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Evolution 
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Multi-core ceases scaling
Many-core is more promising
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ExaScale Challenges

● Multi-PetaFlop (1015) systems are up an running

– Tianhe-2, Titan, Sequoia, K, JuQUEEN

– Sustained PetaFlop for broader range of applications to come

● History shows: each scale (factor 1000) takes ~10 years
● Look at problems to expect for next step: ExaFlop (1018)

– Power consumption (are ~100 MW acceptable?)

– Resiliency

– How to program such beast

● Programming models

● Do current algorithms still work out?

– Applications
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Technology Scaling

Moore’s Law
# of transistors / area doubles in 1.5 

years 

→  in 10 years:  26.6 = 100

Holds since 40 years based on silicon 

technology

Meuer’s Law
Supercomputer Performance 

increases by factor 1000 in 10 years 

(so far)

Source: lanl.gov
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Rationale

● Can the next generation cluster computers compete with 
proprietary solutions like BlueGene or Cray?

– BlueGene /P → /Q gives factor 20 in compute speed at the 
same energy envelope and costs in 4 years

– Cray is more dependent on processor development

● Standard processor speed will increase by about a factor of 
4 to at most 8 in 4 years…

→ Clusters need to utilize accelerators

– Current accelerators are not parallelized on the node-level

● Integrated processors (for HPC) expected in 2015…
● Heterogeneous Architectures will be there in the future
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Heterogeneous Clusters
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GPU

GPU

Flat topology
Simple management of 

resources

Static assignment of 
accelerators to CPUs

Accelerators cannot act 
autonomously
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  Accelerated Cluster vs. 
Cluster of Accelerators

Cluster with Accelerators
 Accelerator needs a host CPU

 Static assignment (host CPU with 1 or more acc.)

 Communication so far via main memory

 PCIe bus turns out to be a bottleneck

 Requires explicit GPU programming (Cuda, OpenCL. etc.)

Cluster of Accelerators only
 Node consists of Accelerator directly connected to network

 (Only possible with MIC today)

 Static and dynamical assignment possible

 Concept can be adapted to concurrency levels
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Alternative Integration

● Go for more capable
accelerators (e.g. MIC)

● Attach all nodes to a 
low-latency fabric

● All nodes might act
autonomously

● Dynamical assignment of cluster-nodes and accelerators

– IB can be assumed as fast as PCIe besides latency

● Ability to off-load more complex (including parallel) kernels

– communication between CPU and Accelerator less frequently

– larger messages i.e. less sensitive to latency

CN

CN

CN

Acc

Acc

Acc

Acc

Acc
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Application's Scalability

● Only few application capable to scale to O(300k) cores

– Sparse matrix-vector codes

– Highly regular communication patterns

– Well suited for BG/P

● Most applications are more complex

– Complicated communication patterns

– Less capable to exploit accelerators

● How to map different requirements to most suited hardware

– Heterogeneity might be a benefit

– We need better programming models
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Cluster-Booster Architecture

Keep flexibility due to IB between cluster-nodes and 
booster-nodes

Complex kernels to be offloaded expected to have regular 
communication patterns

Kernels relieve pressure on CPU to Acc. communication



11N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

DEEP project

16 partners from 8 countries: 
3 PRACE Hosting Members
5 industry partners

Start:  1st Dec 2011
Duration:  3 years
Budget: 18.5 M€ (8.03 M€ funded by EU)

FP7-ICT-2011-7
Integrated Project No. 287530
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Dynamical Exascale Entry 
Platform (DEEP)

● EU ICT-2010.9.13 call
● Proposes to develop a novel, Exascale-enabling supercomputing platform
● Along with the optimization of a set of representative grand-challenge codes 

simulating applications
● Concept based on an advanced multi-core cluster system with InfiniBand 

complemented by a booster of Intel many-core MIC processors connected 
through a Terabit EXTOLL network

● 8 application partners
– German Research School
– École polytechnique fédérale de 

Lausanne
– Katholieke Universiteit Leuven
– CERFACS
– Cyprus Institute
– University of Regensburg
– CINECA
– CGGVerita

● 16 partners from 8 countries
●    3 e-Infrastructure providers

– BSC
– LRZ
– FZJ (Coordinator)

●    5 industry partners
– EuroTech
– University of Heidelberg / Extoll
– Intel GmbH
– Mellanox Technologies
– ParTec Cluster Competence 

Center



13N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Partners
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DEEP Architecture
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Intel Xeon Phi

● Important features for DEEP:

– High performance

– Sufficient memory bandwidth

– Possibility to directly attach a network

– Ability to run general purpose codes (MPI-library)

– Autonomous operation (with EXTOLL)

