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Abstract

N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic
codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different
E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised
to 0.3–0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG
induced cultures grown at 18uC. By size exclusion chromatography the protein fraction with the fraction of alpha-helical
secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was
found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with
a KD of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.
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Introduction

G protein-coupled receptors (GPCRs) are the largest family of

integral membrane proteins which account for up to 50% of all

drug targets including cardiovascular and gastrointestinal diseases,

central nervous system and immune disorders, cancer and pain

[1,2,3,4,5].

Opioid receptors have been classified into three different types,

m, d, k [6]. The m type human mu-opioid receptor OPRM is

activated by endogenous opioid peptides such as beta-endorphins

and exogenous alkaloids such as morphine. OPRM plays very

important roles in regulating several physiological processes such

as pain, stress, and emotions [7,8]. Although GPCRs represents

major pharmaceutical targets, only few structural data on GPCRs

have been obtained. This is mainly due to the hydrophobicity of

these proteins, very low natural abundance, difficulties in over-

expression and purification and low stability after extraction from

the membrane environment [9]. Recently the crystal structure of

human OPRM with T4 lysozyme inserted in 3rd intracellular loop

was determined [10].

Many studies have focused on expression and purification of

functional GPCRs to obtain the required material for biological

analysis and crystallization [11,12,13]. To solve the problem of

yield, in addition to modifications in the gene sequence, several

expression strategies carried out with bacterial [14,15], yeast

[16,17,18] and higher eukaryotic host systems [19,20,21]. These

experiments showed that the expression levels of functional

GPCRs could be improved by optimization of the expression

conditions: GPCRs were found to be often (i) toxic to E. coli, (ii)

subject to degradation or (iii) inclusion body formation [22], (iv)

difficult to solubilise.

Expression of GPCRs in E.coli has shown very low yields

[23]. It was reported that Human m, d, k opioid receptors were

successfully expressed in E.coli when fused to periplasmic

maltose-binding protein (MBP). However, an average of only

30 correctly folded receptor molecules per cell for the three

subtypes were found [14]. Milligram amounts of the full length

mu-opioid receptor (alone and in fusion with enhanced green

fluorescent protein, EGFP) have been obtained as inclusion

bodies in Pichia pastoris [8]. m-opioid receptor fused to yellow

fluorescent protein was expressed in insect cells with a re-

producible yield of only 50 mg functional receptor/liter of insect

culture [24].

Expression in E.coli allows generally for easy scale up and avoids

problems with posttranslational modifications and GPCR hetero-

oligomerization with GPCRs of the host cells [25]. However,

overexpression of membrane proteins in membrane-integrated

form in E.coli is usually toxic to the organism and thus leads to

reduction in yields [26], presumably due to the limitation of the

E.coli membrane space and different membrane translocation

system. It has been reported that several functional GPCRs were

successfully expressed via E.coli [12,14,23,27] or E.coli cell-free

system [11,28,29].

Here, we investigated the possibility to obtain by heterologous

expression in E.coli functional human mu-opioid receptor, which is

modified only by a removable his-tag to facilitate enrichment and

identification upon purification, but does not contain any

stabilizing modifications like insertion of T4 lysozyme [10] that

may affect the expected structural changes of the receptor when

performing the signaling function.
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Results

Expression of a Membrane-inserted OPRM in E.coli
Various E.coli strains (RP, RIL, C41, and C43) were screened

for expression of the target protein. The parameters temperature

(18uC and 37uC), induction time, expression medium (DYT and

TB) and induction method (0.2–0.8 mM IPTG or autoinduction)

were varied to optimize the expression level.

At high temperature (37uC), the N-terminal his-tagged OPRM

was found to be produced both in inclusion bodies and in

membrane-inserted form (Figure 1A): for C41 cells only a low

expression level was observed, most of the target protein was found

in the inclusion bodies. For other cells at higher expression levels

OPRM was increasingly found in form of inclusion bodies or even

degraded as seen for the case of expression in RIL cells, where 30–

50% of OPRM was degraded into a large N-terminal fragment

(ca. 18 k Da).

