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Abstract—In this paper, we study the existence of a steady state
distribution and its tail behaviour for the estimation error arising
from Kalman filtering for unstable scalar systems. Although a
large body of literature has studied the problem of Kalman
filtering with packet losses in terms of analysis of the second
moment, no study has addressed the actual distribution of the
estimation error. By drawing results from Renewal Theory, in
this work we show that under the assumption that packet loss
probability is smaller than unity, and the system is on average
contractive, a stationary distribution always exists and is heavy-
tailed, i.e. its absolute moments beyond a certain order do not
exist. We also show that under additional technical assumptions,
the steady state distribution of the Kalman prediction error has
an asymptotic power-law tail, i.e. P [|e| > s] ∼ s−α, as s → ∞,
where α can be explicitly computed. We further explore how to
optimally select the sampling period assuming exponential decay
of packet loss probability with respect to the sampling period. In
order to minimize the expected value of second moment or the
confidence bounds, we illustrate that in general a larger sampling
period will need to be chosen in the latter case as a result of the
heavy tail behaviour.

Index Terms—Kalman Filtering, Packet Losses, Heavy-tailed
Distributions, Power-Law Tails

I. INTRODUCTION

Estimation and control in the presence of unreliable commu-
nication has drawn the interest of a large body of researches in
the past decade as a result of convergence of communication
and control due to ubiquitous presence of wireless communica-
tion [1], [2]. In particular, much attention has been placed on
the problem of optimal estimation in the presence of packet
losses via Kalman Filtering since [3]. However stability and
performance have always been evaluated in terms of the error
covariance conditioned on the packet loss sequence, i.e. in
terms of the second moment. The first major result was to
show the existence of a critical packet loss probability for the
boundedness of the second moment under an i.i.d. packet loss
scenario [3]. Later this analysis has been extended to Markov
packet losses [4], [5], [6], to the computations of upper and
lower bounds for such critical packet loss probability [7], [8],
[6], to the existence and type of distribution for the error
covariance [9], [10]. Specific efforts have been directed to
the analysis of the multivariable scenario by determining con-
nections between the critical loss probability for mean square
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stability and algebraic conditions in terms of detectability [11],
eigenvalue cycles [12] and non-degeneracy [13].

In this work we concentrate on a continuous-time stochastic
unstable scalar linear system which is sampled with sampling
period T . Although most of the recent results have right-
fully concentrated on the more general multivariable systems,
specifically on the analysis of the error covariance matrix
and its distribution of the distribution of some functions of
it as the trace, we believe that not enough attention has been
directed towards understanding the actual distribution of the
prediction/estimation error. More specifically, by addressing
this problem, we show that a steady state distribution exists
under much milder conditions on the packet loss probability.
Indeed for a scalar unstable system such distribution exists as
soon as the packet loss probability in not equal to unity. In other
words, there are scenarios in which the second moment does
not exist, but the probability that the estimation error is within a
specified interval is bounded. Moreover, by exploiting results
developed by the stochastic systems community in the area
of Renewal Theory and Random Difference Equations [14],
[15], [16], [17], [18] since the 70’s, it is possible to explicitly
characterize the tail distribution of the Kalman filter of the
estimation error. More specifically, we can show that such
distribution is heavy-tailed and under some technical condition
such as non-arithmetic support of the Random Difference
Equation, can be shown to possess a power-law tail with an
explicit characterization of the power exponent α as well as its
coefficient c, i.e.

