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Counteracting Trapped Ion Effects in the HESR

Frank Hinterberger
Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Germany

Abstract
Methods to counteract trapped ion effects in the High-Energy Storage
Ring HESR are studied in the present report. The circulatingantiproton
beam ionizes the residual gas molecules of the UHV vacuum. The pro-
duced ions are trapped in the negative potentential well of the antiproton
beam. Trapped ions can be extracted using either single isolated clear-
ing electrodes or continuous clearing electrodes. In addition resonant
transverse shaking of trapped ions and damping of coherent ion-beam
oscillations can be used in order to reduce the adverse effects of trapped
ions. In the region of dipole magnets the problem of trapped ions can be
mitigated by upgrading the UHV vacuum, i.e. by sputtering thin-film
NEG coatings onto the surfaces of the vacuum chamber and by using
heat jackets along the beam tubes. The highest clearing efficiencies in
dipole magnets can be achieved by extracting the trapped ions in the
vertical direction along the magnetic field lines. A distinctive feature
of the HESR ring is the internal PANDA target which deteriorates the
vacuum by a huge local pressure bump. Near the PANDA target con-
tinuous clearing electrodes are necessary in order to counteract the high
production rate of trapped ions. In the region of the electron cooler (EC)
the optimum neutralization is reached ifη = 1/γ2

e . Then, the azimuthal
cross-field drift velocity of the electrons is zero and the space-charge
potential is reduced. A stable neutralization withη = 1/γ2

e can be
achieved using the Ion-Cyclotron-Resonance (ICR) heating. The ICR
heating can be realized using the electrodes of the beam position mon-
itors. The RF can be tuned to be in resonance with the characteristic
cyclotron frequencies of the ion species in the magnetic field of the EC
solenoid.
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1. Introduction

The present report continues a recent study entitled ’Ion Trapping in the High-Energy Storage
Ring HESR’ [1]. It is devoted to the question of how to counteract trapped ion effects in the
HESR. The problem of trapped ions in the HESR has also been studied in two previous reports
[2, 3].

The High-Energy Storage Ring (HESR) of the future International Facility for Antipro-
tons and Ion Research (FAIR) at GSI in Darmstadt is designed as synchrotron and storage ring
for antiprotons in the momentum range 1.5 – 15 GeV/c [4, 5]. Internal target experiments with
antiprotons are planned by the PANDA collaboration [6]. In addition, two other collaborations
(PAX [7, 8], ASSIA [9]) proposed spin physics experiments with polarized antiprotons.

The effects of trapped ions and trapped electrons have been observed in many accelerators
and storage rings [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. The beam particles interact with
the molecules of the residual gas in the vacuum and produce positive ions and electrons. Elec-
trons are trapped in positive particle beams while ions are trapped in negative particle beams.
The trapped particles can cause emittance growth, instabilities, coherent beam-ion oscillations
and beam losses. Adverse effects of trapped ions have been observed at the CERN Antiproton
Accumulator (AA), the Fermilab Accumulator and the Fermilab Recycler Ring (RR). Various
methods have been used in order to remove the ions.

For the sake of completeness we resume some chapters from therecent report [1]. We first
show the HESR lattice in Sect. 2., present the electric field of the antiproton beam in Sect. 3.,
show the updated UHV vacuum in Sect. 4., discuss the ionization process in Sect. 5., evaluate
the mean thermal velocities of trapped ions in Sect. 6., define the terms production timeTp,
clearing timeTc and neutralizationη in Sect. 7. and sketch the ion motion in dipole magnets
and solenoids in Sects. 8. and 9..

The main part of the present report is devoted to the important question of how to counter-
act trapped ion effects in the HESR. The extraction of trapped ions using either single isolated
clearing electrodes or continuous clearing electrodes is presented in Sect. 10.. The extraction
of trapped ions in the region of solenoids is studied in Sect.11.. The problem of the very high
neutralization in the neighbourhood of the PANDA target is studied in Sect. 12.. The mitigation
of trapped ion effects in dipole magnets and the feasibilityof continuous clearing electrodes is
studied in Sect. 13.. The damping of coherent beam-ion oscillations is studied in Sect. 14.. The
resonant transverse beam shaking is studied in Sect. 15.. The special problems of trapped ions
in the region of the electron cooler (EC) are investigated inSects. 16.-18..
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2. HESR Layout and Beam Parameters

The layout of the HESR ring is shown in Fig. 1. The circumferenceC amounts to 575.2 m.
In Fig. 2, the lattice functionsβx, βy and the horizontal dispersionDx of the standard HESR
optics ’optic4’ withγtr = 6.2, Qx = 7.5995 andQy = 7.6216 are shown as a function ofs
with s = 0 at the beginning of the North arc (upper arc in Fig. 1). The beta functions amount
to about 175 m in the region of the electron cooler and about 2 min the region of the PANDA
target. In Figs. 3 and 4, the beam envelopes, i.e. the 1-sigmavaluesσx andσy, are plotted as a
function ofs for 1.0 · 1011 antiprotons at 15 GeV/c.

