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Analytical Description of a Dead Spot in a PEM Fuel Cell Anode
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We report an analytical solution to a problem of the electric potential and local current distribution around a dead spot in a PEM fuel
cell anode. The dead spot is modeled as a circular domain with zero exchange current density of the hydrogen oxidation reaction
(HOR). Recent numerical studies (A. A. Kulikovsky. JES, 160 (2013) F401) revealed the formation of a current double layer at the
spot boundary, with the peak of the HOR current just outside the spot. Here, we derive and discuss analytical expressions which
elucidate the underlying problem.
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Polymer electrolyte membrane fuel cells (PEMFCs) are close to
commercialization, with automotive companies expected to begin
mass production of PEMFC–powered cars in the next few years.
Nonetheless, the lifetime of fuel cells still needs to be substantially
improved to make this technology less expensive and more reliable.

Over the past decade, large efforts have been directed toward un-
derstanding the microscopic mechanisms of PEMFC degradation.1

Some of these mechanisms include parasitic electrochemical reac-
tions, which run many orders of magnitude faster in the domains
where the reaction overpotential is larger. This raises the problem of
local non–uniformities in fuel cells, which can produce large local
overpotentials.

In this work, we continue the study of a problem of potentials
and current distributions in the domain near a dead spot in the anode
catalyst layer of a PEMFC. The spot of no or low electrochemical
activity may arise due to local poisoning of the catalyst surface, or
due to delamination of the anode catalyst from the membrane. Last
but not least, this problem arises in the transmission X–ray absorption
spectroscopy of the PEMFC cathode.2,3 Transmission XAS requires
removal of Pt atoms from a small circular anode “window” to make
it transparent to X–rays probing the state of Pt atoms in the cathode
catalyst layer (CCL).

In a previous analysis, the problem has been formulated and solved
numerically.4 The numerical solution reveals the formation of a current
double layer (CDL) at the spot boundary. The main feature of this
layer is a high HOR current density generated in a narrow ring just
outside the spot (“hot ring”). Here, we report an analytical solution
of the problem. This solution allows us to derive a simple relation
for the characteristic width of the hot ring. The solution confirms
the conjecture of4 that the CDL is an autonomous structure, which is
independent of the spot radius.

Model

Consider a domain with a circular dead spot; the system of coor-
dinates is shown in Figure 1. The model is based on the following
assumptions, which are discussed in more detail in the Results and
Discussion section.

� The spot radius largely exceeds the membrane thickness. This
allows us to reduce a 2D problem to a quasi–2D formulation.

� The ORR and HOR current densities obey Butler–Volmer ki-
netics.

� Transport losses in the cathode and anode catalyst layer are
ignored.
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Under these assumptions, the 2D Laplace equation for the mem-
brane phase potential �
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reduces to a 1D Poisson equation4
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where σm is the membrane proton conductivity, lm the membrane
thickness, and j a , j c are the HOR and ORR current densities coming
in and out of the membrane, respectively.

To simplify calculations, we introduce dimensionless variables

r̃ = r

Rs
, j̃ = jlm

σmbox
, �̃ = �

box
, b̃hy = bhy

box
[3]

where Rs is the spot radius, box and bhy are the ORR and HOR Tafel
slopes. Note that all the potentials are scaled to box .

With these variables, Eq. 2 reduces to
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where
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. [5]

Assuming that the anode is grounded, dimensionless ORR and
HOR current densities at the cathode and the anode, respectively, are
given by4

j̃ c = 2 j̃∞
ox sinh

(
�̃ + Ẽeq

O R R − φ̃c

)
[6]

j̃ a = 2 j̃∞
hy H (r̃ − 1) sinh

(
− �̃

b̃hy

)
[7]

Figure 1. Schematic of the anode spot and the system of coordinates. Note
that the figure is not to scale: in fact, the spot radius largely exceeds the
membrane thickness. Note also that as the transport losses inside the catalyst
layers are ignored, these layers can be treated as infinitely thin interfaces.
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where Ẽeq
O R R is the equilibrium ORR potential, φ̃c is the carbon phase

potential on the cathode side (the cell potential), j̃∞
ox , j̃∞

hy are the ORR
and HOR exchange current densities, H is a Heaviside function which
describes the step change of the HOR exchange current density from
j̃∞
hy at r̃ > 1 to zero inside the spot, r̃ ≤ 1.