lim
s→∞

P [|e| > s]

sα
= c

Similar results were also observed in the context of limited-rate
control systems [19], which however is a somewhat different
framework than Kalman Filtering with packet losses. As a
simple corollary of these results is that also the distribution of
the second moment, i.e. P [e2 < E], must be heavy-tailed itself
under the some conditions mentioned above for the power-law
tail for the estimation error distribution, i.e. we recover the
same results observed previously in [13]. This also implies that
the moments of error covariance are unbounded beyond a cer-
tain order, i.e. ∃mc > 0 such that E[(e2)m] =∞ for m > mc,
as previously observed in [4]. Another major contribution of
our work is that, since the error distribution is heavy-tailed even
when the system is second-moment stable, this implies that the
confidence bounds can be rather different from what one would
obtain by assuming the steady state distribution is Gaussian
with variance obtained from the modified Riccati Equation
which arises in the context of Kalman filtering with packet
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losses [3]. In other words, the 3
√
p̄ estimation of the confidence

bounds, where p̄ is the expected second order moment of the
steady state error distribution, can be more optimistic than what
occurs in reality, i.e. large error values are not rare, and can
lead to a very negative impact in safety-critical applications.
The later part of the paper explores the optimal sampling of
a stochastic continuous-time scalar unstable system both in
terms of minimizing the expected second moment p̄ and in
terms of the confidence bound for the steady state error with
a 99% confidence probability. We observe, that the optimal
sampling period in the latter case is larger that the one dictated
by the former. This is indeed another consequence of the heavy-
tailed behaviour of the distribution, since it implies that it is
better to incur in a larger delay using a larger sampling period
than having a more heavy-tailed distribution from a confidence
bound perspective.

II. SYSTEM MODEL

We start with a continuous-time linear scalar state space
system given by the following stochastic differential equation:

dx(t) = ax(t)dt+ u(t)dt+ dw̄(t) (1)

where x(t) is the state, u(t) is the control and w̄(t) is the
process noise described by a Wiener process with independent
Gaussian distributed increments, such that w̄(t+ t′)− w̄(t) ∼
N (0, t′). This process is sampled uniformly with a sampling
period of T and zero-order hold to produce the following
discrete-time system

xk+1 = ā(T )xk + b(T )uk + wk (2)

where ā(T ) = eaT , b(T ) = eaT−1
a and wk is independent and

identically Gaussian distributed with zero mean and variance
σ2(T ) = e2aT−1

2a . We assume the discrete-time measurements
of this system are also scalar and given by a linear equation:

yk = xk + vk (3)

where vk is the measurement noise, independent of wk, and
x0, and is also independent and identically Gaussian distributed
with zero mean and variance σ2

v . In the subsequent analysis,
we focus on unstable systems only such that a > 0 or
ā(T ) > 1. We also assume that E[|x0|r] < ∞, r ≥ 1. These
measurements are transmitted to a remote estimator over a
lossy channel such that each measurement is either received
according to a Bernoulli process γk ∈ {0, 1} (independent
of vk, wk, x0), such that the γk = 0 (loss of packet) with
probability γ̄(T ). Naturally, the packet loss probability is a
function of the sampling period T , since a high sampling rate
results in a higher packet transmission rate and a higher packet
loss probability, assuming that all other channel conditions
remain unchanged. We assume that γ̄(T ) is a continuous
decreasing function of T . Specific forms of γ̄(T ) depend on the
underlying modulation and coding schemes of the associated
communication system.

Based on the information set Zk ,
{y0, y1, . . . yk, γ0, γ1, . . . , γk}, the remote estimator produces
a constant gain Kalman predictor

x̂k+1|k = ā(T )x̂k|k−1 + b(T )uk +Kpγk(yk − x̂k|k−1) (4)

where Kp is a constant Kalman prediction gain chosen appro-

priately. Define the prediction error ek = xk − x̂k|k−1. Note
that the above Kalman predictor is suboptimal in the sense
that it does not use the optimal time-varying Kalman gain as
in [3]. This simplification is used here to make the subsequent
analysis simpler. A suitable choice of Kp is discussed in [20]
for example, where it was shown that under the condition that
limk→∞E(e2

k) < ∞ (i.e., the packet loss probability is less
than 1/ā(T )

2), Kp can be chosen to be the gain that minimizes
limk→∞E(e2

k), and this choice results in a marginal perfor-
mance loss in terms of expected estimation error variance.
Indeed, Kp = ā(T )p̄(T )

p̄(T )+σ2
v

, where p̄(T ) , limk→∞E(e2
k) satisfies

the modified algebraic Riccati equation:

p̄(T ) = ā(T )2p̄(T ) + σ2(T )− (1− γ̄(T ))
ā(T )2p̄(T )2

p̄(T ) + σ2
v

(5)

Clearly, it is seen that Kp < ā(T ), and it can also be shown
from (5), that (ā(T )−Kp) < 1.

