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The decays of the Zbð10610Þ and the Zbð10650Þ to �ðnSÞ�, hbðmPÞ� and �bJðmPÞ� (n ¼ 1, 2, 3,

m ¼ 1, 2 and J ¼ 0, 1, 2) are investigated within a nonrelativistic effective field theory. It is argued that,

while the decays to �ðnSÞ� suffer from potentially large higher order corrections, the P-wave transitions

of the Zb states are dominated by a single one-loop diagram and therefore offer the best possibility to

confirm the nature of the Zb states as molecular states and to further study their properties. We give

nontrivial and parameter-free predictions for the ratios of various partial widths of the Zb and Z
0
b into final

states with hbðmPÞ� and �bJðmPÞ�. While such relations appear naturally in the molecular picture for the

mentioned transitions, they are not expected to hold for any other scenario. In addition, the branching

fractions for the neutral Zb states to �bJ� are predicted to be of order 10�4–10�3. This provides a fine test

of the molecular nature in future high-luminosity experiments.
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I. INTRODUCTION

Recently the Belle Collaboration found two narrow
structures, namely the Zbð10610Þ ¼ Z�

b and the

Z0
bð10650Þ ¼ Z0�

b , in the �ðnSÞ�� (n ¼ 1, 2, 3) and

hbðmPÞ�� (m ¼ 1, 2) invariant masses of the �ð5SÞ !
�ðnSÞ�þ�� and�ð5SÞ ! hbðmPÞ�þ�� decay processes
[1]. In their latest data, the open-bottom channels B� �B and
B� �B� are also seen [2]. The fact that they lie in the botto-
monium mass region and they are charged means that they
cannot be the conventional bottomonium mesons, and their
isospins are 1. The observation of the neutral state with a
mass consistent with that of the Zbð10610Þ [3] presents a
further confirmation that they are members of isotriplets. If
they exist as observed by the Belle Collaboration, theymust
be exotic states with a pair of hidden b �b and valence light
quarks. Considering parity and charge parity, their quantum
numbers should be IGðJPÞ ¼ 1þð1þÞ, and the charge parity
of the neutral state is negative.

Assuming that the total width of Zð0Þ
b is saturated by the

seven channels already observed experimentally, i.e.,
�ðnSÞ� (n ¼ 1, 2, 3), hbðmPÞ�ðm ¼ 1; 2Þ, B �B� þ B� �B
and B� �B�, Belle gives the branching ratio of each channel
in�ð5SÞ three-body decays [2]. The proximity of the states

to the Bð�Þ �B� thresholds leads to the suggestion that they
could be hadronic molecules of the corresponding states

[4–12], to be distinguished from the compact �b �qbq tetra-
quarks [11,13,14]. By hadronic molecules, we mean states
composed of hadrons—they can be bound states (poles on
the physical sheet with respect to the bottom-meson chan-
nel with a mass smaller than the threshold value), reso-
nances or virtual states (both on the second sheet with
respect to the relevant bottom-meson channel—the former
above, the latter below the threshold). Based on a non-
relativistic effective field theory (NREFT) [15,16], the
authors of Ref. [5] show that the hbð1P; 2PÞ�� data can
be described within the bound state scenario. Therein, the

Zð0Þ
b Bð�Þ �B� coupling constants are related to the binding

energies using a model-independent relation for S-wave
shallow bound states [17,18]. However, since data on the

decays of Zð0Þ
b to open-bottom channels are now available,

we can choose a more general ansatz and take these
couplings from data directly—in this way our results are
valid for bound states, resonances and virtual states. Since
we start from the assumption that the Zb states are purely
molecular states, their decays into the �ðnSÞ� and
hbðmPÞ� can only happen via B �B� þ B� �B (for simplicity,
B �B� will be used to represent B �B� þ B� �B in the following)
and B� �B� loops. Since both Zb’s are located very close to
the corresponding open-bottom threshold, the system can
in principle be examined by the NREFT approach.
As shown in Refs. [15,16], a systematic power counting

can be established for the � or � emissions between
charmonium states. Because the S-wave andP-wave heavy
quarkonia couple to the open-flavor heavy meson and
antimeson in a P wave and an S wave, respectively, the
transitions studied in Ref. [16] can be classified into three
groups, namely transitions between the S-wave heavy
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quarkonium states, P-wave states, and between the P- and
S-wave states. The decay amplitudes of different groups
have their own nonrelativistic velocity counting. Because
the Zb states have positive parity, they couple to the bottom
and antibottom mesons in an S wave. Thus, the transitions
Zb ! �ðnSÞ� are analogous to those between P- and
S-wave quarkonia, while the Zb ! hbðmPÞ� processes
are similar to those between two P-wave quarkonia. The
main difference is that the normal heavy quarkonium
transitions with the emission of a pion studied in
Ref. [16] break isospin symmetry while the Zb decays do
not. Thus, by studying the ZbðZ0

bÞ ! �ðnSÞ� and

hbðmPÞ�, we can examine the power counting rules estab-
lished in Ref. [16], and also better understand the proper-
ties of these two exotic states.

Further insight can be gained by studying radiative
decays of the neutral Zb states into bottomonia. Because
the �bJðJ ¼ 0; 1; 2Þ states are the spin partners of the hb of
the same principal quantum number, they couple to the
bottom mesons with the same coupling constant in the
heavy quark limit. Thus, since molecular states can decay

via bottom-meson loops only, the radiative decays Zð0Þ0
b !

�bJðnPÞ� are related to the pionic decays Zð0Þ�
b !

hbðnPÞ��. Note that these transitions would be unrelated
if the Zb states were of a tetraquark nature. Similar con-
siderations were made in Ref. [19] for hindered M1 tran-
sitions of the P-wave charmonia. These decay channels
have not been observed so far, but they could be potentially
important in confirming the molecular nature of the Zb

states, and thus are worthwhile to study experimentally.

In this paper, wewill assume that the Zð0Þ
b are dynamically

generated from the Bð�Þ �B� interactions, i.e., hadronic mole-

cules of the Bð�Þ �B�. We will try to identify the quantities
which are sensitive to such a scenario. Section II contributes
to the power counting in the NREFT framework of the
relevant decays, which are the decays of the Zb states into
the ��, hb�, �bJ�—in particular we show that not all
decays are accessible to the formalism. The numerical re-
sults are given in Sec. III. In Sec. IV, we compare our results
to previous calculations and make some comments. A brief
summary is presented in Sec. V. The loop function used in

the calculations and the decay amplitudes in the NREFTare
collected inAppendixA.As a cross-check,we also calculate
the same quantities using a Lorentz covariant formalism,
and the formulas are summarized in Appendix B.

