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The total elastic stiffness of two contacting bodies with a microscopically rough interface has an interfacial
contribution K that is entirely attributable to surface roughness. A quantitative understanding of K is important
because it can dominate the total mechanical response and because it is proportional to the interfacial contributions
to electrical and thermal conductivity in continuum theory. Numerical simulations of the dependence of K on the
applied squeezing pressure p are presented for nominally flat elastic solids with a range of surface roughnesses.
Over a wide range of p, K rises linearly with p. Sublinear power-law scaling is observed at small p, but the
simulations reveal that this is a finite-size effect. We derive accurate, analytical expressions for the exponents and
prefactors of this low-pressure scaling of K by extending the contact mechanics theory of Persson to systems of
finite size. In agreement with our simulations, these expressions show that the onset of the low-pressure scaling

regime moves to lower pressure as the system size increases.
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I. INTRODUCTION

Two solids in mechanical contact tend to touch at only a
miniscule fraction of their apparent contact area A, because
their surfaces are microscopically rough [1-4]. This imperfect
contact has profound implications for transmission of charge,
heat, and forces through the interface. The effect of the
interface can be expressed in terms of an interfacial stiffness
or conductance that adds in series with the bulk response of
two solids with ideal flat surfaces [5,6]. Improved theories
of these interfacial contributions are important because they
frequently dominate the total response of the system and are
a strong function of the normal force F (or load) pushing
the solids together. In this paper, we consider the scaling of
stiffness with F for nonadhesive self-affine rough surfaces.
The results are more generally applicable since the shear and
normal stiffness and electrical and heat conductance are all
proportional to each other within linear-response continuum
mechanics [6].

In a pioneering experimental work, Berthoud and Baum-
berger found that the interfacial stiffness was proportional to F'
for nonadhesive solids with very different elastic properties [5].
The proportionality can be expressed as

K = p/uy, (D

where K is the interfacial stiffness normalized by Ag, and
p = F/Ayp. The characteristic length u#y was found to be of
the order of the combined root-mean-squared (rms) roughness
hims (~1 um) of the surfaces. The surfaces had self-affine
fractal roughness that is common in experiments. Berthoud
and Baumberger rationalized their observations within the
contact mechanics theory of Greenwood and Williamson [7],
which, however, is based on hypotheses that later turned
out to be unjustified [8—10]. Nonetheless, the results of
additional experiments [11,12] and computer simulations of
elastic contacts [11,13-19] with self-affine, fractal roughness
are consistent with Eq. (1). Moreover, the proportionality
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coefficient u( agrees, to within O(10%), with ug ~ 0.4 hyys,
derived from the parameter-free contact mechanics theory of
Persson [16-18].

The interfacial stiffness can be determined from the total
stiffness Ky, and the stiffnesses of ideal flat bounding solids
K, and K, using the rule for springs in series

K'=Kg — K '-K;" )

tot

An alternative approach is to measure—or to compute—the
mean interfacial separation i. Changes in i are a direct
measure of the deformation attributable to the interface and
K = —dp/du, where the sign reflects the fact that iz decreases
with increasing confining force. In the range of validity of
Eq. (1), this differential relation can be solved to yield another
testable prediction,

P = poexp(—ii/up), 3)

where py is an integration constant. Persson theory finds that
po = BE*, where E* is the effective elastic modulus and 8
is dimensionless. Like u(, B only depends on the spectral
properties of the surface [8]. Analytical expressions for uy and
B and computer simulations agree again to within O(10%)
[15-19].

In a recent letter, Pohrt and Popov [20] challenged the
established results on interfacial stiffness by proposing a sub-
linear K o< p® power law deduced from numerical simulations
of an indenter with a square punch geometry. Specifically,
they reported o = 0.2567(3 — H), where H is the Hurst
roughness exponent. This estimate was later corrected to
o = 0.266(3 — H) and scaling arguments were presented for
a third relation « = 1/(1 + H) [21]. Pohrt et al. argued that
their results differed from previous ones because their surfaces
were “truly fractal” [21]; i.e., roughness lived on wavelengths
all the way to the linear size L of their punch. In particular,
they state, “Whenever the surfaces are truly fractal with no
cut-off wavelength, a power law applies” [21].

©2013 American Physical Society
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In this paper, we unravel the origin of the discrepancy
between the established results and the new findings. To do
so, we analyze finite-size effects in numerical simulations. We
derive analytical expressions, free of adjustable parameters,
that capture finite-size effects and constitute a complete theory
for the stiffness of rough contacts. For brevity, we present only
the essence of the calculations in the main part of this work. De-
tails on the numerical procedure can be found in Appendix A.
The full derivation of prefactors for our scaling theory can
be found in Appendix B. Appendix C contains unpublished
experiments in support of Persson’s contact mechanics theory.