With this choice of the Kalman prediction gain, the recursion
for the prediction error ek = xk − x̂k|k−1 is then given by

ek+1 = (ā(T )−Kpγk)ek + (wk −Kpγkvk) (6)

In the next section, we first provide a simple proof that ek is
asymptotically heavy-tailed in that its absolute moments higher
than a certain order go to infinity as k →∞.

Before we proceed, we introduce a few notations that will
be used in the next section. We denote the set of integers by
Z, and the set of real numbers by R. For a random variable X ,
X+, X− denote the positive and negative part of the random
variable, respectively. log+ x = log x for x ≥ 1 and 0 for
x ∈ (0, 1).

III. HEAVY TAIL PROPERTIES OF PREDICTION ERROR

Asymptotically infinite absolute moments of the prediction error

In the first instance, we work with the prediction error
equation (6) when there is no measurement noise, that is,
vk = 0 and consequently Kp = ā(T ). The rationale is to keep
the proof simple keeping in mind the fact that the absolute
moments of the prediction error with measurement noise are
bigger than those without the measurement noise. Hence if an
absolute moment of the prediction error is infinite as k → ∞
in the absence of measurement noise, it will be also infinite in
the presence of measurement noise. A more rigorous statement
is given at the end of the following proof.

First we quote the following moment inequality (see [21] p.
263 for a proof):

Lemma 1: If E[|X|r] <∞, E[|Y |r] <∞ and E[Y |X] = 0
almost sure, then

E[|X + Y |r] ≥ E[|X|r],∀r ≥ 1 (7)

Now specialising (6) in the no measurement noise case, we
have

ek+1 = ā(T )(1− γk)ek + wk (8)

Therefore defining X = ā(T )(1−γk)ek, and Y = wk, we see
that for r ≥ 1, E[|X|r] = ā(T )rγ̄(T )E[|ek|r], which is finite
for some k ≤ k0, and E[|wk|r] <∞ from Gaussianity, as well
as E[wk|X] = E[wk] = 0 from the modelling assumptions.
Therefore we have E[|ek+1|r] ≥ ā(T )rγ̄(T )E[|ek|r] for k ≥
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k0. Since ā(T ) > 1, it automatically follows that ā(T )rγ̄(T ) >
1 for some r > r̄ ≥ 1 and hence E[|ek+1|r] > E[|ek|r]
for r ≥ r̄, and hence limk→∞E[|ek+1|r] → ∞ for r ≥ r̄.
This gives us the desired result that the absolute moments
above a certain order of the prediction error are asymptotically
heavy-tailed. By applying Lemma 1 to the recurrence equation
(6) involving measurement noise, it is clear that for r ≥ r̄,
limk→∞E[|ek+1|r]→∞ also in the measurement noise case.
We summarize this result in the following Proposition.

Proposition 1: There exists a r̄ ≥ 1 such that for r ≥ r̄,
limk→∞E[|ek+1|r] → ∞ where ek is the prediction error
follows the equation (6), thus exhibiting a heavy-tail property.

A similar result holds for the corresponding Kalman filtering
error.

Existence of stationary solution to the prediction error

It is well known that for a random stochastic difference
equation Yk+1 = akYk + bk, where (ak, bk) is stationary and
ergodic along with E[log |a0|] < 0 and E log+ |b0| < ∞,
Yn, n ∈ Z has a unique stationary solution given by Yn =∑∞
k=0 an−1an−2 . . . an−kbn−1−k [16], [22]. Earlier versions

of these types of stationarity results can also be found for
the special case of (ak, bk) being independent and identically
distributed (i.i.d) exist in many works, see Theorem 2.1.3 in
[18] for example. This result is especially relevant to our case,
as we consider Bernoulli packet drops.

