

Investigation of the Impact on Tungsten of Transient Heat Loads induced by Laser Irradiation, Electron Beams and Plasma Guns

Presented by A. Huber

Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, Germany

3rd International Workshop on Plasma Material Interaction Facilities for Fusion (PMIF 2012), Tsukuba, Japan, 27-31 August 2012

A.Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August , 2012

A. Burdakov2, M. Zlobinski1, M. Wirtz3, J. W. Coenen1, J. Linke3 , Ph. Mertens1, V. Philipps1, G. Pintsuk3, B. Schweer1 , G. Sergienko1, A. Shoshin2, U. Samm1 , A. Terra1, B. Unterberg1

1Institute of Energy and Climate Research – Plasma Physics (IEK-4), Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich, Germany, www.fz-juelich.de/iek/iek-4 2Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090, Russia 3Institute of Energy and Climate Research – Microstructure and Properties of Materials (IEK-2), Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich, Germany

Motivation

Methods for simulation of transient thermal shock events

Comparison of different methods

- o Parameters relevant to cracks
- o Surface Morphology after transient heat loads

Future Plans and experiments

- o Laser heat load experiments (without plasma background)
- o Transient heat load experiments with plasma background.

Summary

Motivation _

Pure tungsten **Pure tungsten**

20 exposures 50 exposures 100 exposures

Strong Erosion for Energies beyond 0.5 MJ/m2 for 0.5ms heat pulse duration

Estimates indicate that the ELM energy fluxes must remain below ~0.5 MJm-2 /ELM at the ITER divertor targets. This implies an ELM energy loss, $\Delta W_{\text{ELM}} \sim 1 \text{ MJ} \rightarrow -0.3\%$ of the stored energy in an ITER Q_{DT} = 10 burning plasma!

A. Loarte et al., "Power and particle fluxes at the plasma edge of ITER : Specifications and Physics Basis", Nuclear Fusion… [Proc. 22nd IAEA Fusion Energy Conference, Geneva, Switzerland (2008)]

5

A. Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August , 2012 6 22

Standard settings for thermal loads:

1 ms pulse duration: **nearly square function**

2 mm laser beam diameter **nearly hat top shape**

0.5 Hz repetition rate Heat power up to1.5 GW/m2 heat flux factor: $I\sqrt{t} = 47$ $MW\sqrt{s/m^2}$

- \geq At P= 0.19 GW/m² there are no cracks after repetitive electron as well laser loadings.
- Cracks network for P≥0.38 GW/m² for both methods

Samples:

- Industrially manufactured single forged tungsten grade W-UHP (ultra-highpurity tungsten) with a purity of 99.9999 wt%.
- The base temperature of W samples around room temperature

Thermal shock response of W-UHP L after 100 thermal shock events

Below 0.16 GWm⁻² no visible damage appears. Above a base temperature of 100 °C only surface modification occurs.

Mechanism of crack formation

J. Linke et al. Nucl. Fusion 51 (2011) 073017

Cracks with an orientation parallel to the heated surface => subsequent delamination effects => overheating, melting and complete loss of the detached layer.

Cracks in high magnification

A. Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August, 2012

Crack formation: Electron vs. Laser beam

- Independently of loading methods, all observed crack parameter values increase with power density.
- \triangleright Cracks extend perpendicularly to the irradiated surface to a depth of 100-500 μm.
- The observed crack width varied between 4 and 10μm.
- \triangleright The cracks form a network with a distance between cracks in the order of 0.4-1.0 mm.

Cracking patterns parameters are very similar !!!

Crack depth

JÜLICH

explanation: crack formation in an area 100 laser pulses of 1 ms, 2 mm diameter, 0.5 Hz, polished W (Plansee) with temperature gradient \le -1.3 MK /m 든
그 0 200 200 $250 \mu m$ 400 400 $\overline{\mathsf{N}}$ **1.3 MK/m** depth 600 600 800 800 0.38 GW/m² (absorbed intensity) 1000 2000 3000 $-12 - 10$ n -8 -2 T/K $dT/dz / MK/m$ 0 $\sum_{i=1}^{n}$ 0 200 200 220 µm $\overline{\mathbf{N}}$ 400 400 $(2.9$ MK/m) depth 600 -600 800 $\bar{ }$ 800 0.76 GW/m² 2000 -12 -10 1000 3000 -8 -2 0 O E 0 0 200 200 400 µm 400 400 depth 600 .7 MK/m 600 800 800 1.14 GW/m² 1000 2000 3000 $-12 - 10$ ŋ -8 -2 \mathbf{m} 0 200 200 400 400 N 500 µm $\frac{1}{6}$ 600 600 **1.1 MK/m** 1.51 GW/m² 800 1000 2000 3000 $-12 - 10$ -8 ō 0