II. POWER COUNTING

In Ref. [15], a NREFT method was introduced to study
the meson loop effects in the heavy quarkonium transi-
tions. The power counting schemewas analyzed in detail in
Ref. [16]. The key quantities here are the velocities of the
intermediate mesons. In this section, we briefly review the
ideas of Refs. [15,16] together with an improved discus-
sion for the higher loop diagrams.
In general, the heavy meson velocities relevant for the

decay of some particle X may be estimated as vX �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijMX � 2mBj=mB

p
, where the absolute value indicates

that the formula can be used for both bound systems as
well as resonances. The analogous formula holds when the
two heavy mesons merge to a quarkonium in the final state.
According to the rules of a nonrelativistic effective field
theory [20] (for a review, see e.g., Ref. [21]), the momen-
tum and nonrelativistic energy count as vX and v2

X, respec-
tively. For the integral measure one finds v5

X=ð4�Þ2.
The heavy meson propagator counts as 1=v2

X. The leading
order S-wave vertices do not have any velocity depen-
dence, while the case for the P-wave vertices is more
complicated: it scales either as vX when the momentum
due to P-wave coupling contracts with another internal
momentum, or as the external momentum q when q is
contracted.
We start with the radiative transitions as shown in the

upper row of Fig. 1. If the Zb states are molecular states,
their spin wave functions contain both sb �b ¼ 0 and 1
components [4], where sb �b is the total spin of the b �b
component. Thus, the radiative decays of the Zb states
into the spin-triplet �bJ can occur without heavy quark
spin flip and survive in the heavy quark limit. This is
different from the M1 transitions between two P-wave
heavy quarkonia which have been analyzed in Ref. [19].
Both the couplings of Zb and �bJ to a pair of heavy mesons
are in an S wave, and the photon coupling to the bottom

FIG. 1. Schematic one- and two-loop diagrams of the transitions Zb ! ��, hb� and �bJ�.
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mesons is proportional to the photon energy E�. For the

diagram of Fig. 1(a) the amplitude therefore scales as

�v5

ð4�Þ2
1

ð �v2Þ3 E� �
E�

ð4�Þ2 �v ; (1)

where the velocity that appears is �v ¼ ðvZ þ v�Þ=2 ’
v�=2 [22], since vZ � vZ0 ’ 0:02, if the central values of

the measured Zð0Þ
b masses, 10607.2 MeVand 10652.2 MeV,

are used, while v� ranges from 0.12 for the �bJð3PÞ to 0.26
for the �bJð2PÞ to 0.37 for the �bJð1PÞ. Here we used the
mass of the �bJð3PÞ, 10.53 GeV, as reported by the ATLAS
Collaboration [23]. In the following, we will count �v as
Oðv�Þ. The scaling ensures that the amplitude gets larger

when the bottomonium in the final state is closer to the
open-bottom threshold. Thus, we expect for the absolute
value of the decay amplitude from this diagram��������A�bJð1PÞ�

E�

��������:
��������A�bJð2PÞ�

E�

��������:
��������A�bJð3PÞ�

E�

��������
� 1

v1P

:
1

v2P

:
1

v3P

¼ 1:1:4:3:1; (2)

if the �bJðnPÞB �B coupling constants take the same value.
Diagram (a) can be controlled easily in theory. Thus, clear
predictions can be made whenever diagram (a) dominates.
In the following we will identify such dominant decays
based on the power counting for the NREFT.

As for Fig. 1(b), the coupling �bB �B� cannot be deduced
by gauging the coupling of�bJ to aB �B-meson pair. Thus, it
has to be gauge invariant by itself and proportional to the
electromagnetic field strength tensor F��. This gives a
factor of photon energy E� and the amplitude of Fig. 1(b)

scales as

v5
Z

ð4�Þ2
1

ðv2
ZÞ2

E� � E�vZ

ð4�Þ2 ; (3)

where we have assumed that the corresponding coupling is
of natural size. Thus, diagram (b) is suppressed compared to
diagram (a) at least by a factor ofvZv� < 0:01 for the decay

to �bJð1PÞ and even smaller for the excited states.
The situation is more complicated for the graph dis-

played in Fig. 1(c). Here we have a two-loop diagram, so
that the velocities running in different loops are signifi-
cantly different—the one in the loop connected to the Zb is
vZ, and the other is v�. It is important to count them

separately since vZ � v� due to the very close proximity

of the Zb to the threshold.1 The internal pion momentum
scales as the larger loop momentum, and thus the pion
propagator should be �1=ðm2

Bv
2
�Þ. This leaves us with

v5
Z

ð4�Þ2
1

ðv2
ZÞ2

v5
�

ð4�Þ2
1

ðv2
�Þ2

1

m2
Bv

2
�

E�g

F�

g

F�

m4
B

� vZ

v�

E�g
2m2

B

ð4�Þ2�2
�

; (4)

where F� is the pion decay constant in the chiral limit, the
factor m4

B has been introduced to give the same dimension
as the estimate for the first two diagrams, and the hadronic
scale was introduced via the identification �� ¼ 4�F�.

Thus the two-loop diagram is suppressed compared to the
leading one, Eq. (3), by a factor vZg

2m2
B=�

2
� � 0:1, where

we used for the coupling B� ! B� the value g ¼ 0:5
(a recent lattice calculation gives 0:449� 0:051 [25]),
and �� � 1 GeV. It can easily be seen that Fig. 1(d) gives

the same contribution which also reflects the fact that they
are both required at the same order to ensure gauge invari-
ance. Thus, from our power counting it follows that the
loop diagrams of Figs. 1(b)–1(d) provide a correction of at
most 10%. We will therefore only calculate diagram (a)
explicitly and introduce a 10% uncertainty for the ampli-
tudes which corresponds to 20% for the branching ratios.
Higher loop contributions are to be discussed later.
Next we consider the hadronic transition Zb ! hb�.

This decay has already been studied in Ref. [5] in the
same formalism. Again, since the hb has even parity, its
coupling to the bottom mesons is in an S wave. In addition,
the final state must be in a P wave to conserve parity, such
that the amplitude must be linear in the momentum of the
outgoing pion, q. We therefore find for the one-loop con-
tribution of Fig. 1(e)

�v5

ð4�Þ2
1

ð �v2Þ3
gq

F�

� g
qF�

�v�2
�

; (5)

while Fig. 1(f) gives

v5
Z

ð4�Þ2
1

ðv2
ZÞ2

q

F�

� vZqF�

�2
�

: (6)

Notice that the pion has to be emitted after the loop if the
Zb is a pure hadronic molecule, so that the velocity in the
counting should be vZ instead of vh. This is suppressed by
vhvZ=g which leads to a correction of the order of 2%
noticing that vh ’ v�.

