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Abstract

Results for theΛN andΣN interactions obtained at next-to-leading order in chiral effective field theory are reported.
At the order considered there are contributions from one- and two-pseudoscalar-meson exchange diagrams and from
four-baryon contact terms without and with two derivatives. SU(3) flavor symmetry is imposed for constructing the
hyperon-nucleon interaction while the explicit SU(3) symmetry breaking by the physical masses of the pseudoscalar
mesons (π, K, η) is taken into account. An excellent description of the hyperon-nucleon system can be achieved at
next-to-leading order. It is on the same level of quality as the one obtained by the most advanced phenomenological
hyperon-nucleon interaction models.
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1. Introduction

While there is a steady interest in physics involving baryons with strangeness and a corresponding increase of
empirical information ever since the discovery of theΛ-hyperon many decades ago, the present times seem to be
particularly rewarding. First, at new experimental facilities like J-PARC in Japan or FAIR in Germany a significant
amount of beam time will be devoted to strangeness physics research. The proposed experiments encompass accurate
measurements of level spectra and decay properties of strangenessS = −1 andS = −2 hypernuclei [1, 2] but also of
elementary cross sections forΣ+p scattering [3]. Information onΛp scattering, specifically on the scattering lengths,
might emerge from ongoing studies of the final-state interaction in production reactions likepp → K+Λp [4] and
γd→ K+Λn [5].

Parallel to this development, techniques for dealing with few- and many-body systems have reached a high degree
of sophistication [6, 7, 8, 9, 10, 11, 12, 13]. Some of these allow one to consider nuclei with much more than four
nucleons, the limit for standard few-body calculations with the Faddeev-Yakubovsky theory [7]. Of particular interest
in this context are nuclear lattice simulations as they offer a new many-body technique directly tailored to the effective
field theory description of baryon-baryon interactions, ashigh-lighted recently by the first everab initio calculation of
the Hoyle state in the spectrum of12C [14]. Thus, it seems to be feasible to perform similar calculations of hypernuclei
too, with comparable accuracy as those for ordinary nuclei,which would open a completely new testing ground for the
hyperon-nucleon (YN) interaction. Though few-body calculations of hypernuclei can be already found in the literature
[15, 16], for the latter aspect it would be desirable to employ techniques that allow one to use directly the elementary
YN interaction (i.e. without any approximation) and, in particular, to include the importantΛ-Σ conversion. Only
then one can connect the properties of the hypernuclei unambiguously with those of the underlyingΛN (andΣN)
interaction.

Finally, and on a different frontier, lattice QCD calculations have matured to a certain degree, as documented in
recent review articles [17, 18], and are coming closer to a level where they can provide additional constraints on the
baryon-baryon interactions in the strangeness sector [19].
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To keep up with these developments we present here a study of theYN interaction performed at next-to-leading
order (NLO) in chiral effective field theory (EFT). It builds upon and extends a previous investigation by the Bonn-
Jülich group carried out at leading order (LO) [20]. Using chiral EFT for theYN interaction is prompted by the great
success that this scheme has met in the application to the nucleon-nucleon (NN) interaction. Indeed, proposed by
Weinberg [21, 22] more than two decades ago, chiral EFT has turned out to be a rather powerful tool for the derivation
of nuclear forces. Its most salient feature is that there is an underlying power counting which allows one to improve
calculations systematically by going to higher orders in a perturbative expansion. In addition, it is possible to derive
two- and three-nucleon forces as well as external current operators in a consistent way. We are now at a stage that the
latter aspect will also be important for realistic studies of hypernuclear interactions. In the past there have been already
discussions on the role of a three-bodyYN interaction [23, 24] in hypernuclei and specifically for theproperties of
neutron star matter [25, 26].

As the most recent applications demonstrate, the nucleon-nucleon interaction can be described accurately within
the chiral EFT approach [27, 28]. In line with the original suggestion of Weinberg, the power counting is applied to
theNN potential rather than to the reaction amplitude. The latteris obtained from solving a regularized Lippmann-
Schwinger equation for the derived interaction potential.The chiralNN potential contains pion-exchanges and a
series of contact interactions with an increasing number ofderivatives. The latter represent the short-range part of the
NN force and are parametrized by low-energy constants (LECs),that need to be fixed by a fit to data. For reviews we
refer the reader to the recent Refs. [29, 30].

In our study of theYN interaction, we follow the scheme that has been applied by Epelbaum et al. [28, 31, 32]
to theNN interaction. For investigations of theYN interaction based on other schemes see [33, 34]. Still, there are
some essential differences between theΛN, ΣN systems and theNN case that have an influence on how one proceeds
in the application of chiral EFT in practice. First and foremost, there is no phase-shift analysis for theS = −1 sector
and, therefore, we have to fix the LECs by a direct fit to data rather than by a fit to individual partial waves as it is
done in theNN case. Secondly, the amount ofYN data is rather limited. Indeed, there are basically only integrated
cross sections, often with large uncertainties. Thus, we follow here the practice of previous investigations of theYN
interaction, notably those performed in the meson-exchange picture [35, 36, 37, 38], and impose constraints from
SU(3) flavor symmetry in order to reduce the number of free parameters. In particular, all the baryon-baryon-meson
coupling constants are fixed from SU(3) symmetry and the symmetry is also exploited to derive relations between
the various LECs. In the actual calculation the SU(3) symmetry is broken, however, by the mass differences between
the Goldstone bosons (π, K, η) and between the baryons. For these masses we use the known physical values. In
any case, we want to stress that we consider the imposed SU(3)symmetry primarily as a working hypothesis and not
as a rigorous constraint. Future data with higher precisionwill possibly demand to depart from SU(3) symmetry in
some way. In that sense our present investigation certainlyhas primarily an exploratory character. At the moment
we are able to describe the availableΛN andΣN data consistently without any explicit SU(3) breaking in the contact
interactions as will be demonstrated below. A simultaneousdescription of theNN interaction with contact terms that
fulfil SU(3) symmetry turned out, however, to be not possible.

As mentioned above, in order to obtain the reaction amplitude from the interaction potential derived within chiral
EFT, one has to solve a regularized Lippmann-Schwinger equation. The question how this regularization should be
performed is an open issue and is still controversially discussed in the literature, see, e.g. [39, 40, 41, 42]. In the
present work, we refrain from touching this certainly very important question. Rather we follow closely the procedure
adopted by Epelbaum et al. [28, 32] and others [27], in their study of theNN interaction and introduce a momentum-
dependent exponential regulator function into the scattering equation.

The present paper is structured as follows: In Sect. 2, a review of the chiral EFT approach is given with special
emphasis on the imposed SU(3) symmetry. In particular, the structure of the contact interactions at LO and NLO is
specified and the expression for the one-meson exchange contributions are reproduced. A detailed description of the
two-boson exchange potential that arises at NLO is presented in the appendix. The strategy followed in the fit to the
data is outlined in Sect. 3. In Sect. 4 results for theΛN andΣN interactions obtained at NLO are discussed and com-
pared to available experimental information. Results of our LO calculation and of the Jülich ’04YN interaction [36],
a conventional meson-exchange model, are presented, too. The paper ends with a short summary. In the appendix, we
provide expressions for the two-boson exchange potential.Furthermore we summarize SU(3) breaking effects which
arise at NLO from quark mass insertions in the interaction Lagrangian.
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Figure 1: Relevant Feynman diagrams up-to-and-including next-to-leading order. Solid and dashed lines denote octet baryons and pseudoscalar
mesons, respectively. The square symbolizes a contact vertex with two derivatives. From left to right: LO contact term,one-meson exchange, NLO
contact term, planar box, crossed box, left triangle, righttriangle, football diagram.

2. Chiral potential at next-to-leading order

The derivation of the chiral baryon-baryon potentials for the strangeness sector at LO using the Weinberg power
counting has been outlined in Refs. [20, 43, 44]. The NLO contributions for theNN case are described in detail in
Ref. [32], while the extension to the baryon-baryon case hasbeen worked out in Ref. [45]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. At NLO contact terms
with two derivatives arise, together with loop contributions from (irreducible) two-pseudoscalar-meson exchanges.
The corresponding Feynman diagrams are shown in Fig. 1.

2.1. Contact terms

The spin dependence of the potentials due to leading order contact terms is given by [32]

V(0)
BB→BB = CS +CT σ1 · σ2 , (1)

where the parametersCS andCT are low-energy constants (LECs) that need to be determined in a fit to data. At
next-to-leading order the spin- and momentum-dependence of the contact terms reads

V(2)
BB→BB = C1q 2 +C2k 2 + (C3q 2 +C4k 2)σ1 · σ2 +

i
2

C5(σ1 + σ2) · (q × k)

+ C6(q · σ1)(q · σ2) +C7(k · σ1)(k · σ2) +
i
2

C8(σ1 − σ2) · (q × k) . (2)

The transferred and average momentum,q andk, are defined in terms of the final and initial center-of-mass momenta
of the baryons,p′ andp, asq = p′ − p andk = (p′ + p)/2. TheCi (i = 1, . . . , 8) are additional LECs depending on
the considered baryon-baryon channel. When performing a partial wave projection, these terms contribute to the two
S–wave (1S0, 3S1) potentials, the fourP–wave (1P1, 3P0, 3P1, 3P2) potentials, and the3S1-3D1 and1P1-3P1 transition
potentials in the following way [28]:

V(1S0) = 4π (CS − 3CT) + π (4C1 +C2 − 12C3 − 3C4 − 4C6 −C7)(p2 + p′2) ,

= C̃1S0
+C1S0

(p2 + p′2) , (3)

V(3S1) = 4π (CS +CT ) +
π

3
(12C1 + 3C2 + 12C3 + 3C4 + 4C6 +C7)(p2 + p′2) ,

= C̃3S1
+C3S1

(p2 + p′2) , (4)

V(1P1) =
2π
3

(−4C1 +C2 + 12C3 − 3C4 + 4C6 −C7) p p′ = C1P1
p p′ , (5)

V(3P1) =
2π
3

(−4C1 +C2 − 4C3 +C4 + 2C5 − 8C6 + 2C7) p p′ = C3P1
p p′ , (6)

V(3P1 − 1P1) = −4
√

2π
3

C8 p p′ = C3P1−1P1
p p′ , (7)

3



V(1P1 − 3P1) = −4
√

2π
3

C8 p p′ = C1P1−3P1
p p′ , (8)

V(3P0) =
2π
3

(−4C1 +C2 − 4C3 +C4 + 4C5 + 12C6 − 3C7) p p′ = C3P0
p p′ , (9)

V(3P2) =
2π
3

(−4C1 +C2 − 4C3 +C4 − 2C5) p p′ = C3P2
p p′ , (10)

V(3D1 − 3S1) =
2
√

2π
3

(4C6 +C7) p′2 = C3S1− 3D1
p′2 , (11)

V(3S1 − 3D1) =
2
√

2π
3

(4C6 +C7) p2 = C3S1− 3D1
p2 , (12)

with p = |p | and p′ = |p ′|. Note that the term proportional toC8 in Eqs. (7) and (7) represents an antisymmetric
spin-orbit force and gives rise to spin singlet-triplet transitions (i.e.1P1 − 3P1). Such transitions cannot occur in the
NN interaction, unless isospin symmetry breaking is included, and, therefore, this term is absent in the equations
given in Ref. [32]. However, in general, this antisymmetricspin-orbit term is allowed. Specifically, it does not break
SU(3) symmetry.