II. NUMERICAL RESULTS

We first summarize the arguments for how Eq. (1) arises
from the self-affinity of interfaces [8]. The key idea is that when
there are a large number of separated contacting patches, the
distribution of contacts is self-similar. As the load increases,
existing contact patches grow and new, small contacts are
formed. This happens in such a way that the distributions
of contact sizes and local pressures remain approximately
constant over a wide range of loads [4,22]. An immediate
consequence is a linear relation between real contact area A
and p, which has been confirmed in many simulations, includ-
ing all numerical studies cited here. The spatial correlations
between contacting areas and local stresses are also the same
up to a prefactor that grows linearly with load because of a sum
rule [23]. Since the system responds linearly, the elastic energy
U, is given by an integral of an elastic Green’s function times
the Fourier transform of the stress-stress correlation function
and must thus be proportional to load:

Uel = ugAop. 4

Since the elastic energy is equal to the work done by
the external load (assuming hard-wall interactions and no
adhesion), it follows that dU. = ugAodp = —Aop()dii.
This last relation is identical to Eq. (3) and thus also to Eq. (1).

When p is so small that two finite surfaces start touching,
the interface cannot yet behave in a self-similar fashion. The
reason is that contact occurs only near the highest asperity
whose height determines the separation at first contact u.. As
a consequence, the validity of the arguments leading to Eq. (4)
and thus to Eq. (1)—or any theory valid in the thermodynamic
limit—cannot hold at small p. As already pointed out earlier,
finite-size effects then become important [12]. Specifically,
for a finite system p vanishes for (finite) i > u., while for
an infinite system p is always nonvanishing. Thus, p must
initially decay faster with increasing i in a finite system than
in an infinite system where Eq. (1) holds. In the opposite case
of large p, a finite system approaches complete contact, it =
0, at finite pressure but infinite systems do not because they
have infinitely deep valleys. One may conclude that contact
formation of the highest peak and the lowest valley depend on
the specific realization of a surface. However, for intermediate
pressures, universal behavior may be found as long as the
roughness has well-defined statistical properties.

To study finite-size effects, we performed large-scale
numerical simulations of nonadhesive contact between a rigid
self-affine surface and an isotropic elastic substrate with
effective modulus E* and Poisson number 0.5 using well-
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FIG. 1. (Color online) Log-log plot of the nondimensional contact
stiffness K hy,s/ E* vs. nondimensional pressure p/E* for self-affine
fractal surfaces with H = 0.7 and rms slope A, = 0.1. In all cases,
the surface is resolved with 8192 points in each direction, L/A; =
4096, and the ratio of system size to roll-off wavelength, L/A,, is
indicated. The (red) solid line is the prediction of Persson’s theory
while the dashed (red) line is the linear regime. Open squares (blue)
show the interfacial stiffness obtained from a punch calculation with
Ly/A; = 1024. Inset: Nondimensional pressure vs. separation for the
same surfaces.

established methods [24,25] that are discussed in more detail
in Appendix A. Periodic boundary conditions were applied
to a square region of length L. Surfaces were self-affine with
Hurst exponent H between a short wavelength cut-off A; and
long-wavelength roll-off A, (see Fig. 4). The amplitudes of
the Fourier transforms for the height /(q) were drawn from
a Gaussian distribution. Their variances reflect the roughness
spectrum C(q) for each reciprocal space vector q:

1 forgo < gq < g,
Clq) = Coq (q/q)>7*" forg, <q <q Q)
0 forgq; < gq.

Here, g0 =2n/L, q1 =2n /Ay, and g, =2nw /X, and the
desired self-affine scaling is reflected in the power law for
the range ¢, < g < qi.

Figure 1 shows typical results for the contact stiffness versus
pressure. Note that all the quantities are made dimensionless
by dividing by the modulus and rms roughness so that they
can be mapped to any experimental system with the same
surface statistics. In all cases, there is a linear relation at
intermediate loads and a more rapid rise of K with p as
full contact is approached. Both regimes are well-described
by Persson’s contact mechanics theory (red line), which
requires only the surface roughness power spectrum and
the effective modulus as input. We also find a transition to
power-law scaling at low loads. This transition is particularly
sensitive to the magnitude of a few random Fourier components
at the smallest wavevectors as well as to their relative phases.
The separation at first contact u,. is also very sensitive to these
Fourier components and decreases with L/A,. It cuts off the
exponential relation between p and u shown in the inset.
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Even for the case where L/A, = 1, the results in Fig. 1
follow linear scaling [Eq. (1)] for more than one decade. The
range of validity of the linear scaling regime extends rapidly
to lower p as L/A, increases. Thus, the more closely the
thermodynamic limit is approached—or the more significant
the statistical distribution of contacting peaks—the more
accurate is Eq. (1). Given typical A,, e.g., O(10 um) for
polished steel and O(1cm) for asphalt, one can see that
power-law scaling matters only if L/A, & 1 or when loads
are small. Additionally, at extremely small loads, where the
first asperities are touching, the behavior should be Hertzian
with K o p'/3 if A, > 2ay where qay is the grid size of the
numerical method (see Appendix A). Indeed, we find that
reducing the ratio of A, /A gives an exponent that approaches
the one expected from Hertz contact mechanics. Earlier reports
of Hertzian-like behavior in load versus area for A; > ag [26]
are consistent with this finding. This additional scaling regime
limits the range where power-law scaling should be observed
and complicates its measurement in simulations.