The two-loop diagram Fig. 1(g) contributes as

v5
Z

ð4�Þ2
1

ðv2
ZÞ2

v5
�

ð4�Þ2
1

ðv2
�Þ2

1

m2
Bv

2
�

gq

F�

E�

F2
�

m3
B

¼ vZ

vh

gF�q
2mB

�4
�

; (7)

where we have used that the energy from the �B ! �B
vertex can be identified with the energy of the outgoing
pion [26], E� � q. The B�B� vertex contributes a factor of
the external momentum q since the Zb ! hb� is a P-wave
decay, and this is the only P-wave vertex. Therefore, this

1The concept applied here is analogous to the scheme by now
well established for the effective field theory for reactions of the
type NN ! NN�; see Ref. [24] for a review.
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diagram is suppressed compared to the leading loop,
Eq. (5), by a factor vZmBq=�

2
� which is smaller than

10%. Thus, also for the transitions Zð0Þ
b hb� we may only

calculate the leading one-loop diagrams, Fig. 1(e), and
assign an uncertainty of 10% to the rates which gives an
uncertainty of 20% for the branching ratios. Higher loop
contributions are to be discussed later.

Finally, we consider at the decay channel Zb ! ��.
Here the final state is in an S wave, but the coupling of
the� to �BB is in a Pwave. For diagram (e) the momentum
due to this coupling has to scale as the external pion
momentum. Together with the pionic coupling that is
also linear in the pion momentum, the amplitude is thus
proportional to q2. The one-loop diagram for Zb ! �� via
Fig. 1(e) is therefore estimated as

�v5

ð4�Þ2
q

ð �v2Þ3
gq

F�

� g
q2F�

�v�2
�

: (8)

The diagram Fig. 1(f) on the other hand gives

v5
Z

ð4�Þ2
1

ðv2
ZÞ2

E�

F�

mB � vZE�F�mB

�2
�

; (9)

where mB is introduced in order to get the same dimension
as Eq. (8). Compared to the one-loop diagram (e) this is a
relative suppression of order v�vZmB=q which is less than
10% for all the � states, where the values of v� are about
0.46, 0.33 and 0.22 for the 1S, 2S and 3S states, respec-
tively. The two-loop contribution with the exchange of a
pion, Fig. 1(g), is estimated as

v5
Z

ð4�Þ2
1

ðv2
ZÞ2

v5
�

ð4�Þ2
1

ðv2
�Þ2

1

m2
Bv

2
�

v2
�g

F�

E�

F2
�

m5
B

� vZv�gE�F�

�4
�

m3
B: (10)

Thus, the strength of the two-loop diagram relative to the
leading one-loop diagram is estimated for the �� as
vZv

2
�m

3
B=ð�2

�qÞ. Numerically, this corresponds to a factor

of around 0.6 for the �ð1S; 2SÞ� and 0.7 for the �ð3SÞ�
amplitudes. As a consequence, the branching ratios for
these transitions can only be calculated with rather large
uncertainties up to 100%.

The heavy meson dimensionless velocities relevant for
the mentioned transitions range from 0.02 to 0.5—in
momenta this is a range from 0.1 to 2.5 GeV. While pion
contributions are expected to be suppressed significantly
and can be controlled within chiral perturbation theory for
pion momenta of up to 500 MeV and smaller, higher pion
loop contributions might get significant for momenta be-
yond 1 GeV. We will now study those higher pion loops
within the power counting scheme outlined above. We will
start with the three-loop diagrams, as shown in Fig. 2,
considering first diagram (a). The results can be easily
generalized to higher loops as shown below. Compared
to the two-loop diagrams in Fig. 1, there are one more pion

propagator and two more bottom-meson propagators in the
transition and none of them is connected to the external
heavy quarkonia. In addition, there is no two-bottom-
meson unitary cut present. As a consequence, we have to
use a relativistic power counting—cf. Ref. [20]. Then pion
momentum and energy are of order mBvb �b, with vb �b the
velocity of the B meson connected to the b �b meson in the
final state. Both the energies and momenta of the additional
bottom mesons are now of the same order, such that the
bottom-meson propagator is counted as 1=vb �b. The inte-
gral measure reads v4

b �b
=ð4�Þ2. Therefore, the additional

factor as compared to the two-loop diagrams is

v4
b �b

ð4�Þ2
1

v4
b �b

ðgvb �bÞ2
F2
�

m2
B ¼

�
gmBvb �b

��

�
2
: (11)

If vb �b � 0:4, then the three-loop diagram (a) is of similar
size as those of the two-loop diagrams. This is the case for
the processes with the hbð1PÞ, �bJð1PÞ, and�ð1S; 2SÞ. For
smaller values of vb �b, it is suppressed. In diagram (b) there
is only one more bottom-meson propagator and the addi-
tional B�B� vertex is in an S wave. We obtain

v4
b �b

ð4�Þ2
1

v3
b �b

vb �b

F2
�

m2
B ¼

�
mBvb �b

��

�
2
: (12)

Four and higher loop diagrams that cannot be absorbed by
using physical parameters may now be estimated by apply-
ing a proper number of factors of the kind of Eqs. (11) and
(12). It is easy to see that additional topologies also provide
analogous factors. Since mB=�� � 5, higher loops get

increasingly important, if vb �b > 0:2. For vb �b � 0:2, the
three and higher loops are of the same order as the two-
loop diagrams, which is the case for the 2P states, and thus
suppressed in comparison with the one-loop contribution.
For the 3P bottomonia in the final state, the value of vb �b is
even smaller, and the multiple loops are even suppressed as
compared to the two-loop contribution.
To summarize the findings of the power counting analy-

sis, we conclude that the calculation of one-loop triangle
diagrams as depicted in Figs. 1(a) and 1(e) is a good
approximation, with a controlled uncertainty, to the tran-

sitions of the Zð0Þ
b into the �bJð2P; 3PÞ� and hbð2PÞ�; for

the hbð3PÞ� the phase space is too limited. But similar
calculations are not applicable to the decays into the 1P
states as well as the �ðnSÞ�. For the decays Zb !
�ðnSÞ�, the contribution from the two-loop diagrams is

FIG. 2. Two three-loop diagrams contributing to the decays of
the Zb into a heavy quarkonium and a pion or photon.
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not suppressed or even enhanced compared to the one-loop
contribution. In light of this discussion, it becomes clear
why the pattern of branching fractions for these channels
(see Table I) B½�ð2SÞ��>B½�ð3SÞ�� � B½�ð1SÞ��
cannot be reproduced by calculating the three-point dia-
grams in the NREFT formalism, which always favors the
1S to the 2S transition and the 2S compared to the 3S
transition due to the factor q2 in Eq. (8).

