

Force-to-velocity frequency response approximation
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Figure A.5: Frequency response of the obtained parametric model of the complete force-to-
velocity dynamics (dashed-blue), along with the target frequency response (solid-dark-blue)
and the interpolation frequency (orange-dot) using the automatic method. MAPE≈0.02.

A.2.3 Optimised-automatic method

In order to run the optimised-automatic method, Options.Method=2 needs to
be selected (line 8 of Listing A.1). Additionally, the following changes are made
with respect to Listing A.1:

Listing A.3: Extra changes of the code shown in Listing A.1.
1 %% Opt ions s t r u c t u r e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Opt ions . FreqRangeChoice = [ 0 . 1 2 . 7 5 ] ;
3 Opt ions . F reqCho i ce = 0 . 7 8 ;

Since the frequency range and an interpolation frequency are already defined for this
case, FOAMM will directly proceed to the optimisation. During the optimisation,
apart from the waiting bar, a graph (as shown in Figure A.6) will be displayed showing
the MAPE, obtained for the different model orders that were tested.
This method will keep adding interpolation frequencies until the predefined absolute
and relative error thresholds are satisfied, or the optimisation is stopped using the
cancel button. It should be noted that the number of frequencies considered by the op-
timisation procedure will begin from the frequencies specified in Options.FreqChoice.
Since a unique frequency is predefined for this example, it starts from 1, which would
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Figure A.6: Graph displayed while the optimised-automatic method is running.

also be the case if no frequency is predefined, with the only difference that the value
of such interpolation frequency would also be subject to the optimisation.
The dash-blue line of Figure A.6 represents the defined absolute threshold, which is
set to 0.1 (as the default value in Options.Optim.ThresAbs). For this application
example, the optimisation considers up to three interpolation frequencies (βMM = 3)
but, since the MAPE improvement with respect to βMM = 2 is less than the defined
relative threshold (which is 0.03, as the default value in Options.Optim.ThresRel),
the optimisation stops and chooses βMM = 2 as the optimal order. Finally, as for
the other two methods, the resulting frequency response of the parametric model is
displayed, shown in Figure A.7, which obtains MAPE≈0.04.

Radiation kernel frequency response approximation
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Figure A.7: Frequency response of the obtained parametric model of the radiation
convolution term (dashed-blue), along with the target frequency response (solid-dark-
blue) and the interpolation frequencies (orange-dots) using the optimised-automatic method.
MAPE≈0.04.
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A.3 Recommendations

This section provides some recommendations for the use of FOAMM, with which,
based on the author’s and other collaborators’ opinion, the results obtained using
FOAMM can be improved.

A.3.1 Use the manual method

Even though the application comes with different automated method, the author highly
recommend a manual choice of the interpolation frequencies, based on the system
dynamics to be identified. In fact, the option of performing a suitable selection of points
to interpolate in the frequency-domain, is one of the most attractive characteristics of
moment-matching. For example, the user might want to select, as one sensible choice,
the resonant frequency of the structure to be identified, as shown in Figure A.2.

A.3.2 Specify the important frequencies

When not using the manual method, it is convenient to specify the most important
frequencies to help the optimisation process and improve the accuracy of the obtained
model. Thus, instead of giving the algorithm the freedom to look for the best frequency,
a sensible choice would be to pre-select the resonant frequency and, if βMM = 1 is not
enough to accurately represent the system (and there is no other important frequency),
let the algorithm check for the best value of the subsequent frequencies. On the
contrary, if the resonant frequency is not specified, and the optimisation variables are
not correctly selected, FOAMM might not find the combination in which the resonant
frequency is contained, obtaining a suboptimal parametric model. As an example,
Figure A.8 shows a parametric model of the radiation impulse response of order 2
(as shown before in Figure A.4), where the resonant frequency is not pre-selected
and the optimisation variables are not correctly selected, i.e. a single initial condition
is chosen for the optimisation3. In this case, the obtained interpolation frequency
is 1.5 rad/s, which lead to an approximation error of MAPE≈0.38. However, if the
resonant frequency is pre-selected, even though the optimisation variables are still not
correctly selected, the obtained error is MAPE≈0.22 (as shown in Figure A.4).

3Even though it is not realistic to optimise using a unique initial condition, this option is chosen
to emphasise the effect of this possible error.
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Radiation kernel frequency response approximation
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Figure A.8: Example of a suboptimal parametric model when using the automatic method
(Options.Method=1) without specifying the most important frequency, and considering
few initial conditions (for this example, Options.Optim.InitCond=1). MAPE≈0.38.

A.3.3 Increase the number of initial conditions

Since the initial conditions for the optimisation are chosen randomly using a normal
distribution over a pre-selected set, it is more likely to find an accurate model if a
high number of initial conditions is considered. Therefore, when trying to identify
large order models, or when optimising the value of the interpolation frequencies
(apart from the eigenvalues), using more initial conditions increases the chances of
FOAMM to find the optimal model. For example, when using the optimised-automatic
method, it may happen that, for some βMM, the obtained error is higher than for
a given smaller βMM value. This can be fixed by increasing the number of initial
conditions in Options.Optim.InitCond. As an example for this case, Figure A.9(a)
shows the results obtained by the optimised-automatic method for the same case
shown in Figure A.6, also shown in Figure A.9(b), but considering only a unique initial
condition (Options.Optim.InitCond=1). It is shown how, apart from the obtained
MAPE which is higher than in Figure A.9(b), when considering 3 frequencies the
obtained MAPE is higher than the one obtained for βMM = 2, which is due to the
low number of initial conditions considered (a single one) in the example.

A.3.4 Use force-to-motion models

As can be observed from Figure A.5, force-to-motion frequency responses can be often
approximated with a low order system. Additionally, as shown in Equation (2.41),
two more states need to be added to the radiation impulse response approximated
model, to obtain the complete WEC SS representation. Therefore, to characterise the
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(a) Example of a possible error when using the optimised-automatic method
(Options.Method=2) with few initial conditions (for this example, Op-
tions.Optim.InitCond=1).
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(b) Graph displayed while the optimised-automatic method
(Options.Method=2) with the correct amount of initial conditions,
also shown in Figure A.6.

Figure A.9: Example of a (a) possible error when using the optimised-automatic method
with few initial conditions, along with (b) the same example using the correct amount of
initial conditions.

input-output response of the WEC, the author recommends to directly parameterise
the force-to-motion response of the target device.
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