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Abstract—This study aims to figure out the effect of using 

Histogram Equalization and Discrete Cosine Transform (DCT) 

in detecting facial keypoints, which can be applied for 3D facial 

reconstruction in face recognition. Four combinations of 

methods comprising of Histogram Equalization, removing low-

frequency coefficients using Discrete Cosine Transform (DCT) 

and using five feature detectors, namely: SURF, Minimum 

Eigenvalue, Harris-Stephens, FAST, and BRISK were used for 

test. Data that were used for test were obtained from Head Pose 

Image and ORL Databases. The result from the test were 

evaluated using F-score. The highest F-score for Head Pose 

Image Dataset is 0.140 and achieved through the combination of 

DCT & Histogram Equalization with feature detector SURF. 

The highest F-score for ORL Database is 0.33 and achieved 

through the combination of DCT & Histogram Equalization 

with feature detector BRISK. 

Keywords—histogram equalization, DCT, facial keypoint  

I. INTRODUCTION  

There is an increasing trend in the use of face recognition 
application from USD 5.07 billion in 2019, with a predicted 
rise to USD 10.19 billion by 2025 [1]. The application with 
biometric system has various advantages on security 
compared to the use of conventional system. The face is more 
superior compared to other parts of the human body due to its 
ability to be checked from a distance depending on the 
capability of the camera [2]. 

After obtaining the facial image, it is compared with the 
database of images initially introduced [3]. The face detection 
has factors that capable of affecting the performance 
significantly, such as the illuminance variation, which occurs 
due to the reflection of illumination on the skin, camera 
setting, pose, the delay time due facial changes, and hindrance 
located at the upper section of face [4]. The effect of 
illuminance causes the ambiguity of someone's identity due to 
its ability to make an image of the same person appear like the 
image of two different people [5], [6]Therefore, the 
performance of the face recognition system is sensitive to 
illumination, and when poor, it causes the image to be 
classified as false positive or false negative [7] by the system. 

Previous studies [8], [9] analyzed the effect of illumination 
on the success rate of face recognition using global features. 
The research carried out by [10] utilized local features and LD-
SIFT algorithm for feature selection, without considering 
illumination. The study conducted by [11] only increased the 

performance of the SIFT algorithm for illumination generally, 
[12] studied the repeatability of keypoints using the epipolar 
geometry method on five feature detectors algorithm and the 
result was affected by noise and illumination. In the research 
carried out by [13], the accuracy rate of 3D face recognition 
was affected by the success rate of its reconstruction model, 
where it needed the accuracy of detecting facial keypoints. 
[14] researched the effect of illumination on the performance 
of face recognition and the result was using Histogram 
Equalization can yield a better result without no pre-
processing and [15] studied that Discrete Cosine Transform 
(DCT) can be used to remove the illumination variation on the 
low-frequency component. 

This research studies the effect of illumination in detecting 
the facial keypoints using the method of Histogram 
Equalization and DCT with five popular feature detectors 
namely SURF [16], Minimum Eigenvalue (Shi-Tomasi) [17], 
Harris-Stephens [18], FAST [19], and BRISK [20]. Histogram 
Equalization is used to increase the contrast of the image by 
distributing gray levels on the allowed limit [21] while DCT 
is used to normalize the illumination and create invariant 
images [22]. This is achieved because the illumination 
variation lies in the low-frequency band [15]. This study uses 
four combination of methods between DCT & Histogram 
Equalization for comparison. The evaluation uses F-score to 
determine the performance of each method. 

From the research, the applied methods on the two data 
sets show an improvement in the detection of facial keypoints 
from testing two different datasets. Furthermore, it is 
important to detect keypoints in 3D face reconstruction [23]. 
This is because the higher the F-score achieved from detecting 
the facial keypoints, it will yield a better result. 

The remaining section of this research is organized as 
follows: Part 2 discusses the related works, Part 3 provides 
further explanation on how the experiment was conducted and 
the variation of the method used, while Part 4 analyses the 
result. Part 5 provides an experimental conclusion.  