III. RESULTS

In this section, we investigate quantitatively the decays
of the Zb states through heavy meson loops. The coupling

of these states to the heavymeson fieldsHa ¼ ~Va � �þ Pa

and �Ha ¼ � ~�Va � ~�þ �Pa with Va ( �Va) and Pa ( �Pa) anni-
hilating the vector and pseudoscalar (anti)heavy mesons,
respectively, is given by the Lagrangian

LZ ¼ i
z

2
hZyi

baHa�
i �Hbi þ H:c:;

where the Zb states are given by a 2	 2 matrix

Zi
ba ¼

1ffiffi
2

p Z0i Zþi

Z�i � 1ffiffi
2

p Z0i

0@ 1A
ba

:

We incorporate the experimental observation that the Zð0Þ
b

couples only to Bð�Þ �B� via the Lagrangian,

LZ;Z0 ¼ z0"ijk �VyiZjVyk þ z½ �VyiZiPy � �PyZiVyi� þ H:c:

Fitting to the experimental data we find

z¼ð0:79�0:05ÞGeV�1=2; z0 ¼ ð0:62�0:07ÞGeV�1=2;

(13)

and especially

z

z0 ¼ 1:27� 0:16 (14)

which deviates from unity by 2�. This deviation indicates
a significant amount of spin symmetry violation, which,
however, is not unnatural for very-near-threshold states
where small differences in masses may imply huge differ-
ences in binding energies, resulting in significantly differ-
ent effective couplings, as already discussed in Ref. [5].
The nonrelativistic Lagrangian for the �bJ coupling to a
pair of heavy mesons can be found in Ref. [29], and the one
for the magnetic coupling of heavy mesons in Ref. [30].
With the amplitudes given in Appendix A, it is straight-

forward to calculate the decay widths of the Zð0Þ
b !

hbðmPÞ�, which are proportional to g21, where g1 is the
P-wave bottomonium—bottom meson coupling constant.
In the ratio defined as

�m :¼ �½Z0
b ! hbðmPÞ��

�½Zb ! hbðmPÞ�� ; (15)

g1 is canceled out. With the meson masses listed in Table I,
we obtain

�1¼1:21

��������z0z
��������2¼0:75;

�2¼ð1:53�0:43Þ
��������z0z

��������2¼0:95�0:36;

(16)

where the first error in the second term is the theoretical
uncertainty due to neglecting higher order contributions
(see the discussion in the previous section), and the second
one also includes the uncertainty of z0=z added in quad-
rature. Due to the theoretically uncontrollable higher order
contributions for the decays into the 1P states, no uncer-
tainty is given for �1.
The predictions are consistent with their experimental

counterparts (see Table I)

�
Exp
1 ¼ 1:65� 0:96; �

Exp
2 ¼ 2:13� 1:44: (17)

Here, new measurements with significantly reduced uncer-
tainties would be very desirable. A collection of ratios for
the decays of the Zb states to hbðmPÞ� and �ðnSÞ�,
respectively, is presented in Table II. The uncertainties,
whenever they are under control theoretically, are also
included. The significant deviations for the �ðnSÞ� results
from the experimental numbers appear natural, given that
for those transitions higher loops were argued to be at least
as important as the one-loop diagram included here, as
outlined in detail in the previous section. As a cross-check
of our nonrelativistic treatment, we also calculated the
same quantities using a Lorentz covariant formalism with
relativistic propagators for all the intermediate mesons (the
formalism is summarized in Appendix B). The results are
denoted as ‘‘Rel.’’ in Table II. They should be compared

TABLE I. Top: Preliminary measurements of the branching

ratios for Zð0Þ
b from the Belle Collaboration [2]. Bottom:

Masses of the various particles used here [27,28].

Branching ratio (%) Zbð10610Þ Z0
bð10650Þ

�ð1SÞ�þ 0:32� 0:09 0:24� 0:07
�ð2SÞ�þ 4:38� 1:21 2:40� 0:63
�ð3SÞ�þ 2:15� 0:56 1:64� 0:40
hbð1PÞ�þ 2:81� 1:10 7:43� 2:70
hbð2PÞ�þ 4:34� 2:07 14:82� 6:22
Bþ �B�0 þ �B0B�þ 86:0� 3:6 � � �
B�þ �B�0 � � � 73:4� 7:0

Mass (GeV) Mass (GeV)

�ð1SÞ 9.460 �b0ð1PÞ 9.859

�ð2SÞ 10.023 �b1ð1PÞ 9.893

�ð3SÞ 10.355 �b2ð1PÞ 9.912

hbð1PÞ 9.899 �b0ð2PÞ 10.233

hbð2PÞ 10.260 �b1ð2PÞ 10.255

B 5.279 �b2ð2PÞ 10.269

B� 5.325 � 0.138
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with the central values of the NREFT results. The differ-
ence reflects relativistic corrections to the nonrelativistic
treatment of the bottom-meson propagators. In our case,
the difference between relativistic and NREFT calculations
here and in the following never exceeds 15% for the rates
and thus is well below the uncertainty due to higher loops.

It is important to ask to what extent the above predictions
can be used to probe the nature of the Zb states. The Zb and
Z0
b are away from the B �B� and B� �B� thresholds by similar

distances, mZb
�mB�mB� ’mZ0

b
�2mB� . Additionally, due

to the heavy quark spin symmetry, one may expect that the
loops contribute similarly to the decays of these two states
into the same final state. This is indeed the case.We find the
ratios after putting jz0=zj2 aside are basically the phase
space ratios, which are

j ~qðZ0
b!hbð1PÞ�Þj3

j ~qðZb!hbð1PÞ�Þj3
¼1:20;

j ~qðZ0
b!hbð2PÞ�Þj3

j ~qðZb!hbð2PÞ�Þj3
¼1:53:

(18)

This implies that the ratios for the decays into the hbðmPÞ�
are determined by the ratio of the partial decay widths for
the open-bottom decay modes,

�m ’ PS0m
PSm

�ðZ0þ
b ! B�þ �B�0Þ

�ðZþ
b ! Bþ �B0 þ B0 �B�þÞ ; (19)

where PSð0Þm is the phase space for the decays Zð0Þ
b !

hbðmPÞ�. Such a relation cannot be obtained if theZb states

would be of tetraquark structure because the decay of a
�b �q bq tetraquark into the hb� knows nothing about the
decay into the open-bottom channels. Here, if we impose
spin symmetry for z and z0, onewould get for �m simply the
ratio of phase spaces. In reality the second factor which is
the square of the ratio of effective couplings, cf. Eq. (14),
deviates from unity due to spin symmetry violations

enhanced by the proximity of the Bð�Þ �B� thresholds as
discussed above.
Heavy quark spin symmetry allows one to gain more

insight into the molecular structure. Because the �bJðmPÞ
are the spin-multiplet partners of the hbðmPÞ, the radiative
decays of the neutral Zð0Þ0

b into �bJðmPÞ� can be related to

the hadronic decays of the Zð0Þ
b , no matter whether they are

neutral or charged, into the hbðmPÞ�. It is therefore useful
to define the following ratios:

