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The flavor-changing neutral current process b → sl+l− is beneficial to testing the standard model

and hunting for new physics scenarios. In exclusive decay modes like B → K∗(892)l+l−, the S-wave

effects may not be negligible and thus have to be reliably estimated. Using the scalar form factors

derived from dispersion relations in two channels and matched to Chiral Perturbation Theory, we

investigate the S-wave contributions in B
0
→ K−π+l+l−, with the Kπ invariant mass lying in the

vicinity of the mass of K∗(892), and the Bs → K−K+l+l− with mKK ∼ mφ. We find that the

S-wave will modify differential decay widths by about 10% in the process of B
0
→ K−π+l+l− and

about 5% in Bs → K−K+l+l−. A forward-backward asymmetry for the charged kaon in the final

state arises from the interference between the S-wave and P-wave contributions. The measurement

of this asymmetry offers a new way to determine the variation of the Kπ S-wave phase versus the

invariant mass.

PACS numbers: 13.20.He; 14.40.Be;

I. INTRODUCTION

One of the foremost open questions in our current knowledge of particle physics is whether new degrees of freedom

are relevant for the phenomena at the TeV energy scale. The quest for these new particles which have distinguishable

signatures compared to the standard model (SM) particles are of high priority at the ongoing collider experiments.

On the other hand, low-energy processes may be influenced by them and the corresponding predictions on physical

observables will be shifted away from the SM. Rare B decays, with highly suppressed decay probabilities in the SM,

are likely sensitive to these new degrees of freedom and therefore can be exploited as indirect searches. In partic-

ular, the flavor-changing-neutral-current processes B → K∗(892)l+l− and Bs → φ(1020)l+l− can provide a wealth

of information, in terms of a number of observables ranging from decay fractions, forward-backward asymmetries

(FBAs), polarizations to a full angular analysis [1–3]. The recent measurements of B → K∗(892)l+l− by the LHCb

collaboration based on the 1fb−1 [4] data sample show no significant deviations from the SM theory [5–15]. This great

success of the SM implies that new physics effects are likely small, and therefore renders the precision predictions for

the involved quantities particularly important.

The process B → K∗(892)(→ Kπ)l+l− is a quasi-four-body decay, and in principle other Kπ resonant and nonres-

onant states may also contribute in the same final state, and thus dilute the discrimination between new physics and

standard model. Theoretically, a general formula that includes various contributions has been derived in Refs. [16, 17].

In terms of helicity amplitudes, a compact form for the full angular distributions is obtained, through which the branch-

ing ratios, forward-backward asymmetries and polarizations can be easily projected. Adopting these formulas, the

S-wave contribution in the B → Kπl+l− has been estimated in recent publications [18–20], and it is pointed out that

contributions from the S-wave Kπ state are not negligible and should be taken into account in future measurements.

It is noticeable that in these studies, the S-wave Kπ interaction is parametrized in terms of a Breit-Wigner formula,

which is not justified especially for the broad scalar meson κ ≡ K∗
0 (800).

On the other hand, the scattering of light mesons are basic processes in QCD that deserve accurate measurements.

In the Kπ system, S-wave interactions proceeding through isospin I = 1/2 states are of particular interest because
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they depend on the presence of scalar resonances. Studies of the scalar meson κ can thus benefit from accurate

measurements of the I = 1/2 S-wave phase below mKπ = 1 GeV. The current available information on the I = 1/2

Kπ scattering comes from the decays D+ → K−π+e+νe [21] or D → Kππ [22–27] as well as J/ψ decays [28]. For

energies beyond
√
s ∼ 1 GeV there is the partial wave amplitude based on LASS data widely used in the literature [29].

First data from lattice calculation start to emerge [30, 31] though still at unphysical pion masses; constraints from

chiral perturbation theory can be used to extract the Kπ phase from the finite volume used in lattice calculations [32–

34]. In the case of KK̄, the constraint from Ds → K+K−e+νe is less precise [35], while the semileptonic Ds decays

have been used to examine the ππ interaction [36].

In this work, we improve the analysis in Refs. [18–20] by combining the knowledge of B meson weak decays,

mainly based on operator product expansion and perturbation theory in QCD, and the low-energy effective theory for

Kπ/KK̄ interaction, namely Chiral Perturbation Theory (CHPT). CHPT can be used to constrain the form factor.

Multiple subtractions for the Muskhelishvili-Omnès problem allow the systematic matching to CHPT and thus to fix

the polynomial ambiguity in s to a given order. We pursue this method to determine the Kπ form factor by a match

up to next-to-leading order. Also, we present a numerical scheme to solve the set of integral equations for cases when

iteration does not converge. For the KK̄ form factor, we rely on the model predictions of unitarized CHPT at leading

order. The methodology we employ here was pioneered for B-decays in Ref. [37].

Using these results for the Kπ/KK̄ scalar form factors and the heavy-to-light transition matrix elements calculated

in the perturbative QCD approach [38–42], we study the S-wave contribution and its interference with P-wave. We

will show that the size of the S-wave pollution to the differential decay width in B → K∗l+l− is about 10% while it

is about 5% in Bs → φl+l−. At last, we will discuss a subtraction method in the integration over m2
Kπ and m2

KK̄
,

which projects out the P-wave contributions and suppresses the effects of the S-wave to less than 1%.

The paper is organized as follows. Sec. II recalls the differential decay distributions and the partially integrated

quantities in B → K∗l+l− and B → K∗
0 l

+l−. In Sec. III, we calculate the necessary K−π+ and K+K− scalar form

factors. Sec. IV contains our numerical predictions. We conclude in the last section. The form factors calculated in

the perturbative QCD approach, the helicity decay amplitudes and normalization are relegated to the Appendices A,

B and C respectively.

II. B → Kπl+l− ANGULAR DISTRIBUTIONS

In this section we will give the angular distributions for B → K−π+l+l− (and Bs → K+K−l+l− as well) with

both S-wave and P-wave contributions. Throughout this work, we will consider the B̄ meson and the pseudoscalar

mesons in the final states to be charged [Neutral mesons can be treated analogously]. We adopt the convention on

the kinematics in B → K∗
J(→ Kπ)l+l− as illustrated in Fig. 1, where K∗

J is a generic kaon resonance with spin J .

In the B rest frame, the K∗
J flight direction is chosen as the z axis. θK (θl) is the polar angle between the K− (µ−)

moving direction and the z axis in the K∗
J (lepton pair) rest frame. φ is the angle between the two decay planes.

The effective Hamiltonian for the transition b→ sl+l−

Heff = −GF√
2
VtbV

∗
ts

10
∑

i=1

Ci(µ)Oi(µ)

involves the four-quark and the magnetic penguin operatorsOi, and the Ci(µ) are the correspondingWilson coefficients

for these local operators Oi. GF is the Fermi constant, Vtb = 0.999176 and Vts = −0.03972 [43] are the CKM matrix

elements. The b and s quark masses are mb = (4.67+0.18
−0.06)GeV and ms = (0.101+0.029

−0.021)GeV [43]. The above effective
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FIG. 1: Kinematics in B → K
∗

J (→ K−π+)l+l−. The K∗

J moves along the z axis in the B rest frame. θK(θl) is the angle

between z-axis and the flight direction of K− (µ−) in K∗

J (lepton pair) rest frame, respectively. φ is the azimuth angle between

the K∗

J decay and lepton pair planes.

Hamiltonian results in the decay amplitude

iM(b→ sl+l−) =
iGF√

2

αem

π
VtbV

∗
ts ×

(

C9 + C10

4
[s̄b]V−A[l̄l]V+A +

C9 − C10

4
[s̄b]V−A[l̄l]V−A

+C7Lmb[s̄iσµν(1 + γ5)b]
qµ

q2
× [l̄γν l] + C7Rmb[s̄iσµν(1− γ5)b]

qµ

q2
× [l̄γν l]

)

, (1)

where C7L = C7 and C7R = C7Lms/mb.

The process B → K∗
J(→ Kπ)l+l− is a four-body decay mode which undergoes two steps in the resonance picture:

the B meson first decays into a excited kaonic state K∗
J plus a pair of leptons; the K∗

J propagates followed by the

strong decay into the Kπ. Decay amplitudes of B → (Kπ)l+l− can be obtained by sandwiching Eq. (1) between the

initial and final hadronic states, in which the spinor product [s̄b] will be replaced by hadronic matrix elements defined

in Appendix A. The operator realization of this picture may be given as

〈l+l−|[l̄l]|0〉〈Kπ|[s̄b]|B0〉 ≃ 〈l+l−|[l̄l]|0〉
∫

d4pK∗
J

〈Kπ|K∗
J〉〈K∗

J |[s̄b]|B
0〉

p2K∗
J
−m2

K∗
J
+ imK∗

J
ΓK∗

J

, (2)

with p2K∗
J
= m2

Kπ. In Appendix B, we collect the required quantities in terms of helicity amplitudes that can lead to

the full angular distributions

d5Γ

dm2
Kπdq

2d cos θKd cos θldφ
=

3

8

[

Ic1 + 2Is1 + (Ic2 + 2Is2) cos(2θl) + 2I3 sin
2 θl cos(2φ) + 2

√
2I4 sin(2θl) cosφ

+2
√
2I5 sin(θl) cosφ+ 2I6 cos θl + 2

√
2I7 sin(θl) sinφ

+2
√
2I8 sin(2θl) sinφ+ 2I9 sin

2 θl sin(2φ)
]

. (3)

In the massless limit for the involved leptons, and integrating over the angles θl, θK and φ, we have the dilepton mass

spectrum

d2Γ

dq2dm2
Kπ

≃ |A0
L0|2 + |A0

R0|2 + |A1
L0|2 + |A1

R0|2 + |A1
L⊥|2 + |A1

L|||2 + |A1
R⊥|2 + |A1

R|||2. (4)
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where the functions AL/Ri are given by

AL/R0/t =
∑

J=0,1,2...

