
Comprehensive Neuropsychological Assessment of Cognitive Functioning of Adults With Lower Limb Amputation in Rehabilitation

Accepted Manuscript

Comprehensive Neuropsychological Assessment of Cognitive Functioning of Adults with Lower Limb Amputation in Rehabilitation

Richard Lombard-Vance, PhD, Fiadhnait O'Keeffe, PhD, DClinPsy, Deirdre Desmond, PhD, Robert Coen, PhD, Nicola Ryall, MB BCh BAO, FRCPI, Pamela Gallagher, PhD

PII: S0003-9993(18)31172-9

DOI: 10.1016/j.apmr.2018.07.436

Reference: YAPMR 57348

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 8 May 2018
Revised Date: 17 July 2018
Accepted Date: 19 July 2018

Please cite this article as: Lombard-Vance R, O'Keeffe F, Desmond D, Coen R, Ryall N, Gallagher P, Comprehensive Neuropsychological Assessment of Cognitive Functioning of Adults with Lower Limb Amputation in Rehabilitation, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2018), doi: 10.1016/j.apmr.2018.07.436.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

COGNITIVE FUNCTION IN LOWER LIMB AMPUTATION

ACCEPTED MANUSCRIPT

Comprehensive Neuropsychological Assessment of Cognitive Functioning of Adults with Lower Limb Amputation in Rehabilitation

Richard Lombard-Vance, PhD 1,2

Fiadhnait O'Keeffe, PhD, DClinPsy 2,3

Deirdre Desmond, PhD ^{2,4}

Robert Coen, PhD⁵

Nicola Ryall, MB BCh BAO, FRCPI 2,3

Pamela Gallagher, PhD 1,2

- 1: School of Nursing and Human Sciences, Dublin City University, Dublin, Ireland
- 2: Dublin Psychoprosthetics Group, Dublin, Ireland
- 3: Department of Psychology, National Rehabilitation Hospital, Dún Laoghaire, Co. Dublin, Ireland
- 4: Department of Psychology, Maynooth University, Maynooth, Co. Kildare, Ireland
- 5: Mercer's Institute for Research on Ageing, St James's Hospital, Dublin, Ireland

COGNITIVE FUNCTION IN LOWER LIMB AMPUTATION

ACCEPTED MANUSCRIPT

Funding

Funded by an Irish Research Council Postgraduate Research Scholarship and a Dublin City University Daniel O'Hare Postgraduate Studentship provided to Richard Lombard-Vance.

Presentation

Preliminary findings were previously presented in part at the *International Society for Prosthetics and Orthotics World Congress*, June 2015, Lyon, France.

Acknowledgements

The authors would like to acknowledge Gillian Murphy, and the National Rehabilitation Hospital clinical (in particular physiotherapy and occupational therapy) and administrative staff for their assistance with data collection.

Conflicts of Interest

The authors have no conflicts of interest to declare:

We certify that no party having a direct interest in the results of the research supporting this article has or will confer a benefit on us or on any organization with which we are associated AND, if applicable, we certify that all financial and material support for this research (e.g., NIH or NHS grants) and work are clearly identified in the title page of the manuscript.

Corresponding Author

COGNITIVE FUNCTION IN LOWER LIMB AMPUTATION

Prof. Pamela Gallagher	
School of Nursing and Human Sciences,	
Dublin City University,	
Glasnevin,	
Dublin 9,	
Ireland	
Tel.: 01 700 8958	
Email.: pamela.gallagher@dcu.ie	

ACCEPTED MANUSCRIPT

1 Comprehensive Neuropsychological Assessment of Cognitive

- **Functioning of Adults with Lower Limb Amputation in Rehabilitation**
- 3
- 4 **Objective:** To establish a comprehensive profile of cognitive functioning in people engaged
- 5 in lower limb amputation (LLA) rehabilitation.
- 6 **Design:** Cross-sectional study as part of a longitudinal prospective cohort.
- 7 **Setting:** A national, tertiary, rehabilitation hospital.
- 8 **Participants:** Adult volunteer participants (N=87) referred for comprehensive rehabilitation
- 9 for major LLA were sampled from 207 consecutive admissions. Participants with both
- vascular (n=69) and non-vascular (n=18) LLA aetiologies were included.
- 11 **Interventions:** Not applicable
- 12 Main Outcome Measure(s): Demographic and health information, and a battery of
- standardised neuropsychological assessments
- 14 **Results:** Compared to normative data, impairment was evident in overall cognitive
- 15 functioning ($p \le .003$). Impairment was also evident in particular areas, including reasoning,
- psychomotor function, information processing, attention, memory, language/naming,
- visuospatial functions, and executive functions (all $p \le .003$ Holm-corrected). There were also
- 18 higher frequencies of impaired functions across most aspects of functioning in this group,
- compared to expected frequencies in normative data ($p \le .003$ Holm-corrected). There were no
- 20 significant differences in cognitive functioning between participants of vascular and non-
- 21 vascular LLA aetiology.

31

22	Conclusions: Findings support the need for cognitive screening at rehabilitation admission
23	regardless of aetiology. Administration of comprehensive neuropsychological assessment
24	with a battery sensitive to vascular cognitive impairment is recommended in some cases, to
25	generate an accurate and precise understanding of relative strengths and weaknesses in
26	cognitive functioning. Cognitive functioning is a potential intervention point for
27	improvement of rehabilitation outcomes for those with LLA and further research is warranted
28	in this area.
29	Key Words: Amputation; cognition; lower extremity; neuropsychology; rehabilitation
30	research

ACCEPTED MANUSCRIPT

32 List of abbreviations

- BADS: Behavioural Assessment of the Dysexecutive Syndrome
- CVLT-II SF: California Verbal Learning Test II Short Form
- D-KEFS: Delis Kaplan Executive Function System
- FrSBe: Frontal Systems Behavior Scale self-rated
- LLA: lower limb amputation
- MCI: mild cognitive impairment
- MoCA: Montreal Cognitive Assessment
- PVD: peripheral vascular disease
- RBANS: Repeatable Battery for the Assessment of Neuropsychological Status
- TEA: Test of Everyday Attention
- VCI: vascular cognitive impairment
- VOSP: Visual Object and Spatial Perception Battery
- WAIS-IV: Wechsler Adult Intelligence Scales-IV
- WMS-IV: Wechsler Memory Scale-IV

47

64

65

66

67

68

69

70

71

ACCEPTED MANUSCRIPT

dysvascularity, i.e. peripheral vascular disease (PVD) and diabetes mellitus ¹ . People with
LLA (PwLLA) are at greater risk of having or developing impaired cognitive functioning ² ,
with high prevalence of dysvascularity as a precipitating factor in LLA likely underlying this
risk. PVD is a marker for generalised cardiovascular and cerebrovascular pathology, and has
been linked to impaired cognitive functioning and vascular cognitive impairment (VCI) ^{3–5} .
Overall cognitive functioning, processing speed, attention, immediate and delayed memory,
naming, visuospatial construction, and executive functions are impaired in VCI ⁶ . Diabetes
has been associated with a similar profile of impairment ⁷ . Furthermore, the increasing age at
which most LLA are carried out itself presents increasing risk of cognitive impairment and
dementia ⁸ . In essence, LLA risk factors – dysvascularity and advanced age – are shared risk
factors for cognitive impairment. Impaired cognitive functioning may explain a proportion of
the variance in rehabilitation outcomes 9; yet relatively little research has considered
cognitive functioning in PwLLA ² . While there is some evidence of impaired memory ¹⁰ ,
information processing ¹¹ , and executive functioning deficits ^{10,11} in PwLLA, a
comprehensive understanding has been hampered by limitations of methodology and scope of
the extant research literature.

Profiles of cognitive functioning are heterogeneous; people have variable relative strengths and weaknesses across different aspects of functioning, the degree of such strengths and weaknesses also varies. Most previous research however has relied on simple categorical definitions of cognitive functioning (e.g. 12-16), including unspecified dementia diagnoses, rather than standardised neuropsychological assessment. This approach neglects the range of functioning in the LLA population, ultimately limiting understanding of the range of potential contributors to rehabilitation outcomes. Furthermore, studies examining cognitive profiles have generally used cognitive screens or narrow assessment batteries, which do not capture

ACCEPTED MANUSCRIPT

the breadth of functioning or are insensitive to VCI ^{10,17,18} . In some cases, reporting v	vas not
sufficient to make determinations regarding the profile ^{12,18} . Drawing conclusions fro	m other
studies is limited by sample sizes or research designs that preclude generalisation 11	,19
Comparisons between patients of vascular and non-vascular LLA aetiology are also l	acking,
limiting our understanding of the general profile of functioning in the LLA rehabilita	tion
population.	