Crack depth

100 laser pulses of 1 ms. 2 mm

explanation: crack formation in an area

A. Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August, 2012

Crack depth

JÜLICH

explanation: crack formation in an area 100 laser pulses of 1 ms, 2 mm diameter, 0.5 Hz, polished W (Plansee) with temperature gradient \le -1.3 MK /m 든
구 0 200 200 250 um 400 N 400 1.3 MK/m depth 600 600 800 800 0.38 GW/m² (absorbed intensity) 1000 2000 3000 $-12 - 10$ ŋ -8 T/K $dT/dz / MK/m$ <u>ia</u> 0 0 200 200 $220 \mu m$ 400 $\overline{\mathbf{N}}$ 400 $(2.9$ MK/m) depth 600 600 800 -800 0.76 GW/m² $-12 - 10$ 1000 2000 3000 -2 0 -8 0 E 0 0 200 200 400 µm 400 400 depth 600 .7 MK/m 600 800 800 1.14 GW/m² 1000 2000 $-12 - 10$ 3000 -2 n -8 O mul/ 0 O 200 200 400 400 $\overline{\mathsf{N}}$ 500 µm $\frac{1}{6}$ 600 600 **1.1 MK/m** 1.51 GW/m² 800 1000 2000 3000 $-12 - 10$ -8 ಕ 0

A. Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August, 2012

A. Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August , 2012 13 /22

diameter, 0.5 Hz, polished W (Plansee)

Crack propagation in the surface layer of the irradiated tungsten sample in GOL-3 2MJ/m²

Similar crack parameters have been observed by transient heat loads simulations in the linear plasma device GOL-3

Polycrystalline, rolled tungsten (Goodfellow, 99.95 wt.% purity)

DIC optical microscopy

Roughness increased by thermal shock loads: rougher in the melted area

- Roughness formation is independent of the loading methods.
- At P= 0.19 GW/m² there are no formation of roughness structure
- Beyond 0.2 GW/m²: the surface roughening increase up to 2 μ m with P \uparrow

6000.0

_blister behaviour

Before laser pulse: W with blisters due to D implantation: (fluence 6x10²⁴/m², 480 K) up to 1 µm blister height

After laser heating pulse (500MW/m², 3ms duration, 2 pulses):

JÜLICH

blisters grow up to 4 µm, grain swelling due to thermal expansion

No bursting of blister!!!DIC optical microscopy on n 4000 C 3000.0 30 2.0 2000 30 O -20.0 -10.0 **confocal profilometry** 0.0 2000 10.0 $100c$ 20.0 X[µm] A. Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August , 2012 /22 16

Surface Morphology after Laser Pulse_

Surface profile of polished W after heating pulse (left) and melting pulse (right)

The area after the melted laser pulse

 The surface exhibits predominantly cellular structures inside the grains (due to surface stresses)

Rapid cooling of thin melted layers

Rapid Solidification

DIC optical Microscopy

Future plans for ELM simulation Experiments in PSI-2

A. Huber et al., 3rd PMIF, Tsukuba, Japan 27-31 August , 2012 19 19 122

Without breaking the vacuum in the plasma chamber the probes can be removed easily for post mortem analysis.

• Transient heat load experiments in the PSI-2 facility simultaneously to a steady state plasma exposure **(with plasma background)**.

Summary

 Volumetric loading with the electron beam (penetration depth in W in the μm range) has been compared with surface loading with the laser beam (22 nm light decay length) and plasma gun

Summary

- Results indicate that the different techniques show, in general, similar damage behaviours and the same damage thresholds
- The laser simulation is comparable to e-beam and plasma methods.
- Since the laser method is successful, one can use its advantages:
	- \triangleright no restrictions on pulse number (can be much higher than in other methods)
	- \triangleright can be applied simultaneously to a steady state plasma exposure

\triangleright Physics results:

- Independently of loading methods, observed crack parameter values increase with power density
- \Box Cracks \bot to the irradiated surface: to a depth of 100-500 µm. width varied between 4 and 10μm, distance between cracks in the order of 0.4-1.0 mm.
- \Box Cracks || to the loaded surface: formation in areas with T ~500K $-$ around DBTT $-$ and a temperature gradient of 1.3-1.7 MK/m.
- surface roughness after heat loading
- **□** Surface Morphology after laser melt Pulse: predominantly the cellular structures, holes in the re-solidified W-material