AJ
L/R0/tY

0
J (θ, 0),

AL/R||/⊥ =
∑

J=0,1,2...

AJ
L/R||/⊥Y

−1
J (θ, 0),

AJ
L/R0/t =

√

NK∗
J
MB(K

∗
J , L/R, 0/t)LK∗

J
(m2

Kπ) ≡ |AJ
L/R0/t|eiδ

J
L/R0/t,

AJ
L/R||/⊥ =

√

NK∗
J
MB(K

∗
J , L/R, ||/ ⊥)LK∗

J
(m2

Kπ) ≡ |AJ
L/R||/⊥|eiδ

J
L/R||/⊥ ,

with NK∗
J
=
√

8/3
√
λq2βl/(256π

3m3
B), λ ≡ (m2

B −m2
K∗

J
− q2)2 − 4m2

K∗
J
q2 and βl =

√

1− 4m2
l /q

2. The Kπ lineshape

is LK∗
J
(mKπ), and for the P-wave K∗(892) we use the Breit-Wigner distribution:

LK∗
J
(m2

Kπ) =

√

mK∗
J
ΓK∗

J

π

1

p2K∗
J
−m2

K∗
J
+ imK∗

J
ΓK∗

J

. (5)

The handedness label L and R denotes the chirality of the di-lepton system. Expressions for the weak decay amplitudes

MB can be found in Ref. [16], and to a good approximation, these amplitudes do not have large strong phases.

As a particular example, we study the angular distribution over θK :

d3Γ

dq2dm2
Kπd cos θK

≃
{

1

2
[|A0

L0|2 + |A0
R0|2] +

√
3 cos θK

[

cos(δ0L0 − δ1L0)|A0
L0||A1

L0|+ cos(δ0R0 − δ1R0)|A0
R0||A1

R0|
]

+
3

2
cos2 θK(|A1

L0|2 + |A1
R0|2) +

3

4
sin2 θK [|A1

L⊥|2 + |A1
L|||2 + |A1

R⊥|2 + |A1
R|||2]

}

. (6)

Compared to the distribution with only B → K∗(892)l+l−, the two terms in the first line of Eq. (6) are new: the

first one is the S-wave Kπ contribution, while the second term corresponds to the interference of S-wave and P-wave.

Based on this interference, one can define a forward-backward asymmetry for the charged kaon,

d2AK
FB

dq2dm2
Kπ

≡
[ ∫ 1

0

−
∫ 0

−1

]

d cos θK
d3Γ

dq2dm2
Kπd cos θK

=
√
3
[

cos(δ0L0 − δ1L0)|A0
L0||A1

L0|+ cos(δ0R0 − δ1R0)|A0
R0||A1

R0|
]

. (7)

The narrow-width approximation is not valid as the S-wave Kπ interaction is strong. However, the Watson theorem

implies that, in the elastic regime, phases measured in Kπ elastic scattering and in a decay channel in which the Kπ

system has no strong interaction with other hadrons are equal modulo π radians. When the experimental data are

available, this ambiguity is solved by determining the sign of the S-wave amplitude from data. At leading order in αs

the lepton pair l+l− indeed decouples from the Kπ final state, and thus phases of B to scalar Kπ decay amplitudes

are equal to I = 1/2 Kπ scattering with the same isospin and angular momentum. As a consequence, we have

〈(Kπ)0|s̄Γb|B̄〉 ∝ FK−π+(mKπ), (8)

with FK−π+ the scalar form factor. In this work, we will approximately use the perturbative QCD approach to

compute the B → K∗
0 form factor, and the line-shape is given as

LχPT
K∗

0
(mKπ) = NχPTFK−π+(mKπ), (9)

with NχPT being the normalization constant evaluated in Appendix C. We will comment on the Watson theorem and

the use of perturbative QCD later.
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III. S-WAVE SCALAR FORM FACTORS

Scalar ππ/KK̄ and Kπ/Kη form factors have been calculated within a variety of approaches using (unitarized)

chiral perturbation theory [44–51] and dispersion relations [50, 52–56], in many cases using the former to constrain

polynomial ambiguities of the latter. Data exist for the pion vector form factor [57–59] and the ππ scalar form factor

(e.g., the φ in J/ψ → ππφ acts as an isospin filter). However, the strangeness changing scalar form factor is more

difficult to extract due to the mixing of S and P waves.

In Ref. [54], once-subtracted dispersion relations in the three channels Kπ, Kη, and Kη′ were solved to determine

the form factor. Here, we solve the two-channel (Kπ, Kη) problem, but with two subtractions to match not only

the value but also the slope to the corresponding next-to-leading order expressions of CHPT. As it turns out, this

allows for a good prediction of the known value of the form factor at the Callan-Treiman point. With an additional

subtraction it would be possible to explicitly include this point as a constraint in the relations. For the one-channel

case, the corresponding Omnès representation of the form factor has been formulated in Ref. [60].

Though inelasticities from Kη are usually taken as small in the κ channel, the Kη channel is present. To estimate

its influence, we perform a global fit to various ππ/KK̄ and Kπ/Kη scattering channels using the Inverse Amplitude

Method (IAM) in the formulation of Ref. [61]. The original fit result of Ref. [61] produced an unsatisfactory description

of the data in the κ channel. The fit of the low-energy constants was improved in Ref. [32]. Here, we extend the range

of data description to higher energies, to take account of the K∗
0 (1430), by means of a bare explicit s-channel resonance

propagator, dressed through the couplings to the Kπ and Kη channels. Coupled-channel unitarity is preserved.

The resulting amplitude is then regarded as a representation of the phase-shift data (including inelasticities) that

serves as input for the Muskhelishvili-Omnès problem. For the solution of the latter we propose a numerical method

to directly invert the integral equations instead of solving them by iteration. To check the influence of the inelasticity,

in a second step we perform a one-channel refit to the phase-shift data, dropping the constraints from data other than

the κ channel. The one-channel problem is solved both by direct inversion and with the Omnès function.

For the ππ/KK̄ form factor evaluated in Sec. III B we rely on the prediction of the chiral unitary approach at order

p2, matched to the NLO expression of the form factor at order p2. It should be noted that a corresponding procedure

using the IAM in the formulation of Ref. [61], that contains also the O(p4) contact terms, is not possible: in that

formulation the method produces, almost unavoidably, spurious singularities between s = 0 and the lowest threshold

for meson-meson scattering. These singularities are then also present in the form factor.

A. Scalar Kπ and Kη form factors

1. The Kπ scattering amplitude

To obtain the coupled-channel form factor via the Muskhelishvili-Omnès relations, the scattering amplitude T needs

to be known, parameterized in the present study by the IAM plus a genuine resonance term,

T = (1− V G)−1V, V = VIAM + Vres,

VIAM =
(

1− V [4](V [2])−1
)−1

V [2],

(Vres)ij =
gi gj

[

s− (Mη +MK)2
]2

f2
π (s−mb)

2 (10)

with the matrices in channel space V [2] and V [4] containing the O(p2) and O(p4) contact interactions of Ref. [61].

An explicit expression for the scalar loop function G can be found, e.g., in the Erratum of Ref. [61]. The T -matrix

is projected to different partial waves, but the explicit resonance is only inserted in the κ channel to take account
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z0 [MeV] a−1(Kη) [Mπ] a−1(Kπ) [Mπ ]

κ(800) this work (2-ch.) 792−i 279 −29−i 57

this work (1-ch.) 715−i 283 −45−i 62

Ref. [32] (χU) 815−i 226 −30−i 57

Ref. [66] (Roy-S.) 658−i 279

K∗

0 (1430) this work (2-ch.) 1388−i 71 −11−i 5 11+i 13

this work (1-ch.) 1425−i 120 0 20+i 39

Ref. [67] (phen.) 1427−i 135

TABLE I: The κ(800) and K∗

0 (1430) pole positions z0 [MeV] and residues a−1[Mπ ] to open channels. Uncertainties quoted in

other works have been suppressed.

of the K∗
0 (1430); t and u-channel resonance contributions are neglected. The mixing of η-η′ is neglected throughout

this study; for example, in the recent study of meson-meson scattering of Ref. [62] it is taken into account. Another

resonance fit to Kπ has been performed in Ref. [53], see also Refs. [63, 64], and for an early study of combining CHPT

with resonances, see [65]. Fit parameters of the present study are the seven low energy constants Lr
1 to Lr

5 and Lr
7,

Lr
8 [61] appearing in V [4], as well as the two bare resonance couplings g1, g2 to the Kπ and Kη channels, respectively,

and the bare mass mb.