Recent work with a large sample with LLA (N=1086) examined self-reported cognitive concerns (i.e. difficulties in functioning) ²⁰. Respondents reported significantly more cognitive concerns than a general population normative sample, regardless of age or aetiology. However, self-report and third party observation may not be reliable indicators of cognitive functioning. Persons with executive functioning difficulties may lack insight into their own cognitive functioning and behaviour. Additionally, difficulties with aspects of cognitive functioning can be masked, for example by intact language production skills. With greater scope than cognitive screens, comprehensive neuropsychological assessment can elucidate the breadth and depth of cognitive strengths and weaknesses, thus assisting treatment or rehabilitation planning ²¹.

The purpose of this study was to generate a comprehensive neuropsychological profile of people who attended rehabilitation at a national rehabilitation hospital following LLA. The aim was to describe cognitive functioning in terms of a) whether LLA rehabilitation participants' assessment scores differed from normative means, and b) the proportions of the sample with scores in the borderline or impaired ranges of functioning. Cognitive functions assessed included overall cognitive functioning, reasoning, psychomotor speed, information processing, attention, memory, visuospatial perception and construction, language, and executive function, as well as estimated premorbid intellectual ability. A

96	secondary aim was to investigate differences between participants with vascular and non-
97	vascular aetiologies.
98	
99	
100	Methods
101	
102	Design
103	This cross-sectional study forms part of a longitudinal prospective cohort study investigating
104	cognitive functioning and rehabilitation outcomes in PwLLA enrolled in a comprehensive
105	LLA rehabilitation programme at a Commission for Accreditation of Rehabilitation Facilities
106	(CARF) -accredited rehabilitation hospital.
107	
-07	
108	Participants
109	Inclusion criteria were: presence of a major LLA (i.e. unilateral or bilateral from ankle to hip
110	level), English language fluency, age≥18 years. Exclusion criteria were: major upper limb
111	amputation (i.e. wrist disarticulation or above; participants with transphalangeal or partial
112	hand amputation were not excluded provided they could manipulate assessment materials), or
113	being too medically unwell.
114	Eighty-seven participants were recruited. Of 207 consecutive admissions over two
115	years, 3 were excluded as medically unwell, 1 was non-English speaking, and 116 declined.
116	Participants gave written, informed consent prior to participation. The hospital's Ethics
117	Committee approved this research.

ACCEPTED MANUSCRIPT

Measures

Demographic and clinical data were collected from healthcare records. Distress was assessed using Hospital Anxiety and Depression Scale total scores ^{22,23}. The battery of standardised neuropsychological assessments was selected to provide a comprehensive profile of cognitive functioning and impairment, be sensitive to VCI, and limit burden on participants. It and aspects of cognitive functioning examined are noted in table 2. Higher scores indicate higher levels of functioning, with exception of the Frontal Systems Behaviour Rating Scale (FrSBe), for which lower scores indicate better self-rated functioning. All measures were age standardised, with the FrSBe also gender normed.

Procedure

The majority of participants engaged in at least two assessment sessions, lasting on average 50 minutes. Where timetables allowed, sessions up to approx. 110 minutes with a short break in the middle were conducted. Sessions continued until the battery (approx. 3.5 hours) was completed, or discontinued due to participants declining further participation, limitations on timetable availability, or early discharge from rehabilitation. Assessments were undertaken while participants were engaged in a busy rehabilitation programme, and were delivered across sessions in an order that minimised the risk of assessments interfering with each other. As completion rates differed, the order of test administration was altered to prioritise completion of measures of overall cognitive functioning in the first instance (e.g. RBANS), then measures tapping into each of one of the following domains: attention, memory, executive function, and then the remainder of the battery. Some assessments were completed as part of routine clinical assessment. Participants were referred to a senior clinical

ACCEPTED MANUSCRIPT

neuropsychologist (FOK) if they requested feedback on assessment	s or in	instance	s of
distress.			

Analysis

To examine relationships between demographic and clinical variables and neuropsychological assessments, including whether scores differed between vascular and nonvascular amputation aetiologies, independent samples t-tests, Mann-Whitney U tests, and Spearman rho correlations were used. In assessing whether LLA rehabilitation participants' assessment scores differed from normative means, one-sample t-tests were used. Sample means were compared against the means and standard deviations of published normative values for each assessment. Similar analyses have been used previously^{20,24}, and allow for an inferential estimation of whether and how cognitive functioning in (this whole sample of) PwLLA differs from the general population.

To estimate the proportions of PwLLA in rehabilitation programmes that might require particular rehabilitative attention due to difficulties with various aspects of cognitive functioning, separate chi-square analyses investigated with the distribution of scores at each of three levels (where normative values were available). The levels were impaired ($z\le-2.0$; scale scores 1-3; $\le 2^{nd}$ percentile), borderline (-1.99 $\le z\le-1.5$; scale scores 4-5; $\le 7^{th}$ percentile approx.) and not impaired. This classification of 'impairment' is used in the Wechsler classification system²⁵; the z=-1.5 borderline classification has been used in studies of mild cognitive impairment (MCI) $^{26-28}$. Two assessments were exceptions: FrSBe 29 (borderline: $60\ge T\le 64$; impaired: $T\ge 65$) and VOSP Position Discrimination (borderline: raw score 18/20; impaired: raw score $\le 17/20$).

165	Holm's method of correction for multiple comparisons 30,31 was employed on a
166	family-wise basis. Effect sizes reported are Cohen's <i>d</i> (small≥.2, medium≥.5, large≥.8). Data
167	were analysed with IBM SPSS Statistics version 21.
168	
169	Results
170	Sample demographic and clinical characteristics are summarised in Table 1. Participants with
171	dysvascular LLA (PVD or diabetes) were significantly older (n=69, M=62.93, SD=12.02,
172	range=33-86) than the non-vascular group (n=18, M=41.89, SD=15.13, range=21-73)
173	(t(85)=6.26, p<.001). Groups did not differ in education, gender, marital status, amputation
174	level, number of comorbidities, distress, or length of stay. The sample was slightly younger
175	than the group of all potential participants attending LLA rehabilitation at the recruitment site
176	(annual M=60 to 63 during recruitment years). Other demographic or clinical information of
177	non-participants was not available.
178	
170	
179	
180	========
181	INSERT TABLE 1 ABOUT HERE
182	
183	
184	Cognitive functioning was impaired, both generally and across specific domains, as
185	evident in the significantly lower performance of the sample on the clear majority of aspects
186	of cognitive functioning assessed relative to normative means. Results of this main analysis

are summarized in table 2, which also provides information on normative means and standard
deviations for reference. This sample did not differ from the normative population in
estimated premorbid intellectual ability. Overall cognitive functioning was significantly
lower (RBANS Total Index; d =9), and the mean MoCA score of 22.9 (SD=3.99) was below
the cut-off ($<24^{-32}$) for suspected cognitive impairment. The sample scored significantly
lower on all three reasoning assessments ($d \le52$) and on psychomotor speed ($d =72$). For
information processing, significantly lower scores were evident on colour-naming (D-KEFS
Color-Word Interference Condition 1(Colour Naming), d=7), and difficult, time-pressured
tasks (RBANS Coding, d=-1.25; WAIS-IV Symbol Search, d=-1.03), but not word reading
(D-KEFS Color-Word Interference Condition 2 (Word Reading), d =29). All assessments of
focused and sustained attention were significantly lower (69\ge d\ge -1.45), but differences in
attention span and divided attention were non-significant (RBANS Digit Span, d=.12; TEA
Telephone Search While Counting, $d=22$). Both immediate list learning scores were
significantly lower (42 \geq d \geq 8). The sample fared better on immediate story memory, with a
non-significant difference on a shorter story (RBANS Immediate Story Memory, $d=24$), and
a significant difference of small effect size for longer stories (WMS-IV Logical Memory I,
d=47). There was no significant difference in recall after a 1 minute delay following four
trials of a verbal list (CVLT-II SF short delay free recall, d =3). All aspects of recall after
longer delays (circa 20+ minutes), were significantly lower (44≥d≥73). Delayed
recognition scores were also significantly lower (RBANS List Recognition, d =58), even
when cues were provided (CVLT-II SF cued recall, d =84). No difference was evident in
confrontational naming of everyday objects (RBANS Naming, d=23). The GNT included
less common items, and the mean raw score (16.95, SD=6.44) corresponded to approximately
the 25 th percentile. Participants fared better on visuospatial perception (VOSP Position
Discrimination M=18.98, SD=1.61, within the 'pass' range; RBANS Line Orientation, d=-

