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Polarized light imaging (PLI) ([1, 2]) enables scanning of individual histological human
brain sections with two independent setups: a large-area polarimeter (LAP, “object space
resolution”, which is referred to as “resolution” in the remainder of this abstract: 64 ×
64µm2/px) and a polarizing microscope (PM, resolution: 1.6 ×1.6µm2/px). While PM
images are of high resolution (HR) containing complex information, the LAP provides
low resolution (LR) overview-like data. The information contained in an LR image is a
mixture of the information of its HR counterpart ([5]). Each resolution yields valuable
information, which multiplies if they are combined.

Image registration algorithms, for example, handle multiple resolutions (1) in case
of several modalities with special metrics, and (2) in multi-resolution approaches (e.g.
[7]) to increase the stability of the optimization process of automatic image registration.
In the latter case, the data is coarsened synthetically. Our goal is to directly relate
measured HR to LR data of the same object, avoiding artificial intermediate steps.

All images show the average light intensity, that is transmitted through a thin brain
slice ([1, 2]), and depict a region from the human occipital pole. The images were
manually segmented and smoothed by a Gaussian kernel suitable for noise reduction
and adapted to each resolution.

We selected octave 2 at LR and octave 7 at HR for SURF extraction ([3]), where one
octave denotes a decrease in resolution by a factor of 2. Features with corresponding
scales were matched with FLANN ([6]). Homography estimation from the resulting
feature point pairs used RANSAC ([4]). The homography and a linear interpolation
scheme were applied to transfer information from LR to HR and vice versa.
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Localization of the HR ROI in the LR ROI is plausible (figure 1(B)), while localization
in the LAP image fails, because the matched feature point positions in HR and LR do
not correspond. Numerical and feature point matching inaccuracies become evident in
figure 1(C).

The experiments were performed with one HR ROI (figure 1(A)), one LAP ROI (fig-
ure 1(B)) and one LAP image. We plan to improve the algorithm and to obtain complete
HR data sets for further exploration of the method’s performance.
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Figure 1: This figure shows input data and results of the experiment. The arrows in-
dicate the flow of information and the color by which it is displayed at its
destination. Subfigure (A) shows the down-scaled PM ROI (original size:
20 604 px × 17 157 px). (B) shows the up-scaled LAP ROI (original size:
916 px × 510 px) with estimated PM ROI location (green frame). Note, that
only part of the HR ROI is contained in the LR ROI. Also, most of the fine
white structures depicted in (A) vanished due to the low resolution of (B). (C)
shows the down-scaled overlay image (original size: 20 604 px × 17 157 px) of
LR data (enclosed in the green frame in (B)) transferred to HR versus PM
ROI data of (A), where HR data is labeled green and transferred LR data is
labeled red. HR data and transferred LR data were normalized. Numerical
and feature point matching inaccuracies become evident. Also, displacement
and distortion compared to HR data is visible.
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