The fit result for the considered partial waves and reaction channels is shown in Figs. 2 with the (red) solid lines

and compared to the previous solution of Ref. [32] (thin dashed lines). The three new resonance parameters allow for

a good data description in the energy region of the K∗
0 (1430). Obviously, these new parameters introduce additional

freedom that is reflected in a slightly improved data description also for the other considered channels and reactions.

It should be noted that the amplitude for the κ quantum numbers exhibits a visible cusp from the Kη channel at

E = 1.043 GeV which is an indication of considerable inelasticity. In the previous solution from Ref. [32] (thin dashed

line), the cusp is even more pronounced. We accept this behavior as a consequence of the combined fit to different

reactions, but will compare with a one-channel description in the following. For that, the model of Eq. (10) is reduced

to the Kπ channel and only the phase-shift data of the κ channel is fitted for simplicity. This means no attempt is

undertaken to determine the low-energy constants, but the fit serves merely as a one-channel representation of the

phase-shift data. The result is shown with the thick dashed (blue) line in Fig. 2.

The values of the low energy constants of the global two-channel fit are close to the ones quoted in Ref. [32]. The

same applies to the pole positions of the K∗(892), ρ(770), σ(600), and f0(980) resonances. Here, we quote only the

pole positions and residues of the κ(800) and the K∗
0 (1430) to open channels. As Table I shows the results for both

resonances depend indeed significantly on whether a one- or a two-channel system is considered. In the two-channel

(2-ch.) calculation the κ(800) pole is at higher energies than in the one-channel calculation (1-ch.) in which case the

result is closer to the Roy-Steiner determination (Roy-S.) of Ref. [66], see also Refs. [68, 69]. For the K∗
0 (1430), the

one-channel calculation results in a broader resonance close to the one-channel phenomenological analysis (phen.) of

Ref. [67], while the K∗
0 (1430) is much narrower in the two-channel calculation (with around 35% branching fraction

into Kη). In the latter case, the pole position is in agreement with a recent three-channel chiral unitary analysis [62]

in which a pole position of z0 = 1428+56
−23 − i 87+53

−28 [MeV] is quoted.
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FIG. 2: Solid (red) lines: Combined coupled-channel fit to ππ and Kπ scattering in S- and P -waves. Thin (black) dashed lines:

Results from Ref. [32]. Dashed (blue) line for the κ channel: One-channel re-fit (only to the data in the κ channel). Data: see

Ref. [32] and references therein. The data for the κ channel are from Ref. [61] containing the data of Refs. [29] for the higher

energies.

2. The Kπ form factor

The strangeness-changing scalar form factors are defined as

〈0|s̄u|Kπ〉 = m2
K −m2

π

ms −mu
CXFX(s). (11)
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with CX being the normalization constants

CK+π0 =
1√
2
, CK0π+ = 1, CK+η8

= − 1√
6
, CK+η1

=

√

4

3
. (12)

The Kπ and Kη8 form factors fKπ and fKη8
have been calculated to NLO in Ref. [70]. To project to isospin

I = 1/2, the corresponding coefficients have to be determined. For that, we proceed in analogy to Ref. [45]. Here,

the strangeness-changing combinations can be obtained from a source term

χs = 2B0







0 0 mūs

0 0 md̄s

ms̄u ms̄d 0






(13)

with the basis (u, d, s). In the lowest-order chiral effective Lagrangian, the scalar source appears as

L =
f2

4
〈U †χs + χ†

sU〉 (14)

and, e.g., s̄u = −∂L/∂ms̄u. To two meson fields in Eq. (14), the terms arising from all strangeness changing terms

mq̄q′ are (we quote only the sum):

q̄q′ = ūs+ d̄s+ s̄u+ s̄d =
B0

6

[

6
(

π−K+ +K−π+ + π+K0 + π−K̄0
)

−
√
2
(

K− +K+
)

(√
3η8 − 3π0

)

−
√
2
(

K0 + K̄0
)

(√
3η8 + 3π0

) ]

. (15)

The isospin I = 1/2 combination is

〈0|q̄q′|Kπ〉I=1/2 =

√

3

2
B0 , 〈0|q̄q′|Kη8〉I=1/2 = − 1√

6
B0 . (16)

In the following, we omit an overall factor of
√

3/2B0 and obtain the form factors in isospin I = 1/2 as

FKπ = fKπ, FKη = −1

3
fKη8

. (17)

The overall normalization of the form factors is estimated in Appendix C. Recasting the expressions for fKπ and fKη8

from Ref. [70] in terms of the leading-order meson-meson scattering transitions K we obtain

Fχ
Kπ(s) = 1 +

4Lr
5 s

f2
+

s

4∆Kπ
(5µπ − 2µK − 3µη8

) + J̄KπKKπ,Kπ − 1

3
J̄Kη8

KKη8,Kπ ,

Fχ
Kη8

(s) = −1

3
− 4Lr

5 s

3f2
− 3s

4∆Kπ
(µπ − 2µK + µη8

) + J̄KπKKπ,Kη8
− 1

3
J̄Kη8

KKη8,Kη8
, (18)

where

KKπ,Kπ = − 1

8f2

(

2Σ− 5s+
3∆2

Kπ

s

)

, KKπ,Kη8
= − 1

8f2

(

3s− 2Σ− ∆2
Kπ

s

)

,

KKη8,Kη8
= − 1

24f2

(

9s+
∆2

Kπ

s
− 18M2

η8
− 2M2

K

)

, (19)

and KKη8,Kπ = KKπ,Kη8
due to time reversal invariance, Σ =M2

π +M2
K , ∆Kπ =M2

K −M2
π and

J̄ =
1

32π2

[

2 +

(

M2
1 −M2

2

s
− M2

1 +M2
2

M2
1 −M2

2

)

log
M2

2

M2
1

− λ(s)

s

(

log(s+ λ(s) +M2
1 −M2

2 ) + log(s+ λ(s) −M2
1 +M2

2 )

− log(−s+ λ(s)−M2
1 +M2

2 )− log(−s+ λ(s) +M2
1 −M2

2 )

)]

. (20)
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Note the convention V [2] = −K with V [2] from Eq. (10). The constant f is taken to equal the pion decay constant

fπ = 92.4 MeV, λ2(s) = [s − (M1 +M2)
2][s − (M1 +M2)

2], and s ≡ s + iǫ ensures that the correct sheet of the

logarithm is taken. The expressions for the logarithms µi generated by chiral tadpoles in the NLO scalar form factors

are given by

µi =
M2

i

32π2f2
log

(

M2
i

µ2

)

. (21)

For the low-energy constant Lr
5 we take the value from Ref. [71] of the fit All p4, 103 · Lr

5(µ = Mρ) = 1.21. In the

present calculation the scale is set by the cutoff of the scalar loop function G in Eq. (10) of Λ = 1 GeV. The scale can

be calculated according to Ref. [61]

µ′ =
2Λ√
e

(22)

up to order O(M2
i /Λ

2). This expression also holds for loops with unequal masses, as we have checked explicitly. The

value of the low energy constant at this µ′ is obtained by evolving Lr
5 from µ =Mρ using the β-function [72],

Lr
5(µ)− Lr

5(µ
′) =

3

8 (4π)2
log

µ′

µ
, (23)

resulting in 103 · L5(µ
′ = 1.213GeV) = 0.131.

3. Matching to CHPT by twice-subtracted dispersion relations

We write the twice-subtracted Muskhelishvili-Omnès problem for the two channels Kπ and Kη as

FKπ(s) = Fχ
Kπ(0) + (Fχ

Kπ)
′(0) s+

s2

π

∞
∫

sKπ

ds′
FKπ(s

′)σKπ(s
′)T ∗

Kπ,Kπ(s
′)

s′2(s′ − s− iǫ)
+
s2

π

∞
∫

sKη

ds′
FKη(s

′)σKη(s
′)T ∗

Kη,Kπ(s
′)

s′2(s′ − s− iǫ)
,

FKη(s) = Fχ
Kη(0) + (Fχ

Kη)
′(0) s+

s2

π

∞
∫

sKπ

ds′
FKπ(s

′)σKπ(s
′)T ∗

Kη,Kπ(s
′)

s′2(s′ − s− iǫ)
+
s2

π

∞
∫

sKη

ds′
FKη(s

′)σKη(s
′)T ∗

Kη,Kη(s
′)

s′2(s′ − s− iǫ)

(24)

with T from Eq. (10) and1 σ = −qc.m./(8π
√
s). The subtractions ensure that the scalar form factors FKπ and FKη

match the size and slope of the next-to-leading order chiral result from Eq. (18) at s = 0.