212	.17) than construction (RBANS Figure Copy, $d=54$). Of the core aspects of executive
213	functioning, significantly lower scores were evident in inhibition (D-KEFS Color-Word
214	Interference Condition 3 (Color-Word Switching), d=76), cognitive flexibility (D-KEFS Trail
215	Making Test Condition 5 (Number-Letter Switching), d =-1.05), and all aspects of verbal fluency (
216	.42 \geq d \geq 72). Working memory, which did not differ, was an exception (WAIS-IV Digit Span, d=15
217	ns). The planning (BADS Zoo Map) mean score corresponded to borderline impaired functioning.
218	Self-rated executive and frontal lobe dysfunction (including apathy, behavioural disinhibition,
219	dysexecutive functioning) was significantly higher (FrSBe Self-Rated Total, d =.59).
220	
221	=======
222	INSERT TABLE 2 ABOUT HERE
223	
224	
225	Significantly higher proportions of the sample had borderline and impaired scores
226	compared to normative populations across the cognitive functioning spectrum (see table 3).
227	This included overall cognitive functioning (RBANS Total Index, 34% of scores), visual
228	abstract reasoning (WAIS-IV Matrix Reasoning, 21%), psychomotor speed (D-KEFS Trail
229	Making Test Condition 5 (motor speed), 19%), and complex, time pressured information
230	processing (RBANS Coding, 58%; WAIS-IV Symbol Search 33%). This was also the case
231	for all aspects of attention (range=11-41%) except divided attention, all aspects of immediate
232	and delayed memory (range=21-41%), confrontational naming (RBANS Naming, 17%),
233	visuospatial perception (line orientation, 22%), and construction (figure copy, 43%). Similar
234	results were found for a range of executive functions including inhibition (38%), cognitive
235	flexibility (47%), and verbal fluency (category and phonemic, 19-23%). Additionally, a

ACCEPTED MANUSCRIPT

significantly higher proportion had scores in the borderline or extremely low range for estimated premorbid intellectual functioning (WTAR, 22%). 52.6% of MoCA scores fell at or below the selected cut off (<24). The VOSP Position Discrimination task was failed by 28% of those who completed the measure. For planning (BADS Zoo Map), 88% of scores were in the borderline or impaired ranges. FrSBe self-ratings were above the threshold for executive and frontal lobe dysfunction (including apathy and behavioural disinhibition) for 45.5% of those who completed the measure.

========

245 INSERT TABLE 3 ABOUT HERE

246 =======

Mann-Whitney U tests indicated no significant differences in assessment scores between aetiology groups (scores for the vascular and non-vascular groups are provided in table 3 for comparative purposes, with additional information in table S1 [online supplement]). Amputation level, length of stay, marital status, and distress (HADS) were unrelated to test scores. Older age was significantly related to lower MoCA (r_s =-.503, p<.001) and lower RBANS Line Orientation (visuospatial perception, r_s =-.443, p<.001) scores. More comorbidities (dichotomised as two or fewer versus three or more) related to lower RBANS Coding scores (information processing, t(71)=3.576, p=.001). There were no differences in assessment scores (or a range of demographic and clinical variables) between a group which completed \geq 90% (n=25) of the assessments and those who completed <90% (n=62), with one exception: RBANS Immediate Story Memory (t(65.236)=-3.439, p=.043).

ACCEPTED MANUSCRIPT

Discussion

This study was the first to employ such a broad battery of standardised neuropsychological assessments, selected purposefully to be sensitive to common features of VCI, to provide a profile of cognitive functioning in admissions to rehabilitation programmes. The profile is one of high degree and prevalence of impairment in overall cognitive functioning as well as widespread impairment across domains, including reasoning, information processing, attention, immediate memory/learning, delayed recall and recognition memory, naming less commonplace objects, visuospatial perception and construction, and executive functions including cognitive flexibility/set-shifting, inhibition, verbal fluency, and planning. Particular difficulties, in both magnitude and prevalence of difficulty, were evident in overall cognitive functioning; processing speed(especially under time pressure); focusing attention and sustaining concentration; learning verbal information, and; recalling newly learned information even with cuing. Among executive functions, cognitive flexibility (switching between tasks and thinking creatively), and planning presented particular difficulties.

The results support research suggesting increased overall susceptibility to cognitive impairment ², impaired processing speed and executive functioning ¹¹ and reduced immediate and delayed list recall and verbal fluency across time in dysvascular LLA ¹⁰, and similar

ACCEPTED MANUSCRIPT

findings in PVD ³. Importantly, this study evidences impairment across a much wider range of cognitive domains.

In economically developed countries, persons with dysvascular LLA predominate in LLA rehabilitation programmes. Impairment observed in these individuals is likely linked to cerebrovascular diseases. The observed profile was largely consistent with VCI; difficulties with overall cognitive functioning with particularly high frequency of impairments of processing speed, executive functioning, attention, and memory. Yet, LLA aetiology does not map reliably onto impairment status. The similarly poor performance of non-vascular LLA participants across the full range of assessments raises questions about cognitive functioning in this group. Previous research on found that people with traumatic LLA were no less concerned about their cognitive functioning than those with vascular LLA ²⁰, though how subjective concerns map onto and objective assessments of cognitive functioning is uncertain. Demographic or clinical factors, including distress, did not explain the lack of difference between aetiologies. One possible explanation is the presence of vascular risk factors; a third of the non-vascular group had cardiovascular comorbidities. Additional risk of traumatic amputation in dysvascularity has been reported previously ³³ (vascular insufficiency likely being a contributory factor).

Half of participants scored below the selected cut-off for cognitive impairment (MoCA <24), suggesting that comprehensive neuropsychological assessment may be appropriate for at least half of LLA rehabilitation programme admissions. Cut-off sensitivity and specificity ³² suggest that approximately a quarter of participants could meet MCI criteria. A reliable and valid cognitive screen, sensitive to VCI, should be administered on admission to LLA rehabilitation, even to those with non-vascular LLA aetiology. Individuals' patterns of strengths and impairments varied with complexity which could not have been captured with categorical measures alone (e.g. screening pass/fail). More accurate and precise

ACCEPTED MANUSCRIPT

understandings of patients' relative or actual strengths and weaknesses are possible by twinning cognitive screening as standard with comprehensive neuropsychological assessment as required. A non-exhaustive list of instances suggesting benefit in neuropsychological assessment includes: scoring below or near a cognitive screen cut off; notable discrepancies between scores in different domains on a cognitive screen; functional difficulties suggestive of cognitive difficulties; and self-reported or other-reported cognitive difficulties.

While there are clear resource implications for implementing neuropsychological assessment, potential benefits include earlier and better understanding of why difficulties may arise with particular tasks, functioning, or activities of daily living ^{34,35}, prosthesis use or mobility ^{36–39}, self-management and compliance with medical regimen ^{40,41}, or social integration and community participation ³⁹. Additionally, declines in cognitive functioning may have implications for sustaining achieved goals in the longer term. Prospective associations between cognitive functioning and rehabilitation outcomes suggest an influence on longer-term outcomes ^{36,39}. Timely assessment would improve potential for earlier intervention to mitigate these difficulties with concomitant benefits of reduced healthcare expenditure and resource use.

Research is required to examine whether lower premorbid cognitive functioning or intellectual ability confer additional amputation risk. While mean estimated premorbid intellectual ability did not differ from normative values, a greater proportion of this sample was in the borderline and extremely low ranges. Self-management of later-stage PVD carries a cognitive burden and requires motivation. Brief cognitive screening for at-risk persons could contribute to LLA prevention.

This study evidences impairment across attention, memory, and executive functions which could reasonably be considered particularly important for rehabilitation and outcomes.