II. RELATED WORKS 

A. Discrete Cosine Transform (DCT) 

There are four established types of Discrete Cosine 
Transform, namely DCT-I, DCT-II, DCT-III, and DCT-IV. 
DCT-II is more widely applied in signal coding and also JPEG 
image compression [15]. It is conceptually similar to Discrete 
Fourier Transform (DFT) due to its ability to transform a 
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signal or an image from the spatial to the frequency domain 
[6]. DCT has been used for feature extraction in various 
studies of face recognition [24,25,6,26] and also used to 
remove the illumination effect [27,15,22]. The 2D DCT is 
defined in Equation 1 [15]: 

 

𝐶(𝑢, 𝑣) =  𝛼(𝑢)𝛼(𝑣) ∑ ∑ 𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

× 𝑐𝑜𝑠 [
𝜋(2𝑥 + 1)𝑢

2𝑀
] 𝑐𝑜𝑠 [

𝜋(2𝑦 + 1)𝑣

2𝑁
] 

(1) 

 

And the inverse transform is defined at Equation 2 as [14]: 

 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝛼(𝑢)𝛼(𝑣)𝐶(𝑢, 𝑣)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

× 𝑐𝑜𝑠 [
𝜋(2𝑥 + 1)𝑢

2𝑀
] 𝑐𝑜𝑠 [

𝜋(2𝑦 + 1)𝑣

2𝑁
] 

(2) 

  

B. Histogram Equalization 

The objective of Histogram Equalization is to spread gray 
levels over the entire allowable range, which is nonlinear and 
irreversible [21]. It has been mostly used to increase the 
contrast in face recognition studies [28], [29], [30], [15]. 

The occurrence probability of gray level 𝑟𝑘 in an image is 
approximated by Equation 3 [31]: 

 

𝑝𝑟(𝑟𝑘) =
𝑛𝑘

𝑛
 𝑘 = 0,1,2, … . , 𝐿 − 1 (3) 

 
The histogram equalization process is shown in the 

equation below by Equation 4 [31]: 

 
𝑠𝑘 = 𝑇(𝑟𝑘) = 𝑗 = 0kpr(rj) = j = 0knjn k

= 0,1,2, … , L − 1 
(4) 

C. Facial Keypoints 

The most fundamental task in 3D face reconstruction is to 
detect the keypoints which varies greatly from one image to 
another due to the difference of individuals’ generic 
appearance and other physical factors as shown in Table 1 
[32]. 

TABLE I.  15 FACIAL KEYPOINTS 

Left eye center Right eye center 

Left eye inner corner Right eye inner corner 

Left eye outer corner Right eye outer corner 

Left eyebrow inner end Right eyebrow inner end 

Left eyebrow outer end Right eyebrow outer end 

Mouth left corner Mouth right corner 

Mouth center top lip Mouth center bottom lip 

Nose tip  

D. ORL Database 

This data set contains ten different images taken between 
April 1992 and April 1994, which consists of 40 distinct 
subjects. For some subjects, the images were taken at different 
times, with varying illumination and facial expressions. All 
the images were taken against a dark homogenous background 
with the subjects in an upright, frontal position [33]. 

E. Head Pose Image Database 

The database consists of 2790 monocular face images of 
15 persons with variations of the pan and tilts angles from -90 
to +90 degrees, with varying skin colors. The image 
background is willingly neutral and uncluttered to focus on 
face operations [34]. 