Now we specifically consider (6) and rewrite it as ek+1 =
fkek + zk, where fk = (a(T )−Kpγk), zk = (wk −Kpγkvk).
We can show that (since Kp < ā(T ), and ā(T ) > 1)
P (fk = 0) = 0. Also, since wk, vk are both zero mean
Gaussian, E[log+ |zk|] <∞. We make the following additional
assumption:

Assumption 1:

E[log |fk|] = γ(T ) log(ā(T ))

+ (1− γ(T )) log((ā(T )−Kp) < 0 (9)

Assumption 1 is sufficient to guarantee the existence of a
stationary solution to (6) and is known as the contractive
case [18]. Under this assumption, let us denote the stationary
distribution of ek in (6) as g∞(e). Then g∞(e) satisfies the
following integral equation:

g∞(z) = γ̄(T )

∫ ∞
−∞

1√
2πσ2(T )

e
− (z−ā(T )e)2

2σ2(T ) g∞(e)de

+ (1− γ̄(T ))

∫ ∞
−∞

1√
2πδ2(T )

e
− (z−(ā(T )−Kp)e)2

2δ2(T ) g∞(e)de

(10)

where δ2(T ) = σ2(T ) +K2
pσ

2
v is the variance of wk −Kpvk

in (6). The above result follows easily from basic probability
theory by deriving the cumulative distribution function of the
stationary distribution conditioning on the two values of γk and
then taking the derivative to obtain g∞(e). Details are omitted
as this derivation is elementary.

While there is no exact closed form solution to the above
equation to the best of the authors’ knowledge, the easiest
way to find an approximate solution to (10) is to discretize

the real line for z to denote g∞(z) by a finite length vec-
tor ḡ, and replace the integrals on the right hand side by
matrix vector products. This then leads to a linear equation
involving ḡ, which can be solved iteratively until the solution
converges to within a given tolerance. As always, the larger
the number of discretization points (the longer the vector ḡ),
the better the approximation. Figure 1 below compares the
stationary distribution of the prediction error for a system with
ā(T ) = 1.9251,Kp = 1.4164, σ2

v = 0.25, σ2(T ) = 0.6960,
corresponding to a sampling period of T = 6.55 milliseconds.
The blue graph shows the density obtained using the discretized
approximation to the integral equation (10) with 500 discretiza-
tion points, whereas the red plot shows the corresponding
density obtained by using the MATLAB kernel smoothing
function “ksdensity” using 1000 points of the prediction error
generated by Monte Carlo simulations. As can be seen, the
approximation to the integral equation is quite close to the
empirical density.
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Fig. 1. Plot comparing the stationary distribution of the prediction error
obtained via approximate solution to the integral equation (blue) and en
empirical method (red)

Asymptotic power-law tails of the prediction error

For the purpose of this section, we again rewrite (6) as
ek+1 = fkek + zk. We note that since γk is i.i.d. Bernoulli,
and zk is i.i.d. Gaussian noise, the random process pair
(fk, zk) is i.i.d. These types of random difference equations
have been studied extensively because of their applications
in a number of fields such as economics, finance, evolution
modelling, and in general for studying random walks in random
environments [14].

For the purpose of explaining the existing mathematical
theory behind this random equation, we will rewrite it as a
general equation in terms of its stationary state (when the
stationary distribution exists) as E d

=FE+Z, where d
= denotes

equality in distribution, similar to [17], [18]. We now assume
that (F,Z) is a general i.i.d. random process (of course, our
particular case satisfies this assumption as discussed above).
Depending on the ranges of values the random process F
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can take, the stationary distribution of E, when it exists, has
different asymptotic tail distributions. In particular, for the case
where F ≥ 0 almost sure (a.s.), it has been shown in a variety
of works that under mild conditions on the distribution of Z,
one can show that as s → ∞, P (E > s) ∼ C1s

−α for
some α > 0. In other words, the stationary distribution of
E has an asymptotically power law tail. This result was first
shown in [14], with a number variations appearing thereafter.
However, it is the paper [17], that is primarily cited as the
one which generalized this result, gave a precise description of
tail exponent and the constant factors involved, and provided
a less complicated proof using renewal theory (see Lemma
2.2, Theorem 2.3 and Theorem 4.1). In order to keep the
presentation simple, we will quote a version of this Theorem
that is available in [18], as Theorem 2.4.4.