Upon induction with IPTG at 37uC severe foam formation with

loss of cell density was observed. Typically the culture decayed

within 3 hours after induction. Thus the expression of the OPRM

was found to be toxic. Very slow growth of the culture was

observed for induction at 18uC. These results indicated a proper

harvesting time and induction period should be optimized even for

expression at 18uC. Extended induction time (.12 h) led to low

cell density (OD600,2), whereas a proper induction time of less

than 10 h was optimal to maximize cell yield (Final OD600 = 2–5,

cell pellet .8 g/l) in all cases. With the richer medium TB more

cells could be harvested (Figure 2).

The optimized IPTG concentration (0.4 mM) was found to

effectively induce the expression of OPRM, while increasing IPTG

concentration led to degradation of the protein or to the formation

of inclusion bodies. With the conditions of 0.4 mM IPTG at 18uC
for 8–12 h in C43 almost no inclusion bodies were produced

within C43. OPRM was obtained in the membrane fraction

(Figure 1B). The optimal expression level of OPRM was de-

termined to be 0.3–0.5 mg/liter of culture by complete solubilisa-

tion of the protein in the membrane fraction under denaturating

conditions with 6 M urea and 0.8% laurylsarcosine (Figure 3B)

and subsequent western blot.

Remarkably, no appreciable expression of OPRM with a C-

terminal his-tag was observed under any of the tested conditions

(data not shown).

OPRM Solubilisation
Solubilisation of membrane protein from the membrane is one

of the crucial steps of purification, which is routinely achieved by

optimizing the detergent to minimize denaturation during

solubilisation. Therefore a variety of detergents were used to

extract OPRM from E.colimembrane and as controls: Zwitterionic

detergents (1% (w/v) LDAO, 1% (w/v) Fos-12), nonionic

detergents (1% (w/v) DDM, 1% (w/v) Cy6) and anionic detergent

(1% (w/v) SDS, 0.8% (w/v) laurylsarcosine with/without 6 M

urea). The detergents for the isolation of folded protein were

chosen to cover the typical range of micelle aggregation numbers

(10–133) and a reduced range of hydrophile-lipophile balances

(HLB: 5.3 to 14.2) [30]. The more hydrophilic detergents with

HLB.14.2 were excluded because complete solubilisation of the

target protein was aimed for.

Urea without detergent showed very poor solubilisation

efficiency. The receptor remained in the pellet upon solubilisation,

indicating the receptor was located in the membrane. Solubilisa-

tion using mild detergents turned out to be only moderately

successful. Extraction of OPRM with SDS, laurylsarcosine alone,

or 6 M urea with 0.8% (w/v) laurylsarcosine proved to be most

efficient (Figure 3A and B). The detergent Fos-12 was outstanding

in solubilisation of the receptor. No residual receptor was found in

the pellet after solubilisation.

Isolation of OPRM
Purification of OPRM was carried out with several purification

strategies such as affinity chromatography, ionic exchange

chromatography and size exclusion chromatography. Ionic

exchange chromatography was found to be of limited value in

purification of the membrane protein especially when solubilised

with an ionic or zwitterionic detergent.

OPRM extracted from membrane was purified through metal

chelate affinity chromatography (NI-NTA) two times, followed by

size exclusion (Superdex 200) chromatography. In the first

purification step the majority of OPRM can be captured by Ni-

NTA (Figure 4A). A second Ni-NTA chromatography of the

diluted sample improves the purity to ca. 85%.

Residual impurities and aggregated material were removed by

(SEC) size exclusion chromatography (Figure 4B). It was also used

to assess the state of aggregation of OPRM (Figure 5): Peak 1

(Superdex 200 HR 10/30, GE Healthcare in 0.1% (w/v) Fos-12)

shows aggregated protein. It was regarded to be caused by the

instability of the protein in detergent, respectively the presence of

misfolded and unfolded protein. Thus a final yield of 0.17 mg/liter

of culture was obtained by Ni-NTA and size exclusion chroma-

tography (Figure 4B). The elution profile of the receptor shows

a peak with an apparent molecular weight of the Fos-12/receptor

complex of ca. 158 kDa (underlined in Figure 5). The expected

molecular weight of the Fos-12/receptor complex is ca. 65 kDa

(Mw of OPRM 46 kD, and Mw of Fos-12 micelle (in H2O)

,19 kD). It appears that the apparent molecular weight for this

Fos-12/receptor complex does not agree with the expected

molecular weight of the monomeric detergent-receptor complex.