Assuming only isospin symmetry, the LECs for each spin-isospin channel of the variousBB→ BB interaction
potentials are independent. When imposing SU(3) flavor symmetry one obtains relations between the LECs and,
thereby, the number of terms that need to be fitted to data getsreduced. The relevant SU(3) structure for the scattering
of two octet baryons follows from the tensor product decomposition 8⊗ 8= 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10⊕ 27 (for details
see Refs. [46, 47]). With that one can express all theC1S0,ν, C3S1,ν, . . ., in Eqs. (3) – (12) (ν= NN→ NN, ΛN → ΛN,
ΛN → ΣN, ΣN → ΣN) by coefficients corresponding to the SU(3) irreducible representations: C1, C8a, C8s, C10∗ ,
C10, C27. The particular combinations of LECs in the variousBB→ BB channels and for the various partial waves
are summarized in Tab. 1. For example, for the potential in the 1S0 partial wave of theΛN→ ΛN channel we get

VΛN→ΛN(1S0) =
1
10

[

9C̃27
1S0
+ C̃8s

1S0
+ (9C27

1S0
+C8s

1S0
)(p2 + p′2)

]

. (13)

Note that Tab. 1 gives the weight factors of the various baryon-baryon channels with respect to the irreducible SU(3)
representations. In addition, it reflects the constraints from the generalized Pauli principle. The interaction in partial
waves like the3S1, 3D1, and1P1, which are symmetric with regard to their spin-space component, is given by linear
combinations of coefficients corresponding to antisymmetric SU(3) representations (C8a, C10∗ , C10), whereas those
with antisymmetric spin-space part (1S0, 3P0, 3P1, 3P2) receive only contributions from symmetric representations
(C8s, C27). TheC8-term induces transitions between singlet and triplet states in the octet-representation 8a and 8s,
respectively [47]. For a detailed derivation of the SU(3) constraints on the LECs see Ref. [20] or [48].

Due to the imposed SU(3) constraints at LO there are only five independent LECs for theNN and theYN sectors
together, as outlined in Ref. [20]. Note that without SU(3) symmetry, there would be twice as many. At NLO SU(3)
symmetry implies that in case of theNN andYN interactions there are eight new LECs entering theS-waves andS-D
transitions, respectively, and ten coefficients in theP-waves. Note that the sixth leading-order LEC corresponding to
the singlet representation (C1) is present in the strangenessS = −2 channels with isospinI = 0 [49] and there are four
more LECs that contribute to theS = −2 sector at NLO.

2.2. Goldstone boson exchange

The one- and two-pseudoscalar-meson-exchange potentialsfollow from the SU(3)-invariant meson-baryon inter-
action Lagrangian

LMB = tr
(

B̄
(

iγµDµ − M0

)

B
)

− D
2

tr
(

B̄γµγ5{uµ, B}
)

− F
2

tr
(

B̄γµγ5[uµ, B]
)

, (14)

with DµB = ∂µB+ [Γµ, B], Γµ = 1
2(u†∂µu+ u∂µu†) anduµ = i(u†∂µu− u∂µu†), and where the trace is taken in flavor

space. The constantM0 denotes the baryon mass in the three-flavor chiral limit. Thecoupling constantsF andD
satisfy the relationF + D = gA ≃ 1.26, wheregA is the axial-vector strength measured in neutronβ–decay. For the
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Table 1: SU(3) relations for the various contact potentialsin the isospin basis.C27
ξ

etc. refers to the corresponding irreducible SU(3) representation
for a particular partial waveξ. The actual potential still needs to be multiplied by pertinent powers of the momentap andp′.

Channel I V(ξ)

ξ = 1S0,
3P0,

3P1,
3P2 ξ = 3S1,

3S1-3D1,
1P1 ξ = 1P1-3P1

S = 0 NN→ NN 0 – C10∗
ξ

–

NN→ NN 1 C27
ξ

– –

S = −1 ΛN → ΛN 1
2

1
10

(

9C27
ξ
+C8s

ξ

)

1
2

(

C8a
ξ
+C10∗

ξ

)

−1√
20

C8s8a
ξ

ΛN→ ΣN 1
2

3
10

(

−C27
ξ
+C8s

ξ

)

1
2

(

−C8a
ξ
+C10∗

ξ

)

3√
20

C8s8a
ξ

ΣN → ΛN −1√
20

C8s8a
ξ

ΣN → ΣN 1
2

1
10

(

C27
ξ
+ 9C8s

ξ

)

1
2

(

C8a
ξ
+C10∗

ξ

)

3√
20

C8s8a
ξ

ΣN → ΣN 3
2 C27

ξ
C10
ξ

–

pseudoscalar mesons and octet baryons, collected in traceless 3× 3 matrices,

P =





























π0
√

2
+
η√
6

π+ K+

π− − π0
√

2
+
η√
6

K0

K− K
0 − 2η√

6





























, B =



























Σ0
√

2
+ Λ√

6
Σ+ p

Σ− − Σ0
√

2
+ Λ√

6
n

−Ξ− Ξ0 − 2Λ√
6



























, (15)

we use the usual non-linear realization of chiral symmetry with U(x) = u2(x) = exp
(

i
√

2P(x)/ f0
)

, and f0 is the
Goldstone boson decay constant in the chiral limit. These fields transform under the chiral group SU(3)L ×SU(3)R as
U → RUL† andB→ KBK† with L ∈ SU(3)L ,R ∈ SU(3)R and the SU(3) valued compensator fieldK = K(L,R,U),
cf. Ref. [50]. After an expansion of the interaction Lagrangian in powers ofP one obtains from the terms proportional
to D andF the pseudovector coupling term

L1 = −
√

2
2 f0

tr
(

DB̄γµγ5

{

∂µP, B
}

+ FB̄γµγ5

[

∂µP, B
])

, (16)

which leads to a vertex between two baryons and one meson. In the same way, the term involving the chiral connection
Γµ gives

L2 =
1

4 f 2
0

tr
(

iB̄γµ
[[

P, ∂µP
]

, B
])

, (17)

which describes a (Weinberg-Tomozawa) vertex between two baryons and two mesons.
When writing the pseudovector interaction LagrangianL1 explicitly in the isospin basis, one gets

L1 = − fNNπN̄γ
µγ5τN · ∂µπ + i fΣΣπΣ̄γ

µγ5 × Σ · ∂µπ
− fΛΣπ

[

Λ̄γµγ5Σ + Σ̄γ
µγ5Λ

]

· ∂µπ − fΞΞπΞ̄γ
µγ5τΞ · ∂µπ

− fΛNK

[

N̄γµγ5Λ∂µK + h.c.
]

− fΞΛK

[

Ξ̄γµγ5Λ∂µK + h.c.
]

− fΣNK

[

N̄γµγ5τ∂µK · Σ + h.c.
]

− fΣΞK

[

Ξ̄γµγ5τ∂µK · Σ + h.c.
]

− fNNη8 N̄γµγ5N∂µη − fΛΛη8Λ̄γ
µγ5Λ∂µη

− fΣΣη8Σ̄ · γµγ5Σ∂µη − fΞΞη8Ξ̄γ
µγ5Ξ∂µη . (18)

Here, we have introduced the isospin doublets

N =

(

p
n

)

, Ξ =

(

Ξ0

Ξ−

)

, K =

(

K+

K0

)

, K =













K
0

−K−













. (19)
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Table 2: Isospin factorsI for the various one–pseudoscalar-meson exchanges.

Channel Isospin π K η

S = 0 NN→ NN 0 −3 0 1

1 1 0 1

S = −1 ΛN→ ΛN 1
2 0 1 1

ΛN→ ΣN 1
2 −

√
3 −

√
3 0

ΣN → ΣN 1
2 −2 −1 1
3
2 1 2 1

The signs have been chosen according to the conventions of Ref. [46], such that the inner product of the isovectorΣ
(or π) defined in spherical components reads

Σ · Σ =
∑

m

(−1)mΣmΣ−m = Σ
+Σ− + Σ0Σ0 + Σ−Σ+ . (20)

Since the original interaction Lagrangian in Eq. (16) is SU(3)-invariant, the various coupling constants are related
to each other by [46]

fNNπ = f , fNNη8 =
1√
3
(4α − 1) f , fΛNK = − 1√

3
(1+ 2α) f ,

fΞΞπ = −(1− 2α) f , fΞΞη8 = − 1√
3
(1+ 2α) f , fΞΛK =

1√
3
(4α − 1) f ,

fΛΣπ = 2√
3
(1− α) f , fΣΣη8 =

2√
3
(1− α) f , fΣNK = (1− 2α) f ,

fΣΣπ = 2α f , fΛΛη8 = − 2√
3
(1− α) f , fΞΣK = − f .

(21)

Evidently, all coupling constants are given in terms off ≡ gA/2 f0 and the ratioα = F/(F + D).
The expression for the one–pseudoscalar-meson exchange potential is similar to the standard one-pion-exchange

potential [32]

VOBE
B1B2→B3B4

= − fB1B3P fB2B4P
(σ1 · q) (σ2 · q)

q2 +m2
P

IB1B2→B3B4 . (22)

Here,mP is the mass of the exchanged pseudoscalar meson. In the present calculation we use the physical masses
mπ,mK ,mη in Eq. (22). Thus, the explicit SU(3) breaking reflected in the mass splitting between the pseudoscalar
mesons is taken into account. Theη meson is identified with the octet-stateη8. The isospin factorsIB1B2→B3B4 are
given in Tab. 2.