ACCEPTED MANUSCRIPT

Intact cognitive functioning is likely to be important in learning to effectively and safely don, doff, transfer and ambulate with, and maintain prostheses, but LLA rehabilitation now extends beyond prosthetic provision and training ^{9,42}. Some people achieve functional independence and adjust well after LLA, yet others do not ⁹. Reintegration into community living and social roles may depend somewhat on cognitive functions and their successful application. Some additional cognitive burdens for PwLLA include planning, activity organization, and memory for prosthetic procedures. Understanding precipitant factors of good and poor activity performance, participation, and overall adjustment to limb loss will assist in rehabilitation programme development and optimization. Cognitive rehabilitation has already yielded promising results in facilitating prosthesis use ¹⁹ and its efficacy in improving other outcomes should be researched. Clinicians supporting emotional and psychological adjustment to amputation and prosthesis use should be mindful of the cognitive resources required and the potential for impaired cognitive functioning even in non-dysvascular LLA. Lastly, how cognitive functioning impacts on the process of engagement in LLA rehabilitation itself and subsequent rehabilitation outcomes ⁴³ warrants examination.

Study Limitations

Differing completion rates for each of the neuropsychological assessments are a limitation of the present study. Assessments were undertaken during routine, busy rehabilitation programme schedules. Heterogeneous completion rates related to restrictions in participant scheduling and research availability, early discharge, declining to continue (often citing fatigue), and the time required for battery completion. Fractionation of assessment sessions due to fatigue and scheduling difficulties was previously reported in the only other study to report comparably comprehensive neuropsychological assessment in PwLLA ¹¹.

ACCEPTED MANUSCRIPT

The sample was slightly younger than all PwLLA attending rehabilitation at the recruitment site. Additionally, those who agreed to participate may have represented a more engaged and motivated patient subset. Indeed, VCI has been associated with elevated apathy ⁴⁴. Thus, the profile presented may underestimate cognitive impairment present in the LLA rehabilitation population. Differing aetiology group sizes reflected the preponderance of dysvascular LLA common in industrialized countries, but make it difficult to draw firm conclusions about the relationship between cognitive functioning and aetiology. Multi-site recruitment with matched cases may facilitate recruitment of those less likely to participate and aetiological comparisons. Further research could also recruit an appropriate control group, for example persons with acquired physical impairment but without VCI risk.

Time of day (TOD) of testing may affect assessment performance across several neuropsychological variables of interest. Older age has been associated with lower performance in the afternoon compared to the morning, and vice versa for younger age ⁴⁵. While it was not possible to control for TOD effects within this study, this could be considered for future investigations.

Previous examinations of working memory in LLA have employed similar digit span measures to assess working memory, with similar null findings 10,11,39 . Digit forward and backward conditions incorporated in the WAIS-IV digit span test, measures of attention span and short term memory respectively 46 , potentially confounded assessment. Alternatives should be considered, e.g. digit ordered conditions alone, or n-back tasks 47 .

Conclusions

Difficulties with cognitive functioning in LLA are many, varied, and not confined to vascular LLA. A true representation of cognitive functioning is best obtained with a comprehensive

378	neuropsychological assessment. Ultimately, increased knowledge about cognitive functioning
379	in LLA could assist in supporting patients in rehabilitation and help them to optimise
380	rehabilitation outcomes and overall quality of life.
381	
382	
383	
384	INCLUDE TABLE S1 AS ONLINE SUPPLEMENT
385	

ACCEPTED MANUSCRIPT

	e		
K	Δtα	arαi	nces
1/	\mathbf{u}	JI (J	uccs

386

- 387 1. Amputee Coalition of America. Amputation statistics by cause: Limb loss in the
- 388 United States. Knoxville, TN: 2008.
- 2. Coffey L, O'Keeffe F, Gallagher P, Desmond D, Lombard-Vance R. Cognitive
- functioning in persons with lower limb amputations: a review. Disabil. Rehabil.
- 391 2012;34:1950–64.
- 392 3. Rafnsson SB, Deary IJ, Fowkes FGR. Peripheral arterial disease and cognitive
- 393 function. Vasc. Med. 2009;14:51–61.
- 4. Laukka EJ, Starr JM, Deary IJ. Lower ankle-brachial index is related to worse
- cognitive performance in old age. Neuropsychology. 2014;28:281–9.
- 396 5. Guerchet M, Aboyans V, Nubukpo P, Lacroix P, Clément J-P, Preux P-M. Ankle-
- brachial index as a marker of cognitive impairment and dementia in general
- population. A systematic review. Atherosclerosis. 2011;216:251–7.
- 399 6. Vasquez BP, Zakzanis KK. The neuropsychological profile of vascular cognitive
- impairment not demented: A meta-analysis. J. Neuropsychol. 2015;9:109–36.
- 7. Palta P, Schneider ALC, Biessels GJ, Touradji P, Hill-Briggs F. Magnitude of
- 402 cognitive dysfunction in adults with type 2 diabetes: A meta-analysis of six cognitive
- domains and the most frequently reported neuropsychological tests within domains. J.
- 404 Int. Neuropsychol. Soc. 2014;20:278–91.
- 405 8. Fiest KM, Jetté N, Roberts JI, Maxwell CJ, Smith EE, Black SE, et al. The prevalence
- and incidence of dementia: A systematic review and meta-analysis. Can. J. Neurol.
- 407 Sci. 2016;43:S3–50.
- 408 9. Gallagher P, Desmond D, MacLachlan M. Psychoprosthetics. London: Springer-

- 409 Verlag; 2008.
- 410 10. Williams RM, Turner AP, Green M, Norvell DC, Henderson AW, Hakimi KN, et al.
- Changes in cognitive function from presurgery to 4 months postsurgery in individuals
- undergoing dysvascular amputation. Arch. Phys. Med. Rehabil. 2014;95:663–9.
- 413 11. Phillips NA, Mate-Kole CC, Kirby RL. Neuropsychological function in peripheral
- vascular disease amputee patients. Arch. Phys. Med. Rehabil. 1993;74:1309–14.
- 415 12. Pinzur MS, Graham G, Osterman H. Psychologic testing in amputation rehabilitation.
- 416 Clin. Orthop. Relat. Res. 1988;236–40.
- 417 13. Chiu C-C, Chen C-E, Wang T-G, Lin M-C, Lien Z-N. Influencing factors and
- ambulation outcome in patients with dual disabilities of hemiplegia and amputation.
- 419 Arch. Phys. Med. Rehabil. 2000;81:14–7.
- 420 14. Fletcher DD, Andrews KL, Butters MA, Jacobsen SJ, Rowland CM, Hallett JW.
- Rehabilitation of the geriatric vascular amputee patient: A population-based study.
- 422 Arch. Phys. Med. Rehabil. 2001;82:776–9.
- 423 15. Taylor S, Kalbaugh C, Blackhurst D, Hamontree S, Cull D, Messich H, et al.
- Preoperative clinical factors predict postoperative functional outcomes after major
- lower limb amputation: An analysis of 553 consecutive patients. J. Vasc. Surg.
- 426 2005;42:227–35.
- 427 16. Couch NP, David JK, Tilney NL, Crane C. Natural history of the leg amputee. Am. J.
- 428 Surg. 1977;133:469–73.
- 429 17. Wang P, Kaplan J, Rogers E. Memory functioning in hemiplegics: A
- neuropsychological analysis of the Wechsler Memory scale. Arch. Phys. Med.
- 431 Rehabil. 1975;56:517–21.

