
The DEEP Project

Pursuing cluster-computing in the many-core era

N. Eicker, Th. Lipper, E. Suarez  Jülich Supercomputing Centre⋅
Th. Moschny  ParTec Cluster Competence Center⋅

The research leading to these results has received funding from the European Community's Seventh 
Framework Programme (FP7/2007-2013) under Grant Agreement n° 287530 



2N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Evolution 

 ×1000/10a

 ×100/10a

 ×10/10a

Multi-core ceases scaling
Many-core is more promising



3N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

ExaScale Challenges

● Multi-PetaFlop (1015) systems are up an running

– Tianhe-2, Titan, Sequoia, K, JuQUEEN

– Sustained PetaFlop for broader range of applications to come

● History shows: each scale (factor 1000) takes ~10 years
● Look at problems to expect for next step: ExaFlop (1018)

– Power consumption (are ~100 MW acceptable?)

– Resiliency

– How to program such beast

● Programming models

● Do current algorithms still work out?

– Applications



4N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Technology Scaling

Moore’s Law
# of transistors / area doubles in 1.5 

years 

→  in 10 years:  26.6 = 100

Holds since 40 years based on silicon 

technology

Meuer’s Law
Supercomputer Performance 

increases by factor 1000 in 10 years 

(so far)

Source: lanl.gov



5N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Rationale

● Can the next generation cluster computers compete with 
proprietary solutions like BlueGene or Cray?

– BlueGene /P → /Q gives factor 20 in compute speed at the 
same energy envelope and costs in 4 years

– Cray is more dependent on processor development

● Standard processor speed will increase by about a factor of 
4 to at most 8 in 4 years…

→ Clusters need to utilize accelerators

– Current accelerators are not parallelized on the node-level

● Integrated processors (for HPC) expected in 2015…
● Heterogeneous Architectures will be there in the future



6N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Heterogeneous Clusters

CN

CN

CN

InfiniBand

CN

CN

CN

GPU

GPU

GPU

GPU

GPU

GPU

Flat topology
Simple management of 

resources

Static assignment of 
accelerators to CPUs

Accelerators cannot act 
autonomously



7N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

  Accelerated Cluster vs. 
Cluster of Accelerators

Cluster with Accelerators
 Accelerator needs a host CPU

 Static assignment (host CPU with 1 or more acc.)

 Communication so far via main memory

 PCIe bus turns out to be a bottleneck

 Requires explicit GPU programming (Cuda, OpenCL. etc.)

Cluster of Accelerators only
 Node consists of Accelerator directly connected to network

 (Only possible with MIC today)

 Static and dynamical assignment possible

 Concept can be adapted to concurrency levels



8N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Alternative Integration

● Go for more capable
accelerators (e.g. MIC)

● Attach all nodes to a 
low-latency fabric

● All nodes might act
autonomously

● Dynamical assignment of cluster-nodes and accelerators

– IB can be assumed as fast as PCIe besides latency

● Ability to off-load more complex (including parallel) kernels

– communication between CPU and Accelerator less frequently

– larger messages i.e. less sensitive to latency

CN

CN

CN

Acc

Acc

Acc

Acc

Acc



9N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Application's Scalability

● Only few application capable to scale to O(300k) cores

– Sparse matrix-vector codes

– Highly regular communication patterns

– Well suited for BG/P

● Most applications are more complex

– Complicated communication patterns

– Less capable to exploit accelerators

● How to map different requirements to most suited hardware

– Heterogeneity might be a benefit

– We need better programming models



10N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Cluster-Booster Architecture

Keep flexibility due to IB between cluster-nodes and 
booster-nodes

Complex kernels to be offloaded expected to have regular 
communication patterns

Kernels relieve pressure on CPU to Acc. communication



11N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

DEEP project

16 partners from 8 countries: 
3 PRACE Hosting Members
5 industry partners

Start:  1st Dec 2011
Duration:  3 years
Budget: 18.5 M€ (8.03 M€ funded by EU)

FP7-ICT-2011-7
Integrated Project No. 287530



12N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Dynamical Exascale Entry 
Platform (DEEP)

● EU ICT-2010.9.13 call
● Proposes to develop a novel, Exascale-enabling supercomputing platform
● Along with the optimization of a set of representative grand-challenge codes 

simulating applications
● Concept based on an advanced multi-core cluster system with InfiniBand 

complemented by a booster of Intel many-core MIC processors connected 
through a Terabit EXTOLL network

● 8 application partners
– German Research School
– École polytechnique fédérale de 

Lausanne
– Katholieke Universiteit Leuven
– CERFACS
– Cyprus Institute
– University of Regensburg
– CINECA
– CGGVerita

● 16 partners from 8 countries
●    3 e-Infrastructure providers

– BSC
– LRZ
– FZJ (Coordinator)

●    5 industry partners
– EuroTech
– University of Heidelberg / Extoll
– Intel GmbH
– Mellanox Technologies
– ParTec Cluster Competence 

Center



13N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Partners



14N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

DEEP Architecture



15N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Intel Xeon Phi

● Important features for DEEP:

– High performance

– Sufficient memory bandwidth

– Possibility to directly attach a network

– Ability to run general purpose codes (MPI-library)