The two–pseudoscalar-meson exchange potential, built up by a set of one-loop diagrams, is described in detail in
Appendix A. Relativistic corrections to the one-meson exchange potential that arise at NLO due to differences of the
baryon masses are discussed in Appendix B.

2.3. Scattering equation

In the actual calculation a partial-wave projection of the interaction potentials is performed, as described in detail
in Ref. [20]. The reaction amplitudes are obtained from the solution of a coupled-channel Lippmann-Schwinger (LS)
equation:

Tρ
′′ρ′,J
ν′′ν′ (p′′, p′;

√
s) = Vρ

′′ρ′,J
ν′′ν′ (p′′, p′) +

∑

ρ,ν

∫ ∞

0

dpp2

(2π)3
Vρ

′′ρ ,J
ν′′ν (p′′, p)

2µν
q2
ν − p2 + iη

Tρρ
′,J

νν′ (p, p′;
√

s) . (23)

Here, the labelν indicates the particle channels and the labelρ the partial wave.µν is the pertinent reduced baryon

mass. The on-shell momentumqν in the intermediate state, is determined by
√

s =
√

M2
B1,ν
+ q2
ν +

√

M2
B2,ν
+ q2
ν.

Relativistic kinematics is used for relating the laboratory momentumplab of the hyperons to the center-of-mass mo-
mentum.
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We solve the LS equation in the particle basis, in order to incorporate the correct physical thresholds. Depending
on the total charge, up to three baryon-baryon channels can couple. The Coulomb interaction is taken into account
appropriately via the Vincent-Phatak method [51]. The potentials in the LS equation are cut off with a regulator
function, fR(Λ) = exp

[

−
(

p′4 + p4
)

/Λ4
]

, in order to remove high-energy components [28]. We consider cutoff values
in the rangeΛ = 450 – 700 MeV, similar to what was used for chiralNN potentials [28], but anticipate here already
that the best results are achieved for cutoffs located in the interval 500 – 650 MeV.

3. Fitting procedure

For the fitting procedure we consider the same “standard” setof 36 YN data points that have been used in our
previous works [20, 36] as also done by the Nijmegen group in their investigations [37]. This data set consists of low-
energy total cross sections for the reactions:Λp → Λp from Ref. [52] (6 data points) and Ref. [53] (6 data points),
Σ−p→ Λn [54] (6 data points),Σ−p→ Σ0n [54] (6 data points),Σ−p→ Σ−p [55] (7 data points),Σ+p→ Σ+p [55]
(4 data points), and the inelastic capture ratio at rest [56,57]. Besides theseYN data the empirical binding energy of
the hypertriton3

Λ
H is used as a further constraint. Otherwise it would not be possible to fix the relative strength of the

spin-singlet and spin-tripletS-wave contributions to theΛp interaction.
We recall that there are in total five independent LECs at LO, that describe theNN andYN interactions, see Tab. 1.

In Ref. [20] a fit to theYN scattering data at LO was presented utilizing these five contact terms. It turned out that
already in that scenario a fairly reasonable description ofthe 36 low-energyYN scattering data could be achieved for
cutoffsΛ = 550−700 MeV and for natural values of the LECs. At NLO there are eight new contact terms contributing
to theS-waves and the3S1−3D1 transition, and ten in theP-waves. As described in Sect. 2.1, we impose SU(3) flavor
symmetry in order to reduce the number of LECs that need to be determined. Without implementing this constraint
there would be 20 independent contact terms for theΛN andΣN systems in theS-waves (and theS-D transitions)
alone, and, given the low number of data points together withtheir large error bars, it is simply impossible to fix all
those LECs by a fit to the available empirical information.

In the actual fitting procedure, first, we have considered only the 13 LECs in theS-waves and theS-D transitions.
After all, the availableYN data consist practically only of total cross sections at lowenergies and these are predom-
inantly determined by theS-wave amplitudes. The fits are performed for fixed values of the cutoff scale where we
started withΛ = 600 MeV. The subsequent fits for other cutoffs were done under the constraint that the results should
stay as close as possible to those obtained withΛ = 600 MeV, for the singlet and triplet cross sections separately. This
procedure is demanded by our requirement to reproduce the hypertriton as mentioned above.

Note that for theΣ+p → Σ+p andΣ−p → Σ−p channels the experimental total cross sections were obtained by
incomplete angular coverage [55]:

σ =
2

cosθmax− cosθmin

∫ cosθmax

cosθmin

dσ(θ)
dcosθ

d cosθ . (24)

Following Ref. [37], we use cosθmin = −0.5 and cosθmax = 0.5 in our calculations for theΣ+p→ Σ+p andΣ−p→ Σ−p
cross sections, in order to stay as close as possible to the experimental procedure. The total cross sections for the other
channels are evaluated by simply integrating the differential cross sections over the whole angular region.

For the capture ratio at rest,rR, we follow the definition of Ref. [58]:

rR =
1
4

σs(Σ−p→ Σ0n)
σs(Σ−p→ Λn) + σs(Σ−p→ Σ0n)

+
3
4

σt(Σ−p→ Σ0n)
σt(Σ−p→ Λn) + σt(Σ−p→ Σ0n)

, (25)

whereσs is the total reaction cross section in the singlet1S0 partial wave, andσt the total reaction cross section in
the triplet-coupled3S1-3D1 partial waves. The cross sections are the ones at zero momentum, but following common
practice [37] we evaluate the cross sections at a small non-zero momentum, namelyplab = 10 MeV/c.

While theχ2 fit to the 36 data points allowed us to fix the majority of theS-wave LECs it turned out that concerning
the3S1 partial wave in theI = 3/2 ΣN channel, solutions with either a positive (attractive) or anegative (repulsive)
phase shift are possible. This can be understood from the SU(3) structure as given in Table 1 which shows that this
partial wave is controlled by the “isolated” 10 representation such that the corresponding LECs do not enter in any
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Table 3: TheYN contact terms for the1S0 and3S1-3D1 partial waves for various cut–offs. The values of thẽC’s are in 104 GeV−2 the ones of the
C’s in 104 GeV−4; the values ofΛ in MeV.

Λ 450 500 550 600 650 700
1S0 C̃27

1S0
−0.0893 −0.0672 0.00648 0.1876 0.6140 1.145

C̃8s
1S0

0.2000 0.1970 0.1930 0.1742 0.1670 0.1730

C27
1S0

1.500 1.800 2.010 2.200 2.400 2.410

C8s
1S0

−0.200 −0.200 −0.206 −0.0816 −0.0597 0.1000
3S1-3D1 C̃10

3S1
0.104 0.541 0.149 0.344 0.499 0.560

C̃10∗
3S1

0.171 0.209 0.635 1.420 2.200 2.960

C̃8a
3S1

0.0218 0.00715 −0.0143 −0.0276 −0.0269 0.00173

C10
3S1

2.240 2.310 2.450 2.740 2.530 2.030

C10∗
3S1

0.310 0.143 0.741 1.090 1.150 1.120

C8a
3S1

0.373 0.469 0.627 0.775 0.854 0.964

C10
3S1− 3D1

−0.360 −0.429 −0.428 −0.191 −0.191 −0.122

C10∗
3S1− 3D1

−0.300 −0.300 −0.356 −0.380 −0.380 −0.228

C8a
3S1− 3D1

0.0356 0.0475 0.0453 −0.00621 −0.00621 −0.0497

of the otherYN channels. We adopt here the repulsive solution in accordance with evidence from recently measured
(π−,K+) inclusive spectra related toΣ−-formation in heavy nuclei [59, 60, 61], which suggest a repulsiveΣ-nucleus
single-particle potential [62, 63].

We should also mention that we observe some correlations between the values of theS-wave LECs at LO and
NLO, i.e.C̃ andC in Eqs. (3) and (4). This is a consequence of the fact that the fittedΣN cross sections lie all within a
rather narrow energy interval near threshold so that there is only a fairly weak sensitivity to the momentum-dependent
(p2 + p′2) terms. TheΛp cross sections alone, which are known over a larger energy range, are not sufficient for
separating the strength ofC̃ andC.

The limited number (and quality) of differential cross sections and the complete lack of polarization observables
makes a determination of the contact terms in theP-waves fromYN data practically impossible. Therefore, in this
case and in line with the power counting we assume strict SU(3) symmetry for the contact terms and use theNN
P-wave phase shifts as a further constraint. In particular, we fix the LECsC27 andC10∗ from fitting to empirical1P1,
3P0, and3P1 NN-phase shifts [64] in the region of 25≤ Tlab ≤ 50 MeV [32]. The3P2 partial wave is special. Here a
NLO calculation with the pertinent LEC determined from the low-energy region yields results at higher energies that
strongly overestimate the empirical phase shifts, see, e.g. Ref. [28]. Such a LEC would likewise lead to a considerable
overestimation of theΛp cross section around and above theΣN threshold. In order to avoid this we fix this specific
LEC from theNN-phase shifts in an energy region corresponding to theΣN threshold, namelyTlab ≈ 150 MeV.

Utilizing the NN-phase shifts reduces the number ofP-wave contact terms that need to be determined in theYN
sector by roughly a factor two. Here the most important constraint is provided by theΛp cross section above theΣN
threshold, i.e. at aroundplab ≈ 800 MeV/c, which is roughly 10mbaccording to experiments [65, 66]. Agreement
with these data can be only achieved if the contributions from each of theP-waves (1P1, 3P0, 3P1, 3P2) is kept small,
which means in turn that the corresponding phase shifts haveto be small. The differential cross section forΣ−p→ Λn
has been measured at two energies near theΣN threshold and it is sensitive to theP-waves, too. We used this empirical
information to fix the remaining sixP-wave contact terms. But it should be said that this information is not sufficient
to pin them down reliably. Note that we set the LEC corresponding to the1P1-3P1 transition to zero.

Besides of contact terms with LECs that need to be determinedin a fit to data the potential includes also con-
tributions from one-meson and two-meson exchanges. The latter do not involve any free parameters. The coupling
constantf ≡ gA/2 f0 is fixed by utilizing the valuesgA = 1.26 and f0 ≈ fπ = 93 MeV. For theF/(F + D)-ratio we
adopt the SU(6) valueα = 0.4. It is close to the empirical value ofα ≈ 0.36−0.37, as determined recently in analyses
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Table 4: TheYNcontact terms for theP-waves for various cut–offs. The values of the LECs are in 104 GeV−4; the values ofΛ in MeV.