We now quote Theorem 2.4.4 from [18], using the notations
of our paper.

Theorem 1: [18] Assume (i) F ≥ 0 a.s.. and (ii) the law of
logF conditioned on F > 0 is non-arithmetic1. Assume also
that (iii) there exists α > 0 such that E[Fα] = 1, E[|Z|α] <
∞, and E[Fα log+ F ] <∞. Finally, assume that (iv) P (Fs+
Z = s) < 1 for all s ∈ R.

Then the equation E d
=FE + Z has a solution E which is

independent of (F,Z) and there exist constants c+, c− such
that c+ + c− > 0, and

P (E > s) ∼ c+s−α, P (E < −s) ∼ c−s−α

c+ =
E
[
(FE + Z)α+ − (FE)α+

]
αmα

c− =
E
[
(FE + Z)α− − (FE)α−

]
αmα

(11)

where 0 < mα = E[Fα log(F )] <∞.
Before we discuss the implications of this result in our

specific case of (6), we note that under the assumptions (i),
(ii) and (iii) of Theorem 1 above, it automatically follows that
(i) −∞ ≤ E[logF ] < 0 (thus guaranteeing stationarity) and
(ii) 0 < mα < ∞ - see Lemma 2.2 of [17]. A proof of the
above theorem using renewal theory is provided also in [18].

Now let us apply Theorem 1 to (6) rewritten as ek+1 =
fkek+zk. It is clear that fk ∈ {ā(T ), ā(T )−Kp} and therefore
fk > 0, and since all absolute moments of zk are finite.
Finally, we also have that, since the stationary distribution of
ek is continuous, assumption (iv) of the above theorem is also
satisfied. The non-arithmetic requirement on the distribution
of log(fk) essentially means that log(ā(T )

log(ā(T )−Kp) cannot be a
rational number. We will discuss the case when the distribution
of log(fk) is arithmetic a little later. We also note that for
any γ̄(T ) < 1, one can show (since 0 < ā(T ) − Kp < 1,
and ā(T ) > 1) that there exists an α > 0 such that the
condition E[fαk ] = 1 is satisfied. Finally, it is easy to check
that E[fαk log+ fk] = ā(T )α log(ā(T ))γ̄(T ) < ∞. Therefore
all the assumptions of the previous theorem apply and we can
conclude that g∞(e) satisfies the asymptotic power law tail
behaviour as described in Theorem 1. Since the distribution
of ek is symmetric around the origin for all k, so is g∞(e),

1F is non-arithmetic if it is not supported in any of the sets hZ, h ≥ 0 and
Z denotes the set of integers.

and therefore the two constants c+, c− in (11) are equal and
positive.

The case where the distribution of log fk conditioned on
fk 6= 0 is arithmetic, the analysis of the tail probability is
more complex and was carried out in [15], [23]. The basic
result is that in this case one can prove [18] that there are
constants ca > cb > 0 such that

ca ≤ lim inf
s→∞

sαP (|E| > s) ≤ lim sup
s→∞

sαP (|E| > s) ≤ cb
(12)

Remark 1: If one considers the no measurement noise case,
where the prediction error recursion follows (8), then it is seen
that in this case fk = ā(T ) with probability γ̄(T ) and 0 with
probability (1− γ̄(T )). This is a special case of the arithmetic
distribution scenario, and it is possible that one can obtain the
asymptotic power law tail properties using simpler arguments
that the renewal theory arguments used in [15], [23]. Currently,
the authors are pursuing a simple proof of this result and only
partial progress has been made. While the exponent of the
power law tail is easy to derive using some basic results from
[14], it is the calculation of the coefficients ca, cb in (12) that
has proved to be difficult.