With Eqs. 6, 7, the basic equation for �̃, Eq. 4 takes the form
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We have to consider Eq. 8 inside the spot area and outside the spot
separately.

The Analytical Solution

Inside the spot area.— Inside the spot area (0 ≤ r̃ ≤ 1), the HOR
current is zero and Eq. 8 simplifies to
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We assume that the ORR overpotential is sufficiently large:
η̃ox = �̃ + Ẽeq

O R R − φ̃c > 1. At cell currents of practical interest
this condition holds. Thus, in Eq. 9 we approximate the sinh–function
by the dominating branch of the two corresponding exponential func-
tions (Tafel approximation), and this equation reduces to
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Here, �̃0 is to be determined by matching conditions (see further
below).

The problem Eq. 10 has been solved in Ref. 5 for �̃0 = 0. Straight-
forward extension of the result yields
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)

[11]

where j̃0 is the ORR current density at the spot center:

j̃0 = j̃∞
ox exp
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)
. [12]

Note that j̃0 exponentially depends on �̃0.
From Eq. 11, it follows that the characteristic length of the �̃

variation inside the spot is

�r̃O R R �
√
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. [13]

Thus, inside the ring 1 − �r̃O R R ≤ r̃ ≤ 1, the variation of the ORR
current density is not large. As j̃0 < J̃ , a lower estimate for �r̃O R R is
obtained if we replace j̃0 by the mean current density J̃ . Thus,

�r̃O R R �
√

8 ε√
J̃

[14]

holds. This result is important for XAS measurements, as the state of
Pt atoms inside the ring 1 − �r̃O R R ≤ r̃ ≤ 1 is close to their state in
the undisturbed domain of the cell, and hence this ring can be used
for XAS studies of the CCL (see Ref. 6 for more details).

Outside the spot area.— Outside the spot (r̃ > 1), Eq. 8 takes the
form
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�̃(∞) = �̃∞.

At a large distance from the spot center ∂�̃/∂ r̃ = 0 and the equation
for �̃∞ is obtained by equating the right side of Eq. 15 to zero:
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Far from the spot area, �̃ � �̃∞. Near the spot boundary, a small
variation in the HOR overpotential leads to a high HOR current. The
small variation in η̃hy is caused by a small variation in �̃, and hence
we may write �̃ = �̃∞ + �̂, where �̂ is small. Substituting this into
Eq. 15 and expanding the right side of this equation up to linear order
in �̂, we find an equation
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The solution of equation 17 vanishing at infinity is the modified Bessel
function of the second kind, K0(mr̃/ε). With this, we obtain,

�̃ = �̃∞ + γK0(mr̃/ε) [19]

where γ is a constant determined by the matching condition (see
below).

Matching conditions.— We now have to match the inner and outer
solutions Eq. 11 and Eq. 19, respectively, at r̃ = 1, to determine the
constants �̃0 and γ. We know that �̃(r̃ ) is continuous and smooth
at r̃ = 1 (while its second derivative is discontinuous). Hence, we
require
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and
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where the symbol “prime” means derivative over the argument.
Solving Eq. 21 for γ and substituting it into Eq. 20 yields a non-

linear equation for �̃0
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Note that the parameter j̃0 depends on �̃0 according to equation 12
and that the value of γ results from equation 21 once �̃0 has been
computed. This finally determines our analytical solution uniquely.

The width of the HOR peak and the characteristic currents.— Due
to the smallness of ε, the parameter m/ε appearing in the argument
of the Bessel functions is large. This allows us to use the asymptotic
expansions for K0 and K ′

0

K0(αr̃ ) � −K ′
0(αr̃ ) �

√
π

2

exp(−αr̃ )√
αr̃

, αr̃ � 1. [23]
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Figure 2. (a) The membrane potential and (b) the ORR and HOR current
densities. Dots – the analytical solution, solid lines – the numerical result from
the ODE solver. The dashed line in (a) indicates schematically the step shape of
the HOR exchange current density. The spot radius corresponds to r/RS = 1.
�r̃H O R depicts the FWHM of the HOR current density peak.