The results of Ref. [20] do not show any appreciable
region of linear scaling. We have repeated their calculations to
determine the origin of this discrepancy. Instead of the periodic
boundary conditions used here, they considered a rigid, square
punch with edge L contacting an infinite elastic substrate. The
punch had fractal roughness on all wavelengths from A; = 2qa
to Lp. The open squares (blue) in Fig. 1 show results for this
geometry (see also Appendix A). The interfacial stiffness was
extracted from Eq. (2) and the analytical punch solution [27].
While this correction is not performed in Ref. [20], it has little
effect at the low loads of greatest interest.

At low loads, results for the flat punch and periodic
boundary conditions follow the same power-law scaling.
However, as in Ref. [20], the flat punch results cross over
to a rapid rise with no region of linear scaling. Inspection of
the results shows that this behavior is associated with strong
artifacts from the boundary conditions at the edge of the punch.
The analytic solution for the pressure under a flat punch has
a singularity at the punch edges. The solution for a rough
punch approaches this solution as the pressure increases. The
pressure and stiffness are all dominated by regions near the
edge, which approach full contact long before the central
regions. The strong influence of the edge makes the problem
effectively one dimensional, which may explain the success of
the dimensional reduction used in Ref. [21] to fit their results.

III. SCALING THEORY

In the low load regime, Fig. 1 indicates K o p“ behavior
witha =~ 0.6 for H = 0.7. Thus, our small-pressure results for
L/A, =1 are consistent with Refs. [20,21]. In the following,
we propose a new explanation for this power law by incor-
porating the estimation of finite-size effects into Persson’s
contact mechanics theory. The goal is to find an expression for
the elastic energy because it allows us to calculate the contact
stiffness. We reexpress a small change of the elastic energy
dU, = —pAodii as dU, = —pAodp(dii/dp). Inserting K =
—dp/diu and F = pA yields

dUel
K——

dF ©

p:
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Our approach is motivated by the fact that the elastic energy
is dominated by the longest wavelength modes [16]. For a
single contacting region around the highest peak, the longest
wavelength will scale with the radius ry of the smallest circle
that encloses the contacts. We will first calculate the elastic
energy Uélo ) for a single Hertzian-like mesoscale asperity with
radius of curvature R and contact radius ry. Then we show
that including roughness on the mesoasperity at wavelengths
smaller than ry gives the same power-law scaling for the
elastic energy Uéll). For brevity, what follows presents only
the general scaling arguments that explain the observed power
law. A general derivation, including all prefactors, is given in
Appendix B.

An effective asperity radius is calculated from the rough-
ness at scales larger than ro. The local curvature V2h
corresponds to g*h(q) in Fourier space. Thus, R can be
estimated as:

1 /1o 5 5 5 7/ro 5
7 O</ d q lq~h(g)l O</ dg ¢°Clg). (1
40 40

For self-affine fractal roughness, the surface roughness power
spectrum is C(g) oc ¢ 272/, This gives R o rj ¥, where we
have assumed that the lower integration bound to the last
integral must be negligible at a small load. This condition
is fulfilled as long as ry < A,.

According to Hertzian contact mechanics, ry o« (RF )73,
Inserting R rg_H and solving for ry, we obtain

ro oc FY/0HD, (8)

The elastic energy stored within a Hertzian contact is U, e(? )
F3§, where the penetration depth § o r3/R o r{!. We obtain

Ue(?) I F(1+2H)/(1+H) (9)

and from Eq. (6)
K o p/a+H), (10)

We now show that the elastic energy Ue(ll) due to microscale
roughness within the mesoscale asperity also scales with
FUF2H/(+H) The main assumption now is that the contact
pressure within the mesoscale asperity contact region is high
enough that the contact mechanics theory by Persson can be
applied. Then, from Eq. (4), Ue(ll) =u,Ap;,where A; = nrg
is the (nominal) contact area at the mesoscale and p; = F/A;.
The term u; is of the order of the rms roughness, including
only roughness components with wavelength A < r(. This can
be written as

21 /h —2H —2H
meso\ 2 big 2
(hmfsso) =2n // dq qC(q) x (E) - (—)‘1 > .
T/rg
(11

Since A; < rg (unless H is close to 0), one obtains A" o
rll and uy ocrl. Inserting ro o« FY/0+HH) | we get U o
FUF20/(+H) a5 in Eq. (9).