Remark 2: The power law exponent α in our context is the
solution to the equation ā(T )αγ̄(T ) = 1, i.e.

α =
log
(

1
γ̄(T )

)
log ā(T )

(13)

The previous expression shows that such α exists as long as
γ̄(T ) 6= 1 which implies that such a distribution exists even
when the estimator is not mean square stable, i.e. γ̄(T ) >

1
ā2(T ) , and that it is heavy-tailed (power-law) even if the
estimator is mean square stable, i.e. γ̄(T ) < 1

ā2(T ) . Clearly,
the less unstable the system is and the lower the packet loss is,
the faster the tail goes to zero, but still remains heavy-tailed.
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(e
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 s
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Fig. 2. Empirical log-log plot of the tail probability against the threshold

Figure 2 illustrates a plot of the log(P (e > s)) versus log(s)
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for the following parameters: ā(T ) = e
√

1
17 ,2 Kp = 0.7,

σ2(T ) = 0.01, σ2
v = 0.1, and γ̄(T ) = 0.4. From this plot one

can calculate an estimated value of the power law exponent α
as 3.4692, whereas its theoretically obtained value is 3.3792.
Similarly the constant c+ is estimated to be 0.0223, whereas
its theoretically obtained value from (11) is given by 0.0270.

−0.5 0 0.5 1 1.5 2
−14

−13

−12

−11

−10
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−6

−5

log (s)

lo
g

 (
P

(e
 >

 s
))

Fig. 3. Empirical log-log plot of the tail probability against the threshold (no
measurement noise)

Similarly, Figure 3 illustrates a plot of log(P (e > s)) versus
log(s) in the no measurement noise case, with ā(T ) = 1.3,
σ2(T ) = 0.01 and γ̄(T ) = 0.4. In this case, the theoretically
calculated value of the power law exponent is α = 3.4924,
whereas the one estimated from this plot is 3.3846.

Remark 3: It should be noted that the asymptotic power-
law tail results hold also for random difference equations
involving vector processes as well as where the coefficients
are Markovian rather than i.i.d. - see for example [22]. How-
ever, the technical conditions under which these results hold
are significantly more complicated, especially the conditions
involving the non-arithmetic distributions. Extension of our
results to the multivariable case is therefore left for future work.

IV. IMPLICATIONS OF HEAVY TAIL PROPERTIES: CHOICE OF
SAMPLING RATE IN CONFIDENCE BOUNDS VERSUS

SECOND MOMENT STABILITY

As discussed earlier, majority of the literature on Kalman
filtering with packet loss has focused on analysing the estima-
tion error covariance, its expected value [3] or tail bounds such
as in [24]. In [13], a power law tail behaviour for the solution
to the random riccati equation was established. Different to
these works, here we focus on the estimation/prediction error
itself and its tail behaviour. We now investigate how the
choice of the sample period affects the expected prediction
error variance p̄(T ) under the assumption that it is bounded
(i.e. when γ̄(T ) < 1/ā2(T )). We also investigate how the
sampling period affects the tail probability of the prediction
error: P (|e| > β(T )). Clearly, if from a design perspective,
one wanted to guarantee a bound on the tail probability such

2This value is chosen such that the non-arithmetic condition on the distri-
bution of log ā(T ) is satisfied.

that P (|e| > β) ≤ 0.0027, which is the Gaussian (with zero
mean) tail probability beyond 3σ, where σ is the standard
deviation. We compare how the threshold β(T ) behaves with
T , as compared to the threshold 3

√
p̄(T ), which would be

the equivalent choice if the prediction error was strictly Gaus-
sian. Since the prediction error stationary distribution has an
asymptotic power-law tail behaviour, it is clear that β(T ) is
expected to be larger than 3

√
p̄(T ). It is also of interest to

observe the sampling period for which both β(T ) attains a
minimum (say at T ∗1 ), and 3

√
p̄(T ) attains a minimum (say at

T ∗2 ). It is in general difficult to obtain closed form expressions
for T ∗1 analytically. We therefore investigate this behaviour
numerically through Monte Carlo simulations. On the other
hand, one can carry out a simple analysis to obtain the optimal
sampling period T ∗2 that minimizes p̄(T ), which we discuss
next.