The system of integral equations (24) cannot be solved by iteration as it is possible in other cases [54, 73]. Due to

the two subtractions, this procedure is not convergent. However, it can be solved by matrix inversion. The derivation

of the solution is shown for the one-channel case and then generalized to the two-channel case. We rewrite the twice

subtracted dispersion relation to numerically regularize the singularity (s ≡ s+ iǫ),

F (s) = Fχ(0) + (Fχ)′(0) s+K(s, s)F (s)

[

log

(

scut − s

s

)

+ iπ

]

+

scut
∫

0

ds′
K(s, s′)F (s′)−K(s, s)F (s)

s′ − s− iǫ

(25)

with scut → ∞ and the kernel

K(s, s′) =
s2

π

σ(s′)T ∗(s′)

s′2
Θ(s′ − sthres.) . (26)

1 The matrix T is defined with opposite sign in Ref. [54] which is here absorbed in the sign of σ.
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Adding and subtracting the singularity in this way ensures that for s > sthres. the integral is regular and the imaginary

part is correctly evaluated while for s < sthres. these extra terms are absent. Additionally, the lower integration limit

has been moved to the definition of the kernel K, the reason for which will become clearer in the following.

For the numerical evaluation, the integral is replaced by a sum according to
∫

ds′f(s′) →∑

j wjf(s
′
j) with integra-

tion weights wj at s′ = s′j . To apply the matrix inversion technique, one has to choose sj = s′j , ∀j = 1, . . . , n, such

that Eq. (25) is rewritten in discretized form as

F (si) = Fχ(0) + (Fχ)′(0) si +K(si, si)

[

log

(

scut − si
si

)

+ iπ

]

+ wi
K(si, si+1)F (si+1)−K(si, si)F (si)

si+1 − si
+

n
∑

j 6=i

wj
K(si, sj)F (sj)−K(si, si)F (si)

sj − si
∀i = 1, . . . , n . (27)

The sum over the integration weights has been split into a regular part i 6= j, and the term i = j has been replaced

by the right-hand derivative,

lim
s′→s

(

K(s, s′)F (s′)−K(s, s)F (s)

s′ − s

)

→ K(si, si+1)F (si+1)−K(si, si)F (si)

si+1 − si
. (28)

For the case i = n, this term is simply set to zero which induces an error that vanishes for sufficiently many integration

points; furthermore, the derivative should be small for large s. One could introduce here a left-hand derivative, but

this unnecessarily complicates the equations. Introducing

Mij =







































































K(si, sj)

sj − si
wj for j 6= i, j 6= i+ 1,

K(si, si+1)

si+1 − si
(wi + wi+1) for j = i+ 1, i 6= n,

K(si, si)



log

(

scut − si
si

)

+ iπ − wi

si+1 − si
−
∑

j 6=i

wj

sj − si



 for i = j 6= n,

K(si, si)



log

(

scut − si
si

)

+ iπ −
∑

j 6=i

wj

sj − si



 for i = j = n ,

(29)

and the vector

F
χ =

(

Fχ(0) + (Fχ)′(0) s1, . . . , F
χ(0) + (Fχ)′(0) sn

)T

, (30)

Eq. (27) is rewritten as

F = F
χ +MF (31)

that can be inverted to yield the form factor

F = (1−M)−1
F

χ . (32)

The scheme presented here resembles the Haftl-Tabakin scheme used for the solution of scattering problems [74].

However, the present scheme is more involved, because one has explicit singularities for s = s′. As shown, those can

be handled by using the numerical derivative of the integrand. In the context of a dispersive analysis of the scalar

form factor of the nucleon, a similar method has been derived in Ref. [75].

The generalization to two or more channels is straightforward. For this, we introduce the channel indices µ, ν in

the kernel

Kµν(s, s
′) =

s2

π

σν(s
′)T ∗

νµ(s
′)

s′2
Θ(s′ − sthres.ν) (33)
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FIG. 3: The Kη (left panel) and Kπ (right panel) form factors. Thick (red) lines: Muskhelishvili-Omnès solution according

to Eq. (24), obtained with Eq. (34). Also, the uncertainties from higher energy input are shown (hatched areas). Dash-dotted

lines: chiral next-to-leading order result [70] according to Eq. (18). The data point shows the value at the Callan-Treiman

point (not included as a constraint).

that lead to a 2n× 2n matrix Mµν according to Eq. (29). The initial coupled-channel problem of Eq. (24) can finally

be rewritten as
(

F1

F2

)

=

(

F
χ
1

F
χ
2

)

+

(

M11 M12

M21 M22

) (

F1

F2

)

(34)

where 1 stands for the Kπ channel and 2 for the Kη channel. The solution for the 2n elements

(FKπ(s1), . . . , FKπ(sn), FKη(s1), . . . , FKη(sn))
T is then obtained by matrix inversion as before 2.

4. Results for the form factors

With the T matrix of Eq. (10) and the chiral form factors of Eq. (18) as input, the solution of Eqs. (24) is shown in

Fig. 3 for scut = (2.05GeV)2. The error bands are obtained by varying scut from this value down to scut = (1.65GeV)2

to show the sensitivity to the high-energy input. As the figure shows, values and slopes of the chiral results Fχ
Kπ(0) and

Fχ
Kη(0) are matched. We have checked that FKπ fulfills Watson’s theorem between the Kπ and the Kη threshold.

An additional piece of information is given by the value of the form factor at the Callan-Treiman point [55, 60],

FKπ(∆Kπ) = 1.2346(53)FKπ(0). It is possible to explicitly include this value in the Omnès representation of the form

factor [60], fixing not only its value and slope at s = 0 but also the curvature. In the inset of Fig. 3, we simply show

our prediction of the value.

2 It finally becomes also clear why we have extended the lower integration limit to zero in writing Eq. (25). In this way, coupled-channel
problems with different thresholds can be treated easily, and, second, the solution obtained for the form factors extends down to s = 0.
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FIG. 4: Comparison of the once-subtracted Muskhelishvili-Omnès solution (faint gray lines) with the twice-subtracted result

of Fig. 3 (black lines). Other curves as in Fig. 3. For the once-subtracted solution, the slope at s = 0 is not matched and

uncertainties from higher-energy input (shaded areas) are larger.

In Fig. 4 we compare to the once-subtracted version of the Muskhelishvili-Omnès problem, given by

FKπ(s) = Fχ
Kπ(0) +

s

π

∞
∫

sKπ

ds′
FKπ(s

′)σKπ(s
′)T ∗

Kπ,Kπ(s
′)

s′(s′ − s− iǫ)
+
s

π

∞
∫

sKη

ds′
FKη(s

′)σKη(s
′)T ∗

Kη,Kπ(s
′)

s′(s′ − s− iǫ)
,

FKη(s) = Fχ
Kη(0) +

s

π

∞
∫

sKπ

ds′
FKπ(s

′)σKπ(s
′)T ∗

Kη,Kπ(s
′)

s′(s′ − s− iǫ)
+
s

π

∞
∫

sKη

ds′
FKη(s

′)σKη(s
′)T ∗

Kη,Kη(s
′)

s′(s′ − s− iǫ)
. (35)

The solution is obtained by the same method as for the twice subtracted relations, with a modified inhomogeneity

F
χ =

(

Fχ
Kπ(0), . . . , F

χ
Kπ(0), F

χ
Kη(0), . . . , F

χ
Kη(0)

)T
, (36)

[compare to Eq. (30)] and a modified kernel

Kµν(s, s
′) =

s

π

σν(s
′)T ∗

νµ(s
′)

s′
Θ(s′ − sthres.ν) (37)

[compare to Eq. (33)]. As Fig. 4 shows, the slope of the chiral NLO expression is not matched any more. Also, the

prediction of the form factor at the Callan-Treiman point is wrong. As expected, the uncertainty from the high-

energy behavior is significantly larger for the once-subtracted version (shaded areas). Moreover, the difference to the

twice-subtracted solution is larger than the uncertainties from the high-energy input.

Finally, we compare to the one-channel version of the form factor. For this, we use the one-channel fit to the phase

shift discussed in Sec. III A 1 and shown in Fig. 2 with the thick dashed (blue) line. The twice-subtracted dispersion

relation

FKπ(s) = Fχ
Kπ(0) + (Fχ

Kπ)
′(0) s+

s2

π

∞
∫

sKπ

ds′
FKπ(s

′)σKπ(s
′)T ∗

Kπ,Kπ(s
′)

s′2(s′ − s− iǫ)
(38)

has the Omnès solution (cf., e.g., Ref. [57])

FKπ(s) = P (s)Fχ
Kπ(0) exp

[

s
(Fχ

Kπ)
′(0)

Fχ
Kπ(0)

+
s2

π

∞
∫

sKπ

ds′

s′2
δ(s′)

s′ − s

]

(39)
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FIG. 5: Left: One-channel Kπ form factor (dashed blue lines) compared to the two-channel solution of Fig. 3 (solid red lines).