III. METHOD  

This experiment used images from Head Pose Image and 
ORL Databases. The chosen images are the images of subjects 
that do not wear glasses and have no moustache or beard. 
Furthermore, the chosen images were cropped to eliminate 
areas without facial keypoints. Then, images will be converted 
into grayscale images. There are four combinations of 
methods used in this experiment: 

1. Applying the feature detectors directly into the grayscale 

image (Original) 

2. Applying only DCT to remove the low-frequency 

coefficient on the image (DCT) 

3. Applying Histogram Equalization first then followed by 

applying DCT (Histogram Equalization & DCT) 

4. Applying DCT first then followed by the Histogram 

Equalization (DCT & Histogram Equalization) 

The mentioned combination of methods above will result 
in four different images. Those images then inputted to feature 
detector functions to determine the keypoints. The desired 
location of facial keypoints on the images of subjects is shown 
in Figure 1. 

 

 
(a) 

 
(b) 

Fig. 1. The location of facial keypoints: (a) ORL database (b) head pose 

image database. 

After the images are fully detected by feature detectors, the 
obtained keypoints then get separated into three groups: True 
Positive (facial keypoints), False Positive (keypoints that are 
incorrectly detected as facial keypoints), and False Negative 
(undetected facial keypoints). With this information, F-score 
will be used to evaluate the performance of each method. 
Equations (5) and (6) show the equations used to calculate the 
Recall and Precision in this experiment: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

(5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

(6) 

 

Equation (7) is used to calculate the F-Score as follows: 

𝐹 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 

(7) 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Figure 2 and 3 show the comparison of images resulted 
from the methods mentioned on the previous part. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Comparison of images from head pose dataset: (a) Original (b) DCT 

(c) DCT & histogram equalization (d) histogram equalization & DCT. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Comparison of images from ORL database: (a) original (b) DCT (c) 

DCT & histogram equalization (d) histogram equalization & DCT. 

By using the DCT, the low-frequency component is 
removed since the illumination variations mainly lie in the 
low-frequency band, and on the image of the face like shown 
in Figures 2 and 3, illumination tends to slowly change with 
the reflectance except for some casting shadows and 
secularities on the face [15]. Histogram Equalization is used 
to increase the contrast of the image. 

The result (shown in Figure 4 to 8 and Figure 10 to 14) 
separated into two parts based on the data set. Tables 2 to 11 
show the following data: Total Key Point (TK), True Positive 
(TP), False Positive (FP), False Negative (FN), Recall (Rc), 
Precision (Pr), and F-Score.  

 

A. Experiment with Head Pose Image Dataset 

1) FAST 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. FAST applied on the image: (a) original (b) DCT (c) DCT & 

histogram equalization (d) histogram equalization & DCT. 

TABLE II.  RESULTS OF METHODS ON FAST (HEAD POSE) 

Method TK TP FP FN Rc Pr F-Score 

Original 54 2 13 52 0.04 0.13 0.06 

DCT 85 3 12 82 0.04 0.20 0.06 

DCT & HE 246 5 10 241 0.02 0.33 0.03 

HE & DCT 85 3 12 82 0.04 0.20 0.06 

 

2) Harris-Stephens 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Harris-Stephens applied on the image: (a) original (b) DCT (c) DCT 

& histogram equalization (d) histogram equalization & DCT. 

TABLE III.  RESULTS OF METHODS ON HARRIS-STEPHENS (HEAD 

POSE) 

Method TK TP FP FN Rc Pr F-Score 

Original 15 0 15 15 0 0 0 

DCT 44 0 15 44 0 0 0 

DCT & HE 26 0 15 26 0 0 0 

HE & DCT 44 0 15 44 0 0 0 
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3) Minimum Eigenvalue 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Minimum-eigenvalue applied on the image: (a) original (b) DCT (c) 

DCT & histogram equalization (d) histogram equalization & DC  

TABLE IV.  RESULTS OF METHODS ON MINIMUM EIGENVALUE (HEAD 

POSE)  

Method TK TP FP FN Rc Pr F-Score 

Original 25 0 15 25 0 0 0 

DCT 25 0 15 25 0 0 0 

DCT & HE 25 0 15 25 0 0 0 

HE & DCT 25 0 15 25 0 0 0 

 

4) BRISK 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. BRISK applied on the image: (a) original (b) DCT (c) DCT & 

histogram equalization (d) histogram equalization & DCT. 