The difference between the predicted and the observed Mw might

be due to non-ideal behavior of the detergent/receptor complex in

the size exclusion column or dimerisation.

Confirmation of Full Length of OPRM
OPRM, western blot positive for the N-terminal his-tag, was

found at a position of around 38 kDa on 12% SDS-PAGE

(Figure 4), though the expected Mw is 46 kDa. Several integral

membrane proteins including several GPCRs were found to

migrate anomalously smaller than expected on SDS–PAGE due to

Figure 1. Expression of the N-terminally his-tagged OPRM
protein. Western blot on His-tag. A, Expression by autoinduction at
37uC in different E.coli strains (RP, RIL, C41, and C43). Lane 1 -
uninduced, lane 2–Inclusion body fraction (induced 4 h), lane 3–
Membrane fraction (induced 4 h), lane 4–Inclusion body fraction
(induced 20 h), lane 5–Membrane fraction (induced 20 h). B, Optimised
expression of OPRM using C43 cells, TB medium with 0.4 mM IPTG at
18uC. Western blot showed inclusion body (IB) and membrane fractions
(M) of OPRM.
doi:10.1371/journal.pone.0056500.g001

OPRM from E. coli
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their hydrophobicity and compact structure [30]. Nevertheless, the

presence of the full-length protein had to be confirmed.

The protein was extracted from SDS-PAGE, digested with

trypsin and treated with iodoacetamide and DTT for analysis by

mass spectrometry. Only after treatment with DTT and

iodoacetamide before digestion with trypsin peptide matches were

found (Figure 6A). Four matches were further analyzed by MS/

MS analysis. These peptides were derived from cytoplasmic and

intracellular loops connecting transmembrane domains, but not

from the N-terminal domain that does not contain a trypsin

cleavage site. A total of 13% sequence coverage was obtained

(Figure 6B). As the C-terminal peptide was also found, the band

with apparent Mw of 38 kDa in SDS-PAGE corresponded to the

full length of the 46 kDa protein.

Confirmation of 7-TM Alpha-helical Secondary Structure
A first characterization of OPRM receptor natively purified

from bacterial membrane was carried out by circular dichroism.

The secondary structure of the purified OPRM after gel filtration

was determined by CD-data from the far-UV spectrum in the

200–250 nm range (Figure 7) by K2D deconvolution. The folded

protein was characterized to have a secondary structure of 4665%

alpha-helix. The prediction for the receptor, based on free web

SOPMA calculations, is 43% alpha-helix. The agreement of

observation and expectation is evidence for a correctly folded

receptor having seven helical transmembrane domains. Material

isolated in Peak 1 (Figure 5) was found to have an alpha-helical

content corresponding to 5–6 TM-helices (data not shown).

Confirmation of Receptor Function by Agonist Binding
The functionality of the isolated OPRM was probed by

measuring the binding of the natural ligand endomorphine-1 to

OPRM by plasmon surface resonance. Initially about 8000 RUs

of OPRM (MW 46 kDa) were bound to the Ni-NTA chip. After

extensively washing with buffer ca. 4000 RU remained. These

results illustrated that for membrane proteins high initial responses

may be observed because of unspecific binding or aggregation.

The addition of reducing agent (1 mM TCEP) to the loading

buffer did not change the binding of OPRM.

Upon supplying increasing concentrations of agonist EM-1 to

the immobilized OPRM increasing binding signal (RU) was

observed (Rmax= 40 RU (EM-1: MW 610 Da)). Evaluation with

a 1:1 interaction model allowed determining a KD of 61618 nM

for the binding of EM-1 to OPRM isolated in detergent FOS-12

(Figure 8), which confirmed the agonist binding capacity of the

isolated OPRM.