Right: Direct inversion of Eq. (38) (dashed blue lines) compared to the Omnès solution according to Eq. (39). Both solutions

are matched to ChPT at the origin and differ from each other by a real polynomial in s of degree 2 and higher, as must be.

with a polynomial ambiguity P (s) = 1 + a2s
2 + a3s

3 + . . . (note that σ T ∗ = sin δ exp(−iδ)).
Using the numerical methods of Sec. III A 3, Eq. (38) can be directly inverted. To the left in Fig. 5, the corresponding

result (dashed blue lines) is compared to the two-channel solution (solid red lines). While the one-channel and the

two-channel solutions are qualitatively similar, at higher energies there are differences. In particular, the two-channel

solution never becomes zero, while the one-channel solution has a zero around s = 2.2GeV2. In Fig. 5 to the right,

the one-channel solution is compared to the Omnès solution of Eq. (39) with P (s) = 1. The results start to differ

already at quite low energies. The Omnès solution cannot become zero while the direct inversion of Eq. (38) exhibits

a zero. As we have checked, the two solutions indeed differ by a real polynomial P (s) with a zero, of the form quoted

below Eq. (39). The role of zeroes in form factors has extensively been discussed in Ref. [76]. In summary, we observe

that the two-channel solution becomes small but stays non-zero, the one-channel solution has a zero, and the Omnès

solution cannot have a zero. Experimental data can clarify whether a zero is present or not.

B. Scalar ππ and KK̄ form factors

In terms of the isoscalar S-wave states

|ππ〉I=0 =
1√
3

∣

∣π+π−
〉

+
1√
6

∣

∣π0π0
〉

, (40)

|KK̄〉I=0 =
1√
2

∣

∣K+K−
〉

+
1√
2

∣

∣K0K̄0
〉

, (41)

the scalar form factors for the π and K mesons are defined as

√
2B0 F

n/s
1 (s) = 〈0|n̄n/s̄s|ππ〉I=0, (42)

√
2B0 F

n/s
2 (s) = 〈0|n̄n/s̄s|KK̄〉I=0,
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where n̄n = (ūu+d̄d)/
√
2 denotes the non-strange scalar current, and the notation (π = 1, K = 2) has been introduced

for simplicity. Expressions have already been derived in CHPT up to next-to-leading order [45, 70, 72, 77]:

Fn
1 (s) =

√

3

2

[

1 + µπ − µη

3
+

16m2
π

f2
(2Lr

8 − Lr
5) + 8 (2Lr

6 − Lr
4)

2m2
K + 3m2

π

f2
+

8s

f2
Lr
4 +

4s

f2
Lr
5

+

(

2s−m2
π

2f2

)

Jr
ππ(s) +

s

4f2
Jr
KK(s) +

m2
π

18f2
Jr
ηη(s)

]

, (43)

F s
1 (s) =

√
3

2

[

16m2
π

f2
(2Lr

6 − Lr
4) +

8s

f2
Lr
4 +

s

2f2
Jr
KK(s) +

2

9

m2
π

f2
Jr
ηη(s)

]

, (44)

Fn
2 (s) =

1√
2

[

1 +
8Lr

4

f2

(

2s−m2
π − 6m2

K

)

+
4Lr

5

f2

(

s− 4m2
K

)

+
16Lr

6

f2

(

6m2
K +m2

π

)

+
32Lr

8

f2
m2

K +
2

3
µη

+

(

9s− 8m2
K

36f2

)

Jr
ηη(s) +

3s

4f2
Jr
KK(s) +

3s

4f2
Jr
ππ(s)

]

, (45)

F s
2 (s) = 1 +

8Lr
4

f2

(

s−m2
π − 4m2

K

)

+
4Lr

5

f2

(

s− 4m2
K

)

+
16Lr

6

f2

(

4m2
K +m2

π

)

+
32Lr

8

f2
m2

K +
2

3
µη

+

(

9s− 8m2
K

18f2

)

Jr
ηη(s) +

3s

4f2
Jr
KK(s). (46)

Imposing the unitarity constraints, the scalar form factor can be expressed in terms of the algebraic coupled-channel

equation

F (s) = [I +K(s) g(s)]−1R(s) (47)

= [I −K(s) g(s)] R(s) + O(p6),

where R(s) has no right-hand cut and in the second line, the equation has been expanded up to NLO in the chiral

expansion. K(s) is the S-wave projected kernel of meson-meson scattering amplitudes that can be derived from the

leading-order chiral Lagrangian:

K11 =
2s−m2

π

2f2
, K12 = K21 =

√
3s

4f2
, K22 =

3s

4f2
.

The loop integral can be calculated either in the cutoff-regularization scheme with qmax ∼ 1GeV being the cutoff [cf.

Erratum of Ref. [61] for an explicit expression] or in dimensional regularization with the modified MS subtraction

scheme. In the latter scheme, the meson loop function gi(s) is given by

Jr
ii(s) ≡ 1

16π2

[

1− log

(

m2
i

µ2

)

− σi(s) log

(

σi(s) + 1

σi(s)− 1

)]

= −gi(s). (48)

with σi(s) =
√

1− 4m2
i /s. The matching between these two renormalization is given in Eq. (22) with qmax = Λ.
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FIG. 6: The non-strange and strange ππ and KK̄ scalar form factors obtained in the unitarized chiral perturbation theory.

The modulus, real part and imaginary part are shown in solid, dashed and dotted curves.

The expressions for the Ri are obtained by matching the unitarization and chiral perturbation theory [49, 78]:

Rn
1 (s) =

√

3

2

{

1 + µπ − µη

3
+

16m2
π

f2
(2Lr

8 − Lr
5) + 8 (2Lr

6 − Lr
4)

2m2
K + 3m2

π

f2
+

8s

f2
Lr
4 +

4s

f2
Lr
5

− m2
π

288π2f2

[

1 + log

(

m2
η

µ2

)

]}

, (49)

Rs
1(s) =

√
3

2

{

16m2
π

f2
(2Lr

6 − Lr
4) +

1

3

8s

f2
Lr
4 −

m2
π

72π2f2

[

1 + log

(

m2
η

µ2

)]}

, (50)

Rn
2 (s) =

1√
2

{

1 +
8Lr

4

f2

(

2s− 6m2
K −m2

π

)

+
4Lr

5

f2

(

s− 4m2
K

)

+
16Lr

6

f2

(

6m2
K +m2

π

)

+
32Lr

8

f2
m2

K +
2

3
µη

+
m2

K

72π2f2

[

1 + log

(

m2
η

µ2

)]}

, (51)

Rs
2(s) = 1 +

8Lr
4

f2

(

s− 4m2
K −m2

π

)

+
4Lr

5

f2

(

s− 4m2
K

)

+
16Lr

6

f2

(

4m2
K +m2

π

)

+
32Lr

8

f2
m2

K +
2

3
µη

+
m2

K

36π2f2

[

1 + log

(

m2
η

µ2

)]

, (52)

where the factor 1/3 in Rs
1(s) is missing in Ref. [49].

With the above formulae and the fitted results for the low-energy constants Lr
i in Ref. [49] (evolved from Mρ to
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FIG. 7: S-wave Kπ line shapes. The modulus, real part, and imaginary part are given in panel (a), (b), and (c), respectively.

Solid (red) lines: lineshape given by Eq. (9) with the Muskhelishvili-Omnès solution of Eq. (24) for the form factor. Dash-dotted

(dark red) lines: Omnès solution of Eq. (39). Dotted lines: LASS lineshape of Eq. (55); dashed (blue) lines: parameterization

of Eq. (58).

the scale µ = 2qmax/
√
e), we show the non-strange and strange ππ and KK̄ form factors in Fig. 6. The modulus,

real part and imaginary part are shown as solid, dashed and dotted curves. As the figure shows, the chiral unitary

ansatz predicts a form factor Fn
ππ with a zero close to the K̄K threshold. This feature has been extensively discussed

in Ref. [76].

IV. RESULTS AND DISCUSSIONS

In the narrow-width limit, the integration over the Kπ invariant mass leads to the normalization of the K∗ [K∗ ≡
K∗(892)] line shape:

∫

dm2
Kπ|LK∗(m2

Kπ)|2 = B(K̄∗0 → K−π+) ≃ 2

3
(53)

with B being the branching ratio. Considering the momentum dependence of the K∗ decay, we have the running

width as

ΓK∗(m2
Kπ) = Γ0

K∗

( |~q |
|~q0|

)3
mK∗

mKπ

1 + (R|~q0|)2
1 + (R|~q |)2 , (54)

and the Blatt-Weisskopf parameter R = (2.1± 0.5± 0.5)GeV−1 [21]. It is plausible to assume the same form for the

φ meson except that the mass, total decay width and the branching ratios into K+K− are replaced correspondingly.