TABLE V.  RESULTS OF METHODS ON BRISK (HEAD POSE) 

Method TK TP FP FN Rc Pr F-Score 

Original 88 1 14 87 0.01 0.07 0.01 

DCT 119 4 11 115 0.03 0.27 0.054 

DCT & HE 344 7 8 337 0.02 0.47 0.03 

HE & DCT 119 4 11 115 0.03 0.27 0.054 

 

 

 

 

5) SURF 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. BRISK applied on the image: (a) original (b) DCT (c) DCT & 

histogram equalization (d) histogram equalization & DCT. 

TABLE VI.  RESULTS OF METHODS ON SURF (HEAD POSE) 

Method TK TP FP FN Rc Pr F-Score 

Original 69 5 10 64 0.07 0.33 0.115 

DCT 81 9 6 72 0.11 0.60 0.185 

DCT & HE 147 10 5 137 0.07 0.67 0.126 

HE & DCT 81 9 6 72 0.11 0.60 0.185 

 

Figure 9 shows the comparison of F-score of the methods 
applied through the dataset. SURF is the best performing 
feature detector and the most preferred method is the use of 
Histogram Equalization followed by DCT. There is an 
increase from the original method F-score value of 0.139 to 
0.140. 

 

Fig. 9. F-Score result comparisons on head pose.  

The preferred combination itself may cause the addition of 
noise due to the use of Histogram Equalization first, but it is 
then reduced by using DCT while still maintaining the defined 
corners that are achieved with Histogram Equalization. 

In Head Pose Image Database, combining the preferred 
method with SURF does not detect as many keypoints as 
FAST or BRISK. The difference between the three method is 
the ratio of correctly detected facial keypoints to the number 
of detected keypoints that lead to a more balanced recall and 
precision in SURF. The characteristic of SURF is illumination 
invariant due to the wavelet responses in descriptor [16], while 
FAST and BRISK is strongly affected by contrast because 
BRISK works by detecting pixel intensities [19] and the 
descriptor is composed of a binary string by concatenating the 
results of simple brightness comparison tests [20]. From visual 
observation, Head Pose Image Dataset has lesser noise and 

0

0.1

0.2

Original DCT DCT & HE HE & DCT
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more visible illumination around the face. Therefore, the 
illumination can affect both the method and the feature 
detector strongly.  

B. Experiment with ORL Database 

1) FAST 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. FAST applied on the image: (a) Original (b) DCT (c) DCT & 

Histogram Equalization (d) Histogram Equalization & DCT. 

TABLE VII.  RESULT OF METHODS ON FAST (ORL) 

Method TK TP FP FN Rc Pr F-Score 

Original 40 11 4 29 0.28 0.73 0.4 

DCT 23 9 6 14 0.39 0.60 0.47 

DCT & HE 76 11 4 65 0.14 0.73 0.23 

HE & DCT 37 8 7 29 0.22 0.53 0.31 

 

2) Harris-Stephens 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Harris-Stephens applied on the image: (a) original (b) DCT (c) 

DCT & histogram equalization (d) histogram equalization & DCT. 

TABLE VIII.  RESULT OF METHODS ON HARRIS-STEPHENS (ORL) 

Method TK TP FP FN Rc Pr F-Score 

Original 16 1 14 15 0.063 0.067 0.064 

DCT 30 1 14 29 0.033 0.067 0.044 

DCT & HE 39 2 13 37 0.051 0.133 0.073 

HE & DCT 40 1 14 39 0.025 0.067 0.036 

3) Minimum Eigenvalue 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. Minimum-eigenvalue applied on the image: (a) original (b) DCT 

(c) DCT & histogram equalization (d) histogram equalization & 

DCT. 

