
18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel I/O and Portable

Data Formats
MPI I/O

| Florian Janetzko

28. March 2012 Slide 2

Outline

 Introduction

 Derived Datatypes Revisited

 File Operations

 Advanced File Operations

18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel Programming with MPI
Introduction

| Florian Janetzko

28. March 2012 Slide 4

Amenities of MPI-I/O

Portability

 Standardized in 1997 and widespread support among vendors.

 Open Source implementation ROMIO is publicly available.

Ease of use

 It blends into syntax and semantic scheme of point-to-point and

collective communication of MPI.

 Writing to a file is like sending data to another process.

Efficiency

 MPI implementors can transparently choose the best performing

implementation for a specific platform.

28. March 2012 Slide 5

Amenities of MPI-I/O

High level Interface

 It provides coordinated and structured access to a file for multiple

processes

 Distributed I/O to the same file through collective operations

Handling of heterogeneous environments

 Automatic data conversion in heterogeneous systems

 File interoperability between systems via external representation

28. March 2012 Slide 6

MPI I/O requirements

Understanding collective communication

 A file handle works like a communicator

 Coordination of file access can be of collective nature

Handling of immediate operations

 Non-blocking calls may overlap computation and I/O

Derived data types

 Non-contiguous file access is defined using MPI’s

derived data types

Handling of MPI_Info objects

 Some performance-critical information can be passed to

the MPI layer

28. March 2012 Slide 7

MPI terminology – Properties of procedures (I)

Examples

 Blocking

 Non-Blocking

Blocking

A procedure is blocking if return from the procedure indicates that the user

is allowed to reuse resources specified in the call to the procedure.

Non-blocking

If a procedure is non-blocking it will return as soon as possible from to the

calling process. However, the user is not allowed to reuse resources

specified in the call to the procedure before the communication has been

completed by an appropriate call at the calling process.

28. March 2012 Slide 8

MPI terminology – Properties of procedures (II)

Collective

A procedure is collective if all processes in a group (e.g. in a communicator)

need to invoke the procedure

Synchronous

A synchronized operation will complete successfully only if the (required)

matching operation has started (send – receive).

Buffered (Asynchronous)

A buffered operation may complete successfully before a (required)

matching operation has started (send – receive).

28. March 2012 Slide 9

MPI_Info object (MPIS 3.0, 9+13.2.8)

 Can be used to pass hints for optimization to MPI (file system

dependent)

 Consists of (key,value) pairs, where key and value are strings

 A key may have only one value

 MPI_INFO_NULL is always a valid MPI_Info object

 The maximum key size is MPI_MAX_INFO_KEY

 The maximum value size is MPI_MAX_INFO_VALUE

(implementation dependent)

MPI_MAX_INFO_VALUE might be very large! It is not

advisable to declare strings of that size!

28. March 2012 Slide 10

Create and free MPI_Info objects

 The created info objects contains no (key,value) pairs

 int MPI_Info_create(MPI_Info info)

 MPI_INFO_CREATE(INFO, IERROR)

 INTERGER :: INFO, IERROR

 The info object is freed and set to MPI_INFO_NULL

 int MPI_Info_free(MPI_Info info)

 MPI_INFO_FREE(INFO, IERROR)

 INTERGER :: INFO, IERROR

28. March 2012 Slide 11

Set and delete (key,value) pairs

 int MPI_Info_set(MPI_Info info, char *key, char *value)

 MPI_INFO_SET(INFO, KEY, VALUE, IERROR)

 CHARACTER(*) :: KEY, VALUE

 INTERGER :: INFO, IERROR

 int MPI_Info_delete(MPI_Info info, char *key)

 MPI_INFO_DELETE(INFO, KEY, IERROR)

 CHARACTER(*) :: KEY

 INTERGER :: INFO, IERROR

28. March 2012 Slide 12

Retrieve active (key,value) pairs of an info object

 int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

 MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)

 INTERGER :: INFO, NKEYS, IERROR

 int MPI_Info_get_nthkey(MPI_Info info, int n, char *key);

 MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)

 CHARACTER(*):: KEY

 INTERGER :: INFO, N, IERROR

28. March 2012 Slide 13

Retrieve active (key,value) pairs of an info object

 int MPI_Info_get_valuelen(MPI_Info info, const char *key,

 int *valuelen, int *flag)

 MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

 CHARACTER (*) :: KEY

 INTERGER :: INFO, VALUELEN, IERROR

 LOGICAL :: FLAG

28. March 2012 Slide 14

Retrieve active (key,value) pairs of an info object

The function returns in flag either true if key is defined in info,

otherwise it returns false

 int MPI_Info_get(MPI_Info info, char *key,

 int valuelen, char *value, int *flag)

 MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

 CHARACTER(*):: KEY, VALUE

 INTERGER :: INFO, VALUELEN, IERROR

 LOGICAL :: FLAG

28. March 2012 Slide 15

MPI Terminology – Basics

Rank

A unique number assigned to each task of an MPI program within a

communicator

Communicator

All or a subset of MPI tasks

Task

An instance, sub-program or process of an MPI program

Handle

MPI reference to an internal MPI data structure, for example
MPI_COMM_WORLD is a handle for the communicator which contains all MPI

ranks

28. March 2012 Slide 16

MPI Terminology – Datatypes

 Basic datatypes for Fortran and C are different

 Examples:

Basic datatypes

Datatypes which are defined within the MPI standard

Derived datatypes

Datatypes which are constructed from basic (or derived) datatypes

Fortran type MPI basic type

INTEGER MPI_INTEGER

REAL MPI_REAL

CHARACTER MPI_CHARACTER

C type MPI basic type

signed int MPI_INT

float MPI_FLOAT

char MPI_CHAR

28. March 2012 Slide 17

MPI Terminology – Messages

 Packet of data:

 An array of elements of an MPI datatype (basic or derived datatype)

 Described by

 Position in memory (address)

Number of elements

MPI datatyp

 Information for sending and receiving messages

 Source and destination process (ranks)

 Source and destination location

 Source and destination datatype

 Source and destination data size

Message

A packet of data which needs to be exchanged between processes

5

28. March 2012 Slide 18

Access to JUROPA

Login

1. open a terminal

2. ssh -A -X hpclabXX@juropa

Compilation

1. Default compiler

 ®Intel 11.1.072 with mkl 10.2.5.35

 MPI compiler wrapper: mpif77, mpif90, mpicc, mpicxx

2. GCC compiler suite

 module purge

 module load gcc parastation/mpi2-gcc-mt-5.0.26-1

 MPI compiler wrapper: mpif77, mpif90, mpicc, mpicxx

MPI starter: mpiexec

28. March 2012 Slide 19

Running parallel jobs on JUROPA

Interactive jobs
1. open a terminal

2. ssh -A -X hpclabXX@juropa

3. msub -I -X –l nodes=1:ppn=16

4. wait for the prompt

5. start applications with n tasks with

mpiexec -np n <application>

Batch jobs
1. open a terminal

2. ssh -A -X hpclabXX@juropa

3. to start applications with n tasks with

submit the following job script with
msub <name_of_the_jobscript>

#!/bin/bash –x
#MSUB –l nodes=1:ppn=16
#MSUB –l walltime=00:10:00
#MSUB –v tpt=1

mpiexec –np n <application>

18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel Programming with MPI
Derived datatypes

| Florian Janetzko

28. March 2012 Slide 21

Motivation

With MPI communication calls only multiple consecutive

elements of the same type can be sent

Buffers may be non-contiguous in memory

 Sending only the real/imaginary part of a buffer of

complex doubles

 Sending sub-blocks of matrices

Buffers may be of mixed type

 User defined data structures struct buff_layout {
 int i[3];
 double d[5];
} buffer;

28. March 2012 Slide 22

Solutions without MPI derived datatypes (I)

Non-contiguous data of a single type

 Consecutive MPI calls to send and receive each element

in turn

! Additional latency costs due to multiple calls

 Copy data to a single buffer before sending it

! Additional latency costs due to memory copy

28. March 2012 Slide 23

Solutions without MPI derived datatypes (II)

Contiguous data of mixed types

 Consecutive MPI calls to send and receive each element

in turn

! Additional latency costs due to multiple calls

 Use MPI_BYTE and sizeof() to avoid the type-

matching rules

! Not portable to a heterogeneous system

28. March 2012 Slide 24

Derived datatypes

 General MPI datatypes describe a buffer layout in

memory by specifying

A sequence of basic datatypes

A sequence of integer (byte) displacements

 Derived datatypes are derived from basic datatypes

using constructors

 MPI datatypes are referenced by an opaque handle

MPI datatypes are opaque objects! Using the sizeof()

operator on an MPI datatype handle will return the size

of the handle, neither the size nor the extent of an MPI datatype.