From the above treatment we predict that the stiffness
K scales as p* with « = 1/(1 4+ H). Figure 2 shows K(p)
relations obtained numerically in the finite-size regime for
different values of H. Rough estimates for « were obtained
by fitting to the lowest four data points. The results from
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FIG. 2. (Color online) Dimensionless interfacial stiffness
Khms/E* as a function of pressure p/E* in the finite-size region
for L/A; = 4096 and different Hurst exponents H. All calculations
are for L/, = 1. Solid lines show a fit to the first four data points.

the simulations are: a(H = 0.3) = 0.72 (see also below),
a(H =0.5) =0.66, and a(H = 0.7) = 0.59. These values
compare well to the theoretical predictions, a(H = 0.3) =
0.769, a(H = 0.5) ~ 0.667, and o(H = 0.7) &~ 0.588, par-
ticularly if one keeps in mind that systematic simulation errors
increase as H approaches zero.

We note here that the expression for the microasperity
contribution to the total elastic energy depends on the elastic
coupling between the asperities. Any derivation neglecting
this coupling [20] cannot describe the correct physics, even
if the resulting scaling is similar to K o p'/0+#) Moreover,
probing the constitutive relation between pressure and stiffness
at a mesoscale will entail much larger fluctuations than in a
multiasperity contact at the same pressure but larger value of
L/A,.

The arguments that lead to K oc p!/0+#) hold when A; <«
ro < Ar. Since R rg_H , the radius of the mesoasperity
diverges as the contact area grows and ryp — A,. In this limit,
the mesoasperities are flat, both Egs. (2) and (3) hold, and
we rediscover the thermodynamic limit K o« p [15-19]. On
the other hand, if ry < A;, the surface of the mesoasperity
is smooth. The upper integration bound in Eq. (7) is then
given by the short wavelength cut-off ¢ = 27w /A, and R
is constant. This ultimately must lead to traditional Hertz
behavior where K o p'/3. Figure 3 shows the results of an
attempted extrapolation to the “fractal limit” A;/A, — O for
the value of H = 0.3, which had the largest discrepancy
between theory and simulation. Despite quite large stochastic
scatter, we conclude that the value of o« = 1/(1 4+ H) is
consistent with the simulations.

Finally, we address how the finite-size power-law region de-
pends on linear system size L and roll-off length A,. Following
along the lines of the above derivation, it is straightforward to
compute the full expression for the interfacial stiffness (see
Appendix B):

Khms _ (e 22\
Ex " \2xma, L2

1/(14H)
)
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FIG. 3. (Color online) Exponent o as a function of (A;/A,)*"".
Theoretically predicted value is denoted by M. The inset shows
selected numerical data for K(p) from which o was deduced. Data
for the following values of A, /A; is presented: 4096 (e), 2048 (§),
768 (%), 512 (A).

where 1/s =1+ H[1 — (A,/L)z]. The prefactor 6 depends
only on the Hurst exponent H, but for H > 0.3 variation is
restricted to 0.75 < 6 < 1.0 (see also Fig. 5). By equating
Eq. (12) with K = p/yhuys, where y = 0.4, we obtain an
estimate for the pressure p. at which the stiffness crosses over
from power law to linear behavior:

Pc s )‘% —-1/2H (+H)/H
e L ki & 6 . 13
E* 27, Lzs ©y) ()

For different realizations of the surface, the prefactor of the
power law and p, can vary significantly. Nevertheless, for the
data shown in Fig. 1 we find p./E* ~ 6 x 107> forq, /qo = 1
and p./E* ~ 3 x 107 for ¢, /qo = 8, in excellent agreement
with the numerical data. Generally, the cross-over pressure p,
decreases with increasing linear system size L. Equation (13)
also reveals the importance of separation between L and the
roll-off length A,. Scale separation pushes the crossover to
lower pressure even more rapidly since the ratio L /), enters
quadratically. In the thermodynamic limit L/A, — oo, the
power-law region vanishes all together.