TABLE IX.  RESULT OF METHODS ON MINIMUM EIGENVALUE (ORL) 

Method TK TP FP FN Rc Pr F-Score 

Original 25 5 10 20 0.2 0.3 0.24 

DCT 25 6 9 19 0.2 0.4 0.26 

DCT & HE 25 4 11 21 0.2 0.3 0.24 

HE & DCT 25 6 9 19 0.2 0.4 0.26 

 

4) BRISK 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. BRISK applied on the image: (a) original (b) DCT (c) DCT & 

histogram equalization (d) histogram equalization & DCT. 

TABLE X.  RESULT OF METHODS ON BRISK (ORL) 

Method TK TP FP FN Rc Pr F-Score 

Original 26 6 9 20 0.23 0.4 0.29 

DCT 19 7 8 12 0.37 0.47 0.41 

DCT & HE 38 7 8 31 0.18 0.47 0.26 

HE & DCT 25 7 8 18 0.28 0.47 0.35 
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5) SURF 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. SURF applied on the image: (a) Original (b) DCT (c) DCT & 

Histogram Equalization (d) Histogram Equalization & DCT. 

TABLE XI.  RESULT OF METHODS ON SURF (ORL) 

Method TK TP FP FN Rc Pr F-Score 

Original 26 1 14 25 0.04 0.07 0.05 

DCT 23 2 13 21 0.09 0.13 0.10 

DCT & HE 33 4 11 29 0.12 0.27 0.16 

HE & DCT 23 4 11 19 0.17 0.27 0.20 

 

Figure 15 Shows the comparison of F-score of the methods 
applied through the dataset.  

 

Fig. 15. F-Score result comparisons on database of faces 

For ORL Database, the best performing method and 
detector are DCT and BRISK with F-score of 0.332. The 
original method (not applying any additional method) acquires 
F-score of 0.305.  

Between the feature detectors used for ORL Database, 
FAST was able to detect the most keypoints, followed by 
BRISK. Both of the feature detectors have similar 
characteristics of being affected by the contrast and both have 
quite similar positive results in detecting the keypoints. What 
makes FAST do not perform well, is due to the ratio of 
detected keypoints to facial keypoints and additionally, the 
characteristic of ORL Database that has more noise than Head 
Pose's image. According to the research of [30], although 
FAST can detect more accurately, FAST is more sensitive to 
noise. 

ORL Database has a significantly smaller size and 
produces a lesser number of detected keypoints compared to 
Head Pose's images. Therefore, the data set has a slightly 
bigger chance to score higher in recall and precision.  

To prove this, a small test was conducted with an image 
from YALE [35] dataset, which was applied with the same 
combination of method. The result showed that the image 
scored lower F-score compared to ORL Database with the 
same combination of method because the number of detected 
keypoints was higher. The image size, even after the cropping 
was still bigger than Head Pose or ORL Database, therefore, 
it has the ability also to affect the F-score indirectly as shown 
in Figure 16.  

 

 
(a) 

 
(b) 

Fig. 16. Tested YALE image: (a) DCT with low-frequency removed (b) 

applying BRISK 

DCT is the preferred method due to its ability to not adding 
more noise. From visual observation, image from the ORL 
Database also has less visible illumination variance and more 
visible artefact. Therefore, the use of DCT in this data set 
maintains a cleaner image and becomes invariant to 
illumination at the same time. With smaller size, images on 
this data set become more sensitive to noise 

V. CONCLUSION 

In conclusion, the proposed method by using the 
combination of DCT and Histogram Equalization can increase 
the detection rate of facial keypoints. The Head Pose Image 
Database shows an increase of 0.7% from the original by using 
the Histogram Equalization & DCT method with SURF, while 
the ORL Database shows an increase of 8.8% from the original 
by using DCT method and BRISK. The analysis showed that 
different datasets, methods, and feature detectors are needed 
to suit the character of the image. Although the research 
showed a positive result, further research that used synthetic 
images is needed to prove that the proposed method can be 
used in actual real life conditions.  
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