- 432 18. Willrich A, Pinzur M, McNeil M, Juknelis D, Lavery L. Health related quality of life,
- cognitive function, and depression in diabetic patients with foot ulcer or amputation. A
- preliminary study. Foot Ankle Int. 2005;26:128–34.
- 435 19. O'Neill BF, Moran K, Gillespie A. Scaffolding rehabilitation behaviour using a voice-
- mediated assistive technology for cognition. Neuropsychol. Rehabil. 2010;20:509–27.
- 437 20. Morgan SJ, Kelly VE, Amtmann D, Salem R, Hafner BJ. Self-reported cognitive
- concerns in people with lower limb loss. Arch. Phys. Med. Rehabil. 2016;97:912–8.
- 439 21. Roebuck-Spencer TM, Glen T, Puente AE, Denney RL, Ruff RM, Hostetter G, et al.
- 440 Cognitive screening tests versus comprehensive neuropsychological test batteries: A
- National Academy of Neuropsychology education paper. Arch. Clin. Neuropsychol.
- 442 2017;32:491–8.
- 22. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr.
- 444 Scand. 1983;67:361–70.
- 23. Crawford JR, Henry JD, Crombie C, Taylor EP. Normative data for the HADS from a
- large non-clinical sample. Br. J. Clin. Psychol. 2001;40:429–34.
- 24. O'Keeffe F, Ganesan V, King J, Murphy T. Quality-of-life and psychosocial outcome
- following childhood arterial ischaemic stroke. Brain Inj. 2012;26:1072–83.
- 449 25. Strauss E, Sherman EMS, Spreen O. A compendium of neuropsychological tests:
- 450 Administration, norms, and commentary. 3rd ed. Oxford: Oxford University Press;
- 451 2006.
- 452 26. Libon DJ, Xie SX, Eppig J, Wicas G, Lamar M, Lippa C, et al. The heterogeneity of
- mild cognitive impairment: a neuropsychological analysis. J. Int. Neuropsychol. Soc.
- 454 2010;16:84–93.

- 455 27. Nordlund A, Rolstad S, Klang O, Lind K, Hansen S, Wallin A. Cognitive profiles of
- mild cognitive impairment with and without vascular disease. Neuropsychology.
- 457 2007;21:706–12.
- 458 28. Göthlin M, Eckerström M, Rolstad S, Wallin A, Nordlund A. Prognostic Accuracy of
- 459 Mild Cognitive Impairment Subtypes at Different Cut-Off Levels. Dement. Geriatr.
- 460 Cogn. Disord. 2017;43:330–41.
- 461 29. Grace J, Malloy PF. Frontal Systems Behavior Scale (FrSBe): Professional Manual.
- Lutz, FL.: Psychological Assessment Resources; 2001.
- 463 30. Aickin M, Gensler H. Adjusting for multiple testing when reporting research results:
- The Bonferroni vs Holm methods. Am. J. Public Health. 1996;86:726–8.
- 465 31. Gaetano J. Holm-Bonferroni sequential correction: An EXCEL calculator (1.1)
- [Microsoft Excel workbook] [Internet]. 2013; Available from:
- 467 www.researchgate.net/publication/236969037_Holm-
- Bonferroni_Sequential_Correction_An_EXCEL_Calculator
- 469 32. McLennan SN, Mathias JL, Brennan LC, Stewart S. Validity of the Montreal
- 470 Cognitive Assessment (MoCA) as a screening test for mild cognitive impairment
- 471 (MCI) in a cardiovascular population. J. Geriatr. Psychiatry Neurol. 2011;24:33–8.
- 472 33. Fosse S, Hartemann-Huertier A, Jacqueminet S, Ha Van G, Grimaldi A, Fagot-
- Campagna A. Incidence and characteristics of lower limb amputations in people with
- diabetes. Diabet. Med. 2009;26:391–6.
- 475 34. Royall DR, Lauterbach EC, Kaufer D, Malloy P, Ph D, Coburn KL, et al. The
- cognitive correlates of functional status: A review from the Committee on Research of
- 477 the American Neuropsychiatric Association. J. Neuropsychiatry Clin. Neurosci.
- 478 2007;19:249–65.

- 479 35. Schoppen T, Boonstra A, Groothoff JW, De Vries J, Göeken LN, Eisma WH. Physical,
- 480 mental, and social predictors of functional outcome in unilateral lower-limb amputees.
- 481 Arch. Phys. Med. Rehabil. 2003;84:803–11.
- 482 36. O'Neill BF, Evans JJ. Memory and executive function predict mobility rehabilitation
- outcome after lower-limb amputation. Disabil. Rehabil. 2009;31:1083–91.
- 484 37. Bilodeau S, Hébert R, Desrosiers J. Lower limb prosthesis utilisation by elderly
- amputees. Prosthet. Orthot. Int. 2000;24:126–32.
- 486 38. Larner S, van Ross E, Hale C. Do psychological measures predict the ability of lower
- limb amputees to learn to use a prosthesis? Clin. Rehabil. 2003;17:493–8.
- 488 39. Williams RM, Turner AP, Green M, Norvell DC, Henderson AW, Hakimi KN, et al.
- 489 Relationship between cognition and functional outcomes after dysvascular lower
- extremity amputation. Am. J. Phys. Med. Rehabil. 2015;94:707–17.
- 491 40. Feil DG, Zhu CW, Sultzer DL. The relationship between cognitive impairment and
- diabetes self-management in a population-based community sample of older adults
- 493 with Type 2 diabetes. J. Behav. Med. 2012;35:190–9.
- 494 41. Coetzee N, Andrewes D, Khan F, Hale T, Jenkins L, Lincoln N, et al. Predicting
- compliance with treatment following stroke: A new model of adherence following
- rehabilitation. Brain Impair. 2008;122:122–39.
- 497 42. Desmond DM, Coffey L, Gallagher P, MacLachlan M, Wegener ST, O'Keeffe F.
- 498 Limb Amputation. Oxford: Oxford University Press; 2012.
- 499 43. Kortte KB, Falk LD, Castillo RC, Johnson-Greene D, Wegener ST. The Hopkins
- Rehabilitation Engagement Rating Scale: development and psychometric properties.
- 501 Arch. Phys. Med. Rehabil. 2007;88:877–84.

502	44.	Chin J, Seo SW, Kim SH, Park A, Ahn H-J, Lee BH, et al. Neurobehavioral
503		dysfunction in patients with subcortical vascular mild cognitive impairment and
504		subcortical vascular dementia. Clin. Neuropsychol. 2012;26:224–8.
505	45.	Schmidt C, Collette F, Cajochen C, Peigneux P. A time to think: Circadian rhythms in
506		human cognition. Cogn. Neuropsychol. 2007;24:755–89.
507	46.	St Clair-Thompson HL. Backwards digit recall: A measure of short-term memory or
508		working memory? Eur. J. Cogn. Psychol. 2010;22:286–96.
509	47.	Lezak MD, Howieson DB, Digler ED, Tranel D. Neuropsychological assessment. 5th
510		ed. Oxford: Oxford University Press; 2012.
511		
512		

Table 1 **Demographic and Clinical Characteristics of the Sample**

Variable	Level		% or M	Range
variable	Levei	n	(SD)	
Age (years)			58.6 (15.3)	21 - 86
Gender	Male	65	74.7	
	Female	22	25.3	
Education (years)			12.5 (3.4)	4 – 23
Marital status	Married/cohabiting	44	51	
	Not married	43	49	
Amputation	Below knee [†]	34	39.0	
	Above knee	41	47.1	
	Bilateral	12	13.8	
Aetiology	Vascular [‡]	69	79.3	
	Non-vascular §	18	20.7	
Comorbidities	0 to 2	45	51.7	
	3+	42	48.3	
Months since			23.5 (73.7)	1 – 535
amputation				
Length of stay			8.4 (4.1)	1 – 22
(weeks)				
Distress (HADS)		55	10.96	0 – 35

NOTE. HADS = Hospital Anxiety and Distress Scale ²²

† Includes n=1 through-knee amputation

† PVD, diabetes, osteomyelitis with comorbid diabetes

[§] Trauma, cancer, intravenous drug use

Table 2

Neuropsychological Assessment Scores

	Neuropsychological Assessment Scores										
Domain	Assessment	Score Type	Normative M (SD)	N	М	Median	SD	Min to Max	t (df)	Cohen's d	Effect size
Estimated premorbid intellectual ability	WTAR Standard Score	ST	100 (15)	50	96.2	99.5	19.35	50 to 123	-1.388 (49)	-0.2	NS (small)
Overall cognitive functioning	MoCA	Raw	n/a [†]	58	22.9	23	3.99	9 to 30	n/a	n/a	n/a
	RBANS Total Index	ST	100 (15)	72	84.96	86	16.9	45 to 121	-7.605 (72) *	-0.9	Large
Reasoning	WAIS-IV Block Design	SCL	10 (3)	60	8.2	8	3.18	1 to 17	-4.388 (59) *	-0.57	Medium
	WAIS-IV Similarities	SCL	10 (3)	60	8.13	8	2.9	1 to 15	-4.982 (59) *	-0.64	Medium
	WAIS-IV Matrix Reasoning	SCL	10 (3)	56	8.34	8	3.16	2 to 15	-3.928 (55) *	-0.52	Medium
Psychomotor speed	D-KEFS TMT condition 5 (motor speed)	SCL	10 (3)	42	7.71	8	3.16	1 to 12	-4.693 (42) *	-0.72	Medium
Information processing	D-KEFS CWIT condition 1 (color naming)	SCL	10 (3)	52	8.23	8	2.52	3 to 15	-5.068 (51) *	-0.7	Large
	D-KEFS CWIT condition 2	SCL	10 (3)	52	9.29	9.5	2.49	1 to 13	-2.059 (51)	-0.29	NS (small)