IV. CONCLUSIONS

We conclude that the previously reported K o p and
p o< exp(—it/up) laws [11-19] are satisfied when there is a
statistical ensemble of high peaks in contact. This linear scaling
extends to lower loads as the upper length scale of roughness
decreases, because there is a better statistical sampling of
high peaks. At the smallest loads, the contact diameter is
smaller than the smallest wavelength of roughness, and the
stiffness follows the Hertz expression for contact of a single
spherical asperity, K o p!/3. At slightly larger contact areas
and loads, contact is confined to a single large peak with a
fractal hierarchy of smaller bumps. In this regime, K scales
sublinearly with p and the prefactor and corresponding surface
separation have large fluctuations from one sample to the
next, even in the limit of large system size. Parameter-free
expressions for the power law « = 1/(1 + H) and prefactor
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[Eq. (12)] were derived. The power law agrees with one
of the results presented in Ref. [21], although they also
presented linear « o« H expressions [20,21] when fitting their
numerical data. Reference [21] also discussed the scaling of
the prefactor with L but we provide a full expression including
the dependence on rolloff A, and Hurst exponent H.

Pohrt, Popov, and Filippov (Refs. [20,21]) found no linear
regime in their studies of stiffness. In part this was because
they considered the limiting case of roughness at wavelengths
up to the size of their contact (A, = Lp). As recently pointed
out by Barber [28], statistical fluctuations make a prediction of
stiffness (and related properties such as conductance) difficult
if there is no separation between the scales of the macroscopic
object and the longest wavelength of the roughness. For
nominally flat surfaces and periodic boundary conditions, we
observe that the linear K o p regime holds for at least an
order of magnitude in load even in this extreme case. The
square punch geometry considered in Ref. [20] suppresses
this linear regime (Fig. 1). Stress is concentrated near the
edges of the punch, which approach full contact long before
the central region. This pronounced heterogeneity makes
the punch geometry a poor choice and it is rarely used in
experiments because of the difficulty in achieving perfect
alignment [29].

Most experimental realizations of surfaces have an rms
roughness and upper cut-off on fractal scaling that are
both significantly smaller than the system size. As a result,
Eq. (13) predicts that the linear relation between stiffness
and load should extend over the experimental range. Indeed,
measurements by Berthoud and Baumberger [5] show K o« p
even at fractional contact areas of 10~° and below. We conclude
that as long as the contact responds elastically, the power-law
region appears to be confined to low pressure that is difficult
to access in macroscopic experiments and has, therefore, little
impact on most applications.

As an example, consider applications to syringes, where
the relation between the squeezing pressure p and the
average interfacial separation it (which determines the contact
stiffness) is very important for the fluid leakage at the
rubber-stopper barrel interface [30]. The key contact region
is between a rib of the rubber stopper and the barrel. The
width of the contact region (of order w &~ 1 mm) defines
the cut-off wavevector g, = 27/w ~ 6000 m~'. The Hurst
exponent H = 0.9 and the rms roughness amplitude (including
the roughness components with wavevector ¢ > g,) iS hyps ~
3 um. The elastic modulus of the rubber stopper is typically
E ~ 3 MPa. Using these parameters, we find from Eq. (13)
that the stiffness should rise linearly with pressure above
pe ~ 1 kPa. This is negligible compared to the pressure in
the contact region between the rib of the rubber stopper and
the barrel, which is typically of order 1 MPa.

As devices shrink toward the nanoscale, /.4, and A; may
become closer to the system size. For example, Buzio et al. [31]
report nonlinear stiffness when loading flat contacts of size
Ly, ~ 2 pum on rough surfaces with A, ~ 20 to 100 nm and
AL ~ 1 um up to forces of 200nN. Equation (13) predicts
nonlinear behavior for these parameters, but the experimental
tips were adhesive, there was evidence of plastic deformation,
and atomistic effects may become important at nanometer
scales [32]. None of these effects has been included here or
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in Refs. [20,21], and future work on their influence will be of
great interest
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APPENDIX A: DETAILS OF THE NUMERICAL
CALCULATIONS

Self-affine rough surfaces with the desired H, hj,, As,
and A; were generated using a Fourier-filtering algorithm
described previously [10]. Fourier components for each
wavevector q have a random phase and a normally distributed
amplitude that depends on the wavevector magnitude ¢
according to Eq. (5). Periodic boundary conditions with
period L were applied in the plane of the surface to prevent
edge effects. Figure 4 shows a roughness power spectrum
as generated by this algorithm and used in the simulations.
The solid lines indicate the mean values for the spectrum,
while the dots reflect one particular realization. Fluctuations
of the height A(r) in real space are not only the consequence
of variations in the absolute value of their complex Fourier
transforms ﬁ(q) but also due to the random phases. From
Fig. 4 it becomes clear that the largest fluctuations occur at
small wavevectors (large wavelength) because O(g?) Fourier
components contribute to the power spectrum for wavevectors
of magnitude q.