No binding of endomorphine-1 was observed for reduced

OPRM, which was immobilized on the chip in 1 mM TCEP. This

negative control indicated that the endomorphine-1 binding

pocket was stabilized by a disulfide-bond in OPRM.

Discussion

Large amounts of OPRM were overproduced as inclusion

bodies in RIL cells using the autoinduction method at 37uC when

grown for 4 h after induction. The specific degradation into an

18 kD of N-terminal fragment of the receptor was present when

expressed with in RP and RIL cells at 37uC. Possibly a flexible

intracellular loop exists between the 3rd and 4th transmembrane

domain, which was cleaved by a protease from E.coli. RP and RIL

cells obviously respond to the over-expression of OPRM with

cleavage of the membrane protein, whereas C41 and C43 cells

direct the protein only into inclusion bodies when challenged by

expression of OPRM.

The effectiveness of the two strains, C41 (DE3) and C43 (DE3),

in over-expressing toxic and membrane proteins has been

previously demonstrated. The strain C43 (DE3) was derived from

C41 (DE3) by selecting for resistance to a different toxic protein

[31]. Compared with the other E.coli strains RP and RIL, the C41

and C43 strains were observed to yield more membrane mass per

cell mass. This finding may explain one of the reasons why

Figure 2. Growth conditions of OPRM in different E.coli strains. Expression of OPRM was induced by IPTG. Cell culture density (OD600) and
weight of cell pellet (g) after different induction times with two different media (TB and DYT) was measured. Cell pellet (g) was obtained from 1 liter
of culture medium.
doi:10.1371/journal.pone.0056500.g002

Figure 3. Solubilisation of OPRM with detergents. A, solubilisa-
tion with urea or detergents. B, solubilisation with urea and
laurylsarcosine. T -total membrane fraction, S -solubilised membrane
fraction, P -pellet after solubilisation.
doi:10.1371/journal.pone.0056500.g003

OPRM from E. coli
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OverExpressTM C41 (DE3) and C43 (DE3), have been found to be

superior for over-expressing toxic and membrane proteins. The

over-expression of OPRM was largely tolerated by C43 with the

conditions of 0.4 mM IPTG at 18uC for 8–12 h. Preferential

membrane-insertion of OPRM instead of formation of inclusion

bodies may be due to the larger mass of membrane in these strains.

The membrane insertion of the protein represented first evidence

that a correctly folded and stable OPRM was obtained.

Interestingly, in contrast to the N-terminally tagged OPRM the

expression of C-terminal decahis-tag OPRM in C43 gave only

a poor expression level of the protein. This result appears to

contradict the conclusion that a hexahistidine tag fused at the

amino terminus of opioid receptor decreased expression levels

markedly in baculovirus-infected insect cells [32] due to the

‘‘positive inside rule’’ described for E.coli membrane proteins and

GPCRs [33]. The so-called positive inside rule states that

cytoplasmic segments contain more positive charges than extra-

cytoplasmic segments. This is also true for OPRM.

It was also previously claimed that due to poor expression of

OPRM with a C-terminal his-tag, E.coli may be not a suitable

expression system for OPRM [14]. In the light of our results this

conclusion appears to be overly generalising.

In our case, the expression level of the N-terminally his-tagged

receptor could be obtained in yields of 0.3–0.5 mg/liter of culture,

which is the highest yield obtained for GPCRs from E.coli

membrane ever reported. The obtained yield of purified OPRM is

0.17 mg/liter of culture, which corresponds to 30–60% of

expressed OPRM.

Several mild detergents were used for solubilisation of the

receptor, only to find solubilisation efficiency was too low and

none of them was able to extract sufficient amounts of receptor

except Fos-12, probably due to poor membrane breakage and

solubilisation for the target protein. Further investigation of the

optimal detergent e.g. Fos-14 may allow increasing the yield:ex-

pression ratio even further. The detergent Fos-14 has been

reported previously to be efficient for solubilising several other

GPCRs [28,34].

The overall result improved both in yield and purity of OPRM,

especially for low expression conditions, after removing the

periplasmic material before cell lysis. This appears to be due to

improved performance of affinity chromatography [35].