�½Zð0Þ
b
;�bJðmPÞ� :¼

�ðZð0Þ0
b ! �bJðmPÞ�Þ

�ðZð0Þ0
b ! hbðmPÞ�0Þ : (20)

With the coupling constants in the bottom meson—photon
Lagrangian determined from elsewhere (see for instance
Ref. [30]), such ratios can be predicted with no free pa-
rameters. At the hadronic level, the Zb radiative transitions
can only be related to the hadronic ones if the Zb’s are
hadronic molecules so that the two different types of
transitions involve the same set of coupling constants
(modulo the bottom meson—pion/photon coupling which
can be determined from other processes or lattice simula-
tions). Thus, if the branching fractions of the radiative
transitions are large enough to be detected, such a mea-
surement would provide valuable information on the nature
of the Zb states. The results for the ratios� are collected in
Table III.

Using the branching ratio BðZð0Þ
b ! hbð1P; 2PÞ�þÞ, we

find that the branching ratios of Zð0Þ
b ! �bJð1P; 2PÞ� are of

order 10�4–10�3. The largest branching fractions of the
�bJðmPÞ are those into the ��ðnSÞ, and the �ðnSÞ can be
easily measured. Thus, the final states for measuring the

TABLE II. The ratios � of different decay modes in both
NREFT and a relativistic framework as compared with the
experimental data. The NREFT values quoted without uncer-
tainties may be understood as order-of-magnitude estimates.

� NREFT Rel. Experiment

�ð1SÞ� 0.7 0.7 0:47� 0:22
�ð2SÞ� 0.9 0.8 0:34� 0:15
�ð3SÞ� 2� 2 1.6 0:48� 0:20
hbð1PÞ� 0.8 0.7 1:65� 0:96
hbð2PÞ� 1:0� 0:4 0.9 2:13� 1:44

TABLE III. The ratio � and the corresponding branching fractions for all possible radiative decays. Uncertainties are given
whenever they can be controlled theoretically (see text). The values quoted without uncertainties may be understood as order of
magnitude estimates.

Zb Z0
b

� Branching fraction � Branching fraction

�b0ð1PÞ� 5	 10�3 1	 10�4 4	 10�3 3	 10�4

�b1ð1PÞ� 1	 10�2 3	 10�4 1	 10�2 8	 10�4

�b2ð1PÞ� 2	 10�2 5	 10�4 2	 10�2 1	 10�3

�b0ð2PÞ� ð6:3� 1:8Þ 	 10�3 ð2:7� 1:5Þ 	 10�4 ð4:2� 1:2Þ 	 10�3 ð6:2� 3:2Þ 	 10�4

�b1ð2PÞ� ð1:3� 0:4Þ 	 10�2 ð5:6� 3:2Þ 	 10�4 ð1:3� 0:4Þ 	 10�2 ð1:9� 1:0Þ 	 10�3

�b2ð2PÞ� ð1:9� 0:5Þ 	 10�2 ð8:3� 4:5Þ 	 10�4 ð1:8� 0:5Þ 	 10�2 ð2:7� 1:3Þ 	 10�3
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Z0
b ! �bJ� would be the same as those of the Z0

b !
�ðnSÞ�0 because the �0 events are selected from photon
pairs. This means that the detection efficiency and back-
ground of these two processes would be similar. In the
preliminary experimental results [3], the Zbð10610Þ0 event
number collected in the �ð1S; 2SÞ�0 channels is of order
Oð100Þ. Given that the luminosity of the future Super-
KEKB could be 2 orders of magnitude higher than
KEKB, such transitions will hopefully be measured.
Furthermore, one may also expect to measure these radia-
tive transitions at the LHCb. Note that the experimental
confirmation of the ratios given in Table III would be
highly nontrivial evidence for the molecular nature of the
Zb states.

Lacking knowledge of the �bJð3PÞB �B coupling con-
stant, the transitions into the 3P states cannot be predicted
parameter free. However, they can be used to check the
pattern in Eq. (2) predicted by the power counting analysis.
The decay widths of the Zb ! �bJðmPÞ� are proportional
to g21;mP. Taking the same value for g21;mP, the explicit

evaluation of the triangle loops gives 1:1:8:4:4 for the
ratios defined in Eq. (2) with J ¼ 1. The values are close
to the ones in Eq. (2), and thus confirm the 1= �v scaling in
Eq. (1) of the amplitudes.

As observed in Ref. [16], the NREFT leading loop
calculation preserves the heavy quark spin structure.
Because the Zb contains both sb �b ¼ 0 and 1 components,
the leading contribution to its transitions into the normal
bottomonia, which are eigenstates of sb �b, complies with the
spin symmetry. This conclusion should be true no matter
what nature the Zb’s have, as long as the spin structure does
not change. Thus, one expects that the branching fraction
ratios of the decays of the same Zb into a spin-multiplet
bottomonia plus a pion or photon, such as

BðZð0Þ
b ! �b0ðmPÞ�Þ:BðZð0Þ

b ! �b1ðmPÞ�Þ
:BðZð0Þ

b ! �b2ðmPÞ�Þ; (21)

are insensitive to the structure of the Zb. This statement
may be confirmed by observing that our results, as shown
in Table IV agree with the ratios 1:2:6:4:1 (for the 1P
states) and 1:2:5:3:8 (for the 2P states) which are obtained
solely based on heavy quark spin symmetry in Ref. [31].
One may expect a derivation from the spin symmetry
results, which is due to the mass difference between the

B and B� mesons, to be of order Oð2�QCD=mBÞ � 10%.

The central values given in Table IV deviate from the spin
symmetry results by at most 20%, and they are fully
consistent considering the uncertainties.