Λ 450 500 550 600 650 700
3P0 C27

3P0
1.47 1.49 1.51 1.55 1.60 1.71

C8s
3P0

2.50 2.50 2.50 2.50 2.50 2.50
3P1 C27

3P1
−0.43 −0.43 −0.43 −0.43 −0.43 −0.43

C8s
3P1

0.65 0.65 0.65 0.65 0.65 0.65
3P2 C27

3P2
−0.096 −0.063 −0.041 −0.025 −0.012 0.000

C8s
3P2

1.00 1.00 1.00 1.00 1.00 1.00
1P1 C10

1P1
0.49 0.49 0.49 0.49 0.49 0.49

C10∗
1P1

−0.14 −0.14 −0.14 −0.14 −0.14 −0.14

C8a
1P1

−0.65 −0.60 −0.58 −0.56 −0.54 −0.52
1P1-3P1 C8s8a

1P1− 3P1
0 0 0 0 0 0

of hyperon semi-leptonic decay data [67, 68].
In the spirit of the imposed SU(3) symmetry we keep all contributions from one- and two-meson exchanges, i.e.

also those fromπη, ηK, KK exchange. The large mass splitting between the Goldstone bosons induces a sizable
SU(3) breaking in the actualYN potential that is taken into account in our calculation. There is also an explicit SU(3)
symmetry breaking in the coupling constants as reflected in the empirical values of the decay constantsfπ, fK and
fη [69] which, in principle, should be taken into account in theNLO calculation. However, we have ignored such
effects in the results reported in the present paper. As a matterof fact, we have explored various scenarios in the
course of our investigation. In particular, we performed fits based on the empirical decay constants. We explored
also the situation when onlyππ exchange diagrams are kept and all two-meson exchanges involving the heavierK, η
mesons are omitted. Furthermore, in Ref. [70] we had presented results based on an incomplete NLO calculation, i.e.
where only the NLO contact terms were taken into account but no two-meson–exchange contributions. In all these
cases a comparable description of theYN data could be achieved, i.e. with aχ2 within 10-15% of the best values
achieved. Seemingly, all two-meson exchange effects could be absorbed into the LECs and, moreover, one couldstill
maintain SU(3) symmetry for these contact terms. A further uncertainty in our calculation is the value of theη-baryon
coupling, since we identified the physicalη with the octetη8. In our earlier investigation [20] we varied theη coupling
between zero and its octet value and we found very little influence on the description of the data. Thus, we refrain
from introducing a singlet coupling in the present study. Itis possible though that future calculations of hypernuclei
based on these chiral EFT interactions could indicate a preference for one or the other scenarios and/or yield evidence
for the need of an explicit SU(3) breaking in the contact terms.

Finally, let us mention that we did consider also theS-waves forNN scattering. In particular, we fixed the pertinent
five LECs from a fit to thenp 1S0 and3S1-3D1 phase shifts and mixing parameter in the energy rangeTlab ≤ 50 MeV,
independently of theYN interaction. Thereby it turned out that the LECs determinedfrom theNN phase shifts are
incompatible with those needed for the description of theYN data with regard to the SU(3) symmetry. The most
obvious case is the1S0 partial wave, where SU(3) symmetry implies thatVNN ≡ VΣN (I=3/2), see Tab. 1, so that the
(hadronic part of the) interaction in theΣ−n andΣ+p channels is unambiguously fixed once the LECs are determined
from thenpphases. However, with LECs determined from the latter channel a near-threshold bound state is obtained
in theΣ+p system and, as a consequence, the empiricalΣ+p → Σ+p cross section is grossly overestimated. This
happens despite of the SU(3) breaking in the interaction that arises from the contributions due to one-meson and two-
meson exchanges and despite of the additional Coulomb repulsion in theΣ+p system. Therefore, we must conclude
that within the scheme followed here a combined quantitative description of theNN andYN sectors based on strictly
SU(3) symmetric (LO and NLO) contact terms is not possible. Since at NLO an explicit SU(3) breaking in the LO
contact terms arises anyway, see Appendix B, we considered also a scenario where we took over the NLO contact
terms from the fit to theNN phase shifts and we fitted the remaining (LO and NLO)S-wave contact terms to theYN
data. In this case a description of theΛN andΣN data is possible, but with a noticeably increasedχ2. Moreover, we
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Figure 2: ”Total” cross sectionσ (as defined in Eq. (24)) as a function ofplab. The experimental cross sections are taken from Refs. [52] (filled
circles), [53] (open squares), [65] (open circles), and [66] (filled squares) (Λp → Λp), from [54] (Σ−p → Λn, Σ−p → Σ0n) and from [55]
(Σ−p→ Σ−p, Σ+p→ Σ+p). The red/dark band shows the chiral EFT results to NLO for variations of the cutoff in the rangeΛ = 500,. . .,650 MeV,
while the green/light band are results to LO forΛ = 550,. . .,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential
[36].

observe the questionable tendency of theΛp amplitude in the3S1 partial wave to become rather large for momenta
above theΣN threshold. Thus, we decided to determine all contact terms in theS-waves and theS-D transition from
a fit to theYN sector alone where it turns out that SU(3) symmetry for the LECs can be preserved.

The values of the contact terms obtained in the fitting procedure for the various cutoffs are listed in Tables 3 and
4.

4. Results and discussion

The results obtained at NLO are presented in Fig. 2 (red/dark bands), together with those at LO (green/light
bands). The bands represent the variation of the cross sections based on chiral EFT within the cutoff region of
Λ = 500− 650 MeV. Note that in the LO case variations ofΛ = 550− 700 MeV were considered [20]. For
comparison also results for the Jülich ’04 [36] meson-exchange model are shown (dashed lines),

Obviously, and as expected, the energy dependence exhibited by the data can be significantly better reproduced
within our NLO calculation. This concerns in particular theΣ+p channel. But also forΛp the NLO results are now
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Figure 3: As in Fig. 2, but now the experimental cross sections are taken from Refs. [57] (Σ−p→ Λn, Σ−p→ Σ0n), [73] (Σ−p→ Σ−p), and [74]
(Σ+p→ Σ+p).

well in line with the data even up to theΣN threshold. Furthermore, one can see that the dependence on the cutoff
mass is strongly reduced in the NLO case.

A quantitative comparison with the experiments is providedin Tab. 5. There we list the obtained overallχ2 but
also separate values for each data set that was included in the fitting procedure. Obviously the best results are achieved
in the rangeΛ = 500− 650 MeV. Here, in addition, theχ2 exhibits also a fairly weak cutoff dependence so that one
can really speak of a plateau region. For larger cutoff values theχ2 increases smoothly while it grows dramatically
when going to lower values. Therefore, in Fig. 2 and in the figures below we show only results based on variations of
the cutoff within this plateau region.

A total χ2 value of around 16 is quite good. Indeed, the best values achieved with phenomenological models,
say the Nijmegen NSC97 meson-exchange potentials [37], liealso in that region. We should add that our additional
requirements that we want to produce a correctly bound hypertriton and that we want a repulsiveΣN interaction in
the isospinI = 3/2 channel leads to a slightly increasedχ2. Without those constraints we could achieve values which
are around 5 % smaller. In any case, one has to say that one should not overrate theχ2. Given that there are only 36
data points theχ2 per data point amounts to≈ 0.5 only – which is somewhat low as compared to what one would
expect from a set of statistically sound data. As a matter of fact, the biggest single contribution to theχ2 comes from
theΣN charge-exchange reaction, see Tab. 5, and specifically froma single data point near threshold that is far off all
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Table 5: Comparison between the 36YN data and the theoretical results for the various cutoffs in terms of the achievedχ2. The last column in the
NLO section, denoted 600∗, contains result for an interaction where all two-meson-exchange contributions involving theη- and/or K meson have
been omitted, cf. text.

data NLO LO

Λ (MeV) 450 500 550 600 650 700 600∗ 600

Λp→ Λp Sechi-Zorn [52] 2.8 2.1 2.0 1.5 1.6 1.7 1.6 7.5

Alexander [53] 4.2 2.6 1.6 2.3 2.4 2.5 2.2 4.9

Σ−p→ Λn Engelmann [54] 4.3 3.7 3.9 4.1 4.4 4.5 4.0 5.5

Σ−p→ Σ0n Engelmann [54] 5.6 6.1 5.8 5.8 5.7 5.7 5.9 7.0

Σ−p→ Σ−p Eisele [55] 2.0 2.0 1.8 1.9 1.9 2.0 1.9 2.4

Σ+p→ Σ+p Eisele [55] 0.5 0.3 0.4 0.5 0.3 0.6 0.9 0.6

rR [56, 57] 0.3 0.1 0.2 0.1 0.2 0.3 0.1 0.5

totalχ2 19.7 16.8 15.7 16.2 16.6 17.3 16.5 28.3

other data points, see Fig. 2. When one omits this data point the totalχ2 would be around 10 and theχ2 per data point
would be≈ 0.3. Improvements in the order of 5 % on that level are certainlynot significant. In this context let us
mention theχ2 of preliminary results of our study that have been presentedin [71, 72] is not yet optimal. Specifically,
there the description of theΣ+p cross section was still inferior.

In Table 5 we include also results of anYN interaction where from all two-meson exchange contributions that arise
to NLO according to SU(3) symmetry only theππ exchange diagrams were kept. All two-meson exchange diagrams
involving the heavy mesonsη and/or K were omitted. We performed an exemplary fit within this scenario for the
cutoff Λ = 600 MeV and the correspondingχ2 values can be found in the column labeled by 600∗. It is obvious that a
comparable fit to the data can be achieved within such a scenario, too. Finally, in the last column of Table 5,χ2 results
for our LO interaction from Ref. [20] (forΛ = 600 MeV) are reproduced. Evidently, going to NLO allows to reduce
theχ2 by roughly 50 %!

A comparison of our results with integrated cross sections at higher energies is presented in Fig. 3. These data
were not included in the fitting procedure and, therefore, the shown results are genuine predictions of the chiral EFT
interaction. One can see that the cross sections achieved atNLO are now closer to those obtained from the Jülich
meson-exchange potential than the ones at LO, and to some extent they are also more in line with the data. But
given the large uncertainties in the experiments, even in the fairly recent measurements of theΣ−p→ Σ−p [73] and
Σ+p→ Σ+p [74] reactions, precise conclusions are difficult to draw.