28. March 2012 Slide 25

Creating a derived datatype: Type map

Any derived datatype is defined by its type map

 A list of basic datatypes

 A list of displacements (positive, zero, or negative)

 Any type matching is done by comparing the sequence

of basic datatypes in the type maps

General type map:

Datatype Displacement

datatype 0 displacement of datatype 0

datatype 1 dispalcement of datatype 1

… …

28. March 2012 Slide 26

Example of a type map

Padding:

 Alignment of data positions

 Holes

struct buff_layout {
 int i[3];
 double d[5];
} buffer;

0 4 8 12 32 16 24 40 48

Datatype Displacement

MPI_INT 0

MPI_INT 4

MPI_INT 8

MPI_DOUBLE 16

MPI_DOUBLE 24

MPI_DOUBLE 32

MPI_DOUBLE 40

MPI_DOUBLE 48

28. March 2012 Slide 27

Contiguous data

 Simplest derived datatype

 Consists of a number of contiguous items of the same

datatype

 int MPI_Type_contiguous(int count, MPI_Datatype oldtype,

 MPI_Datatype *newtype)

 MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

 INTEGER :: COUNT, OLDTYPE, NEWTYPE, IERROR

oldtype

newtype: count = 9

28. March 2012 Slide 28

Vector data

 Consists of a number of elements of the same datatype repeated

with a certain stride

 int MPI_Type_vector(int count, int blocklength,

 int stride, MPI_Datatype oldtype,

 MPI_Datatype *newtype)

 MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE,

 NEWTYPE, IERROR)

 INTEGER :: COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

oldtype

newtype

Blocklength = 3 elements

stride = 5 elements

count = 2 blocks

28. March 2012 Slide 29

Indexed blocks

 int MPI_Type_indexed (int count, int array_of_blocklength,

 int array_of_displacement,

 MPI_Datatype oldtype,

 MPI_Datatype newtype)

 MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTH,

 ARRAY_OF_DISPLACEMENT, OLDTYPE, NEWTYPE,

 IERROR)

 INTEGER :: COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

oldtype

newtype

array_of_displacement(0)=0 array_of_displacement(1)=2

array_of_blocklength(0)=4 array_of_blocklength(1)=3

Count = 2

28. March 2012 Slide 30

Struct data

 int MPI_Type_create_struct(int count, int *array_of_blocklengths,
 MPI_Aint *array_of_displacements, MPI_Datatype *array_of_types,

 MPI_Datatype *newtype)

 MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,ARRAY_OF_DISPLACEMENTS,
 ARRAY_OF_TYPES, NEWTYPE,IERROR)

 INTEGER :: COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,

 IERROR

 INTEGER(KIND=MPI_ADDRESS_KIND) :: ARRAY_OF_DISPLACEMENTS(*)

array_of_blocklength(0)=3

oldtypes MPI_INTEGER MPI_REAL

newtype

array_of_blocklength(1)=5

array_of_displacement(0)=0 array_of_displacement(1)=16

array_of_types(0)=MPI_INTEGER
array_of_types(1)=MPI_REAL

28. March 2012 Slide 31

Sub-array data

 N-dimensional sub-array of an

N-dimensional array

 Fortran and C order allowed

 Fortran and C calls expect

indices starting from 0

 int MPI_Type_create_subarray(int ndims,int array_of_sizes[],
 int array_of_subsizes[],

 int array_of_starts[], int order,

 MPI_Datatype oldtype, MPI_Datatype *newtype)

 MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,
 ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

 INTEGER :: NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

 ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

0 1 2

3 4 5

Process ARRAY_OF_STARTS

0 (0,0)

1 (0,10)

2 (0,20)

3 (10,0)

4 (10,10)

5 (10,20)

28. March 2012 Slide 32

Distributed array data

 N-dimensional distributed/strided

sub-array of an N-dimensional array

 Fortran and C order allowed

 Fortran and C calls expect indices

starting from 0

 int MPI_Type_create_darray(int size, int rank, int ndims,
 int array_of_gsizes[], int array_of_distribs[],

 int array_of_dargs[], int array_of_psizes[],

 int order, MPI_Datatype oldtype,

 MPI_Datatype *newtype)

 MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,
 ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES,

 ORDER, OLDTYPE, NEWTYPE)

 INTEGER :: SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),

 ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE

MPIS3.0, 4.1.4

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2
3 4 5

3 4 5

3 4 5

3 4 5

3 4 5

28. March 2012 Slide 33

Committing and freeing derived datatypes

 Before it can be used in a communication, each derived datatype has to be

committed

 int MPI_Type_commit(MPI_Datatype *datatype)

 MPI_TYPE_COMMIT(DATATYPE, IERROR)

 INTEGER :: DATATYPE, IERROR

 int MPI_Type_free(MPI_Datatype *datatype)

 MPI_TYPE_FREE(DATATYPE, IERROR)

 INTEGER :: DATATYPE, IERROR

 Mark a datatype for deallocation

 Datatype will be deallocated when all pending operations are finished

28. March 2012 Slide 34

Finding the address of a memory location

 Finding addresses and relative displacements of

memory blocks

 int MPI_Get_address(void *location, MPI_Aint *address)

MPI_Aint addr_block_1, addr_block_2;
MPI_Aint displacement = 0;

MPI_Get_address(&block_1, &addr_block_1);
MPI_Get_address(&block_2, &addr_block_2);

displacement = addr_block_2 - addr_block_1;

Do not rely on C’s address operator &, as ANSI C does not

guarantee pointer values to be absolute addresses.