The monomeric/dimeric OPRM was separable from the

aggregated state of OPRM. Thus, circular dichroism (CD) was

further used to assess the state of folding of the receptor: The

purified OPRM showed the predicted fraction of a-helical
secondary structure as expected for a properly folded receptor,

whereas the aggregated material displays reduced helicity.

Anyhow, from our results it remains unclear to what extend the

formation of the aggregated material with lower alpha-helicity is

due to thermal or detergent induced instability of the folded

protein or a principal difficulty of folding of OPRM in E.coli. We

suppose that the membrane-integrated protein is folded. Therefore

detergent induced instability appears to be the most likely cause for

the appearance of a substantial fraction of protein with reduced

secondary structure.

We assessed the presence of tertiary structure, respectively

functionality, by the ability to bind the agonist EM-1. A KD of

Figure 4. Purification of OPRM from C43 in Fos-12. A, Purification of OPRM solubilised with Fos-12 by Ni-NTA. T -total membrane fraction, S -
solubilised membrane fraction, FT -flowthrough. W – wash fractions (25 mM imidazole), E – elution fractions (300 mM imidazole). The arrow denotes
the monomeric OPRM. B, SEC -purified OPRM after size exclusion chromatography.
doi:10.1371/journal.pone.0056500.g004

Figure 5. Size exclusion chromatography of OPRM in Fos-12.
Purification of OPRM was performed in analytical grade Superdex 200
HR 10/30 size exclusion chromatography. Peak 1 identifies the
aggregation of OPRM. The underlined Peak 2 shows the monomeric
form of OPRM.
doi:10.1371/journal.pone.0056500.g005

OPRM from E. coli
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OPRM for EM-1 (61618 nM) was determined by Surface Plasma

Resonance, which is comparable to the value published for

receptor from HEK293 cells (29.962.9 nM) [36], if methodolog-

ical differences are taken into account. Yet, agonist affinity was

decreased by presumably two orders of magnitude as compared to

the value measured from mammalian cells for EM-1 (360 pM)

[37]. It was presumed previously that the difference between the

affinity for EM-1 (29.9 nM) and that first reported value (0.36 nM)

is due to the use of different receptor preparations and radio-

ligands [36]. The effect of mammalian lipids could also explain the

substantial difference [38].

Finally, our results on a human membrane protein, respectively

GPCR, that has been previously proven to be very difficult to

express, provide further evidence that a moderate expression level

and a slow expression rate at low temperature should be targeted

in E.coli. The easy scale up and speed of expression in E.coli

compensates for the moderate yield, which is still sufficient to allow

performing even crystallization experiments.

Materials and Methods

Materials
E. coli cell strains CodonPlus RP and CodonPlus RIL were

purchased from Stratagene. OverExpressTM C41 (DE3) and C43

(DE3) were purchased from Lucigen. DNA encoding the human-

opioid receptor was provided by Qiagen (Germany). Ni-NTA was

purchased from Qiagen (Germany). Superdex 200 (16/60) and

analytical grade Superdex 200 HR 10/30 size exclusion chroma-

tography were from GE Healthcare. All other chemicals were

from either Sigma-Aldrich or Fluka. Fos-12 was purchased from

Anatrace (Maumee, OH) and other detergents were purchased

from GLYCON (Germany). Buffer A: 20 mM Tris–HCl, 150 mM

NaCl, 10% Glycerol, pH 8. Solubilisation buffer: 20 mM Tris–

HCl, 300 mM NaCl, 10% Glycerol, pH 8, 1% Fos-12, 5 mM

imidazole. Wash buffer: 20 mM Tris–HCl, 300 mM NaCl, 10%

Glycerol, pH 8, 0.1% Fos-12, 25 mM imidazole. Elution buffer:

20 mM Tris–HCl, 300 mM NaCl, 10% Glycerol, pH 8, 0.1%

Fos-12, 300 mM imidazole. Gel filtration buffer: 20 mM Tris–

HCl, 150 mM NaCl, 10% Glycerol, pH 8, 0.1% Fos-12. Buffer B:

5 mM NaHPO4, 10% glycerol, 0.07% Fos-12, pH 7.5 (with or

without 1 mM TCEP, as required).