We considered elastic substrates with contact modulus
E* and Poisson ratio v =1/2. At v =1/2, the in-plane
components and the out-of-plane components of the elastic
displacement field decouple. We then only treated the out-
of-plane components u(r) on a grid with spacing ay. More
specifically, we carried out simulations with E* = 2 and ay =
1, but since all quantities are presented here in a dimensionless
form, the actual values of these quantities do not matter.
The elastic interaction was solved using a Fourier-transform
technique [24,25] that accelerates computation of the force
fr) = fdzr’G’l(r — r')u(r’). For periodic calculations, we
used a linearized surface Green’s function [25,33]. In re-
ciprocal space, the expression for the Green’s function is
G~'(q) = E*q/2. For nonperiodic calculations, we employed
areal-space surface Green’s function G(r) that is derived from
the elastic response to a uniform pressure on a square region of
area aé [34]. A padding region was used to separate repeating
images [35].

APPENDIX B: FULL SCALING THEORY, INCLUDING
DERIVATION OF ALL PREFACTORS

Consider a randomly rough surface with a power spectrum
given by Eq. (5) and shown in Fig. 4. The surface mean-square
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FIG. 4. (Color online) Power spectra for two surfaces without
(a) and with (b) a roll-off at large wavelength as generated by a
Fourier filtering algorithm. The solid lines show the prescribed power
spectrum C(g) and the dots the actual realization. Panel (b) indicates
the wavevectors of the long-wavelength roll-off g, = 27 /A, and the
short-wavelength cut-off ¢; = 27 /A,. For ¢ < gy = 27/L, where L
is the linear system size, the surfaces have zero power. The noise at
low g is due to the fact that order g> Fourier components contribute
to the power spectrum at wavevector g of a realization of a surface.

roughness amplitude is then given by

s = /dzq C(q) (B1)
@ @ q —2-2H
= ZnCo|:/ dq q +/ dq q (—) i| (B2)
90 qr qr
~ T4 B3)
s C0

where 1/s = 1 + H[1 — (go/q,)*] and the last equality holds
in the limit g;/q, > 1. Note that s =1 if go =¢, and
there is no roll-off region. Expressed in terms of A, the
normalization of the power spectrum is
Hs ,

2 “rms*
g,

Co= (B4)

1. Hertzian-like mesoscale asperity

We first calculate the elastic energy stored in the deforma-
tion field associated with the Hertz mesoscale asperity contact
region. The mesoscale asperity has the radius of curvature
R. The radius of the (apparent) contact region between the
mesoscale asperity and the flat countersurface is denoted by
ro. We assume that no roughness lives on scales <ry, such that
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the mesoscale asperity can be treated as smooth. The mean
summit asperity curvature is given by [36] & = B./2k0, where
ko is the root-mean-square curvature of the surface:

q1
G=3 / dqq'Clg)=n [ dq ¢°Clq).  (BS)
90
Nayak [36] has shown that B = /8/3w when roughness
occurs on many length scales so that g; /qo > 1. If we include
only roughness components with wavevector g < /ry, then
we obtain the mean summit curvature 1/R of the mesoscale
asperity:

1 /ro
&= [ dadc@. (B6)
q0
We now define the dimensionless quantities R = ¢, R, hiys =

qrhms, and 7y = g,ro. This gives the mean dimensionless
summit curvature

1 27B2Cy [ /‘f" s, [ (g
R? qrz 90 v qr
B7)
HS,32 ~ T 4-2H
. thms <E> , (B8)

where the last equality holds in the limit 7 /ry > g,. We define
the dimensionless prefactor

2 H\Y? gH-2
X = ( s > I (B9)
and simplify Eq. (B8) to
R=xi M. (B10)

We now use Hertz theory to obtain the mesoasperity radius
ro as a function of normal force F. Hertz theory gives a
dimensionless mesoasperity contact radius of
3__ 3x -
R=2FR="XpH, (B11)
4 4
where F = Fq?/E* is the dimensionless normal force and we
used Eq. (B10) for the dimensionless asperity radius. We now
solve for 7 to obtain

3y 1/(1+H)
7o = (—XF) .
4

By inserting this expression into Eq. (B10), the mesoasperity
radius becomes

(B12)

3 _ (2—H)/(1+H)
) (B13)

R = 0+ (ZF

The elastic energy stored in the Hertz mesoscale deforma-
tion field for depth of indentation § is given by

~® _ 275
= 1F5,

el

(B14)

where § =¢,8 and the dimensionless energy U\ =

Ue(? )qf /E*. Hertz theory also tells us the displacements as
a function of normal force,

_ 92 1/3 3 H/(14+H)
S=—) =x"Y"D(ZF , (BIS)
16R 4
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where we used Eq. (B13) to substitute the mesoasperity
radius. By combining Egs. (B14) and (B15), the elastic energy
becomes

E) _ =\(1+2H)/(1+H)
O = 4oy O+ (3 F) , (B16)

with kg = 2/5.