Furthermore, address space may be segmented. Always use
MPI_GET_ADDRESS, which also guarantees portability.

28. March 2012 Slide 35

Finding the address of a memory location

 Finding addresses and relative displacements of

memory blocks

INTEGER(KIND=MPI_ADDRESS_KIND) :: addr_block_1, addr_block2
INTEGER(KIND=MPI_ADDRESS_KIND) :: displacement=0
INTEGER :: ierror

call MPI_Get_address(block_1, addr_block_1, ierror)
call MPI_Get_address(block_2, addr_block_2, ierror)

displacement = addr_block_2 - addr_block_1

 MPI_GET_ADDRESS(LOCATION,ADDRESS,IERROR)

 <type> :: LOCATION(*)

 INTEGER(KIND=MPI_ADDRESS_KIND) :: ADDRESS

 INTEGER :: IERROR

28. March 2012 Slide 36

Datatypes – size and extent

Basic datatypes

 size = extent = number of bytes used by the compiler

Size

The size of a datatype is the net number of bytes to be transferred (without

“holes”).

Extent

The extent of a datatype is the span from the lower to the upper bound

(including inner “holes”). When creating new types, holes at the end of the

new type are not counted to the extent.

Derived datatypes

 size = 6 x size of oldtype

 extent = 7 x extent of oldtype

oldtype

newtype

28. March 2012 Slide 37

Query size and extent of datatypes

 Returns the total number of bytes of the entries in DATATYPE

 int MPI_Type_size(MPI_Datatype datatype,int *size)

 MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)

 INTEGER :: DATATYPE, SIZE, IERROR

 int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint* lb,

 MPI_Aint* extent)

 MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
 INTEGER :: DATATYPE,IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) :: LB,EXTENT

 The extent is the number of bytes between the lower and the upper

bound markers

28. March 2012 Slide 38

Resizing datatypes

 Sets new lower and upper bound markers

 Allows for correct stride in creation of new derived datatypes

 int MPI_Type_create_resized(MPI_Datatype oldtype,

 MPI_Aint lb, MPI_Aint extent,

 MPI_Datatype* newtype)

 MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE,

 IERROR)

 INTEGER :: OLDTYPE, NEWTYPE, IERROR

 INTEGER(KIND=MPI_ADDRESS_KIND) :: LB, EXTENT

18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel Programming with MPI
MPI file operations

| Florian Janetzko

28. March 2012 Slide 40

MPI I/O – terminology

Offset

Offset is a position in the file relative to the current view. It is expressed as

a count of elementary types.

Displacement

Displacement is an absolute byte position relative to the beginning of a file.

File

An MPI file is an ordered collection of typed data items.

File pointer

A file pointer is an explicit offset maintained by MPI.

28. March 2012 Slide 41

Opening a file

 Filename’s namespace is implementation dependent

 Call is collective on COMM

 Process-local files can be opened with MPI_COMM_SELF

 Filename must reference the same file on all processes

 Additional information can be passed to MPI environment via
the MPI_INFO handle.

 int MPI_File_open(MPI_Comm comm, char *filename,

 int amode, MPI_Info info, MPI_File *fh)

 MPI_FILE_OPEN(COMM, FILENAME ,AMODE, INFO, FH, IERROR)

 CHARACTER*(*) :: FILENAME

 INTEGER ::COMM,AMODE,INFO,FH,IERROR

28. March 2012 Slide 42

Access modes

Access mode is a bit-vector, which is modified with
 | (Bitwise OR) in C

 IOR (IOR Operator) in FORTRAN 90

 + (Addition Operator) in FORTRAN 77

One and only one of the following modes is mandatory:
 MPI_MODE_RDONLY – read only

 MPI_MODE_RDWR – read and write access

 MPI_MODE_WRONLY – write only

The following modes are optional:
 MPI_MODE_CREATE – create file if it doesn’t exist

 MPI_MODE_EXCL – error if creating file that already exists

 MPI_MODE_DELETE_ON_CLOSE – delete file on close

 MPI_MODE_UNIQUE_OPEN – file can not be opened elsewhere

 MPI_MODE_SEQUENTIAL – sequential file access (e.g. tapes)

 MPI_MODE_APPEND – all file pointers are set to end of file

28. March 2012 Slide 43

Associate info objects with an open file

 Info items that cannot be changed for an open file need to be set when

opening the file

 MPI implementation may choose to ignore the hints in this call

 int MPI_File_set_info(MPI_File fh, MPI_Info info)