Expression of Recombinant OPRM
The synthetic human mu opioid receptor gene (GENEART)

was constructed into the Qiagen plasmid pQE-2 thereby encoding

full-length OPRM with either an N-terminal or C-terminal deca-

histidine tag. Any codons that are rarely used in E. coli were

avoided.

Figure 6. Mass spectrometry of OPRM. Sequence coverage of trypsin digested peptide fragments identified. MS/MS spectrum of an identified
peptide fragment EFCIPTSSNIEQQNSTR and OPRM sequence with identified fragments in red.
doi:10.1371/journal.pone.0056500.g006

Figure 7. Secondary structural analysis of purified OPRM
protein. The Circular dichroism spectrum of OPRM at 25uC. Mean
residue ellipticity [h] in degrees6cm26dmol21.
doi:10.1371/journal.pone.0056500.g007

OPRM from E. coli
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Expression with autoinduction was carried out at 37uC [39].

Plasmids were transformed into the different E. coli expression

strains: BL21-CodonPlus-RIL and –RP, C41 (DE3) and C43

(DE3). 500 ml of an overnight preculture was used to innoculate

500 ml autoinduction media in a 2 l flask. Cultures were grown at

37uC for 5 h with shaking at 200 rpm until glucose was used up

(tested by glucose test strips). Cultures were continually grown at

37uC for 5 h or overnight with shaking at 200 rpm.

Expression with IPTG at 18uC was carried out in the same

E. coli strains. After transforming into the different strains (BL21-

CodonPlus -RIL and –RP, C41(DE3) and C43 (DE3)) 2–3 fresh

colonies from plates complemented with 2% glucose, were

inoculated into DYT or TB containing 50 mg/ml kanamycin

and 2% D-glucose at 37uC. Routinely 7 hours later, a fraction of

the preculture with high cell density (typically at OD600= 5–8)

was diluted into 500 ml of the respective medium containing

50 mg/ml kanamycin to obtain a cell density at OD600 of 0.1–0.2

and grown with vigorous shaking until the OD600 reached 0.6–

0.8 (usually 1 h) at 37uC. IPTG was added to a final concentration

of 0.2, 0.4, 0.8 and 1 mM, and growth was continued for a further

3–5 h at 37uC or 8–12 h at 18uC.
Bacteria were then harvested by centrifugation at 6000 rpm

(JLA-8.1000, Beckman) for 20 min. Pellets were flash frozen in

liquid nitrogen and stored at 280uC until used for purification.

Preparation of Inclusion Body and Membrane Fractions
All operations were carried out at 4uC or on ice. Newly

harvested cells were treated with osmotic shock to remove the

periplasmic fraction [35]. The pellets were resuspended in 5–

10 ml/g lysis buffer. Cell lysis was achieved by using either the

High Pressure Homogenizer EmulsiFlex-C3 (Avestin, Canada) or

Constant Cell Disruption Systems (Constant Systems, UK) in

buffer A plus 5 mM MgCl2, 2 mM ß-ME, 1 mM EDTA, DNAse,

lysozyme (1 mg/ml), supplemented with EDTA-free protease

inhibitors (one tablet/50–100 ml, Roche). The cell lysate was

centrifuged at 1000 g to remove unbroken cell and cell debris,

followed by another centrifugation at 10000 g for 40 min to collect

white inclusion bodies. The supernatant was further centrifuged at

100,000 g for 1 h to harvest a membrane fraction. Pellets were

flash frozen and stored at 280uC until further use.

Detergent Screening: Small Scale Solubilisation of OPRM
1 g of the resulting membrane pellet was solubilised in 10–

20 ml of solubilisation buffer (buffer A containing detergents or

chaotropic agents). The following detergents were used as the

solubilisers: 1% LDAO, 1% Fos-12, 1% DDM, 1% Cy6, 0.8%

laurysarcosine, 1% SDS, 6 M urea. The solubilisation was allowed

to proceed with gentle agitation at 4uC for 2 h. The solubilised

supernatant was separated by centrifugation at 20,000 g (4uC,
0.5 h). The respective membrane fractions before and after

solubilisation and the residue pellet were analyzed by western blot.