Optimal sampling period for minimizing p̄(T )

We recall that the prediction error follows (6) with ā(T ) =

exp(aT ), σ2(T ) = exp(2aT )−1)
2a . We start with (5). Differenti-

ating both sides of this equation with respect to T , and setting
the first derivative dp̄(T )

dT = 0, we obtain

p̄2(T )

(
2aγ̄(T ) +

dγ̄(T )

dT

)
+ p̄(T )(1 + 2aσ2

v) + σ2
v = 0

Comparing this with equation (5), one can obtain, after some
simplification,

2a

e2aT − 1

(
1− e2aT γ̄(T )

)
= −

(
2aγ̄(T ) +

dγ̄(T )

dT

)
Rearranging the above equation, we get

2a

[
1− γ̄(T )

e2aT − 1

]
= −dγ̄(T )

dT
(14)

In order to obtain a solution to this equation, one needs to
consider a specific form of γ̄(T ). To this end, we use a
particular choice of dependence on T . We assume that every
packet contains M number of bits, and the packet is lost even
if a single bit is in error. This allows to write

γ̄(T ) = 1− (1−BER(T ))M

where BER(T ) denotes the bit error probability. In general,
bit error probability depends on the underlying modulation
schemes, and often take the form of Q(

√
ρSNRT/M), where

Q(.) denotes the tail probability of a standard Gaussian random
variable, i.e., Q(x) = 1√

2π

∫∞
x

exp
(
−u

2

2

)
du. Here SNR

denotes the channel signal to noise ratio and ρ denotes a
constant depending on the modulation scheme. For simplicity
however, we choose

BER(T ) = e−νT

where ν depends on SNR and the modulation scheme. Note
that such an exponentially decaying bit error rate represents an
upper bound on most BER(T ) of the form given by the Q(.)
function above. In particular, for the case of noncoherent Bi-
nary Frequency Shift Keying (BFSK) modulation, the bit error
rate is given by exactly an exponentially decaying function as
above [25].
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Replacing γ̄(T ) = 1− (1−BER(T ))M in (14), we obtain

M dBER(T )
dT

1−BER(T )
= − 2a

e2aT − 1
.

Substituting BER(T ) = e−νT , after some algebraic manip-
ulations, we obtain the following optimality equation for T ∗2
that minimizes p̄(T ):

T =
1

ν
log

(
1 +

Mν

2a

(
e2aT − 1

))
(15)

Since we require γ̄(T ) < e−2aT for p̄(T ) to be finite, we
can show that this implies log(1− e−νT )M > log(1− e−2aT ).
Since M ≥ 1, we obtain a necessary condition on ν as ν > 2a
for second moment stability.

It is clear that as T → 0, the packet loss probability
increases, driving p̄(T ) to infinity, whereas when T → ∞,
p̄(T ) also increases as the system becomes more unstable and
the process noise variance σ2(T ) also increases. Therefore,
p̄(T ) must attain a minimum between 0 < T < ∞. Clearly,
the minimizing sampling period T ∗2 must also satisfy the first
order optimality condition (15). Ignoring the trivial solution
T = 0 to (15), it is easy to show that there is only one
solution T ∗2 > 0 to (15), thus proving the uniqueness of
the minimum. This follows from the fact that the function
h(T ) = T − 1

ν log
(
1 + Mν

2a

(
e2aT − 1

))
has a negative deriva-

tive at T = 0, but its derivative becomes positive after
T > 1

2a log
(

1− 2a
Lν

1− 2a
beta

)
, and remains positive, meaning that there

is only one point where h(T ) = 0 for T > 1
2a log

(
1− 2a

Lν

1− 2a
beta

)
.