 MPI_FILE_SET_INFO(FH, INFO, IERROR)

 INTEGER :: FH, INFO, IERROR

28. March 2012 Slide 44

Retrieve an info object associated with an open

file

 This function returns all info items associated with file fh

 The number of items might be more or less than the number specified

when opening the file

 int MPI_File_get_info(MPI_File fh, MPI_Info info_used)

 MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

 INTEGER :: FH, INFO_USED, IERROR

28. March 2012 Slide 45

Possible keys for MPI_Info objects (selection)

Collective buffering
 collective_buffering (bolean)

 cb_block_size (integer, bytes, data access in chunks of this size)

 cb_buffer_site (integer, bytes)

 cb_nodes (integer, number of nodes used for collective buffering)

Disk striping
 striping_factor (integer, number of devices to stripe over)

 striping_unit (integer, bytes, size of block on each device)

 See Lustre parameters stripe_size, stripe_count

28. March 2012 Slide 46

Closing a file

 Collective operation

 If MPI_MODE_DELETE_ON_CLOSE was specified on opening,

the file is deleted after closing

 The user must ensure that all outstanding requests of a
process connected with FH have completed before that

process calls MPI_FILE_CLOSE

 int MPI_File_close(MPI_File *fh)

 MPI_FILE_CLOSE(FH, IERROR)

 INTEGER :: FH, IERROR

28. March 2012 Slide 47

Deleting a file

 May be used to delete a file that is not currently opened

 Call is not collective, if called by multiple processes on the
same file, all but one will return an error code ≠ MPI_SUCCESS

 int MPI_File_delete(char * filename, MPI_Info info)

 MPI_FILE_DELETE(FILENAME, INFO, IERROR)

 CHARACTER(*) :: FILENAME

 INTEGER :: INFO, IERROR

18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel Programming with MPI
File views

| Florian Janetzko

28. March 2012 Slide 49

MPI I/O terminology

File type

The file type describes the access pattern of the processes on the file. It

defines what parts of the file are accessible by a specific process. The

processes may have different file types to access different parts of a file.

Elementary type

The elementary type is the basic entity of a file. It must be the same on all

processes with the same file handle.

File view

A view defines the file data visible to a process. Each process has an

individual view of a file defined by a displacement, an elementary type and
a file type. The pattern is the same that MPI_TYPE_CONTIGUOUS would

produced if it were passed the file type.

28. March 2012 Slide 50

Basic file view properties

 Defines the elementary type as the atomic entity of a file

 Defines the logical view to a file through the file type

 Defines the byte position to the first data elements visible to

a process with displacement

 Defines a data representation that handles encoding of data

28. March 2012 Slide 51

Default file view

A default view for each participating process is defined

implicitly while opening the file

 No displacement

 The file has no specific structure

 All processes have access to the complete file

28. March 2012 Slide 52

n=5

…

…

…

view process 0

view process 1

…

Example of a user-defined file view

28. March 2012 Slide 53

MPI I/O terminology – overview

elementary type (MPI predefined or derived datatype)

filetype process 0

filetype process 1

filetype process 2

Holes

view process 0 …

view process 1 …

view process 2 …

global view …

Displacement Offset = 6

Offset = 2

28. March 2012 Slide 54

Set the file view

 Changes the process’s view of the data

 Local and shared file pointers are reset to zero

 Collective operation

 ETYPE and FILETYPE must be committed

 DATAREP is a string specifying the data format

 int MPI_File_set_view(MPI_File fh, MPI_Offset disp,

 MPI_Datatype etype, MPI_Datatype filetype,

 char *datarep, MPI_Info info)

 MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP,

 INFO, IERROR)

 INTEGER :: FH, ETYPE, FILETYPE, INFO, IERROR

 CHARACTER*(*) :: DATAREP

 INTEGER(KIND=MPI_OFFSET_KIND) :: DISP

28. March 2012 Slide 55

Data representations (I)

native

 Data is stored in the file exactly as it is in memory

 On homogeneous systems no loss in precision or I/O

 performance due to type conversions

 On heterogeneous systems loss of transparent interoperability

 No guarantee that MPI files are accessible from C/Fortran

internal

 Data is stored in implementation-specific format

 Can be used in a homogeneous or heterogeneous environment

 Implementation will perform file conversions if necessary

 No guarantee that MPI files are accessible from C/Fortran

28. March 2012 Slide 56

Data representations (II)

external32

 Standardized data representation (big-endian IEEE)

 Read/write operations convert all data from/to this representation

 Files can be exported/imported to/from different MPI environments

 Precision and I/O performance may be lost due to type conversions
between native and external32 representations