We start with the numerical discussion on the K−π+ and K+K− line-shapes. In the case of K−π+, we compare

with the data-inspired LASS parametrization [29, 79]

LLASS
K∗

0
(mKπ) = NLASS

(

mKπ

|~q |(cot δB − i)
+ e2iδB

m2
K∗

0
Γ0
K∗

0
/|~q0|

m2
K∗

0
−m2

Kπ − imK∗
0
ΓK∗

0
(m2

Kπ)

)

, (55)

with ~q and ~q0 being three momentum of kaon/pion at mKπ and mK∗
0
, and the parameters [80]

cot δB =
1

a|~q | +
1

2
r|~q |, a = 1.94GeV−1, r = 1.76GeV−1. (56)
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The running decay width in Eq. (55) is

ΓK∗
0
(m2

Kπ) = Γ0
K∗

0

|~q |
|~q0|

mK∗
0

mKπ
. (57)

The constant NLASS in Eq. (55) can be chosen such that the K∗
0 (1430) term has the same normalization as the

ordinary Breit-Wigner formula. In the study of S-wave effects in B → K∗l+l−, the authors of Ref. [18] have suggested

a phenomenological parametrization:

LBT
K∗

0
= NBT

[

gκ
m2

Kπ − (mκ − iΓκ/2)2
− 1

m2
Kπ − (mK∗

0
(1430) − iΓK∗

0
(1430)/2)2

]

, (58)

with the coupling constant chosen by hand gκ ∼ 0.2 and NBT as the normalization constant.

In Fig 7, we compare the three parametrizations defined in Eq. (9), Eq. (55), and Eq. (58) corresponding to the

solid, dotted and dashed curves with the result of Eq. (9) given by the Muskhelishvili-Omnès solution according to

Eq. (24) and shown in Fig. 3. Dash-dotted lines are the Omnès solution of Eq. (39). In the experimental study of B →
J/ψKπ [80], the Babar collaboration found in their Fig.11 that the LASS parametrization for S-wave contribution

will undershoot the experimental data in the low Kπ invariant mass region, in particular around mKπ ∼ 0.7 GeV.

As Fig. 7 shows for |LK∗
0
(mKπ)|, the results derived in this study can indeed improve this underprediction at low

invariant masses. Both the Muskhelishvili-Omnès and the Omnès solution have more strength at low invariant masses

than the LASS parametrization. In both results of this study, a double hump structure from the κ and the K∗
0 (1430)

is observed. In the two-channel solution (solid red line), the flux into the Kη channel significantly reduces the strength

at the K∗
0 (1430) position, which is not the case for the one-channel (elastic) Omnès solution (dash-dotted lines). As

discussed before, the latter cannot have a zero and thus might overpredict the strength at the K∗
0 (1430) position.

We will also study the process Bs → φ(→ K+K−)l+l−, where the KK̄ state is close to threshold and the S-wave

mass distribution is well-described by the Flatté model [81]

Lf0(980)(mKK̄) =

√

mf0Γf0→K+K−

π

1

m2
KK̄

−m2
f0

+ imKK̄(g1ρππ + g2ρKK̄)
, (59)

with ρππ/KK̄ being the Lorentz-invariant phase space, ρππ/KK̄ = 2|~q |/mKK̄ =
√

1− 4m2
π/K/m

2
KK̄

. The involved

couplings have been measured from J/ψ decays by the BES collaboration [82]

mf0Γf0→K+K− =
1

2
g2ρKK̄ , g1 = (165± 10± 15)MeV, g2/g1 = 4.21± 0.25± 0.21. (60)

To quantitatively demonstrate the size of S-wave contributions, we study the total differential decay width dΓ/dq2

(integrated over mKπ), the S-wave fraction and the forward-backward asymmetry distribution for the charged kaon,

dAK
FB/dq

2:

dΓ

dq2
≡
∫ (mK∗+δm)2

(mK∗−δm)2
dm2

Kπ

d2Γ

dq2dm2
Kπ

,

dΓS

dq2
≡
∫ (mK∗+δm)2

(mK∗−δm)2
dm2

Kπ

d2ΓS

dq2dm2
Kπ

=

∫ (mK∗+δm)2

(mK∗−δm)2
dm2

Kπ[|AL0|2 + |AR0|2],

dAK
FB

dq2
≡
∫ (mK∗+δm)2

(mK∗−δm)2
dm2

Kπ

d2AK
FB

dq2dm2
Kπ

,
dAK

FB

dq2
≡

dAK
FB

dq2

dΓ
dq2

, (61)

with mK∗ ≡ mK∗(892).

With the choice of δm = 100 MeV (the default choice adopted by the LHCb collaboration [4]), we show our results

for dΓ/dq2 in panel (a) of Fig. 8, where the dashed, dotted and solid curves denote the S-wave, P-wave and total
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FIG. 8: The S-wave contribution and its interference with P-wave to the differential decay width in B̄0
→ K−π+l+l−. In panel

(a), the dashed, dotted and solid curves denote the S-wave, P-wave and total contributions dΓ/dq2 in units of 10−8GeV−2.

Panel (b) shows the S-wave fraction dΓS/dq
2. We also show the forward-back asymmetry dAK

FB/dq
2 for the charged kaon in

panel (c).

0 1 2 3 4 5 6

0.1

0.2

0.5

1.0

2.0

q2 @GeV2D HaL

0 1 2 3 4 5 6
0.00

0.01

0.02

0.03

0.04

0.05

q2 @GeV2D HbL

0 1 2 3 4 5 6
0.00

0.02

0.04

0.06

0.08

q2 @GeV2D HcL

FIG. 9: Same as Fig. 8 but for B̄0
s → K+K−l+l−.

contributions respectively. The panel (b) and (c) correspond to the S-wave fraction and and the forward-backward

asymmetry. In the case of Bs → φl+l− the bin size is chosen as δm = 20 MeV and the corresponding results are

shown in Fig. 9. From these figures, we find that the S-wave contribution can reach 10% in B̄0 → K−π+l+l−, while

it is about 5% in Bs → K+K−l+l−. It is necessary to stress that there is a sign ambiguity in the forward-backward

asymmetry dAK
FB/dq

2 from the use of Watson theorem. However, the magnitude shown in panel (c) is sizable and

thus measurable in future. Since this quantity dAK
FB/dq

2 arises from the S-wave and P-wave interference, it can be

used to constrain the S-wave meson-meson scattering when precise data is available in future.

Based on the data sample of 1fb−1, the LHCb collaboration has set an upper limit for the integrated S-wave fraction
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FIG. 10: Fraction of S-wave contributions shown in the dotted (blue) curves in B̄0
→ K−π+l+l− (left panel) and B̄s →

K+K−l+l− (right panel). After using the kinematical subtraction in Eq. (63), the S-wave contributions are reduced to less

than 1%.

FS < 0.07 at 68% CL, in the range 1GeV2 < q2 < 6GeV2 [4] and

FS = 0.04± 0.04. (62)

Our estimate is slightly larger than this but still consistent with the data when errors are taken into account.

To minimize the S-wave contributions and project out the P-wave, we propose to study the subtracted differential

decay width:

dΓ′

dq2
≡
[

2

∫ (mK∗+δm2)
2

(mK∗−δm2)2
−
∫ (mK∗+δm1)

2

(mK∗−δm1)2

]

dm2
Kπ

d2Γ

dq2dm2
Kπ

=

[

∫ (mK∗+δm2)
2

(mK∗−δm2)2
−
∫ (mK∗−δm2)

2

(mK∗−δm1)2
−
∫ (mK∗+δm1)

2

(mK∗+δm2)2

]

dm2
Kπ

d2Γ

dq2dm2
Kπ

, (63)

with δm1 = 2δm2. The physical interpretation is to slice the Kπ invariant mass distribution into 4 bins around

mKπ ∼ mK∗(892) with δm2 being the size of the bins. We select the events in the central two bins and subtract those

from the other two bins. For illustration we use δm1
= 2δm2

= 100 MeV for B → K−π+l+l− and δm1
= 2δm2

= 20

MeV for Bs → K+K−l+l− 3. From the results in Fig. 10, we can see the S-wave contributions have been reduced to

less than 1% for both B → K−π+l+l− and Bs → K+K−l+l−. The disadvantage is the demand of larger statistics.

Before closing this section, several remarks are given in order.

• We have considered the invariant mass distribution for the light meson pair using chiral perturbation theory

and dispersion relations, but used the heavy-to-light form factors calculated in the resonance approximation.