	(word reading)										
	RBANS Coding	Z	0 (1)	73	-1.77	-1.65	1.41	-5.08 to +1.54	- 10.699 (72) *	-1.25	Large
	WAIS-IV Symbol Search	SCL	10 (3)	60	6.98	6.5	2.94	1 to 18	-7.940 (59) *	-1.03	Large
Attention	RBANS Digit Span	Z	0 (1)	76	0.07	0.18	1.12	-2.47 to +2.29	1.014 (75)	0.12	NS (negligible)
	D-KEFS TMT condition 1 (visual scanning)	SCL	10 (3)	52	7.85	9	3.1	1 to 13	-5.007 (51) *	-0.69	Medium
	D-KEFS TMT condition 2 (number sequencing)	SCL	10 (3)	54	7.17	8	3.88	1 to 14	-5.367 (53) *	-0.73	Medium
	D-KEFS TMT condition 3 (letter sequencing)	SCL	10 (3)	53	6.81	8	3.93	1 to 14	-5.911 (52) *	-0.81	Large
	TEA Telephone Search	SCL	10 (3)	32	5.84	6	2.96	1 to 13	-7.934 (31) *	-1.45	Large
	TEA Telephone Search With Counting	SCL	10 (3)	32	9.13	8.5	4.14	1 to 19	-1.195 (31)	-0.22	NS (small)
Memory	RBANS List Learning	Z	0 (1)	76	-1.03	-0.96	1.2	-3.88 to +1.38	-6.940 (75) *	-0.8	Large
	CVLT-II SF Free Recall T- Score (list)	Т	50 (10)	56	44.95	47	11.97	18 to 66	-3.161 (55) *	-0.42	Medium

	RBANS Immediate Story Memory WMS-IV	Z	0 (1)	76	-0.41	-0.11	1.54	-4.65 to +1.76	-2.070 (75)	-0.24	NS (small)
	Logical Memory I (story)	SCL	10 (3)	59	8.07	8	4.15	1 to 16	-3.578 (58) *	-0.47	Small
	CVLT-II SF Short Delay Recall (list)	Z	0 (1)	53	-0.41	-0.5	1.37	-2.5 to 4.0	-2.151 (52)	-0.3	NS (small)
	RBANS Delayed List Recall	Z	0 (1)	76	-0.9	-0.83	1.19	-3.61 to +1.39	-6.351 (75) *	-0.73	Medium
	CVLT-II SF Long Delay Recall (list)	Z	0 (1)	52	-0.62	-0.5	1.04	-2.5 to 2.0	-4.281 (51) *	-0.59	Medium
	RBANS Delayed Story Recall WMS-IV	Z	0 (1)	76	-0.79	-0.5	1.32	-3.68 to +0.91	-4.973 (75) *	-0.57	Medium
	Logical Memory II (story)	SCL	10 (3)	59	7.68	8	4.07	1 to 16	-4.377 (58) *	-0.57	Medium
	RBANS Figure Recall	Z	0 (1)	77	-0.55	-0.59	1.14	-3.48 to +1.97	-3.867 (76) *	-0.44	Small
	CVLT-II SF Long Delay Cued Recall	Z	0 (1)	52	-0.86	-0.5	1.06	-3.0 to 1.0	-6.044 (51) *	-0.84	Large
	RBANS List Recognition	Z	0 (1)	76	-2.18	-1.17	3.64	-25.43 to +0.67	-5.051 (75) *	-0.58	Medium
Language	RBANS Picture Naming	Z	0 (1)	76	-0.41	0.55	1.79	-7.4 to +1	-2.044 (75)	-0.23	NS (small)

	GNT raw score	Raw	n/a [†]	39	16.59	18	6.44	3 to 27	n/a		
Visuospatial cognition	RBANS Figure Copy	Z	0 (1)	77	-1.11	-0.85	2.05	-8 to +1.29	-4.745 (76) *	-0.54	Medium
	RBANS Line Orientation	Z	0 (1)	77	-0.28	0.12	1.68	-5.5 to +4.62	-1.458 (76)	-0.17	Negligible
	VOSP Position Discrimination raw	Raw	n/a [†]	43	18.98	20	1.61	12 to 20	n/a	n/a	n/a
Executive functions	WAIS-IV Digit Span D-KEFS	SCL	10 (3)	62	9.52	3.2	10	2 to 17	-1.192 (61)	-0.15	Negligible
	CWIT condition 3 (colour-word switching)	SCL	10 (3)	50	7	8	3.95	1 to 13	-5.365 (49) *	-0.76	Medium
	D-KEFS TMT condition 4 (number-letter switching)	SCL	10 (3)	53	5.81	6	3.99	1 to 13	-7.651 (52) *	-1.05	Large
	RBANS Semantic Fluency D-KEFS VFT	Z	0 (1)	76	-0.91	-1	1.22	-3 to +2	-6.309 (75) *	-0.72	Medium
	condition 1 (category fluency)	SCL	10 (3)	57	8.42	8	3.74	3 to 17	-3.186 (56) *	-0.42	Small
	D-KEFS VFT condition 2 (letter fluency)	SCL	10 (3)	57	8.12	8	3.73	2 to 19	-3.802 (56) *	-0.5	Medium
	BADS Zoo Map	Raw	n/a [†]	41	n/a	2	n/a	1 to 6	n/a	n/a	n/a
	FrSBe self	Т	50 (10)	35	59.8	53	16.66	33 to	3.481	0.59	Medium

ACCEPTED MANUSCRIPT

rated total 103 (34) *

NOTE. BADS = Behavioural Assessment of the Dysexecutive Syndrome ³⁸; CVLT-II SF = California Verbal Learning Test – II Short Form ³⁹; D-KEFS = Delis-Kaplan Executive Function System (CWIT = Color-Word Interference Test; TMT = Trail Making Test; VFT = Verbal Fluency Test) ⁴⁰; FrSBe = Frontal Systems Behavior Scale ²¹; GNT = Graded Naming Test ⁴¹; MoCA = Montreal Cognitive Assessment ⁴²; RBANS = Repeatable Battery for the Assessment of Neuropsychological Status ⁴³; TEA = Test of Everyday Attention ⁴⁴; VOSP = Visual Object and Space Perception Battery ⁴⁵; WAIS-IV = Wechsler Adult Intelligence Scales – IV ⁴⁶; WMS-IV = Wechsler Memory Scales – IV ⁴⁷; WTAR = Wechsler Test of Adult Reading ⁴⁸

^{*} significant (p≤.003) after the Holm method of correction for multiple comparisons was employed

[†] Raw scores: MoCA and GNT each have a possible raw scores ranging from 0 to 30. VOSP possible scores range from 0–20 (pass≥19, pass borderline=18, fail/impaired≤17/20). BADS zoo map possible scores range from 1 to 7 (pro-rated ordinal scale).