 Internal may be implemented as external32

 Can be read/written also by non-MPI programs

User defined

 Allow the user to insert a third party converter into the I/O stream to

do the data representation conversion

28. March 2012 Slide 57

Example

INTEGER :: ndims=1, size, subsize=1, start
INTEGER :: etype=MPI_INTEGER, filetype, fh, ierror
INTEGER(KIND=MPI_OFFSET_KIND) :: disp=0

...
call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
call MPI_Comm_rank(MPI_COMM_WORLD, start, ierror)
call MPI_Type_create_subarray(ndims, size, subsize, start,&
& MPI_ORDER_FORTRAN, etype,&
& filetype, ierror)
call MPI_Type_commit(filetype, ierror)
call MPI_File_open(MPI_COMM_WORLD, ”output.dat”,&
& MPI_MODE_CREATE+MPI_MODE_RDWR,&
& MPI_INFO_NULL, fh, ierror)
call MPI_File_set_view(fh, disp, etype, filetype, ”native”,&
& MPI_INFO_NULL, ierror)
...

…

…

view process 0

view process 1

…

28. March 2012 Slide 58

Example
…

…

view process 0

view process 1

…
int ndims=1, size, subsize=1, start;
MPI_Datatype etype=MPI_INT, filetype;
MPI_File fh;
MPI_Offset disp=0;

...
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &start);
MPI_Type_create_subarray(&ndims, &size, &subsize, &start,
 MPI_ORDER_C, etype, &filetype);
MPI_Type_commit(&filetype);
MPI_File_open(MPI_COMM_WORLD,”output.dat”,
 MPI_MODE_CREATE|MPI_MODE_RDWR,
 MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, disp, etype, filetype, ”native”,
 MPI_INFO_NULL);
...

28. March 2012 Slide 59

Querying the file view

Returns the process’s view of the file

 int MPI_File_get_view(MPI_File fh, MPI_Offset *disp,

 MPI_Datatype *etype, MPI_Datatype *filetype,

 char *datarep)

 MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP,

 IERROR)

 INTEGER :: FH, ETYPE, FILETYPE, IERROR

 CHARACTER*(*) :: DATAREP

 INTEGER(KIND=MPI_OFFSET_KIND) :: DISP

28. March 2012 Slide 60

File pointers

Individual file pointers

 Each process has its own file pointer that is only altered on accesses

of that specific process

Shared file pointers

 This file pointer is shared among all processes in the communicator

used to open the file

 It is modified by any shared file pointer access of any process

 Shared file pointers can only be used if the file type gives each

process access to the whole file!

Explicit offset

 No file pointer is used or modified

 An explicit offset is given to determine access position

 This can not be used with MPI_MODE_SEQUENTIAL!

28. March 2012 Slide 61

Writing to a file using individual file pointers

 Writes COUNT elements of DATATYPE from memory starting at BUF to

the file

 DATATYPE is used as the access pattern to BUF and the sequence

of basic datatypes of DATATYPE (type signature) must match

contiguous copies of the etype of the current view

 Starts writing at the current position of the file pointer

 STATUS will indicate how many bytes have been written

 int MPI_File_write(MPI_File fh,void *buf, int count,

 MPI_Datatype datatype,

 MPI_Status *status)

 MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS,

 IERROR)

 <type> :: BUF(*)

 INTEGER :: FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

28. March 2012 Slide 62

Reading from a file using individual file pointers

 Reads COUNT elements of DATATYPE from the file to the

memory starting at BUF

 Starts reading at the current position of the file pointer

 STATUS will indicate how many bytes have been read

 int MPI_File_read(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,

 MPI_Status *status)

 MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

 <type> :: BUF(*)

 INTEGER :: FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

28. March 2012 Slide 63

Seeking a file position using individual file pointers

 Updates the individual file pointer according to WHENCE, which can

have the following values:

 MPI_SEEK_SET: pointer is set to OFFSET

 MPI_SEEK_CUR: pointer is set to the current position plus

OFFSET

 MPI_SEEK_END: pointer is set to the end of file plus OFFSET

 OFFSET can be negative, which allows seeking backwards

 It is erroneous to seek to a negative position in the view

 int MPI_File_seek(MPI_File fh, MPI_Offset offset,

 int whence)

 MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

 INTEGER :: FH, WHENCE, IERROR

 INTEGER(KIND=MPI_OFFSET_KIND) :: OFFSET

28. March 2012 Slide 64

Querying the position of an individual file pointer

 Returns the current position of the individual file pointer
in OFFSET

 The value can be used to return to this position or
calculate a displacement

 int MPI_File_get_position(MPI_File fh, MPI_Offset* offset)

 MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

 INTEGER :: FH, IERROR

 INTEGER(KIND=MPI_OFFSET_KIND) :: OFFSET

28. March 2012 Slide 65

Using shared file pointers

 Same semantics just add _shared to the calls

 MPI_File_write_shared

 MPI_File_read_shared

 MPI_File_seek_shared

 MPI_File_get_position_shared

 Blocking, individual read using the shared file pointer

 Only the shared file pointer will be advanced accordingly

 DATATYPE is used as the access pattern to BUF

 Middleware will serialize accesses to the shared file pointer

to ensure collision-free file access

28. March 2012 Slide 66

Using an explicit offset

 Semantics similar using individual file pointers, just add
_at to the calls and specify OFFSET (MPIS 3.0, 13.4.2)

 MPI_File_write_at

 MPI_File_read_at

 MPI_File_seek_at

 MPI_File_get_position_at

 File access starts at OFFSET units of etype from beginning

of view

 DATATYPE is used as the access pattern to BUF and the

sequence of basic datatypes of DATATYPE (type

signature) must match contiguous copies of the etype of the

current view

18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel Programming with MPI
Advanced file operations

| Florian Janetzko

28. March 2012 Slide 68

Collective file access – benefits

Explicit offsets / individual file pointers:

 MPI implementation may internally communicate data to avoid

serialization of file access

 MPI implementation may internally communicate data to avoid

redundant file access

 Chance of best performance

Shared file pointer

 Data accesses do not have to be serialized by the MPI-

implementation

 First, locations for all accesses can be computed, then

accesses can proceed independently (possibly in parallel)

 Also here: Chance of good performance

28. March 2012 Slide 69

Collective file access – function calls

Semantics identical to non-collective calls just add

 _all with when using individual file pointers or explicit offset

 _ordered when using shared file pointers

With shared file pointers data is written in the order of process

ranks

 Deterministic outcome as opposed to individual writes with the

shared file pointer

All processes sharing the file handle have to participate

MPIS 3.0, 13.4.4

28. March 2012 Slide 70

Writing to a file collectively

 Call is collective on communicator associated with fh

 MPI can use communication between ranks to optimize I/O

 False share of file system blocks can be minimized as access pattern

can be communicated an rearranged

 int MPI_File_write_all(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,

 MPI_Status *status)

 MPI_FILE_WRITE_ALL(FH,BUF,COUNT,DATATYPE,STATUS,IERROR)

 <type> :: BUF(*)

 INTEGER :: FH,COUNT,DATATYPE,IERROR

 STATUS(MPI_STATUS_SIZE) :: STATUS

28. March 2012 Slide 71

Non-blocking I/O – characteristics

If supported by hardware, I/O can complete without

intervention of the CPU (asynchronous I/O)

 overlap of computation and I/O

I/O calls have two parts ( non-blocking communication)

 Initialization

 Completion

Implementations may perform all I/O in either part

 Asynchronous I/O is not supported on the

Blue Gene/Q architecture!

28. March 2012 Slide 72

Non-blocking I/O – function calls

Individual function calls

 Initialized by call to MPI_File_i[...]

 Completed by call to MPI_Wait or MPI_Test

Collective function calls

 Also called split-collective

 Initialized by call to [...]_begin

 Completed by call to [...]_end

STATUS parameter is replaced by REQUEST parameter

File pointers are updated to the new position by the end of

the initialization call

28. March 2012 Slide 73

Non-blocking write with individual file pointer

 Same semantics to buffer access as non-blocking point-to-point

communication

 Completed be a call to MPI_Wait or MPI_Test

 Other individual calls analogous

 int MPI_File_iwrite(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,

 MPI_Request *request)

 MPI_FILE_WRITE_ALL(FH,BUF,COUNT,DATATYPE,STATUS,IERROR)

 <type> :: BUF(*)

 INTEGER :: FH,COUNT,DATATYPE,REQUEST,IERROR

28. March 2012 Slide 74

Split collective file access

 Collective operations may be split into two parts

 Rules an restrictions:

 Only one active split or regular collective operations per file

handle

 Split collective operations do not match the corresponding regular

collective operation

 Same buf argument in _begin and _end calls

int MPI_File_read_at_all_begin(MPI_File fh,

 MPI_Offset offset,

 void *buf, int count,

 MPI_Datatype datatype)

int MPI_File_read_at_all_end(MPI_File fh,

 void *buf, MPI_Status *status)

28. March 2012 Slide 75

Split collective file access

 Collective operations may be split into two parts

 Rules an restrictions:

 Only one active split or regular collective operations per file

handle

 Split collective operations do not match the corresponding regular

collective operation

 Same buf argument in _begin and _end calls

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT,

 DATATYPE, IERROR)

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

 <type> :: BUF(*)

 INTEGER :: FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE)