IV. COMPARISON WITH OTHER WORKS
ON Zb DECAYS

Since their discovery in an impressive number of theo-
retical works the molecular nature of the Zb states has been
investigated. In this section we compare in some detail our
approach to the calculations in Refs. [32–35] which deal
with some of the decays considered in our paper. Common
to most of these works is that, contrary to our approach, the
second part of the one-loop integral shown in Fig. 1(e) is
either approximated [32,33] or calculated differently [34].
In particular, the analytic structure of the loop is changed
by converting it to a topology of type (f) in Fig. 1, since the

second Bð�Þ �Bð�Þ cut was removed from the loop. However,
our power counting gives that it is exactly this cut that
drives the enhancement of the one-loop diagrams com-
pared to the two-loop diagrams.
Since the loop of type (f) gives the wave function at the

origin in r space, the formalism applied in Refs. [32–34] is
basically identical to that used in the classic calculations
for the decay of positronium into two photons. However, as
discussed in detail in Ref. [36], it is applicable only if the
range of the transition potential from the constituents to the
final state is significantly shorter than the potential that
formed the molecule—a scale not to be mixed up with the
size of the molecule which can be very large for a shallow
bound state. However, the range of the binding momentum
of the Zb states is not known and might well be of the order
of the range of the transition potential (at least as long as
the final bottomonium is not a ground state). In such a
situation in Ref. [36] it was proposed to calculate the full
loop function for the transitions, as done here in our work,
which in effect means to expand around the limit of a zero
range potential that forms the bound state. In that paper it
was also shown that the potentially most important correc-
tions to the transition rate cancel, such that the uncertainty
of the procedure is given by the binding momentum of the
molecule in units of the range of forces and not of the order
of the final momenta in units of the range of forces. This
gives an additional justification for the approach we are
using. We now discuss the formalisms of Refs. [32–35] in
some more detail.
In Ref. [32] an effective field theory called X-EFT was

used. It is valid for hadronic molecules with small binding
energies so that the pion mass and the heavy meson hyper-

fine splitting are hard scales. The decays of the Zð0Þ
b can be

represented by a bubble with two vertices: one connects the

Bð�Þ �B� to the Zð0Þ
b states and the other is a local operator for

the Bð�Þ �B��ð �bbÞ coupling. The coefficient of the local
operator depends on the pion energy, and is obtained by

TABLE IV. The ratios defined in Eq. (21) for all channels.
Uncertainties are given whenever they can be controlled
theoretically.

ðJ ¼ 0Þ:ðJ ¼ 1Þ:ðJ ¼ 2Þ
Zb ! �bJð1PÞ� 1:2:5:3:7
Z0
b ! �bJð1PÞ� 1:2:9:4:4

Zb ! �bJð2PÞ� 1:ð2:1� 0:6Þ:ð2:9� 0:8Þ
Z0
b ! �bJð2PÞ� 1:ð3:0� 0:9Þ:ð4:2� 1:2Þ
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matching to the tree-level diagrams in heavy hadron
chiral perturbation theory. For more details, we refer
to Refs. [29,37]. The ratios of �ðZ0 ! �ð3SÞ�Þ=
�ðZ ! �ð3SÞ�Þ and �ðZ0 ! hbð2PÞ�Þ=�ðZ ! hbð2PÞ�Þ
were calculated in Ref. [32], assuming z ¼ z0. As outlined
in the discussion below Eq. (19), in this case these ratios
are just the ratios of phase spaces and thus our results for
them agree for z ¼ z0. The method of Ref. [33] is a
phenomenological variant of the approach outlined above.

Also in Ref. [34] the transition from the intermediate

Bð�Þ �B� system to the final �ð �bbÞ system was assumed to be
local; however, here the strength of this local operator was
calculated differently: the authors estimate it via the over-

lap integral of the �bb component in the Bð�Þ �B� wave
function with the outgoing �bb pair in the presence of a
dipole operator. While this procedure is certainly justified
when there are 1P states in the final state—here the relative
momenta between the two B mesons are beyond 2.5 GeV
and indeed in this case our effective field theory does not
converge anymore (cf. Sec. II)—we regard it as question-
able for the 2P states. There is one more difference, namely
the fact that in the formalism of Ref. [34], the transitions to
the ��bJðnPÞ final states are disconnected from those
to the �hbðnPÞ states, while in our approach they are
connected as discussed in detail above. Thus, an experi-
mental observation of the decay of one of the Zb states to,
say, ��bJð2PÞ would allow one to decide on the applica-
bility of our approach.

Similar to our work, in Ref. [35] the full heavy meson
loop is evaluated, but regularized with a form factor.
Absolute predictions are given for the transitions using

a model to estimate the Bð�Þ �Bð�Þð �bbÞ coupling—it is dif-
ficult to judge the uncertainty induced by this. In a first
step in that work a cutoff parameter was adjusted to
reproduce each individual transition. It is found that the
cutoff parameters needed for the hb� transitions are
typically larger and closer together than those needed
for the �� transitions. This hints at form factor effects
being not very significant in the former decays. This
interpretation is also supported by the observation that
the ratios of decay rates—the same quantities as inves-
tigated here—are found to be basically independent of
the form factor. In this sense the phenomenological stud-
ies of Ref. [35] provide additional support for the effec-
tive field theory calculation presented here, although a
well-controlled error estimate cannot be expected from
such a method.

V. SUMMARY

In this paper, we assume that both Zb and Z0
b are had-

ronic molecules predominantly coupling to B �B� and B� �B�,
respectively, in line with the data by the Belle
Collaboration. As a consequence of this assumption, the

Zb states can only couple through Bð�Þ �B� loops. Using
NREFT power counting we argue that

(i) the decay channels Zð0Þ
b ! �ðnSÞ� as well as the

transitions into the ground state P-wave bottomonia
in the final state cannot be controlled within the
effective field theory, since higher loop contributions
are expected to dominate the transitions;

(ii) model-independent predictions can be provided

for Zð0Þ
b ! hbð2PÞ� and radiative decays Zð0Þ

b !
�bJð2PÞ�.

The ratios for Zb and Z0
b decays into the same final states

hbðmPÞ� are consistent with the experimental data. Our
results reflect the fact that those ratios are essentially the
ratio of the corresponding phase space factors times the
ratio of the ZbB �B� and Z0

bB
� �B� couplings squared. If

further experimental analysis with higher statistics could
underpin this fact, it would be a very strong evidence for
the molecular interpretation since such a relation cannot be
obtained from, e.g., a tetraquark structure.
Furthermore, we calculate branching fractions for the

final states �bJðmPÞ�. They are predicted to be of order
10�4–10�3. Although this is clearly a challenge to exper-
imentalists, a confirmation of these rates would strongly
support the molecular picture. It is noted that the ratios of a
certain Zb into bottomonia in the same spin multiplet are
insensitive to the structure of the Zb, and may be obtained
solely based on heavy quark spin symmetry.
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APPENDIX A: NONRELATIVISTIC APPROACH

The basic three-point loop function worked out using
dimensional regularization in D ¼ 4 is

Iðm1; m2; m3; ~qÞ ¼ �i

8

Z dDl

ð2�ÞD
1

½l0 � ~l2

m1
þ i	�

1

½l0 þ b12 þ ~l2

m2
� i	�

1

½l0 þ b12 � b23 � ð~l� ~qÞ2
m3

þ i	�

¼ �12�23

16�

1ffiffiffi
a

p
"
tan�1

 
c0 � c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðc� i	Þp !