Isolation of OPRM
The membrane pellets were solubilised at 1 g/10–20 ml of

membrane/solubilisation buffer for 1–3 h at 4uC. The superna-

tant was separated by ultracentrifugation at 100,000 g (1 h, 4uC)
and subsequently incubated with Ni-NTA resin at a ratio of 0.2–

0.4 mg target protein/ml Ni-NTA resin in batch mode. The resin

was then poured into a column and excess solution collected (flow-

through). After washing with 10 bed volumes of wash buffer,

proteins bound to the resin were eluted with 5 bed volumes with

a final concentration of 300 mM imidazole in wash buffer. All the

elution fractions were pooled and diluted to a final concentration

of 25 mM imidazole, and then passed again onto Ni-NTA to

conduct wash and elution steps as described above. As a final

purification step the OPRM sample was subjected to a superdex

200 (16/60) gel filtration column (GE Healthcare) in gel filtration

buffer. SDS-PAGE and western blotting were used to identify

fractions containing OPRM.the samples were flash-frozen in

liquid nitrogen and then stored at 220uC until further use.

Mass Spectroscopy
To confirm the identity of the isolated protein, peptide mass

fingerprints were determined by mass spectroscopy. The coomas-

sie stained band was excised and destained. The protein was

reduced with 10 mM DTT in 25 mM NH4HCO3 solution at

56uC for 1 hour and then incubated in 55 mM iodoacetamide in

25 mM NH4HCO3 for 45 min at room temperature in darkness.

Gel pieces were then incubated with 20 ml trypsin (Sigma) solution

(20 mg/ml) to be digested overnight at 37uC. The resulting

fragments were then analyzed by a Bruker Daltonic Ultraflex III

TOF/TOF mass spectrometer.

Circular Dichroism Measurements
All CD spectra were acquired at 25uC on a Jasco J-810

spectropolarimeter using 0.1 cm path length cylindrical quartz

cuvettes. The purified protein was desalted by a PD10 (GE

Healthcare) column and subsequently concentrated by ultrafiltra-

tion (Amicon, Millipore). Measurements were performed in Buffer

B to reduce background signal. Protein concentrations were

determined by UV-spectrometry using extinction coefficients [40].

The CD spectra were obtained from 190 to 280 nm using

a bandwidth of 1 nm, a step width of 0.5 nm, a scanning speed of

Figure 8. Interaction of OPRM with Endomorphin-1 by Surface
Plasmon Resonance (SPR). SPR shows the apparent association
increases in RU response with the addition of EM-1 at 25uC. The binding
constant (KD) of EM-1 to OPRM was obtained from (Rmax-R)*C/R, where
C is concentration of EM-1, total concentration of OPRM is proportional
to maximum binding capacity Rmax, Concentration of complex is
measured directly as Response Unit in R. A KD of 60.9618.1 nM for EM-1
was determined by fitting the data with a 1:1 interaction model. Error
bars represent values of two duplicates.
doi:10.1371/journal.pone.0056500.g008
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100 nm/min and a time constant of 0.5 s. For data processing

background correction and data accumulation (20 spectra) were

used. Data were converted into units of mean residue ellipticity

(deg cm2 dmol21) and analyzed for secondary structure with the

program K2D [41].

Ligand Binding Assays by Surface Plasmon Resonance
The binding experiments were carried out on a Biacore-X

instrument (Biacore) at 25uC. OPRM was immobilized in one cell

within a Ni-NTA sensor chip to obtain around 4000 response units

(RU). The second cell was used as a control. Both cells were

equilibrated with running Buffer B to establish a stable baseline.

EM-1 was dissolved in buffer B and injected (flow rate 5 ml/min)

over the captured receptor and the reference cell at concentrations

of 10, 30, 50, 60, 80, and 100 nM. Association was monitored for

2 min, and dissociation was monitored for 5 min. No regeneration

was performed between EM-1 injections. Data analysis was

carried out by using BIAevaluation software using an 1:1

interaction model.
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