2. Microscale roughness on mesoscale asperity

Next we calculate the elastic deformation energy that is
stored in microasperity contacts within the Hertz mesoasperity
contact region [8,16]. This energy is given by Eq. (4):

UY = u,Apy = u, F. (B17)
In terms of the dimensionless quantities, it becomes Uéll) =
i F, where it; = q,u;. Additionally, we have i} = y (hm°),
where y &~ 0.4. Note that A° is the root-mean-square
roughness amplitude within the mesoasperity, i.e., within the
area confined by the mesoasperity contact radius ry. In contrast,
hms 1s the root-mean-square roughness amplitude of the full
surface all the way to the linear system size L. We can express

hm% in terms of fppy:

rms
, a g\
(hppese)” = 2nC0/ dg q (—> (B18)
w/ry qr

2 JT/I‘() —2H
~ Shrms q_
-

This holds for m/ryp < ¢;. In terms of the dimensionless
quantities, this becomes

T —-H
- meso 121
hrms =s/ Pims <__> .
ro

(B19)

(B20)

We now use the definition for x [Eq. (B9)] to eliminate Prms
and use Eq. (B12) to express 7 in terms of the force F:

o 2 H 1/2 B 3 _ H/(1+H)
h?ﬁ:o = <—N4IB2H> X 1/(1+H) <ZF> . (le)

By combining Eqgs. (B17) and (B21), the elastic energy
becomes

(1 _ =\(1+2H)/(1+H)
U = i x~VO+ID(3F) ,  (B22)

2 g\ 2
T <ﬂ4ﬂ2H) '
Note that the expression for Ue(ll) has the same form as the

expression derived for the Hertz-like mesoasperity contact
Eq. (B16). They differ only in the prefactors «y and «.

with

(B23)

3. Total elastic energy and stiffness

The total elastic energy is now given by the sum of the two
contributions Egs. (B16) and (B22), i.e., Uy = Uélo) + l_]e(ll).
This yields

2 (1+2H)/(14+H)

U = 3k x /I (2F) (B24)
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FIG. 5. (Color online) Plot of the values of 1/6,, 1/6,,and 1/0 =
1/6p 4 1/6, as a function of Hurst exponent H. The quantities 6, and
6, are defined in the text.

with « =Ko+ k1. We now compute the total dimensionless
stiffness k = ¢, K Ag/ E* from Eq. (6). It is given by

_ F
dUq/dF

and inserting Eq. (B24) yields

~ F 1/(1+H)
o)

Reintroducing the dimensional quantities yields Eq. (12).

The dimensionless prefactor 0 is given by the sum of two
contributions, 1/6 = 1/6y 4+ 1/6,, which both depend on the
Hurst exponent H only:

1 142H 3\ g2y 1/Q2+2H)
b 1+H \4r 2—H

(B26)

Ko/1-
(B27)

In Fig. 5, we show 1/6y, 1/6;, and 1/6 as a function
of the Hurst exponent H. It is interesting to note that
as H — 0, then 1/6y — 0, while 1/6, remains finite; i.e.,
for the fractal dimension Dy =3 — H = 3, the stiffness is
entirely determined by the short-wavelength roughness in the
mesoasperity contact region. Note also that since g, ~ /L,
where L is the linear size of the system, the stiffness scales as

k ~ gy TIOTH) L LH/O+H) with the size of the system. This
is in contrast to the region where p ~ exp(—u/uy). There, the
interfacial contact stiffness is independent of the size L of
the system. Note also that the stiffness scales with the rms
roughness as hr_,r%s/ (+H) , while in the region p ~ exp(—u/ug)
the stiffness is proportional to 4. For the Hurst exponent
H =~ 0.8, which is typical in practical applications, 6 ~ 1,
which appears to be in good agreement with the prefactor found
by Pohrt and Popov in their numerical simulation study [20].
The treatment presented above can be generalized to obtain
the distribution of stiffness values (at least approximately)
by calculating the distribution P(R) of summit curvature
radius R.

It is interesting to determine the critical force, F,, such
that for F < F, one needs to use the finite-size power-law
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expression for the stiffness, while for F > F. the Persson
expression is valid. When the relation p ~ exp(—ii/ug) is
valid, the stiffness is given by Eq. (1):
_ F F
k= — = ——. (B28)
Uug yhrms

The critical force F, is determined by the condition that &
given by Eqs. (B26) and (B28) coincide. This gives

, F, 1/(1+H) - £
}_lrmssl/2 Vﬁrms '

which we can solve for the dimensionless critical force F,:

(B29)

_FC — S—I/ZH (9)/)(1+H)/H .
hrms

Reintroducing dimensional quantities yields Eq. (13).