– Autonomous operation (with EXTOLL)

– Energy efficient: 5 GFlop/W 

– Direct water cooling possible

– Extensible software stack: network drivers

KNC card



16N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Relevant features for DEEP
● Low latency, high bandwidth

● RMA engine for remote memory 
access, bulk data transfer

● VELO communication engine
(zero-copy MPI)

● SMFU engine for bridging to 
InfiniBand

● 6 links for 3D torus topology
● 7th link for general devices
● Built-in PCIe root-port

● RAS features: CRC/ECC protection, 
link level retransmission

● Many status & control registers
● Access from host, via I2C bus or 

over EXTOLL



17N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Hardware Integration



18N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

IBM Blue 
Gene/L
JUBL, 45 
TFlop/sIBM Blue Gene/P

223 TFlop/s

IBM Blue Gene/P
1,0 PFlop/s

IBM Power 6
9 TFlop/s

INTEL Nehalem cluster
300 Tflop/s

IBM Power 4
9 TFlop/s

IBM Blue 
Gene/Q
5.9 PFlop/sHighly scalable 

architecture
Low - medium 
scalable architecture

DEEP 
System

Positioning DEEP



19N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Programming Model



20N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Software Architecture



21N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Global MPI

Application

main() part highly scalable code-part

OmpSs

Cluster
Booster

Application Startup in Detail

● Spawn is a collective operation of 
Cluster-processes

● Highly scalable code-parts (HSCP) 
utilize multiple Booster-nodes (BN)

● Application's main()-part runs on 
Cluster-nodes (CN) only

● Resources managed statically or 
dynamically

● OmpSs acts as an abstraction layer

● Actual spawn done via global MPI

Resource management



22N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

OmpSs



23N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

OmpSs:
tasks, dependencies, heterogeneity

Decouple how we write (think sequential) from how it is executed

void Cholesky( float *A[NT] ) {
int i, j, k;
for (k=0; k<NT; k++) {
   spotrf (A[k][k]) ; 
   for (i=k+1; i<NT; i++) 
      strsm (A[k][k], A[k][i]); 
   for (i=k+1; i<NT; i++) {
      for (j=k+1; j<i; j++)
         sgemm( A[k][i], A[k][j], A[j][i]);
      ssyrk (A[k][i], A[i][i]);
   }
}

#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);
#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)
void strsm (float *T, float *B);
#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)
void sgemm (float *A, float *B, float *C);
#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)
void ssyrk (float *A, float *C);

TS

TS

NB

NB

TS

TS



24N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Heterogeneous global MPI



25N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Offloading Invocation

● There is an existing MPI program
● Highly scalable kernels are identified
● Adapt to the Cluster-Booster Architecture
● How to specify …

– which code is to run on the Booster nodes

– where on the Booster it should run

– which data is to be copied between Cluster and Booster 
before/after a Booster code part is executed

– how the data layout has to be transformed



26N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Low-Level Offloading Semantics

● Basic idea: Provide a “Global MPI”

– Connect Cluster MPI and Booster MPI via MPI_Comm_spawn()

– Startup mechanism for Booster code parts

– The children have their own MPI_COMM_WORLD (different from 
the parents' one)

BN

BN BN

MPI_COMM_WORLD
(B)

CN

MPI_COMM_WORLD
(A)

CN

CN

CN

CN

MPI
communicator

CN

MPI

Cluster
Booster



27N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

MPI Process Creation

MPI_Comm_spawn(
 command,→ // command (string)
 argv,→ // arguments (string[])
 maxprocs,→ // # of processes to start (int)
 info,→ // key-value pairs (handle)
 root,→ // rank of root process

// (int, for prev. args)
 comm,→ // parents' communicator

// (handle)
 intercomm,← // intercommunicator (handle)
 errorcodes← // one code per process (int[])

)



28N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Programming Model

● Based on MPI

– Parallel programming model well-known to application developers

– High-performance implementations available

– Used by Cluster code as well as by the Booster code parts

● ParaStation MPI

– Works “out of the box” on the Cluster part

– Currently ported to the Booster part

– Integrates well with the ParaStation Cluster Management Software



29N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Global MPI

Cluster Booster
Booster
Interface

In
fin

ib
an

d

E
xt

ol
lCluster Booster

Protocol

MPI_Comm_spawn

ParaStation MPI



30N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

OmpSs Offload Abstraction



31N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

OmpSs Offload Abstraction

Source Code

DEEP Runtime

Compiler

Application
Binaries



32N. Eicker et al.  –  The DEEP project  –  HUCAA'13 • Lyon1 Oct 2013

Take aways

● Exascale poses severe challenges

– Energy, Resiliency, Scalability, Programmability

– Have to face more and huger levels of parallelism

– Computing will become (even more) heterogeneous

● Some new ideas are around → DEEP

– tries to handle heterogeneity in an innovate way

– allows to map application's levels of scalability onto hardware

– follows new approaches for the programming paradigm

● More info: http://www.deep-project.eu

http://www.deep-project.eu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Accelerated Cluster vs. Cluster of Accelerators
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	DEEP Partners
	Slide 14
	Intel’s MIC
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	OmpSs: tasks, dependencies, heterogeneity
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