Differential cross sections are shown in Figs. 4 and 5 and compared with available measurements [54, 55, 73, 74,
75]. Also these data were not included in the fitting procedure (as far as the LECs in theS-waves are concerned).
However, as already mentioned in the preceding section, thedifferential cross sections forΣ−p→ Λn were considered,
together with the integratedΛp cross section aroundplab ≈ 750− 850 MeV/c, in the “by hand” adjustment of the
LECs in theP-waves.

As can be seen from Fig. 4, the prediction of the NLO interaction for Σ−p → Λn at plab = 135 MeV/c agrees
well with the trend of the data [54]. The amplitude is dominated by the3S1 → 3S1 and3D1 → 3S1 transitions
so that the resulting angular distribution is rather flat. AtLO there are significantP-wave transitions (see the phase
shifts discussed below) that give rise to an enhancement of the cross section at backward angles. Such largeP-waves
arise at LO solely from the one-pion exchange; there are no contact terms yet in those partial waves that would allow
one to reduce theP-wave amplitudes as it was possible in the present NLO approach. The resulting cross section at
plab = 160 MeV/c is very similar. Here the data seem to indicate a clear enhancement in forward direction. It should
be said, however, that the experimental values shown in Fig.4 are not the result of a measurement at the specified
momenta, but rather an average over different momentum intervals. Specifically, forΣ−p → Λn the data [54] are
averages over the intervals 100≤ pΣ− ≤ 170 MeV/c and 150≤ pΣ− ≤ 170 MeV/c, respectively. In view of the large
error bars we refrain here from averaging our theoretical results and, following common practice, present predictions
at the average value of the momenta. The same is also true for the data from Ref. [55] which represent averages over
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Figure 4: Differential cross sectiondσ/dcosθ as a function of cosθ, whereθ is the c.m. scattering angle, at various values ofplab. The experimental
differential cross sections are taken from [54] (Σ−p→ Λn, Σ−p→ Σ0n) and from [55] (Σ−p→ Σ−p, Σ+p→ Σ+p). Same description of curves as
in Fig. 2.

150≤ pΣ− ≤ 170 MeV/c (for Σ−p→ Σ−p) and 160≤ pΣ+ ≤ 180 MeV/c (for Σ+p→ Σ+p), respectively.
Fig. 4 suggests that a somewhat different cocktail ofP-wave contributions, like the one predicted by the Jülich ’04

interaction (cf. the dashed lines), might be more in line with the experimental data. However, we postpone a thorough
determination of the LECs in theP-waves to future investigations. Here, as a first step, one would try to connect
our interaction with the effectiveYN interactions in a nuclear medium as determined from the analysis ofγ-ray data
for Λ hypernuclei [76] via a G-matrix calculation [77]. The results of such an analysis could provide additional
and valuable information on the spin–dependence of theYN force and, specifically, on the spin-spin and spin-orbit
interaction. Indeed, the spin-orbit splitting of theΛ single-particle levels in nuclei is experimentally well established
and very small [78, 79] and, therefore, should constitute a stringent constraint on the interaction. We expect that then
also the LEC for the1P1-3P1 transition potential can be fixed, which has been set to zero in the present work.

The data on differential cross sections at higher energies (cf. Fig. 5) are averages over 400≤ pΣ− ≤ 700 MeV/c, for
Σ−p→ Σ−p and over 300≤ pΣ+ ≤ 600 MeV/c [75] and 350≤ pΣ+ ≤ 750 MeV/c [74], respectively, forΣ+p→ Σ+p.
Also here the predictions of theYN interactions are for the momenta as specified in Fig. 5.

Scattering lengths for theΛp andΣ+p interactions in the1S0 and3S1 partial waves are summarized in Tab. 6.
Furthermore we provide results for the hypertriton bindingenergy. As already said, this binding energy had to be
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Figure 5: Differential cross sectiondσ/dcosθ as a function of cosθ, whereθ is the c.m. scattering angle, at various values ofplab. The experimental
differential cross sections are taken from [73] (Σ−p→ Σ−p), and from [75] (filled circles) and [74] (open circles) (Σ+p→ Σ+p). Same description
of curves as in Fig. 2.

taken as additional constraint in the fitting procedure because otherwise it would have not been possible to fix the
relative strength of the (S-wave) singlet- and triplet contributions to theΛp interaction. Tab. 6 lists also results for
two meson-exchange potentials, namely of the Jülich ’04 model [36] and the Nijmegen NSC97f potential [37], which
both reproduce the hypertriton binding energy correctly.

The Σ+p scattering length in the3S1 partial wave is positive, as it was already the case for our LOpotential,
indicating a repulsive interaction in this channel.

Table 6: TheYN singlet (s) and triplet (t) scattering lengths (in fm) and the hypertriton binding energy,EB (in MeV). The binding energies for the
hypertriton (last row) are calculated using the Idaho-N3LONN potential [27]. The experimental value for the3

Λ
H binding energy is -2.354(50)

MeV.

NLO LO Jülich ’04 NSC97f

[20] [36] [37]

Λ [MeV] 450 500 550 600 650 700 600

aΛp
s −2.90 −2.91 −2.91 −2.91 −2.90 −2.90 −1.91 −2.56 −2.60

rΛp
s 2.64 2.86 2.84 2.78 2.65 2.56 1.40 2.74 3.05

aΛp
t −1.70 −1.61 −1.52 −1.54 −1.51 −1.48 −1.23 −1.67 −1.72

rΛp
t 3.44 3.05 2.83 2.72 2.64 2.62 2.13 2.93 3.32

aΣ
+p

s −3.58 −3.59 −3.60 −3.56 −3.46 −3.49 −2.32 −3.60 −4.35

rΣ
+p

s 3.49 3.59 3.56 3.54 3.53 3.45 3.60 3.24 3.16

aΣ
+p

t 0.48 0.49 0.49 0.49 0.48 0.49 0.65 0.31 −0.25

rΣ
+p

t −4.98 −5.18 −5.03 −5.08 −5.41 −5.18 −2.78 −12.2 −28.9

(3
Λ
H) EB −2.39 −2.33 −2.30 −2.30 −2.30 −2.32 −2.34 −2.27 −2.30

TheΛp scattering lengths predicted at NLO turn out to be significantly larger than those obtained at LO – as
example for the latter we included the result for the cutoff Λ = 600 MeV in Tab. 6. In case of the1S0 channel, they
are even somewhat larger than the values of the meson-exchange potentials. We want to remind the reader that the
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Figure 6: TheΛp 1S0 and1P1 phase shiftsδ as a function ofplab. The red/dark band shows the chiral EFT results to NLO for variations of the
cutoff in the rangeΛ = 500, . . . ,650 MeV, while the green/light band are results to LO forΛ = 550, . . . ,700 MeV. The dashed curve is the result of
the Jülich ’04 meson-exchange potential [36].

hypertriton binding energy is much more sensitive to theΛN 1S0 strength than to that of the3S1-3D1 partial wave,
as is known from studies in the past [80, 81]. Thus, the value of the 1S0 scattering length is strongly influenced by
our demand to reproduce a correctly bound hypertriton. Interestingly, in the incomplete NLO calculation (i.e. without
two-meson–exchange contributions) presented in Ref. [70]a bound hypertriton was achieved withΛp 1S0 scattering
lengths around−2.6 fm, i.e. close to the values of the two meson-exchange potentials, cf. Tab. 6.

The hypertriton results discussed above were all obtained without an explicit three-body force (3BF). It has been
argued that the variation of the three-baryon binding energy with the cutoff Λ could provide a measure for the size of
the 3BF [82]. If so one would expect its effect to be somewhere in the range of 10-90 keV, based on the values listed
in Tab. 6. Formally the first non-vanishing contributions tothe 3BF appear at next-to-next-to-leading order (NNLO)
in the scheme that we follow [29]. But we want to point out thatour present calculation includes already some 3BF
effects. These are generated automatically in the employed coupled-channelΛN-ΣN formalism and occur in the
form of the transition of theΛ to theΣ in the intermediate (YNN) state. However, these contributions are two-body
reducible and, therefore, do not constitute a genuine (irreducible) 3BF. Note that discussions of 3BF effects in the
strangeness sector in the literature [23, 24, 25, 26] are often related to the case of an intermediateΣ, sometimes even
exclusively. One should distinguish its role from that of anirreducible 3BF which would be generated, for example,
by the excitation of theΣ(1385) resonance in the intermediate state – analogous to the 3BF that arises in the standard
three-nucleon problem due to the∆(1232) excitation.

Calculations for the four-body hypernuclei4
Λ
H and4

Λ
He based on the preliminary version of the NLO interaction

presented in [71] can be found in Ref. [82]. That interactionreproduces qualitatively theΛ separation energies for
4
Λ
H and, in particular, it yields the correct ordering of the 0+ and 1+ states. However, a quantitative agreement with

the experimental information is not achieved. Corresponding computations for the EFT interactions discussed in the
present paper are in progress [83].

Finally, let us present predictions for a selection ofΛp andΣ+p phase shifts, evaluated in the isospin basis. They
can be found in Figs. 6 - 9. The behavior of the1S0 phase shift in theΛp channel predicted at NLO is similar to the
one of the Jülich ’04 model and other meson-exchange potentials [37, 38] though may be slightly more repulsive for
higher momenta, cf. Fig. 6. The1P1 phase shift is also similar to the result of the Jülich modeland has opposite sign
as compared to the LO result. Note that this partial wave is the onlyP-wave where we observed a noticeable cutoff
dependence of the results and we counterbalanced this via a smooth variation of the LECC8a

1P1
, see Tab. 4. In all other

P-waves the value of the additional LEC not determined from the NN sector (C8s
ξ

) is fixed independently of the cutoff
Λ.
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Figure 7: TheΛp phase shifts for the coupled3S1-3D1 partial wave as a function ofplab. Same description of curves as in Fig. 6.