þ tan�1

 
2aþ c� c0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðc0 � a� i	Þp !#

; (A1)
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where miði ¼ 1; 2; 3Þ are the masses of the particles in the
loop; �ij ¼ mimj=ðmi þmjÞ are the reduced masses;
b12 ¼ m1 þm2 �M and b23 ¼ m2 þm3 þ q0 �M,
with M the mass of the initial particle; and

a¼
�
�23

m3

�
2
~q2; c¼2�12b12; c0 ¼2�23b23þ�23

m3

~q2:

In terms of the loop function given above, the amplitudes
for Zþ

b and Z0þ
b decays into hb�

þ are

AZþ
b
hb

¼ 2
ffiffiffi
2

p
gg1z1
F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MhbMZb

q
	ijkq

i"jZb
"khb

	 ½IðMB;MB� ;MB� ; ~qÞ þ IðMB� ;MB;MB� ; ~qÞ�
(A2)

and

AZ0þ
b
hb
¼2

ffiffiffi
2

p
gg1z2
F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MhbMZ0

b

q
	ijkq

i"j
Z0
b
"khb

	½IðMB� ;MB� ;MB; ~qÞþIðMB� ;MB� ;MB� ; ~qÞ�;
(A3)

respectively. In all these amplitudes, both the neutral and
charged bottom and antibottom mesons have been taken
into account. The amplitudes for Zð0Þ0

b into �bJ� read

AZ0
b
�b0�

¼ �
ffiffiffi
2

3

s
i
eg1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�b

MZb

q
	ijkq

i"jZb
"k�

	 ½IðMB;MB� ;MB� ; ~qÞ � 3IðMB� ;MB;MB; ~qÞ�;
(A4)

AZ00
b
�b0�

¼�2i

ffiffiffi
2

3

s

eg1z

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�b

MZb

q
	ijkq

i"jZb
"k�

	IðMB� ;MB� ;MB� ; ~qÞ; (A5)

AZ0
b
�b1�

¼2i
eg1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�b

MZb

q
ðqigjk�qkgijÞ"iZb

"j�"k�b

	IðMB� ;MB;MB� ; ~qÞ; (A6)

AZ00
b
�b1�

¼ �2i
eg1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�b

MZb

q
ðqigjk � qkgijÞ"iZb

"j�"k�b

	 IðMB� ;MB� ;MB; ~qÞ; (A7)

and

AZ0
b
�b2�

¼ ffiffiffi
2

p
i
eg1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�b

MZb

q
qiðgjm"iklþgjl"ikmÞ

	"jZb
"k�"

lm
�b
IðMB� ;MB� ;MB� ; ~qÞ; (A8)

AZ00
b
�b2�

¼ ffiffiffi
2

p
i
eg1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�b

MZb

q
ðqiðgjm"iklþgjl"ikmÞ

þql"ijmþqm"ijlÞ"jZb
"k�"

lm
�b
IðMB� ;MB� ;MB� ; ~qÞ;

(A9)

respectively.

APPENDIX B: RELATIVISTIC APPROACH

In this appendix, we formulate a Lorentz covariant

framework for a parallel study of the Zð0Þ
b decays. In such

a framework, more terms will appear as relativistic correc-
tions that are generally neglected in the heavy quark limit.
Therefore, a comparison between these two prescriptions
will serve as a cross-check of the NREFT results, and more
importantly as a confirmation of the validity of the NREFT
power counting.
The bottom-meson fields are defined as

H1 ¼
�
1þ 6v
2

�
½P�

��
� � �5P�;

Hy
1 ¼ �0½P�y

� �� þ �5P
y�
�
1þ 6v
2

�
�0;

�H1 ¼ �0Hy
1�

0;

H2 ¼ ½ �P�
��

� � �5
�P�
�
1� 6v
2

�
;

Hy
2 ¼ �0

�
1� 6v
2

�
½ �P�y

� �� þ �5
�Py��0;

�H2 ¼ �0Hy
2�

0;

where P� and P represent the ðB�þ; B�0; B�0
s Þ and

ðBþ; B0; B0
sÞ fields, respectively, which annihilate the cor-

responding particles, while �P� and �P are the fields of their
antiparticles. The fields annihilating the S- and P-wave
bottomonia are given by

Rb �b ¼
�
1þ 6v
2

�
ð���� � �b�5Þ

�
1� 6v
2

�
;

P�

b �b
¼
�
1þ 6v
2

��
���
b2 �� þ 1ffiffiffi

2
p 	���
v��
�b1�

þ 1ffiffiffi
3

p ð�� � v�Þ�b0 þ h�b �5

��
1� 6v
2

�
;

respectively. The Lagrangians for S-wave (P-wave) quar-
konia and a pair of heavy mesons are

LSB �B ¼ ig2Tr½Rb �b
�H2a�

�@
$
�
�H1a� þ H:c:; (B1)

LPB �B ¼ ig1Tr½P�

b �b
�H2a��

�H1a� þ H:c: (B2)

Under the similar convention, the Zb field can be
expressed as

P
�
Z ¼

�
1þ 6v
2

�
Z��5

�
1� 6v
2

�
; (B3)

and the effective interaction between the Zb and a pair of
bottomed meson reads

LZB �B ¼ izð0ÞTr½Py�
Z;ab

�H2b��
�H1a� þ H:c: (B4)

The Lagrangian for the pion coupling to a pair of bottom
mesons is [38–40]
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L ¼ igTr½Hb���5A
�
ba

�Ha�; (B5)

where A� ¼ ð�y@��� �@��
yÞ=2, with � ¼

exp ði ffiffiffi
2

p
�=F�Þ. The relativistic form of the Lagrangian

for the photon coupling to the bottom mesons is [30]

L � ¼ e
Qab

2
F��Tr½Hy

b���Ha�

þ eQ0

2mQ

F��Tr½Hy
aHa����: (B6)

With these effective Lagrangians, we obtain for the ampli-

tudes of Zð0Þ
b ! hb�

AZbhb ¼
2

ffiffiffi
2

p
gg1z

F�

	qv	hb	Zb
ðC0½MB;M �B� ;MB� �

þ C0½MB� ;M �B;MB� �Þ; (B7)

AZ0
b
hb ¼

2
ffiffiffi
2

p
gg1z

F�

	qv	hb		Zb
ðC0½MB� ;M �B� ;MB� �

þ C0½MB� ;M �B� ;MB�Þ; (B8)

and to ��

AZb� ¼ 2
ffiffiffi
2

p
gg2z

F�

ð�	� � 	Zj ~qj2ðC0½MB;M �B� ;MB� � þ 2C2½MB;M �B� ;MB� � þ C0½MB� ;M �B;MB� � þ 2C2½MB� ;M �B;MB� �Þ
þ q � 	�q � 	ZðC0½MB� ;M �B;MB� þ 2C2½MB� ;M �B;MB� � C0½MB� ;M �B;MB� � � 2C2½MB� ;M �B;MB� �ÞÞ; (B9)