 INTEGER :: IERRIR

 INEGER(KIND=MPI_OFFSET_KIND) :: OFFSET

28. March 2012 Slide 76

Categorizing MPI I/O function calls

Data access functions MPI_File_write…/MPI_File_read…

Positioning

 Individual file pointers: no special qualifier

 Shared file pointers: …_[shared|ordered]… (non-collective or

collective, respectively)

 Explicit offset: …_at…

Synchronism

 Blocking: no special qualifier

 Non-blocking: either MPI_File_i… or …_[begin/end] (non-

collective or collective, respectively)

Process coordination

 Individual: no special qualifier

 Collective: …_all…

28. March 2012 Slide 77

Further MPI I/O functions

Pre-allocating space for a file [may be expensive]

 MPI_FILE_PREALLOCATE(fh, size)

Resizing a file [may speed up first write access to a file]

 MPI_FILE_SET_SIZE(fh, size)

Querying file size

 MPI_FILE_GET_SIZE(filename, size)

Querying file parameters

 MPI_FILE_GET_GROUP(fh, group)

 MPI_FILE_GET_AMODE(fh, amode)

18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel Programming with MPI
Blue Gene/Q Extensions

| Florian Janetzko

28. March 2012 Slide 79

MPI Extensions – MPIX Function Calls

IBM offers extensions to the MPI standard for Blue Gene/Q

 Currently only C interface available

 Functions start with MPIX_ instead of MPI_

 Functions related to I/O discussed below

 For other MPIX functions please see

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/UserInfo/MPIextensions.html

#include <mpix.h>

28. March 2012 Slide 80

MPI Extensions – MPIX Function Calls

 Collective call on MPI_COMM_WORLD

 Returns a communicator which contains only MPI ranks which run on

nodes belonging to different I/O Bridge Nodes

 The name of this function is chosen for backwards compatibility,

since there are no psets on the Blue Gene/Q anymore.

 int MPIX_Pset_diff_comm_create(MPI_Comm *pset_comm_diff)

 Like MPIX_Pset_diff_comm_create however, collective call on

COMM

 int MPIX_Pset_diff_comm_create_from_parent(

 MPI_Comm parent_comm,

 MPI_Comm *pset_comm_diff)

28. March 2012 Slide 81

MPI Extensions – MPIX Function Calls

 Collective call on MPI_COMM_WORLD

 Returns a communicator which contains only MPI ranks which run on

nodes belonging to the same I/O Bridge Nodes

 The name of this function is chosen for backwards compatibility,

since there are no psets on the Blue Gene/Q anymore.

 int MPIX_Pset_same_comm_create(MPI_Comm *pset_comm_same)

 Like MPIX_Pset_same_comm_create however, collective call on

COMM

 int MPIX_Pset_same_comm_create_from_parent(

 MPI_Comm parent_comm,

 MPI_Comm *pset_comm_same)

28. March 2012 Slide 82

MPI Extensions – MPIX Function Calls

 Returns information about the I/O node associated with the local

compute

 The I/O node route identifier io_node_route_id is a unique

number, yet it is not a monotonically increasing integer

 The distance to the I/O node distance is the number of hops on the

torus from the local compute node to the associated I/O node. On

BG/Q the I/O Bridge Nodes are those nodes that are closest to the

I/O node and will have a distance of '1'

 The name of this function is chosen for backwards compatibility,

since there are no psets on the Blue Gene/Q anymore.

 int MPIX_Pset_io_node(int *io_node_route_id,

 int *distance)

28. March 2012 Slide 83

Blue Gene/Q: I/O-Node Cabling (8 ION/Rack)

© IBM 2012

18. March 2013

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Parallel Programming with MPI
Blue Gene/Q Exercise

| Florian Janetzko

28. March 2012 Slide 85

Access to JUQUEEN

Login

1. open a terminal

2. ssh -A -X hpclabXX@juqueen

Compilation

1. IBM XL compiler suite

 MPI compiler wrapper: mpixlf77, mpixlf90, mpixlf95,
mpixlf2003, mpixlc, mpixlcxx

2. GCC compiler suite

 MPI compiler wrapper: mpif77, mpif90, mpicc, mpicxx

MPI starter: runjob (batch only)

28. March 2012 Slide 86

Running parallel jobs on JUQUEEN

Batch jobs
1. open a terminal

2. ssh -A -X hpclabXX@juqueen

3. to start applications with n tasks with submit the following job script with

llsubmit <name_of_jobscript>

#@job_name = LoadL_Sample_1
#@comment = “myjob"
#@error = job.err
#@output = job.out
#@environment = COPY_ALL
#@wall_clock_limit = 00:10:00
#@notification = error
#@notify_user = <email>
#@job_type = bluegene
#@bg_size = 32
#@queue

runjob -n 8 –p 1 --exe <application>