Phase shifts for the coupled3S1-3D1 partial waves and the mixing parameterǫ1 can be found in Fig. 7. Evidently,
the3S1 phase shift based on the NLO interaction passes through 90◦ slightly below theΣN threshold. However, also
in the3D1 phase shift and the mixing parameter we observe an appreciable increase near that threshold. A rise of the
3S1 (or 3D1) phase shift beyond 90◦ is typical for the presence of an unstable bound state in theΣN system [84, 85],
see also the discussion in [86]. In case of theYN interaction at LO and the Jülich ’04 model [36] none of the phases
pass through 90◦ and an ordinary cusp is predicted. Such a behavior is caused by an inelastic virtual state in the
ΣN system. It should be said, however, that the majority of the meson-exchange potentials [35, 37, 38] produce an
unstable bound state, similar to our NLO interaction. The only characteristic difference of the chiral EFT interactions
to the meson-exchange potentials might be the mixing parameter ǫ1 which is fairly large in the former case and close
to 45◦ at theΣN threshold, see Fig. 7. It is a reflection of the fact that the pertinentΛp T-matrices (for the3S1→3S1,
3D1→3D1, and3S1↔3D1 transitions) are all of the same magnitude. Indeed, these amplitudes yield very similar
contributions to theΛp cross section in the vicinity of theΣN threshold.

In this context let us mention a recent experimental paper where the energy region around theΣN threshold was
investigated in the reactionpp→ K+Λp via a measurement of theΛp invariant mass [87] and where a pronounced
structure was observed. For a discussion and summary of older measurements providing evidence for a strong en-
hancement of theΛp amplitude near theΣN threshold see Ref. [86].

Predictions for the3P partial waves of theΛp system are displayed in Fig. 8. One can see that the3P0 and3P1

phase shifts are reduced at NLO as compared to those obtainedat LO while they are larger in case of the3P2. Note that
the behavior of the NLO results is strongly influenced by the LECs as fixed from the correspondingNN partial waves
because, according to SU(3) symmetry, the pertinent coefficient (C27) dominates also theΛN → ΛN interaction,
see Tab. 1. Obviously, there are sizable quantitative differences between the results for the EFT interaction and the
meson-exchange potential.

Results for theΣ+p system are shown in Fig. 9, where we restrict ourselves to theS-waves. We have switched
off the Coulomb interaction for the computation of the phase shifts so that the presented results are those for theΣN
I = 3/2 channel. There is no coupling to theΛN system and therefore the phase shifts are elastic in the momentum
region considered.

Both partial waves are quite interesting. First, with regard to the1S0, strict SU(3) symmetry implies thatVNN ≡
VΣN, see Tab. 1, so that in an exactly SU(3) symmetric world the correspondingpp andΣ+p phase shifts would be
the same. In our calculation we break the symmetry already onthe potential level by using the physical masses of the
exchanged pseudoscalar mesons and in addition by using the physical baryon masses when solving the LS equation
(23). As already mentioned in Sect. 3 we had to introduce alsoan SU(3) breaking into the contact terms. It turned
out to be impossible to describe thepp 1S0 phase shifts and theΣ+p cross sections with a consistent set of LECs that
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Figure 8: TheΛp 3P-wave phase shiftsδ as a function ofplab. Same description of curves as in Fig. 6.

fulfill SU(3) symmetry, at least on the level of our NLO calculation. As a matter of fact, the1S0 amplitude of our
NLO interaction alone saturates already more or less the experimentalΣ+p cross sections. Employing the LECs as
fixed from a fit to theppphase shifts yields a potential that is much more attractiveand that produces a near-threshold
bound state in theΣ+p system and, consequently, cross sections that are roughly four times larger than experiment.

Apparently meson-exchange interactions like the Nijmegenpotentials are able to describe theNN andYNsystems
simultaneously, without any major obvious SU(3) breaking.However, usually a special (phenomenological) treatment
of the short-ranged part of the potential is required, as discussed, for example, in Ref. [38]. In the potentials of the
Jülich group [35, 36] SU(3) symmetry is broken via the employed vertex form factors.

The coupled3S1-3D1 partial wave of theΣ+p system has a strong influence on the properties of theΣ in nuclear
matter. Specifically, a repulsiveΣ single-particle potential in nuclear matter [62, 63], as supported by present days
experimental evidence [59, 60, 61], can only be achieved with a repulsive3S1 interaction in theI = 3/2 channel.
In the course of our investigation we found that we can fit the availableYN data equally well with an attractive or a
repulsive3S1 interaction. The difference in the achievedχ2 is marginal as already pointed out above. In view of the
SU(3) structure given in Tab. 1 this may be not too surprising. The3S1 partial wave of theΣN I = 3/2 channel resides
in the 10 representation which does not contribute to any of the otherNN andYN systems. Of course, its contribution
enters indirectly because the measured (physical) reactionsΣ−p→ Σ−p andΣ−p→ Σ0n involve amplitudes that result
from combinations of theΣN I = 3/2 andI = 1/2 interaction potentials.

Our NLO interaction produces a moderately repulsive3S1 phase shift as can be seen in Fig. 9, comparable to the
one predicted by the LO potential. For the latter, calculations of theΣ single-particle potential have been performed
[88] and indicate a values ofUΣ(k = 0) ≈ 12 MeV at nuclear matter saturation density.

Recent lattice QCD calculations [19] suggest a much more strongly repulsive3S1 phase shift in theΣN I = 3/2
channel, when extrapolating the lattice results obtained for mπ ≈ 389 MeV to the physical pion mass. But within
our framework we cannot accommodate a much more repulsive3S1 amplitude. Any sizable increase in the repulsion
would yield a3S1 amplitude which practically saturates the experimentalΣ+p cross section alone and, consequently,
there would be no room anymore for the contribution from the spin-singlet amplitude – which is likewise large as
discussed above. Thus, a more strongly repulsive3S1 phase shift would immediately result in a dramatic deterioration
of the achievedχ2.

5. Summary and outlook

Chiral effective field theory, successfully applied in Refs. [27, 28] to theNN interaction, also works well for the
baryon-baryon interactions in the strangenessS = −1 (ΛN − ΣN) andS = −2 (ΛΛ − ΞN − ΣΣ) [20, 49] sectors.
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Figure 9: TheΣ+p S-wave phase shiftsδ as a function ofplab. Same description of curves as in Fig. 6.

As shown in our earlier work [20], already at leading order the bulk properties of theΛN andΣN systems can be
reasonably well accounted for. The new results for theYN interaction presented here, obtained to next-to-leading order
in the Weinberg counting, are very encouraging. First thereis a visible improvement in the quantitative reproduction
of the available data onΛN andΣN scattering and, secondly, the dependence on the regularization scheme is strongly
reduced as compared to the leading-order result. Indeed thedescription of theYN system achieved at NLO is now on
the same level of quality as the one by the most advanced meson-exchangeYN interactions.

At the considered order there are contributions from one- and two-pseudoscalar-meson exchange diagrams and
from four-baryon contact terms without and with two derivatives. SU(3) flavor symmetry is used as guiding principle
in the derivation of the interaction. This means that all thecoupling constants at the various baryon-baryon-meson
vertices are fixed from SU(3) symmetry and the symmetry is also exploited to derive relations between the contact
terms. Furthermore, contributions from all mesons of the pseudoscalar octet (π, K, η) are taken into account. The
SU(3) symmetry is, however, broken by the masses of the pseudoscalar mesons and the baryons for which we take
the known physical values.

Given the presently available data base with its still largeuncertainties, we are able to achieve a combined de-
scription of theΛN andΣN systems without any explicit SU(3) breaking in the contact interactions. However, we
found that a simultaneous description of theNN interaction with contact terms fulfilling strict SU(3) symmetry is not
possible. Here the strength of the contact interaction in the 27-representation that is needed to reproduce thepp (or
np) 1S0 phase shifts is simply not compatible with what is required for the description of the empiricalΣ+p cross
section.

In any case, it is likely that future (and more precise) data will demand to depart from SU(3) symmetry in the
contact terms even with regard to theΛN andΣN interactions. Especially studies of few- and many-body systems
involving hyperons, which can be done in a consistent way in the framework followed in the present work, could
provide evidence for the need of an explicit SU(3) breaking.So far reliable microscopic calculations that utilize
directly the elementaryYN interaction are only possible (and have been done) for systems with at most four baryons,
namely within the Faddeev-Yakubovsky approach [89]. However, it is expected that new approaches that have been
developed and refined over the past few years and that are successfully applied in studies of ordinary nuclei allow one
to study also hypernuclei with a larger number of baryons with comparable accuracy. Thus, we consider the present
investigation as a first and exploratory step towards a more thorough understanding of the baryon-baryon interaction
in the strangeness sector.
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Appendix A. Two–pseudoscalar-meson exchange contributions

In this section we present the next-to-leading order contributions from two-pseudoscalar-meson exchange shown
in Fig. 1. The calculation of these potentials was done according to the rules of SU(3) heavy-baryon chiral perturba-
tion theory in the center-of-mass frame and in the isospin limit. Ultraviolet divergences are treated by dimensional
regularization, which introduces a scaleλ. These divergences are parametrized in anR-term which is absorbed by
contact terms. In the used renormalization scheme it is defined as

R=
2

d − 4
+ γE − 1− ln (4π) , (A.1)

with the space-time dimensiond.
As for the one-pseudoscalar-meson exchange, Eq. (22), the two-pseudoscalar-meson exchange potentials are given

by a general expression, where the proper meson masses have to be inserted, and which has to be multiplied with
appropriate SU(3) factorsN. We display this factor next to the Feynman diagram and in thecorresponding tables. The
factors contain coupling constants and isospin factors andare different for each combination of baryons and mesons.

In the following we will show the results for the five diagram types one after another.