AZ0
b
� ¼ 2

ffiffiffi
2

p
gg2z

F�

ð	Z � 	�j ~qj2ðC0½MB� ;M �B� ;MB� þ C2½MB� ;M �B� ;MB� þ C0½MB� ;M �B� ;MB� � þ C2½MB� ;M �B� ;MB� �Þ
þ q � 	�q � 	ZðC0½MB� ;M �B� ;MB� þ C2½MB� ;M �B� ;MB� � C0½MB� ;M �B� ;MB� � � C2½MB� ;M �B� ;MB� �ÞÞ: (B10)

The amplitudes for Zð0Þ
b ! �b0� are

AZ0
b
�b0�

¼ i

eg1z

ffiffiffi
2

pffiffiffi
3

p 	qv	�	Zb
ð3C0½MB� ;M �B;MB� � C0½MB;M �B� ;MB� �Þ (B11)

AZ0
b
�b1�

¼ i2eg1z
ð	�b1
� 	�q � 	Z � q � 	�b1

	� � 	ZÞC0½MB� ;M �B;MB� � (B12)

AZ0
b
�b2�

¼ i2
ffiffiffi
2

p
eg1z
	

�
Z	

�qv	�	�b2��C0½MB;M �B� ;MB� �; (B13)

and

AZ00
b
�b0�

¼ �2

ffiffiffi
2

pffiffiffi
3

p ieg1z
0
	qv	�	ZC0½MB� ;M �B� ;MB� � (B14)

AZ00
b
�b1�

¼ �i2eg1z
0
ð	�b1

� 	�q � 	Z � q � 	�b1
	� � 	ZÞC0½MB� ;M �B� ;MB� � (B15)

AZ00
b
�b2�

¼ i2
ffiffiffi
2

p
eg1z

0
ðq�	�v	�	Z þ 	��	�qv	ZÞ��
b2�C0½MB� ;M �B� ;MB� �; (B16)

respectively. Here, C0 is the standard relativistic three-point scalar function which is similar to the definition of I in
Appendix A

C0½p2; ð�qÞ2; ðp� qÞ2; m2
2; m

2
1; m

2
3� ¼

ð2��Þ4�D

i�2

Z dDl

ðl2 �m2
1Þððp� lÞ2 �m2

2Þððl� qÞ2 �m2
3Þ
; (B17)

where the incoming four-momentum of the Zb is p, and the light outgoing particle four-momentum is q. For simplicity, we
do not explicitly include the first three arguments inC0 in the above formulas. With the same convention,C2 is a coefficient
that arises from the tensor reduction of the three-point vector loop,

C� 
 ð2��Þ4�D

i�2

Z l�dDl

ðl2 �m2
1Þððp� lÞ2 �m2

2Þððl� qÞ2 �m2
3Þ

¼ C1p
� þ C2ðp� qÞ�; (B18)

which is similar to the integral I1 defined in Ref. [16].
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To compare with the NREFT method, we note the
following treatments in the heavy quark limit:

(i) By expressing the heavy meson momentum
MQv� ¼ mQv� þ k� in the heavy quark limit,

where v is the heavy meson velocity and k is the
residual momentum of the order of �QCD, the de-

rivative in Eq. (B1) only gives the difference of the
residual momentum between the intermediate bot-
tomed mesons [41]. Namely, the residual momentum
k is the integral momentum in the meson loops
instead of v.

(ii) The denominators ðl2 �m2
1Þððp� lÞ2 �m2

2Þ	
ððl� qÞ2 �m2

3Þ of the meson loops contain two

independent external momenta p and q. For the
incoming momentum p, we set p ¼ MZv following
the convention of Ref. [16], where v ¼ ð1; 0; 0; 0Þ
defines the rest frame of the initial particle. By
doing this, the vector three-point function defined
in the loop integrals becomes C� ¼ MZv

�C1 þ
ðMZv

� � q�ÞC2 which can be compared with the
NREFT amplitudes term by term. It is interesting to
note that the coefficient of C1 vanishes in the decay
amplitude because of cancellation.

(iii) Another difference between this scheme and the
NREFT comes from the contraction term q � 	�,
where q is the external light meson (e.g., pion)
momentum. Note that the time component
appears as an additional contribution compared to
the NREFT formalism. It is proportional to
j ~qjE�=m�, which is a relativistic correction and
relatively suppressed with respect to the space
component j ~qjE�=m�.

(iv) The relativistic corrections also arise from the
mass difference between mB and mB� . One notices
that in Eqs. (B9) and (B10), the terms proportional
to q � 	�q � 	Z are given by the D-wave transition.
In the heavy quark limit with mB ¼ mB� , exact
cancellations occur within the integral functions

C0 and C2, respectively. This means if the Zb and
Z0
b are indeed the B �B� and B� �B� molecular states,

respectively, their D-wave decays into the �� will
be highly suppressed. This can be understood by
noticing that the heavy quark spin decouples from
the system in the heavy quark limit, and the total
angular momentum of the light quarks sq �q is a good

quantum number. If theZð0Þ
b states are S-waveBð�Þ �B�

hadronic molecules as assumed here, there is no
spatial angular momentum in the system. Thus, the
light quark system has sq �q ¼ 0 or 1, and therefore

cannot couple to a spinless pion in a D wave. A
similar statement was made very recently in
Ref. [42]. Here we notice that the decay of a b �bq �q
tetraquark state with sPq �q ¼ 2� would decay into

b �b� dominantly in a D wave.
(v) We also note the convention for the sums of

the polarizations for the vector and tensor
particles: 	��ðhb;�b1

Þ	
��
�ðhb;�b1

Þ ¼�g��þv�v�
 eg��

and 	
��
�b2

	��
�b2
¼ 1

2 ðeg��eg�
 þ eg�
eg��Þ � 1
3
eg��eg�
.

They allow us to separate out the relativistic
contributions in the scalar loop diagrams which
can then be compared with the NREFT formulas
explicitly.

The relativistic formalism is advantageous for providing
a cross-check of the NREFT results and singling out the
effects arising from the relativistic corrections. For the
bottomonium and bottomed meson system discussed
here, it shows that the relativistic corrections are indeed
small and these two methods are consistent with each
other. Alternatively, it should be cautioned that in the
relativistic formalism, when the terms proportional to
j ~qjE�=mQ �Q are not obviously suppressed in comparison

with the three-momentum j ~qj, i.e., E�=mQ �Q is sizeable, a

different scheme with a form factor [43,44] might be used
to control the large momentum contributions and nonlocal
effects of each coupling.
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