Eq. 23 enables us to estimate the width of the peak of the HOR cur-
rent density �r̃H O R just outside the spot (Figure 2). The r̃–dependence
of �̃ outside the spot is given by Eq. 19. From Eq. 23 we see, that
the characteristic scale of the �̃ variation is 1/α, where α = m/ε.
The HOR current density j̃hy exponentially depends on �̃, (see
Eq. 7), and hence the scale of the j̃hy variation just outside the spot
also is �r̃H O R � ε/m.

Further, from Eq. 18 it follows that m �
√

(1 + b̃−1
hy ) J̃ , where J̃

is the mean undisturbed current density. Indeed, the first term under
the square root in Eq. 18 is on the order of the ORR current density in
the undisturbed domain (which is J̃ ), while the second term is on the
order of J̃/b̃hy , where b̃hy � 1 (Table I). Thus, the lower estimate for

the sum under the square root in Eq. 18 is
√

2 J̃ , and we finally find

�r̃H O R � ε√
2 J̃

. [24]

Table I. The base–case physical parameters. Note that the spot
radius is ten times the membrane thickness.
ORR exchange current density j∞

ox , A cm−2 10−6

ORR equilibrium potential Eeq
ox , V 1.23

ORR Tafel slope box , V 0.0364
HOR exchange current density
in the regular domain j∞

hy , A cm−2 1
HOR Tafel slope bhy , V 0.0291
Membrane proton conductivity σm , �−1 cm−1 0.1
Membrane thickness lm , cm 0.0025 (25 μm)
Spot radius Rs , cm 10lm = 0.025
Cell potential φc , V 0.7131
Mean current density in the regular domain J , A cm−2 1.0
Cell temperature T , K 273 + 65

In dimensional form, Eq. 24 reads

�rH O R �
√

σmboxlm

2J
[25]

and hence �rH O R is independent of the spot radius Rs . Thus,
the structure of the current double layer at the spot bound-
ary is independent of the spot radius, as it has been assumed
in Ref. 4.

Eq. 11 allows us to calculate the mean ORR current density in
front of the spot,

J̃s = 1

π

∫ 1

0
j̃ c(r̃ )2πr̃ dr̃ .

The local ORR current inside the spot, j c, is given by Eq. 6. With �̃
from Eq. 11, we obtain†

J̃s = j̃0

1 − j̃0
8ε2

. [27]

Another parameter of interest is the peak HOR current density. The
HOR current density is given by j̃ a = 2 j̃∞

hy sinh(−�̃/b̃hy). Clearly,
the peak current is reached at r̃ = 1: j̃ a

1 = j̃ a(1). Using, e.g., the
left side of Eq. 20 for �̃(1), for the peak current density we find the
following equation

j̃ a
1 = −2 j̃∞

hy sinh

(
�̃∞ + γK0(mr̃/ε)

b̃hy

)
. [28]

where �̃∞ is the solution to Eq. 16.

Results and Discussion

Calculations with the equations above include the numerical so-
lution of the nonlinear equation 22 for the membrane potential at the
spot center �̃0. Once �̃0 is calculated, the parameter γ follows from
Eq. 21. With �̃0 and γ, the shapes of �̃ inside and outside the spot are
determined by Eqs.11 and 19, respectively.

Figure 2 shows a comparison of a direct numerical solution of the
differential equation 8 (solid lines) and analytical (dots) radial shapes
of the membrane potential � and ORR and HOR current densities.
Parameters for the calculation are listed in Table I (the parameters are
the same as in Ref. 4). As can be seen, the analytical solution is in
excellent agreement with the numerical curves from the ODE solver.

Figure 2 shows also the numerical full width at half–maximum
(FWHM) of the peak of the HOR current. This value in Figure 2 is
0.04, while Eq. 25 gives a number twice as large, 0.085. The dis-
crepancy is due to the underestimated parameter m, as discussed in
Section 3.4. Nonetheless, Eq. 25 gives a reasonable upper estimate for
�r̃H O R .

Of large interest is the peak value of the HOR current density,
j a
1 . Unfortunately, due to the strong nonlinearity of Eq. 22, we were

not able to obtain a simple explicit approximation for this value.
Numerical calculations with Eq. 28 are shown in Figure 3. In the
region of large cell currents, the peak HOR current density j a

1 depends
almost linearly on the mean cell current density J (Figure 3). Note
that the slope of the curves in Figure 3 increases with a decrease
in ε, which is equivalent to an increase in the spot radius. In other
words, in larger spots the peak HOR current grows faster with the cell
current. Note also that the variation of the peak current with ε is small:
quadrupling ε changes j a

1 by � 10% only. This result also shows that

†From Eq. 27 we see that

1 − j̃0
8ε2

= j̃0
J̃s

. [26]

As j̃0 < J̃s , the following relation holds

0 < 1 − j̃0
8ε2

≤ 1.
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Figure 3. The peak HOR current density versus the mean cell current density
J for the indicated values of ε. Parameters are listed in Table I.

the structure of the current double layer is independent of ε, provided
that ε 	 1.