• Our analysis will be improved by a direct calculation of the matrix element 〈(Kπ)0|s̄Γb|B̄〉 and also hard-

scattering QCD corrections. This can be achieved in the factorization approach by merging the perturbative

nature of B decays and the chiral perturbation description of Kπ. For future use, we parametrize these matrix

3 The CDF collaboration has used the choice of δm = 50MeV and δm = 10MeV for K+π− and K+K− states in the analysis of
B → K∗l+l− and Bs → φl+l− decays [3], while LHCb adopted δm = 100MeV for Kπ [4], and δm = 12MeV for K+K− [83].
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elements in the following

〈(Kπ)0(pKπ)|s̄γµγ5b|B(pB)〉 = −i 1

mKπ

{[

Pµ − m2
B −m2

Kπ

q2
qµ

]

F1(m
2
Kπ, q

2) +
m2

B −m2
Kπ

q2
qµF0(m

2
Kπ, q

2)

}

,

〈(Kπ)0(pKπ)|s̄σµνqνγ5b|B(pB)〉 =
FT (m

2
Kπ, q

2)

mKπ(mB +mKπ)

[

(m2
B −m2

Kπ)qµ − q2Pµ

]

, (64)

where F1,0,T (mKπ, q
2) are the “generalized” form factors and an additional dependence on kaon/pion momentum

is suppressed here. Further, P = pB + pKπ and q = pB − pKπ. Fortunately, the heavy quark and large recoil

symmetries are valid in the small q2 region, and thus we have the large-recoil symmetry at the leading-order in

αs and 1/mb [84]:

F1(mKπ, q
2) =

m2
B −m2

Kπ

m2
B −m2

Kπ − q2
F0(mKπ, q

2) =
mB

mB +mKπ
FT (mKπ, q

2) ≡ ξ(mKπ, q
2). (65)

• The calculation of generalized form factors F1,0,T (mKπ, q
2) and hard-scattering QCD corrections will remove the

necessity for the use of Watson theorem, but requires the knowledge of theKπ generalized light-cone distribution

amplitudes, defined in the following form for the Kπ system with spin J :

〈(Kπ)J |s̄(z)Γq(−z)|0〉. (66)

Here Γ denotes a generic Dirac matrix. It is interesting to notice these distribution amplitudes are normalized

to scalar form factors which were already discussed in the last section. In the ππ case, the leading-twist

distribution amplitude has been derived using CHPT [85], while to the best of our knowledge the sub-leading

twist distribution amplitudes are not yet available from first-principles in the literature.

• Our analysis can be generalized to the b → ulν̄ processes like B− → π+π−lν̄ and B̄0
s → K0π+lν̄, which are of

great interest for the determination of CKM matrix element |Vub|.

• Similarly, if two final mesons are moving collinear (with small invariant mass) in three-body B decays like

B → KKK̄,Kππ,KK̄π, πππ, the decay matrix element will be factorized at leading order in 1/mb. Depending

on the topology of the two-meson system, decay amplitudes are expressed in terms of a product of the generalized

form factors for the recoiling two-meson system as defined in Eq. (64) and the light-cone distribution amplitude

for the emitted meson, or the heavy-to-light form factors for the recoil meson and generalized distribution

amplitude for the emitted two-meson system. See for example Refs. [86–88] for some discussions along this line.

V. CONCLUSION

Our understanding of standard model and CP violation benefits a lot from heavy flavor physics, and thereby

considerable amount of effort has been made in recent years. Since the momentum transfer in B decays is large, one

can use the factorization scheme to separate the short-distance and the long-distance physics. The calculation of the

short-distance part is based on perturbation theory and operator product expansion in QCD, and has reached a high

precision. The long-distance matrix element is usually challenged by our knowledge of the S-wave. In this work, we

point out the S-wave contribution can be controlled using chiral perturbation theory, which offers a systematic way

for the study of the S-wave in B semi-leptonic and non-leptonic decays. Still, direct measurements have to be made

to disentangle remaining polynomial ambiguities.

In this work, we considered the example B → Kπl+l− and identified the matrix element 〈Kπ|s̄Γb|B̄〉 with the S-wave

scalar form factor. Using the S-waveKπ and KK̄ form factors from the Muskhelishvili-Omnès solution and unitarized

chiral perturbation theory, respectively, we have investigated the S-wave contributions in the decay B
0 → K−π+l+l−
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with the Kπ invariant mass lying in the vicinity of the mass of the K∗(892) and the decay Bs → K−K+l+l− with

mKK ∼ mφ. We found that differential decay widths are affected by about 10% in the process of B
0 → K−π+l+l−,

which is larger than but still consistent with the LHCb measurements. A forward-backward asymmetry for the charged

kaon in the final state arises due to the interference between S-wave and P-wave contributions. The measurement of

this asymmetry in the future offers a new way to constrain the variation of the Kπ S-wave phase versus the invariant

mass and it should be compared with other experimental determinations.
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Appendix A: B → K∗

J Form factors

The B → K∗
0 form factors are parametrized as

〈K∗
0 (P2)|s̄γµγ5b|B(PB)〉 = −i

{[

Pµ −
m2

B −m2
K∗

0

q2
qµ

]

F1(q
2) +

m2
B −m2

K∗
0

q2
qµF0(q

2)

}

,

〈K∗
0 (P2)|s̄σµνqνγ5b|B(PB)〉 =

[

(m2
B −m2

K∗
0
)qµ − q2Pµ

] FT (q
2)

mB +mK∗
0

, (A1)

while the B → K∗
J(J > 1) form factors are defined by [89–91]

〈K∗
J(P2, ǫ)|s̄γµb|B(PB)〉 = − 2V (q2)

mB +mK∗
J

ǫµνρσǫ∗JνPBρP2σ,

〈K∗
J(P2, ǫ)|s̄γµγ5b|B(PB)〉 = 2imK∗

J
A0(q

2)
ǫ∗J · q
q2

qµ + i(mB +mK∗
J
)A1(q

2)

[

ǫ∗Jµ − ǫ∗J · q
q2

qµ
]

−iA2(q
2)

ǫ∗J · q
mB +mK∗

J

[

Pµ −
m2

B −m2
K∗

J

q2
qµ

]

,

〈K∗
J (P2, ǫ)|s̄σµνqνb|B(PB)〉 = −2iT1(q

2)ǫµνρσǫ∗JνPBρP2σ,

〈K∗
J(P2, ǫ)|s̄σµνγ5qνb|B(PB)〉 = T2(q

2)
[

(m2
B −m2

K∗
J
)ǫ∗Jµ − ǫ∗J · qPµ

]

+ T3(q
2)ǫ∗J · q

[

qµ − q2

m2
B −m2

K∗
J

Pµ

]

,

in which we have adopted ǫ0123 = +1, q = PB − P2, and P = PB + P2. The polarization vector ǫJ is constructed by

the rank-J polarization tensor

ǫJµ(h) =
1

mJ−1
B

ǫµν1ν2...νJ−1
(h)P ν1

B P ν2
B ...P

νJ−1

B , (A2)

with the helicity h = 0,±1. In the case of J = 1, it is reduced to the ordinary polarization vector.

These transition form factors have been calculated in the perturbative QCD approach [92–95] using the inputs from

Ref. [96] and the results are summarized in Tab. II 4, in which the dipole parametrization has been adopted to access

4 Results for heavy-to-light form factors have been updated using a package that can compute form factors and two-body nonleptonic B

decays in the perturbative QCD approach available at: http://www.itkp.uni-bonn.de/∼weiwang/.

http://www.itkp.uni-bonn.de/~weiwang/
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TABLE II: B → K∗

J and Bs → f0(980), φ form factors in the perturbative QCD approach.

F (0) aF bF F (0) aF bF

V B̄0K̄∗0

0.25 −2.2 1.3 AB̄0K̄∗0

0 0.29 −2.2 1.2

AB̄0K̄∗0

1 0.19 −1.3 0.16 AB̄0K̄∗0

2 0.29 −2.2 1.2

T B̄0K̄∗0

1 0.23 −2.2 1.2 T B̄0K̄∗0

2 0.23 −1.2 0.068

T B̄0K̄∗0

3 0.16 −1.7 0.98

F
B̄0K̄∗0

0 (800)
1 0.27 −2.1 1.2 F

B̄0K̄∗0
0 (800)

0 0.27 −1.2 0.080

F
B̄0K̄∗0

0 (800)

T 0.30 −2.2 1.2

V B̄sφ 0.26 −2.2 1.3 AB̄sφ
0 0.30 −2.2 1.2

AB̄sφ
1 0.19 −1.2 0.15 AB̄sφ

2 0.30 −2.2 1.2

T B̄sφ
1 0.23 −2.1 1.2 T B̄sφ

2 0.23 −1.2 0.066

T B̄sφ
3 0.15 −1.5 1.1

F
B̄sf0(980)
1 0.34 −2.1 1.1 F

B̄sf0(980)
0 0.34 −1.2 0.078

F
B̄sf0(980)
T 0.38 −2.1 1.2

the momentum transfer dependence

F (q2) =
F (0)

1 + aF q2/m2
B + bF (q2/m2

B)
2
. (A3)

Light-cone QCD sum rules results [97–100] have similar modulus and mass distributions for the transition form factors,

and thus our discussion on semileptonic B decays will not be affected.