(B30)

4. Discussion

The prediction [Eq. (13)] for the switching between
the finite-size region and the region where the stiffness is
proportional to the loading force is in good agreement with our
simulation results. The surfaces we have studied in numerical
simulations have rms slope 4, = 0.1 and go/q; = 1/4096
and H = 0.7. For our particular realizations, we find g, fi;ms =
5.7 x 1073 for qr/q0 = L/A, =1 and g, hyps ~ 1.3 % 1072
for g, /qo = 8. With these numbers we get p./E* ~ 6 x 107°
for q,/qo =1 and p./E* ~3 x 107° for ¢,/qo = 8 from
Eq. (13), which is in good agreement with Fig. 1. For the
surface with H = 0.3, we obtain (for a surface with rms slope
0.1) g, hms nearly 100 times smaller than for H = 0.7, which
will shift the crossover force F., between the two stiffness
regions, with a similar factor to lower values, again in good
agreement with the numerical studies. The results presented
above differ from the conclusion of Pohrt and Popov, who state
that the power-law relation observed for small applied forces
is valid for all applied forces [20,21]. The present study shows
that this statement is incorrect, and Fig. 1 clearly shows that
the contact stiffness cannot be described by a power law for
all applied forces, as this would correspond to a straight line
on our log-log scale.

APPENDIX C: EXPERIMENTS

The finite size effects captured by Eq. (B26) have also been
observed in experiments. In these experiments, a rectangular
block of silicon rubber (a nearly perfect elastic material even
at large strain) is squeezed against hard, randomly rough
surfaces. In this case, no plastic deformation will occur, and
the compression of the rectangular rubber block, (p/E’)d (see
below), which will contribute to the displacement s of the upper
surface of the block, can be accurately taken into account. Such
measurements were performed in Ref. [12] and were found to
be in good agreement with the theory (these tests involved no
fitting parameters, as the surface roughness power spectrum
and the elastic properties of the rubber block were obtained in
separate experiments). Here we show the result for the contact
stiffness K = —dp/dii (not presented in Ref. [12]) of one
additional such measurement.
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The experiment was performed for a silicon rubber block
(cylinder shape with diameter D = 3 cm and heightd = 1 cm)
squeezed against aroad asphalt surface with the rms roughness
amplitude 0.63 mm and the roll-off wavelength A, ~ 0.3 cm
as inferred from the surface roughness power spectrum. The
squeeze-force is applied via a flat steel plate and no slip of
the rubber could be observed against the steel surface or the
asphalt surface. We measured the displacement s of the upper
surface of the block as a function of the applied normal load.
Note that

s = (uc — i)+ (p/Ed, (ChH

where E’ is the effective Young’s modulus taking into account
the no-slip boundary condition on the upper and lower surface,
which was measured to be £’ =4.2 MPa in a separate
experiment where the rubber block was squeezed between
two flat steel surfaces. Using Eq. (C1) gives

d dp d d Kd
K=_-2__P& _ (C2)
dii ds du ds E’
or
K*
(C3)

K=— .
1— K*d/E’

where K* =dp/ds. Using Eq. (C3), we obtain the results
shown in Fig. 6, which presents the normal contact stiffness
as a function of the applied nominal contact pressure obtained
from the measured p(s) relation with E’ = 4.2 MPa (measured
value) and E’ = 4 MPa (to indicate the sensitivity of the result
to E’). For very small contact pressures, K* ~ 0 so that the
denominator in Eq. (C3) is =1 (and K ~ K* as assumed in
Ref. [20] without proof), and the result is insensitive to E’, as
also seen in Fig. 6. For large contact pressure, the experimental
data exhibits rather large noise (and great sensitivity to
E’), which originates from the increasing importance of the
compression of the rubber block for large contact pressure.

4
silicon rubber block
on asphalt road
—_ 3 I
S
3
o
g
k= E’=4MPa
=
1
4.2 MPa
o )

0 0.1 0.2 0.3 0.4 0.5 0.6
pressure (MPa)

FIG. 6. (Color online) The normal contact stiffness as a function
of the applied nominal contact pressure for a silicon rubber block
(cylinder shape with diameter D =3 cm and height d =1 cm)
squeezed against a road asphalt surface. The green and red lines are
obtained from the measured p(s) relation using Eq. (7) with E’ = 4.0
and 4.2 MPa (see text), while the blue line is the theory prediction.
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That is, for large pressures the denominator in Eq. (C3)
almost vanishes, which implies that a small uncertainty in
the measured p(s) relation (which determines K*), or in E’,
will result in a large uncertainty in K for large pressures.

The blue curve in Fig. 6 is the theory prediction, which
is obtained without any fitting parameter using the measured

PHYSICAL REVIEW E 87, 062809 (2013)

surface roughness power spectrum. For small contact pressure,
the contact stiffness obtained from the measured data is larger
than predicted by the theory, but for nominal contact pressures
typically involved in rubber applications (which are ~0.4 MPa
as in tire applications, or higher in most other applications),
the finite-size effects are not important.
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