1

Table 3

Neuropsychological Assessments: Proportions of Scores in the Borderline or Impaired Ranges

Domain	Assessment	N	% borderline	% impaired	% impaired or border.	р	x ² (df = 2)	Aetiolo gy	N	% impaired	% borderline	% impaired or border.
Estimated premorbid	WTAR Standard	50	12	10	22	.001*	22.11	VAS	38	10.5	13.2	23.7
intellectual ability	Score							NV	12	8.3	8.3	16.7
Overall	MoCA	58	n/a	n/a	52.6 [†]	n/a	n/a	VAS	49	n/a	n/a	61.2
cognitive								NV	9	n/a	n/a	11.1
functioning	RBANS Total	72	12.3	21.9	34.2	<.001*	158.47	VAS	58	24.1	13.8	37.9
	Index							NV	15	13.3	6.7	20.0
Reasoning	WAIS-IV Block Design	60	13.3	5	18.3	0.017	11.86	VAS	48	4.2	16.7	20.8
								NV	12	8.3	0	8.3
	WAIS-IV Similarities	60	10	6.7	16.7	0.021	10.14	VAS	48	8.3	6.3	14.6
	\A/A/C I\/							NV	12	0	25	25
	WAIS-IV Matrix Reasoning	56	17.9	3.6	21.4	.003*	20.46	VAS	44	4.5	18.2	22.7
	· ·							NV	12	0	16.7	16.7
Psychomot or speed	D-KEFS TMT condition 5 (motor speed)	42	7.1	11.9	19	.001*	21.64	VAS	32	12.5	6.3	18.8
	, , ,							NV	10	10	10	20
Information processing	D-KEFS CWIT condition 1 (color naming)	52	7.7	3.8	11.5	0.438	1.76	VAS	40	2.5	10	12.5
	(color naming)							NV	12	8.3	0	8.3
	D-KEFS CWIT	52	1.9	1.9	3.8	0.676	1.04	VAS	40	2.5	2.5	5

	condition 2 (word reading)											
	RBANS							NV	12	0	0	0
	Coding	73	16.4	41.1	57.5	<.001*	597.05	VAS	58	46.6	19	65.5
	\\\A\C \\							NV	15	20	6.7	26.7
	WAIS-IV Symbol Search	60	26.7	6.7	33.3	<.001*	67.34	VAS	49	6.1	30.6	36.7
								NV	11	9.1	9.1	18.2
Attention	RBANS Digit Span	76	7.9	2.6	10.5	<.001*	1.53	VAS	60	3.3	5	8.3
	•					A		NV	16	0	18.8	18.8
	D-KEFS TMT condition 1 (visual scanning)	52	9.6	9.6	19.2	.001*	18.13	VAS	42	11.9	11.9	23.8
	-							NV	10	0	0	0
	D-KEFS TMT condition 2 (number sequencing)	54	5.6	24.1	29.6	<.001*	134.37	VAS	43	30.2	7	37.2
								NV	11	0	0	0
	D-KEFS TMT condition 3 (letter sequencing)	53	5.7	30.2	35.8	<.001*	215.36	VAS	42	33.3	4.8	38.1
	TEA			$\langle \rangle$				NV	11	18.2	9.1	27.3
	Telephone Search	32	17.2	24.1	41.4	<.001*	83.44	VAS	24	26.1	21.7	47.8
	TEA							NV	8	25	0	25
	Telephone Search With Counting	32	10.3	3.4	13.8	0.393	2.11	VAS	24	4.3	13	17.3
	· ·							NV	8	12.5	0	12.5
Memory	RBANS List Learning	76	7.9	27.6	35.5	<.001*	257.58	VAS	60	30	5	35

0.4. T. II. 0.5							NV	16	18.8	18.8	37.5
CVLT-II SF Free Recall T- Score (list)	56	7.1	14.3	21.4	<.001*	44.03	VAS	44	15.9	9.1	25
RBANS							NV	12	8.3	0	8.3
Immediate Story Memory	76	6.9	16.1	23	<.001*	106.79	VAS	60	23.3	5	28.3
WMS-IV							NV	16	0	18.8	18.8
Logical Memory I	59	16.9	16.9	33.9	<.001*	87.36	VAS	48	16.7	16.7	33.3
(story)							NV	11	18.2	18.2	36.4
CVLT-II SF Short Delay Recall (list)	53	11.3	15.1	26.4	<.001*	51.82	VAS	42	16.7	11.9	28.6
, ,							NV	11	9.1	9.1	18.2
RBANS Delayed List Recall	76	17.1	14.5	31.6	<.001*	86.34	VAS	60	15	18.3	33.3
CVLT-II SF							NV	16	12.5	12.5	25
Long Delay Recall (list)	52	7.7	19.2	26.9	<.001*	80.17	VAS	42	19	7.1	26.2
RBANS							NV	10	20	10	30
Delayed Story Recall	76	2.6	21.1	23.7	<.001*	141.07	VAS	60	25	3.3	28.3
WMS-IV			, () ^y				NV	16	6.3	0	6.3
Logical Memory II (story)	59	5.1	28.8	33.9	<.001*	216.69	VAS	48	29.2	2.1	31.3
		X					NV	11	27.3	18.2	45.5
RBANS Figure Recall	77	13	9.1	22.1	<.001*	31.07	VAS	62	8.1	16.1	24.2
CVLT-II SF	52	11.5	25	36.5	<.001*	146.87	NV VAS	15 42	13.3 28.6	0 11.9	13.3 40.5

	Long Delay Cued Recall											
	RBANS List							NV	10	10	10	20
	Recognition	76	2.6	38.2	40.8	<.001*	506.99	VAS	60	40	3.3	43.3
Language	RBANS							NV	16	31.3	0	31.3
Language	Picture Naming	76	1.1	15.8	17.1	<.001*	75.15	VAS	60	15	1.7	16.7
	· ·							NV	16	18.8	0	18.8
	GNT raw score	39	n/a	n/a	n/a	n/a	n/a	VAS	30	n/a	n/a	n/a
\	554110							NV	9	n/a	n/a	n/a
Visuospatia I cognition	RBANS Figure Copy	77	14.3	28.6	42.9	<.001*	295.75	VAS	62	33.9	16.1	50
								NV	15	6.7	6.7	13.3
	RBANS Line Orientation	77	5.2	16.9	22.1	<.001*	87.17	VAS	61	21.3	6.6	27.9
								NV	16	0	0	0
	VOSP Position					7						
	Discrimination raw	43	14	14	28	n/a	n/a	VAS	34	17.6	11.8	29.4
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							NV	9	0	22.2	22.2
Executive functions	WAIS-IV Digit Span	62	6.5	4.8	11.3	0.265	2.88	VAS	50	4	8	12
ranouono	-							NV	12	8.3	0	8.3
	D-KEFS CWIT condition 3 (colour-word switching)	50	12	26	38	<.001*	154.07	VAS	39	30.8	15.4	46.2
	-							NV	11	9.1	0	9.1
	D-KEFS TMT condition 4 (number-letter switching)	53	7.5	39.6	47.2	<.001*	384.98	VAS	42	42.9	7.1	50
	σ,							NV	11	27.3	9.1	36.4
	RBANS Semantic	76	18.4	22.4	40.8	<.001*	194.36	VAS	60	20	18.3	38.3

Fluency							NV	16	31.3	18.8	50
D-KEFS VFT condition 1 (category fluency)	57	17.5	8.8	26.3	<.001*	33.25	VAS	45	8.9	20	28.9
nachey)							NV	12	8.3	8.3	16.7
D-KEFS VFT condition 2 (letter fluency)	57	8.8	10.5	19.3	<.001*	23.27	VAS	45	8.9	8.9	17.8
(lottor hadney)							NV	12	16.7	8.3	25
BADS Zoo Map	41	51.2	36.6	87.8 [†]	n/a	n/a	VAS	34	41.2	50.0	91.2
•							NV	7	14.3	57.1	71.4
FrSBe self rated total	35	9.1	36.4	45.5	n/a	n/a	VAS	25	37.5	12.5	50
rated total							NV	10	33.3	0	33.3

NOTE. VAS = vascular, NV = non-vascular. Impaired/borderline criteria: borderline (-1.99≤z≤-1.5; scale scores 4-5; ≤7th percentile approx.), impaired (z≤-2.0; scale scores 1-3; ≤2nd percentile), except; VOSP Position Discrimination (borderline: raw score 18/20; impaired: raw score ≤17/20), FrSBe (borderline: 60≤T≤64; impaired: T≥65). For the WTAR, the score terminology is 'borderline' or 'extremely low'.

^{*} significant (p≤.003) after the Holm method of correction for multiple comparisons was employed

† % scoring 23 or less for the MoCA brief cognitive screen; % in two lowest BADS categories, 'borderline' and 'impaired', of seven-point ordinal classification).