Appendix B: Helicity amplitudes

The differential distributions can be expressed in terms of the helicity amplitude (see for instance Ref. [16]):

Ic1 = (|AL0|2 + |AR0|2) + 8m̂2
lRe[AL0A

∗
R0] + 4m̂2

l |At|2,
Is1 =

(

3/4− m̂2
l

)

[|AL⊥|2 + |AL|||2 + |AR⊥|2 + |AR|||2] + 4m̂2
lRe[AL⊥A

∗
R⊥ +AL||A

∗
R||],

Ic2 = −β2
l (|AL0|2 + |AR0|2),

Is2 =
1

4
β2
l (|AL⊥|2 + |AL|||2 + |AR⊥|2 + |AR|||2),

I3 =
1

2
β2
l (|AL⊥|2 − |AL|||2 + |AR⊥|2 − |AR|||2),

I4 =
1√
2
β2
l [Re(AL0A

∗
L||) + Re(AR0A

∗
R||)], I5 =

√
2βl[Re(AL0A

∗
L⊥)− Re(AR0A

∗
R⊥)],

I6 = 2βl[Re(AL||A
∗
L⊥)− Re(AR||A

∗
R⊥)], I7 =

√
2βl[Im(AL0A

∗
L||)− Im(AR0A

∗
R||)],

I8 =
1√
2
β2
l [Im(AL0A

∗
L⊥) + Im(AR0A

∗
R⊥)], I9 = β2

l [Im(AL||A
∗
L⊥) + Im(AR||A

∗
R⊥)], (B1)
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with m̂l = ml/
√

q2. Substituting the expressions Ai into the angular coefficients, we obtain

Ic1 =
∑

J=0,...

{

|Y 0
J |2
[

|AJ
L0|2 + |AJ

R0|2 + 8m̂2
l |AJ

L0A
J∗
R0| cos(δJL0 − δJR0) + 4m̂2

l |AJ
t |2
]

+
∑

J′=J+1,...

Y 0
J Y

0
J′

[

2 cos(δJL0 − δJ
′

L0)|AJ
L0||AJ′∗

L0 |+ 2 cos(δJR0 − δJ
′

R0)|AJ
R0||AJ′∗

R0 |

+8m̂2
l [cos(δ

J
L0 − δJ

′

R0)|AJ
L0A

J′∗
R0 |+ cos(δJ

′

L0 − δJR0)|AJ′

L0A
J∗
R0|] + 8m̂2

l cos(δ
J
t − δJ

′

t )|AJ
t ||AJ′

t |
]

}

, (B2)

Is1 =
∑

J=1,...

{

|Y −1
J |2

[

(

3/4− m̂2
l

)

[|AJ
L⊥|2 + |AJ

L|||2 + |AJ
R⊥|2 + |AJ

R|||2]

+4m̂2
l

(

cos(δJL⊥ − δJR⊥)|AJ
L⊥A

J
R⊥|+ cos(δJL|| − δJR||)|AJ

L||A
J
R|||
)]

+
∑

J′=J+1,...

Y −1
J Y −1

J′

[

(

3/4− m̂2
l

)

[2 cos(δJL⊥ − δJ
′

L⊥)|AJ
L⊥||AJ′

L⊥|+ (L→ R) + (⊥→ ||)]

+4m̂2
l [cos(δ

J
L⊥ − δJ

′

R⊥)|AJ
L⊥A

J′∗
R⊥|+ cos(δJ

′

L⊥ − δJR⊥)|AJ′

L⊥A
J∗
R⊥|+ (⊥→ ||)]

]

}

,

Ic2 = −β2
l

∑

J=0,...

{

|Y 0
J |2(|AJ

L0|2 + |AJ
R0|2) +

∑

J′=J+1,...

Y 0
J Y

0
J′

[

2 cos(δJL0 − δJ
′

L0)|AJ
L0||AJ′

L0|+ (L→ R)
]

}

,

Is2 =
1

4
β2
l

∑

J=0,...

{

|Y −1
J |2

[

(|AJ
L⊥|2 + |AJ

L|||2)
]

+
∑

J′=J+1

Y −1
J Y −1

J′

[

2 cos(δJL⊥ − δJ
′

L⊥)|AJ
L⊥||AJ′

L⊥|+ 2 cos(δJL|| − δJ
′

L||)|AJ
L||||AJ′

L|||
]

+ (L→ R)

}

,

I3 =
1

2
β2
l

∑

J=1,...

{

|Y −1
J |2

[

(|AJ
L⊥|2 − |AJ

L|||2)
]

+
∑

J′=J+1

Y −1
J Y −1

J′

[

2 cos(δJL⊥ − δJ
′

L⊥)|AJ
L⊥||AJ′

L⊥| − 2 cos(δJL|| − δJ
′

L||)|AJ
L||||AJ′

L|||
]

+ (L→ R)

}

,

I4 =
1√
2
β2
l

∑

J=1,...

∑

J′=1,..

[

Y 0
J Y

−1
J′ |AJ

L0A
J′∗
L|| | cos(δJL0 − δJ

′

L||) + (L→ R)
]

,

I5 =
√
2βl

∑

J=0,...

∑

J′=1,..

[

Y 0
J Y

−1
J′ |AJ

L0A
J′∗
L⊥| cos(δJL0 − δJ

′

L⊥)− (L→ R)
]

,

I6 = 2βl
∑

J=1,...

{

|Y −1
J |2|AJ

L||A
J∗
L⊥| cos(δJL|| − δJL⊥)

+
∑

J′=J+1

Y −1
J Y −1

J′ [cos(δJL|| − δJ
′

L⊥)|AJ
L||A

J′

L⊥|+ cos(δJ
′

L|| − δJL⊥)|AJ′

L||A
J
L⊥|]− (L→ R)

}

,

I7 =
√
2βl

∑

J=0,...

∑

J′=1,..

[

Y 0
J Y

−1
J′ |AJ

L0A
J′∗
L|| | sin(δJL0 − δJ

′

L||)− (L→ R)
]

,

I8 =
1√
2
β2
l

∑

J=0,...

∑

J′=1,..

[

Y 0
J Y

−1
J′ |AJ

L0A
J′∗
L⊥| sin(δJL0 − δJ

′

L⊥) + (L→ R)
]

,

I9 = β2
l

∑

J=1,...

{

|Y −1
J |2|AJ

L||A
J
L⊥| sin(δJL|| − δJL⊥)

+
∑

J′=J+1

Y −1
J Y −1

J′ [sin(δJL|| − δJ
′

L⊥)|AJ
L||A

J′

L⊥|+ sin(δJ
′

L|| − δJL⊥)|AJ′

L||A
J
L⊥|] + (L→ R)

}

, (B3)

where for brevity we have omitted the argument in the spherical harmonics functions: Y i
J ≡ Y i

J (θK , 0). Transverse

amplitudes vanish for J = 0 since spin-0 mesons have only one polarization configuration.



24

Appendix C: Normalization of the Line-Shape

Assuming the matrix elements to be saturated by resonances, we have

〈Kπ|[s̄b]|B0〉 ≃
∫

d4pK∗
J

〈Kπ|K∗
J〉〈K∗

J |[s̄b]|B
0〉

p2K∗
J
−m2

K∗
J
+ imK∗

J
ΓK∗

J

∼ 〈K∗
J |[s̄b]|B

0〉〈Kπ|s̄u|0〉
〈K∗

J |s̄u|0〉
(C1)

and

〈Kπ|s̄u|0〉 ≃
∫

d4pK∗
J

〈Kπ|K∗
J〉〈K∗

J |s̄u|0〉
p2K∗

J
−m2

K∗
J
+ imK∗

J
ΓK∗

J

. (C2)

By comparing these two equations, we derive the line-shape used in this work:

LK∗
0
(mKπ) =

√

|~p |
8πmK∗

0

〈Kπ|s̄u|0〉
〈K∗

0 |s̄u|0〉
. (C3)

Although this equation can not be taken literally, we determine the normalization constant NχPT from this equation,

bearing in mind the large uncertainties. It is important to notice that below threshold the momentum becomes

negative and thus an extra imaginary part is introduced. This is not appropriate in the case of KK̄, and thus we use

the Flatté model instead.

[1] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 86, 032012 (2012) [arXiv:1204.3933 [hep-ex]].

[2] J.-T. Wei et al. [BELLE Collaboration], Phys. Rev. Lett. 103, 171801 (2009) [arXiv:0904.0770 [hep-ex]].

[3] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 106, 161801 (2011) [arXiv:1101.1028 [hep-ex]].

[4] R. Aaij et al. [LHCb Collaboration], arXiv:1304.6325 [hep-ex].

[5] A. Ali, P. Ball, L. T. Handoko and G. Hiller, Phys. Rev. D 61, 074024 (2000) [hep-ph/9910221].

[6] C.-H. Chen and C. Q. Geng, Nucl. Phys. B 636, 338 (2002) [hep-ph/0203003].
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