Appendix A.1. Planar box

Bil

M1

Bir

M2

B1 B2

B3 B4

Figure A.1: Planar box

N = fB1Bil M1 fBil B3M2 fB2Bir M1 fBir B4M2IB1B2→B3B4

The planar box, Fig. A.1, has an irreducible part and a reducible part coming from iterating the one-meson exchange
to second order. The reducible part is generated by solving the Lippmann-Schwinger equation and, therefore, is not
part of the potential. The irreducible part of this diagram can be obtained by regarding the residues of poles of the
meson propagators, but leaving out poles of the baryon propagators. One obtains a central potential (1VC), a spin-spin
potential (σ1 · σ2VS) and a tensor-type potential (σ1 · qσ2 · qVT). With the momentum transferq = |p ′ − p | and the
masses of the two exchanged mesons,m1 andm2, the irreducible potentials can be written in closed analytical form,

Vplanar box
irr,C (q) =
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Table A.1: Isospin factorsI for planar box diagrams.Bil Bir indicates the two baryons in the intermediate state andππ etc. the exchanged pair of
mesonsM1M2, cf. Fig. A.1.

transition M1M2◗
◗◗Bil Bir

ππ πη ηπ ηη πK ηK M1M2◗
◗◗Bil Bir

Kπ Kη K K

(isospin)

NN→ NN

(I = 0) NN 9 −3 −3 1 0 0 NN 0 0 0

(I = 1) NN 1 1 1 1 0 0 NN 0 0 0

ΣN → ΣN

(I = 1/2) ΣN 4 −2 −2 1 2 −1 NΣ 2 −1 1

ΛN 3 0 0 0 3 0 NΛ 3 0 3

(I = 3/2) ΣN 1 1 1 1 2 2 NΣ 2 2 4

ΛN → ΣN

(I = 1/2) ΣN 2
√

3 −
√

3 0 0
√

3 0 NΣ 2
√

3 −
√

3
√

3

ΛN 0 0 −
√

3 0 0 −
√

3 NΛ −
√

3 0 −
√

3

ΛN → ΛN

(I = 1/2) ΣN 3 0 0 0 3 0 NΣ 3 0 3

ΛN 0 0 0 1 0 1 NΛ 0 1 1

Vplanar box
irr,T (q) = − N

8π2

[

L (q) − 1
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−

m2
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2

2q2
ln
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m2
+

R
2
+ ln

√
m1m2

λ

]

= − 1
q2

Vplanar box
irr,S (q) , (A.3)

where we have defined the functions

w (q) =
1
q

√

(

q2 + (m1 +m2)2
) (

q2 + (m1 −m2)2
)

, L (q) =
w (q)
2q

ln

(

qw(q) + q2
)2
−

(

m2
1 −m2

2

)2

4m1m2q2
. (A.4)

The relation (σ1 × q) · (σ2 × q) = q2
σ1 · σ2 − (σ1 · q) (σ2 · q) is exploited for the connection between the spin-spin

and tensor-type potential. The isospin factorsI can be found in Tab. A.1. Two-meson exchange contributions that
involve a singleK (or K) lead to an interchange of the nucleon and the hyperon in the final state. The recoupling of
the corresponding isospin states yields a factor (−1) for some of the transitions that is already included in thevalues
given in Tab. A.1. The same applies to the Tables given below.In this context let us mention that for diagrams with
an interchange of the nucleon and the hyperon in the final state, likewise an appropriate treatment of the spin-space
part is required. In particular, the momentum transfer is then given byq = |p ′ + p |.

Note that the potential given above and also the following potentials are finite forq → 0. Terms proportional
to 1/q2 and/or 1/q4 in Eqs. (A.2) and (A.3) are cancelled by corresponding termsin the functionsL(q) andw(q) of
Eq. (A.4) in the limit of smallq. We perform an expansion of the potentials in a power series for smallq so that these
cancellations can be taken into account analytically and weobtain stable results in the numerical calculations. For
equal meson masses some terms in the potentials vanish and the expressions reduce to the results in Refs. [32, 90].
This is the case in theNN interactions of Refs. [32, 27, 28] based on chiral EFT, whereonly contributions from
two-pion exchange are taken into account.

In the actual calculations only the non-polynomial part of Eqs. (A.2) and (A.3) is taken into account, i.e. the pieces
proportional toL(q) and to 1/q2 and 1/q4. The polynomial part only renormalizes the LO and NLO contact terms and,
therefore, is not considered. The contributions involvingthe regularization scheme (i.e. that depend onR) are likewise
omitted. As already said, their effect is assumed to be also absorbed by the contact terms and a renormalization of the
coupling constants, see, e.g., the corresponding discussion in Appendix A of [32] for theNN case. We want to remark
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that the majority of those terms omitted involve the masses of the pseudoscalar mesons and, therefore, generate an
SU(3) symmetry breaking. Thus, the SU(3) symmetry imposed on our contact interaction (at least forΛN andΣN) is
understood as one that is fulfilled on the level of the renormalized coupling constants.

All statements above apply also to the other contributions to the potential described below.

Appendix A.2. Crossed box

Bil

M1

Bir

M2

B1 B2

B3 B4

Figure A.2: Crossed box

N = fB1Bil M1 fBil B3M2 fB2Bir M2 fBir B4M1IB1B2→B3B4

The crossed box diagrams, Fig. A.2, yield a central, a spin-spin, and a tensor-type potential. Due to the similar
structure but different kinematics, the potentials resulting from the crossed boxes are the same as those of the planar
box, up to a sign:

Vcrossed box
C (q) = −Vplanar box

C, irr (q) , (A.5)

Vcrossed box
T (q) = − 1

q2
Vcrossed box

S (q) = Vplanar box
T, irr (q) . (A.6)

Note that there is no iterated part in case of the crossed boxes. The corresponding isospin factorsI can be found in
Tab. A.2.

Appendix A.3. Triangles
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Figure A.3: Left triangle

N = fB2Bi M1 fBi B4M2IB1B2→B3B4
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Figure A.4: Right triangle

N = fB1Bi M1 fBi B3M2IB1B2→B3B4

The two triangle diagrams, Figs. A.3 and A.4, lead to equal potentials, but with different SU(3) factors. They con-
tribute only to the central potential and the correspondingexpression is given by
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The isospin factorsI are stated in Tables A.3 and A.4.
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Table A.2: Isospin factorsI for crossed box diagrams.Bil Bir indicates the two baryons in the intermediate state andππ etc. the exchanged pair of
mesonsM1M2, cf. Fig. A.2.

transition M1M2◗
◗◗Bil Bir

ππ πη ηπ ηη Kπ Kη M1M2◗
◗◗Bil Bir

πK ηK KK

(isospin)

NN→ NN

(I = 0) NN −3 −3 −3 1 0 0 ΣΣ 0 0 3

ΛΣ,ΣΛ 0 0 3

ΛΛ 0 0 −1

(I = 1) NN 5 1 1 1 0 0 ΣΣ 0 0 5

ΛΣ,ΣΛ 0 0 1

ΛΛ 0 0 1

ΣN → ΣN

(I = 1/2) ΣN 0 −2 −2 1 0 0 ΣΣ 0 −1 0

NN 0 0 0 0 5 −1 ΞΣ 0 0 5

ΛN −1 0 0 0 0 0 ΛΛ 1 0 0

ΞΛ 0 0 −1

ΛΣ,ΣΛ 2 0 0

(I = 3/2) ΣN 3 1 1 1 0 0 ΣΣ 3 2 0

NN 0 0 0 0 2 2 ΞΣ 0 0 2

ΛN 2 0 0 0 0 0 ΛΛ 1 0 0

ΞΛ 0 0 2

ΛΣ,ΣΛ −1 0 0

ΛN→ ΣN

(I = 1/2) ΣN −2
√

3 −
√

3 0 0 0 0 ΣΣ 2
√

3 0 0

NN 0 0 0 0
√

3 −
√

3 ΞΣ 0 0 −
√

3

ΛN 0 0 −
√

3 0 0 0 ΣΛ −
√

3 0 0

ΛΣ 0 −
√

3 0

ΞΛ 0 0
√

3

ΛN → ΛN

(I = 1/2) ΣN 3 0 0 0 0 0 ΣΣ 3 0 0

NN 0 0 0 0 3 1 ΞΣ 0 0 3

ΛN 0 0 0 1 0 0 ΞΛ 0 0 1

ΛΛ 0 1 0
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Table A.3: Isospin factorsI for triangle diagrams with theBBMM vertex at the left baryon.Bi denotes the baryon in the intermediate state andππ

etc. the exchanged pair of mesonsM1M2, cf. Fig. A.3.

transition M1M2◗
◗◗Bi

ππ πK ηK K K M1M2◗
◗◗Bi

Kπ Kη KK

(isospin)

NN→ NN

(I = 0) N 12 0 0 0 Σ 0 0 −12

(I = 1) N −4 0 0 0 Σ 0 0 −8

Λ 0 0 −4

ΣN → ΣN

(I = 1/2) N 16 1 −
√

3 0 Σ −2
√

3 −4

0 0 0 0 Λ 1 0 4

(I = 3/2) N −8 −2 2
√

3 0 Σ 4 −2
√

3 2

0 0 0 0 Λ −2 0 −2

ΛN→ ΣN

(I = 1/2) N 0 3 −3
√

3 0 Σ −6 3
√

3 0

0 0 0 0 Λ 3 0 0

ΛN→ ΛN

(I = 1/2) N 0 3
√

3 3 0 Σ −3
√

3 0 0

0 0 0 0 Λ 0 −3 0

Appendix A.4. Football

M2

M1

B1 B2

B3 B4

Figure A.5: Football diagram

N = IB1B2→B3B4

The football diagrams, Fig. A.5, give contributions to the central potential only,

Vfootball
C (q) =

N

3072π2 f 4
0

[

− 2
(

m2
1 +m2

2

)

−

(

m2
1 −m2

2

)2

2q2
− 5

6
q2 +

(

3
(

m2
1 +m2

2

)

+ q2
)

(

R
2
+ ln

√
m1m2

λ

)

−
m2

1 −m2
2

2q4

(

(

m2
1 −m2

2

)2
+ 3

(

m2
1 +m2

2

)

q2
)

ln
m1

m2
+ w2 (q) L (q)

]

. (A.8)

The isospin factorsI can be found in Table A.5.
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Table A.4: Isospin factorsI for triangle diagrams with theBBMM vertex at the right baryon.Bi denotes the baryon in the intermediate state and
ππ etc. the exchanged pair of mesonsM1M2, cf. Fig. A.4.

transition M1M2◗
◗◗Bi

ππ πK ηK KK M1M2◗
◗◗Bi

Kπ Kη K K

(isospin)

NN→ NN

(I = 0) N 12 0 0 0

Σ 0 0 0 −12

(I = 1) N −4 0 0 0

Σ 0 0 0 −8

Λ 0 0 0 −4

ΣN → ΣN

(I = 1/2) Σ 4 −2
√

3 0 N 1 −
√

3 10

Λ 4 1 0 0

Ξ 0 0 0 −2

(I = 3/2) Σ −2 4 −2
√

3 0 N −2 2
√

3 4

Λ −2 −2 0 0

Ξ 0 0 0 −8

ΛN → ΣN

(I = 1/2) Σ 4
√

3 3
√

3 0 0 N −3
√

3 −3 −2
√

3

Λ 0 0 3 0

Ξ 0 0 0 −2
√

3

ΛN→ ΛN

(I = 1/2) Λ 0 0 −3 0 N 3
√

3 3 6

Σ 0 −3
√

3 0 0

Ξ 0 0 0 −6
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Table A.5: Isospin factorsI for football diagrams.ππ etc. indicates the exchanged pair of mesonsM1M2, cf. Fig. A.5.

transition ππ Kπ Kη πK ηK KK K K

(isospin)

NN→ NN

(I = 0) −24 0 0 0 0 12 12

(I = 1) 8 0 0 0 0 20 20

ΣN → ΣN

(I = 1/2) −32 −3 −3 −3 −3 −8 −8

(I = 3/2) 16 6 6 6 6 4 4

ΛN → ΣN

(I = 1/2) 0 −9 −9 −9 −9 0 0

ΛN → ΛN

(I = 1/2) 0 9 9 9 9 0 0

Appendix B. SU(3) breaking

Appendix B.1. SU(3) breaking in the contact terms

In addition to the SU(3) symmetric contact terms given in Sect. 2 that arise at NLO, there are further contact terms
at this order that lead to an explicit SU(3) symmetry breaking. These terms contain new, i.e. additional, low-energy
constants. As already mentioned in Sect. 3, the lack of experimental data makes it practically impossible to fix those
contact terms and, therefore, we decided to set all the corresponding constants to zero. However, for completeness
and for future reference, we summarize here the structure ofthe pertinent contributions.