Numerical Example

The following Figure 4 compares the two thresholds β(T )
and 3

√
p̄(T ), with a = 100, σ2

v = 0.25, where the bit
error probability BER(T ) is given by Q(

√
ρSNRT/M , with

ρ = 2 (binary-phase-shift-keying modulation scheme). For our
calculations, we assume that M = 16 and SNR=4.3 dB. The
sampling time is varied within a range such that the minimum
sampling time guarantees the packet loss probability stability
threshold γ̄(T ) < 1/ā2(T ). It is seen clearly that β(T ), the
threshold based on the heavy tail distribution, is always greater
than 3

√
p̄(T ) which is based on a Gaussian approximation.

It is also seen that T ∗1 ≈ 1.9369 milliseconds where as
T ∗2 ≈ 1.6354 milliseconds. This implies that due to the heavy-
tail behaviour of the prediction error stationary distribution,
one needs to use a higher sampling period (lower sampling
rate) than would be recommended by a Gaussian assumption
on the same distribution, if one is interested in ensuring a
tail probability bound below a certain threshold. It is also
noteworthy that as T decreases below or increases above T ∗1
(T ∗2 ), the threshold β(T ) (3

√
p̄(T )) increases as well, and the

two thresholds almost approach each other when the sampling
period becomes quite large. This is due to the fact that when the
sampling period is approaching its lower limit (beyond which
the stability threshold is violated), the packet loss probability
is increasing - leading to a heavier tail dominated by the
packet loss probability and increasing β(T ), at a higher rate
than 3

√
p̄(T ). Similarly, when the sampling period T → ∞,

γ̄(T ) → 0 , whereas the system becomes more unstable,
along with increasing process noise variance σ2(T ). In this

case the Gaussian approximation becomes a better fit with
increasing sampling period. Since an associated LQ control
cost can be computed in terms of the expected estimation error
variance p̄(T ), a similar behaviour (as 3

√
p̄(T ) in Figure 4)

with respect to the sampling period for an LQ control cost for a
sampled data system controlled over an IEEE 802.15.4 based
wireless local area network was observed in [26]. However,
the behaviour of the estimation error tail probability was not
analyzed either numerically or theoretically in [26].
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Fig. 4. Comparison of β(T ) and 3
√
p̄(T ) as a function of T , where β(T )

is such that P (|e| > β(T )) ≤ 0.0027.

V. CONCLUSIONS

In this paper, we established the existence of a steady
state distribution and its heavy tailed behaviour of the predic-
tion/estimation error in Kalman filtering with packet losses for
an unstable scalar linear system. The existence of the steady
state distribution holds under milder conditions than previously
known results for the existence of the steady state distribution
of the estimation error variance conditioned on the packet
loss process. Under additional conditions on the distribution
of the state transition coefficient, it is shown that the predic-
tion/estimation error steady state distribution has a heavy-tailed
behaviour, and in particular, exhibits an asymptotic power
law tail. Using results from Renewal Theory and Random
Difference Equations, the exact behaviour of the tail probability
can be characterized in terms of its power law exponent and
the associated constant gain term. We also investigate the effect
of the sampling period when a continuous-time stochastic
unstable scalar system is sampled for measurements, which
in turn are transmitted over a channel with packet loss for
remote Kalman filtering. The effect of this sampling period
is investigated in terms of both the expected error covariance
and the estimation error tail probability, and it is seen the
heavy-tail behaviour results in a larger sampling period while
considering tail probabilities for a certain confidence bound,
than that would be implied by a strictly Gaussian assumption
on the estimation error distribution, with a variance equal to
the expected error covariance. This finding should be also
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useful for practitioners working with remote estimation/control
of sampled-data continuous time unstable linear systems in
the presence of packet loss. Future works will explore the
extension of these results to the multivariable case along with
Markovian packet dropouts, by carefully exploiting the results
in [22].
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