Physically, the current double layer forms to balance proton cur-
rents in the system. As the anode spot does not produce protons,
the ORR overpotential in front of the spot tends to decrease in or-
der to lower the ORR current density there. Lowering of the ORR
overpotential requires lowering of � in the spot area, which, in turn,
means formation of a radial gradient of � (Figure 2). The peak of
the HOR current density forms to provide the radial proton current
corresponding to the radial gradient of � inside the membrane.

Physically, the discontinuity of the HOR exchange current at r̃ = 1
is justified if the width of the transition region between the spot area
and the undisturbed domain is much smaller, than the spot radius. For
large spots (Rs � lm), this assumption seems quite reasonable. In
this case, the peak current is independent of the actual shape of the
exchange current density inside the transition region. This has been
verified with the numerical model.

Our primary goal is to understand the main effect and to rationalize
the parametric dependencies in the problem. For this reason, we have
employed a simplified model of catalyst layers performance, which
ignores all transport losses in the cell. Note that the main effect (peak
HOR current) arises on the anode side, where the transport of hydrogen
is fast. On the cathode side, the ORR current density inside the spot is
much lower, than in the undisturbed domain. Thus we may expect that
incorporation of the hydrogen and oxygen transport into the model
would have a minor effect on the results.

An uncertainty in our model is the quasi–2D description of the
rapidly changing HOR current at the spot interface. A full 2D solu-
tion is necessary to understand the quality of the quasi–2D shapes at
this interface. Nonetheless, the gradient of � at r̃ = 1 is not large
(Figure 2), and we expect that the quasi–2D model is reasonably
accurate.

It is worth mentioning that if the hydrogen feed stream is not
humidified, a large HOR current at the spot boundary may dry out the
membrane. This could be another detrimental effect of the dead spot.
In that case, the model can be used to estimate the rate of membrane
drying.

Lastly, it should be pointed out that while full 2D numerical simu-
lations are required to analyze the system in detail and relax some of
the constraints, the assumptions in this paper allow for an analytical
solution that helps formulate estimates for the characteristic values.

Conclusions

We reported an analytical solution to a problem of the local current
distribution around a dead spot in an anode catalyst layer. Such a spot
can arise due to local catalyst poisoning, or it can be made deliberately
to provide a Pt–free window for X–ray spectroscopy studies of the
cell cathode. We derived analytical expressions for the distribution of
membrane potential and for local current densities at the electrodes in
and around the spot. The solution confirms the formation of the current
double layer (CDL) at the spot boundary and it gives parametric
dependencies for the CDL characteristic widths inside and outside
the spot. The results can be used for accurate XAS measurements of
PEMFC cathodes and for aging studies.
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List of Symbols

�r̃O R R Characteristic scale of the ORR current density varia-
tion, cm

ε Dimensionless parameter, Eq. 5
γ Dimensionless parameter, Eq. 19
� Membrane potential, V
�∞ Membrane potential at r = ∞, V
�0 Membrane potential at r = 0, V
φa Carbon phase potential of the anode, V
φc Carbon phase potential of the cathode, V
σm Membrane proton conductivity, �−1 cm−1

bhy HOR Tafel slope, V
box ORR Tafel slope, V
Eeq Equilibrium half–cell potential, V
H Heaviside function
J Mean cell current density in the undisturbed domain,

A cm−2

j a HOR current density, A cm−2

j c ORR current density, A cm−2

j0 ORR current density at r = 0, A cm−2

Js Mean ORR current density inside the spot, A cm−2

j∞
hy HOR undisturbed exchange current density, A cm−2

j∞
ox ORR exchange current density, A cm−2

K0 Modified Bessel function of the second kind
lm Membrane thickness, cm
m Dimensionless parameter, Eq. 18
r Radial position, cm
Rs Spot radius, cm
z Axial position, cm
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