– Energy efficient: 5 GFlop/W 

– Direct water cooling possible

– Extensible software stack: network drivers

KNC card
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Relevant features for DEEP
● Low latency, high bandwidth

● RMA engine for remote memory 
access, bulk data transfer

● VELO communication engine
(zero-copy MPI)

● SMFU engine for bridging to 
InfiniBand

● 6 links for 3D torus topology
● 7th link for general devices
● Built-in PCIe root-port

● RAS features: CRC/ECC protection, 
link level retransmission

● Many status & control registers
● Access from host, via I2C bus or 

over EXTOLL
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Hardware Integration



18N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

IBM Blue 
Gene/L
JUBL, 45 
TFlop/sIBM Blue Gene/P

223 TFlop/s

IBM Blue Gene/P
1,0 PFlop/s

IBM Power 6
9 TFlop/s

INTEL Nehalem cluster
300 Tflop/s

IBM Power 4
9 TFlop/s

IBM Blue 
Gene/Q
5.9 PFlop/sHighly scalable 

architecture
Low - medium 
scalable architecture

DEEP 
System

Positioning DEEP
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Programming Model
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Software Architecture
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Global MPI

Application

main() part highly scalable code-part

OmpSs

Cluster
Booster

Application Startup in Detail

● Spawn is a collective operation of 
Cluster-processes

● Highly scalable code-parts (HSCP) 
utilize multiple Booster-nodes (BN)

● Application's main()-part runs on 
Cluster-nodes (CN) only

● Resources managed statically or 
dynamically

● OmpSs acts as an abstraction layer

● Actual spawn done via global MPI

Resource management
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OmpSs
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OmpSs:
tasks, dependencies, heterogeneity

Decouple how we write (think sequential) from how it is executed

void Cholesky( float *A[NT] ) {
int i, j, k;
for (k=0; k<NT; k++) {
   spotrf (A[k][k]) ; 
   for (i=k+1; i<NT; i++) 
      strsm (A[k][k], A[k][i]); 
   for (i=k+1; i<NT; i++) {
      for (j=k+1; j<i; j++)
         sgemm( A[k][i], A[k][j], A[j][i]);
      ssyrk (A[k][i], A[i][i]);
   }
}

#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);
#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)
void strsm (float *T, float *B);
#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)
void sgemm (float *A, float *B, float *C);
#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)
void ssyrk (float *A, float *C);

TS

TS

NB

NB

TS

TS
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Heterogeneous global MPI
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Offloading Invocation

● There is an existing MPI program
● Highly scalable kernels are identified
● Adapt to the Cluster-Booster Architecture
● How to specify …

– which code is to run on the Booster nodes

– where on the Booster it should run

– which data is to be copied between Cluster and Booster 
before/after a Booster code part is executed

– how the data layout has to be transformed
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Low-Level Offloading Semantics

● Basic idea: Provide a “Global MPI”

– Connect Cluster MPI and Booster MPI via MPI_Comm_spawn()

– Startup mechanism for Booster code parts

– The children have their own MPI_COMM_WORLD (different from 
the parents' one)

BN

BN BN

MPI_COMM_WORLD
(B)

CN

MPI_COMM_WORLD
(A)

CN

CN

CN

CN

MPI
communicator

CN

MPI

Cluster
Booster
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MPI Process Creation

MPI_Comm_spawn(
 command,→ // command (string)
 argv,→ // arguments (string[])
 maxprocs,→ // # of processes to start (int)
 info,→ // key-value pairs (handle)
 root,→ // rank of root process

// (int, for prev. args)
 comm,→ // parents' communicator

// (handle)
 intercomm,← // intercommunicator (handle)
 errorcodes← // one code per process (int[])

)
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Programming Model

● Based on MPI

– Parallel programming model well-known to application developers

– High-performance implementations available

– Used by Cluster code as well as by the Booster code parts

● ParaStation MPI

– Works “out of the box” on the Cluster part

– Currently ported to the Booster part

– Integrates well with the ParaStation Cluster Management Software
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Global MPI

Cluster Booster
Booster
Interface

In
fin
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lCluster Booster

Protocol

MPI_Comm_spawn

ParaStation MPI
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OmpSs Offload Abstraction
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OmpSs Offload Abstraction

Source Code

DEEP Runtime

Compiler

Application
Binaries
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Take aways

● Exascale poses severe challenges

– Energy, Resiliency, Scalability, Programmability

– Have to face more and huger levels of parallelism

– Computing will become (even more) heterogeneous

● Some new ideas are around → DEEP

– tries to handle heterogeneity in an innovate way

– allows to map application's levels of scalability onto hardware

– follows new approaches for the programming paradigm

● More info: http://www.deep-project.eu

http://www.deep-project.eu/
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