First there would be, in principle, relativistic corrections (1/MB) to the leading order contact terms [20],

L1 = Ci
1 tr

(

(B̄α(Γi B)αB̄
β(Γi B)β

)

, L2 = Ci
2 tr

(

B̄αB̄β(Γi B)β(Γ
i B)α

)

, L3 = Ci
3 tr

(

B̄α(Γi B)α
)

tr
(

B̄β(Γi B)β
)

, (B.1)

which break SU(3) symmetry because of different baryon masses. Here a sum over the different elements of the Dirac
algebra,Γi ∈ {1, γµ, γ5, γ5γµ, σµν}, is implied. The indicesα andβ are Dirac indices. However, since the corrections
to the baryon mass in the chiral limit are of orderO(q2), explicit symmetry breaking due to these corrections doesnot
appear up to NLO.

However, NLO contact terms with an insertion of the externalfield χ, which is of orderO(q2), are possible. In the
case of baryon-baryon scattering that field amounts to

χ = 2B0





















mu 0 0
0 md 0
0 0 ms





















≈





















m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π





















. (B.2)

The following baryon-baryon contact terms with insertionsof χ are possible [48]:

L1 = Ci
1 tr

(

B̄α χ (Γi B)αB̄
β(Γi B)β

)

,

L2 = Ci
2 tr

(

B̄α(Γi B)α χ B̄β(Γi B)β
)

,

L3 = Ci
3 tr

(

B̄α χ B̄β(Γi B)β(Γ
i B)α

)

+ tr
(

B̄αB̄β(Γi B)β χ (Γi B2)α
)

,
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L4 = Ci
4 tr

(

B̄αB̄β χ (Γi B)β(Γi B)α
)

,

L5 = Ci
5 tr

(

B̄αB̄β(Γi B)β(Γi B)α χ
)

,

L6 = Ci
6 tr

(

B̄α(Γi B)α χ
)

tr
(

B̄β(Γi B)β
)

,

L7 = Ci
7 tr

(

B̄α χ
)

tr
(

(Γi B)αB̄
β(Γi B)β

)

+ tr
(

B̄α(Γi B)αB̄
β
)

tr
(

(Γi B)β χ
)

, (B.3)

and lead to an explicit SU(3) symmetry breaking linear in thequark masses, since we usemu = md , ms. Using these
Lagrangians one obtains terms that contribute to the1S0 and3S1 partial waves (only). In the following we list the
results for different transitions (with isospinI ).

NN→ NN, I = 0:

V(1S0) = 0 , (B.4)

V(3S1) = 4π
[

4C1
3S1

m2
π +C2

3S1

(

8m2
K − 4m2

π

)

+C6
3S1

(

8m2
K − 4m2

π

) ]

= m2
πĈ

10∗ , (B.5)

NN→ NN, I = 1:

V(1S0) = 4π
[

4C1
1S0

m2
π +C2

1S0

(

8m2
K − 4m2

π

)

+C6
1S0

(

8m2
K − 4m2

π

) ]

= m2
πĈ

27 , (B.6)

V(3S1) = 0 , (B.7)

ΛN → ΛN, I = 1/2:

V(1S0) =4π
[

1
3C1

1S0

(

4m2
K +m2

π

)

+C2
1S0

(

3m2
K − 4

3m2
π

)

+C3
1S0

(

4
3m2

K −m2
π

)

+ 1
6C4

1S0
m2
π

+ 1
6C5

1S0

(

2m2
K −m2

π

)

+ 2
3C6

1S0

(

5m2
K − 2m2

π

)

+ 4
3C7

1S0

(

m2
K −m2

π

) ]

= 1
10m2

π

(

9Ĉ27 + Ĉ8s
)

, (B.8)

V(3S1) =4π
[

1
3C1

3S1

(

4m2
K −m2

π

)

+ 1
3C2

3S1

(

7m2
K − 4m2

π

)

+C3
3S1

(

4m2
K −m2

π

)

+ 3
2C4

3S1
m2
π

+C5
3S1

(

3m2
K − 3

2m2
π

)

+ 2
3C6

3S1

(

5m2
K − 2m2

π

)

+ 4C7
3S1

(

m2
K −m2

π

) ]

= 1
2m2
π

(

Ĉ10∗ + Ĉ8a
)

, (B.9)

ΛN → ΣN, I = 1/2:

V(1S0) = 4π
[

C1
1S0

m2
π +C2

1S0
m2

K +C3
1S0

(

m2
π − 2m2

K

)

− 1
2C4

1S0
m2
π +

1
2C5

1S0

(

m2
π − 2m2

K

)

− 2C7
1S0

(

m2
π +m2

K

) ]

= 3
10m2

π

(

Ĉ8s − Ĉ27
)

+
(

m2
K −m2

π

)

Ĉ1 , (B.10)

V(3S1) = 4π
[

−C1
3S1

m2
π −C2

3S1
m2

K +C3
3S1

(

2m2
K +m2

π

)

+ 3
2C4

3S1
m2
π +C5

3S1

(

3m2
K − 3

2m2
π

)

+ 2C7
3S1

(

m2
K −m2

π

) ]

= 1
2m2
π

(

Ĉ10∗ − Ĉ8a
)

+
(

m2
K −m2

π

)

Ĉ2 , (B.11)

ΣN → ΣN, I = 1/2:

V(1S0) = 4π
[

−C1
1S0

m2
π −C2

1S0
m2

K + 3C3
1S0

m2
π +

3
2C4

1S0
m2
π +

3
2C5

1S0

(

2m2
K −m2

π

)

+ 2C6
1S0

m2
K

]

= 1
10m2

π

(

Ĉ27 + 9Ĉ8s
)

+
(

m2
K −m2

π

)

Ĉ3 , (B.12)

V(3S1) = 4π
[

C1
3S1

m2
π +C2

3S1
m2

K + 3C3
3S1

m2
π +

3
2C4

3S1
m2
π +

3
2C5

3S1

(

2m2
K −m2

π

)

+ 2C6
3S1

m2
K

]

= 1
2m2
π

(

Ĉ10∗ + Ĉ8a
)

+
(

m2
K −m2

π

)

Ĉ4 , (B.13)
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ΣN → ΣN, I = 3/2:

V(1S0) = 4π
[

2C1
1S0

m2
π + 2C2

1S0
m2

K + 2C6
1S0

m2
K

]

= m2
πĈ

27 +
(

m2
K −m2

π

)

Ĉ5 , (B.14)

V(3S1) = 4π
[

− 2C1
3S1

m2
π − 2C2

3S1
m2

K + 2C6
3S1

m2
K

]

= m2
πĈ

10 . (B.15)

We introduced here appropriately redefined constantsĈ so that the SU(3) breaking is clearly visible. In case of
flavor symmetry wheremπ = mK the leading order SU(3) relations, cf. Tab. 1, are obtained and the constants can be
absorbed in the leading order contact terms. Ifmπ , mK one obtains additional (though suppressed) constants thatare
proportional tom2

K −m2
π.

Appendix B.2. SU(3) breaking in the OBE contribution

At NLO and NNLO there are corrections to the one-meson exchange potential due to differences in the baryon
masses. Energy conservation leads to

√

p 2 + M2
B1
+

√

p 2 + M2
B2
=

√

p ′2 + M2
B3
+

√

p ′2 + M2
B4
, (B.16)

and, therefore, in some casesp2
, p′2 and/or q0 , 0, where

q0 = ∆E = E3
p′ − E1

p = E2
p − E4

p′ . (B.17)

UsingMBi = M0 + O
(

p2
)

[50] and performing an expansion in 1/M0 one obtains

VOBE
B1B2→B3B4

= − fB1B3P fB2B4PIB1B2→B3B4

1

q 2 − q2
0 +m2

P

[

σ1 · qσ2 · q

+
p ′2 − p 2

4M2
0

(

σ1 · p′ σ2 · p′ − σ1 · pσ2 · p
)

+
q0

M0

(

σ1 · pσ2 · p ′ − σ1 · p ′σ2 · p
)

]

. (B.18)

The first term gives rise to the leading order tensor potential, see Eq. (22), but with a shiftq 2 → q 2 − q2
0 caused by

the mass differences of the baryons, i.e.q0 ≈ ∆M where∆M = (MB1 + MB4 − MB3 − MB2)/2 [38]. The last two terms
in Eq. (B.18) give a formal contribution beyond LO. The term proportional to

(

p ′2 − p 2
)

contributes, in general, only
off-shell. An exception are transitions where the baryon masses in the initial state are not equal to those of the final
state, cf. Eq. (B.16). For theYN interaction considered here this is only the case for theVΛN→ΣN transition potential.
In the present study we have neglected all these corrections.

There are also deviations of the meson-baryon coupling constants from the SU(3) values which, in principle,
should be taken into account in a NLO calculation. Specifically, there is an explicit SU(3) symmetry breaking in the
empirical values of the decay constants [69],

fπ = 92.4 MeV, fη = (1.19± 0.01)fπ, fK = (1.30± 0.05)fπ . (B.19)

A somewhat smaller SU(3) breaking occurs also in the axial coupling constants, see [67, 68, 91] but also [92, 93]. All
these effects are likewise not taken into account in the present study. Rather we use the standard SU(3) relations for
the baryon-baryon-meson coupling constants Eq. (21) with the valuesgA = 1.26 andf0 ≈ fπ = 93 MeV.
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