1

Table S1: Online Supplement

2

Cognitive Functioning: Comparison of Vascular (VAS) and Non-Vascular (NV) Aetiology Groups

Domain	Assessment	Score Type	Normative M (SD)	Aetiology	N	M	Median	SD	Min to Max
Estimated	WTAR Standard	ST	100 (15)	VAS	38	95.71	99.5	20.56	50 to 123
premorbid intellectual ability	Score			NV	12	97.75	100	15.61	64 to 120
Overall cognitive	MoCA	Raw	n/a †	VAS	49	22.41	23	3.99	9 to 30
functioning				NV	9	25.56	26	2.96	19 to 29
	RBANS Total Index	ST	100 (15)	VAS	58	83.5	84.5	17.43	45 to 121
				NV	15	90.6	92	13.73	69 to 109
Reasoning	WAIS-IV Block Design	SCL	10 (3)	VAS	48	8.02	8	3.1	1 to 17
	Ū			NV	12	8.92	9	3.53	2 to 16
	WAIS-IV Similarities	SCL	10 (3)	VAS	48	8.13	8	2.89	1 to 15
				NV	12	8.17	8.5	3.07	4 to 13
	WAIS-IV Matrix Reasoning	SCL	10 (3)	VAS	44	8.11	8	2.98	2 to 15
				NV	12	9.17	8.5	3.79	4 to 15
Psychomotor speed	D-KEFS TMT condition 5 (motor speed)	SCL	10 (3)	VAS	32	7.72	8	3.25	1 to 12
				NV	10	7.7	9	3.02	1 to 11
Information processing	D-KEFS CWIT condition 1 (color naming)	SCL	10 (3)	VAS	40	8.1	8	2.45	3 to 15
	3,			NV	12	8.67	9	2.81	3 to 13
	D-KEFS CWIT condition 2 (word reading)	SCL	10 (3)	VAS	40	9.28	10	2.49	1 to 13
	3,			NV	12	9.33	8.5	2.61	6 to 13
	RBANS Coding	Z	0 (1)	VAS	58	-1.87	-1.83	1.44	-5.08 to 1.54
	J.		` ,	NV	15	-1.23	-0.97	1.05	-3.06 to 0.28

	WAIS-IV Symbol Search	SCL	10 (3)	VAS	49	6.86	6	2.91	3 to 18
Attention	RBANS Digit Span	Z	0 (1)	NV VAS	11 60	7.55 0.16	7 0.18	3.17 1.16	1 to 12 -2.47 to 2.76
	D-KEFS TMT			NV	16	0.03	0.18	1.14	-1.88 to 1.46
	condition 1 (visual scanning)	SCL	10 (3)	VAS	42	7.64	9	3.3	1 to 13
	0,			NV	10	8.7	8	2	6 to 12
	D-KEFS TMT condition 2 (number sequencing)	SCL	10 (3)	VAS	43	6.72	8	4.14	1 to 14
	,			NV	11	8.91	9	1.87	6 to 12
	D-KEFS TMT condition 3 (letter sequencing)	SCL	10 (3)	VAS	42	6.6	8	3.99	1 to 14
	,			NV	11	7.64	9	3.75	1 to 12
	TEA Telephone Search	SCL	10 (3)	VAS	24	5.38	5.5	2.67	1 to 13
				NV	8	7.25	7.5	3.54	2 to 12
	TEA Telephone Search With Counting	SCL	10 (3)	VAS	24	9	8	4.36	4 to 15
				NV	8	9.5	9	3.63	3 to 15
Memory	RBANS List Learning	Z	0 (1)	VAS	60	-1.01	-0.96	1.24	-3.88 to 1.38
	0)/ T 05 5			NV	16	-0.8	-0.79	1.14	-2.87 to 0.77
	CVLT-II SF Free Recall T-Score (list)	Τ	50 (10)	VAS	44	44.02	46	12.12	18 to 66
	` ,			NV	12	48.33	52	11.19	20 to 60
	RBANS Immediate Story Memory	Z	0 (1)	VAS	60	-0.46	-0.11	1.59	-4.65 to 1.76
				NV	16	0.025	0.2	1.17	-1.84 to 1.49
	WMS-IV Logical Memory I (story)	SCL	10 (3)	VAS	48	8.02	8	3.91	1 to 15
	0) // T 0 = 0			NV	11	8.27	8	5.27	1 to 16
	CVLT-II SF Short Delay Recall (list)	Z	0 (1)	VAS	42	-0.46	-0.5	1.38	-2.5 to 4
	,			NV	11	-0.18	-0.5	1.38	-2.5 to 2

	RBANS Delayed List Recall	Z	0 (1)	VAS	60	-0.89	-0.87	1.13	-2.86 to 0.95
				NV	16	-0.73	-0.837	1.37	-3.61 to 1.39
	CVLT-II SF Long Delay Recall (list) ^b	Z	0 (1)	VAS	42	-0.58	-0.5	1.06	-2.5 to 2
				NV	10	-0.75	-0.5	0.98	-2.5 to 0.5
	RBANS Delayed Story Recall	Z	0 (1)	VAS	60	-0.85	-0.5	1.41	-3.68 to 0.91
				NV	16	-0.35	-0.5	0.78	-2.27 to 0.9
	WMS-IV Logical Memory II (story)	SCL	10 (3)	VAS	48	7.71	8	3.89	1 to 14
				NV	11	7.55	6	5.01	1 to 16
	RBANS Figure Recall	Z	0 (1)	VAS	62	-0.6	-0.7	1.07	-2.58 to 1.97
				NV	15	-0.16	-0.03	1.53	-3.48 to 1.67
	CVLT-II SF Long Delay Cued Recall	Z	0 (1)	VAS	42	-0.94	-0.75	1.07	-3 to 1
				NV	10	-0.65	-0.5	1	-3 to 0.5
	RBANS List Recognition	Z	0 (1)	VAS	60	-1.91	-1.17	2.36	-9.5 to 0.67
	-			NV	16	-2.66	0.16	6.44	-25.43 to 0.5
Language	RBANS Picture Naming	Z	0 (1)	VAS	60	-0.46	0.57	1.88	-7.4 to 0.9
		_	. + .	NV	16	-0.21	0.55	1.13	-2.29 to 1
	GNT raw score	Raw	n/a [†]	VAS NV	30 9	16.63 16.44	17.5 18	6.61 6.23	3 to 27 3 to 24
Visuospatial cognition	RBANS Figure Copy	Z	0 (1)	VAS	62	-1.35	-1.4	2.08	-8 to 1.29
				NV	15	-0.13	0.5	1.64	-5.21 to 1.29
	RBANS Line Orientation	Z	0 (1)	VAS	61	-0.54	-0.207	1.75	-5.5 to 4.62
				NV	16	0.72	0.73	0.866	-0.85 to 3.2
	VOSP Position Discrimination raw	Raw	n/a [†]	VAS	34	18.82	19.5	1.73	12 to 20
				NV	9	19.56	20	0.88	18 to 20
Executive functions	WAIS-IV Digit Span	SCL	10 (3)	VAS NV	50 12	9.38 10.08	9.5 11	3.17 3.4	2 to 17 3 to 15
	D-KEFS CWIT condition 3 (colour-	SCL	10 (3)	VAS	39	6.31	6	3.4	1 to 13
	22								

word switching)								
			NV	11	9.45	10	3.21	1 to 13
D-KEFS TMT condition 4 (number-letter switching)	SCL	10 (3)	VAS	42	5.38	5	3.83	1 to 13
			NV	11	7.45	9	4.34	1 to 13
RBANS Semantic Fluency	Z	0 (1)	VAS	60	-0.84	-0.87	1.22	-3 to 2
·			NV	16	-1.38	-1.37	1.6	-5.8 to 0.38
D-KEFS VFT condition 1 (category fluency)	SCL	10 (3)	VAS	45	8.38	8	3.94	3 to 17
			NV	12	8.58	8.5	3.03	3 to 13
D-KEFS VFT condition 2 (letter fluency)	SCL	10 (3)	VAS	45	8.44	8	3.84	2 to 19
			NV	12	6.92	7.5	3.15	2 to 12
BADS Zoo Map	Raw	n/a [†]	VAS	34	n/a	2	n/a	1 to 6
			NV	7	n/a	2	n/a	1 to 6
FrSBe self rated total	Т	50 (10)	VAS	25	61.04	59	17.27	29 to 99
			NV	10	56.7	53.5	15.42	35 to 82

[†] Raw scores: MoCA and GNT each have a possible raw scores ranging from 0 to 30. VOSP possible scores range from 0–20 (pass≥19, pass borderline=18, fail/impaired≤17/20). BADS zoo map possible scores range from 1 to 7 (pro-rated ordinal scale).

4