For the calculation of the negative potential well of the antiproton beam we need the beam
envelopesσx andσy as a function ofs. We perform the calculations using the standard optics
’optic4’ and the HESR List of beam parameters from July 2011 [22]. We calculate the en-
velopes assuming stochastic cooling. The effective targetdensity of the PANDA target will be
4.0 · 1015 hydrogen atoms per cm2 if the pellet target is used. The stochastic cooling will be
adjusted such that the transverse emittance growth by the beam-target interactions is compen-
sated and the highest-possible momentum resolution is achieved. Therefore, the transverse rms
emittances stay constant and we can assume normalized rms emittancesǫx andǫy as given by
the RESR beam at HESR injection. The longitudinal emittanceis characterized by a long bunch
of constant lengthL1 = 0.9C and the relative rms momentum spreadδ. The rms values ofδ
which can be achieved with stochastic cooling are taken for the calculation of the envelopes.
They are listed below. The corresponding momentum spreads are lesser than the momentum
spreads at injection.

We assume the geometric rms emittances without cooling as given by the RESR beam
at HESR injection. The kinetic energy at injection amounts to 3.0 GeV, the corresponding
beam momentum is 3.825 GeV/c andβγ = 4.077. The normalized geometric rms emittances1

ǫnormalized
x,y amount to 1.0 mm mrad for3.5 · 1010 antiprotons in the ring. They scale as(Np̄/3.5 ·

1010)4/5 with the numberNp̄ of antiprotons. The relative rms momentum spread scales as
(Np̄/3.5 · 1010)2/5. Taking as reference values the emittancesǫ3 and relative beam spreadsδ3 at
injection energyTp̄ = 3.0 GeV one has

• Np̄ = 1.0 · 1011: ǫ3 = 0.58 mm mrad,δ3 = 0.50 · 10−3,
• Np̄ = 1.0 · 1010: ǫ3 = 0.089 mm mradδ3 = 0.20 · 10−3.

Accelerating or decelerating the injected beam yields geometric rms emittancesǫ = ǫx = ǫy
and relative rms momentum spreadsδ which scale according to the adiabatic damping law,

ǫ = ǫ3
β3γ3

βγ

δ = δ3
β3γ3

βγ
(1)

As mentioned, these values are kept constant by stochastic cooling during the measurements
with the PANDA target.

At the beginning, the HESR will be operated with the collector ring (CR) as injector.
Then, the start rms emittance at 3 GeV will beǫ3 = 1.25 mm mrad and the relative rms mo-
mentum spreadδ3 = 0.25 · 10−3. We assume the barrier bucket mode of operation with a bunch
lengthL1 = 0.9C and a beam free gap of lengthL2 = 0.1C. The circumferenceC amounts to
575.2 m.

1ǫnormalized
x,y = ǫx,yβγ
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Assuming Gaussian beam distributions the envelopes are represented by the one standard
deviationsσx(s) andσy(s),

σx =
√

ǫxβx + (Dxδ)2

σy =
√

ǫyβy. (2)

Here,ǫx andǫy represent the geometrical rms emittances,βx andβy the horizontal and vertical
beta-functions,δ the rms width of the relative momentum deviation andDx is the horizontal
dispersion. The momentum range of the HESR ring is between 1.5 GeV/c and 15 GeV/c.
Usually, four standard momenta are considered. Here, we list the beam parametersǫ and δ
which are used for the calculation of the envelopes assuming1011 antiprotons in the HESR
ring,

1. S1:p = 1.5 GeV/c,T = 0.831 GeV,ǫ = 1.48 mm mrad,δ = 1.9 · 10−4,
2. S2:p = 3.825 GeV/c,T = 3.0 GeV,ǫ = 0.58 mm mrad,δ = 1.4 · 10−4,
3. S3:p = 8.889 GeV/c,T = 8.0 GeV,ǫ = 0.25 mm mrad,δ = 1.2 · 10−4,
4. S4:p = 15 GeV/c,T = 14.091 GeV.ǫ = 0.148 mm mrad,δ = 0.9 · 10−4.

The corresponding list for1010 antiprotons reads

1. S1:p = 1.5 GeV/c,T = 0.831 GeV,ǫ = 0.23 mm mrad,δ = 1.1 · 10−4,
2. S2:p = 3.825 GeV/c,T = 3.0 GeV,ǫ = 0.089 mm mrad,δ = 5.1 · 10−5,
3. S3:p = 8.889 GeV/c,T = 8.0 GeV,ǫ = 0.043 mm mrad,δ = 5.4 · 10−5,
4. S4:p = 15 GeV/c,T = 14.091 GeV.ǫ = 0.023 mm mrad,δ = 3.9 · 10−5.
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Fig. 1: Layout of the HESR ring.
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Fig. 2: The lattice functionsβx, βy and the dispersionDx of the standard HESR optics withγtr = 6.2.
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Fig. 3: Horizontal beam envelopeσx(s) for 1.0 · 1011 antiprotons at 15 GeV/c. The electron cooler is located

betweens = 207.390 m ands = 231.890 m. The PANDA target is located ats = 509.481 m.

10



Fig. 4: Vertical beam envelopeσy(s) for 1.0 ·1011 antiprotons at 15 GeV/c. The electron cooler is located between

s = 207.390 m ands = 231.890 m. The PANDA target is located ats = 509.481 m.
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3. Electric Field of the Antiproton Beam

3.1 Potential well and electric field of a round beam of constant density

The potential well of the antiproton beam can be calculated for various particle distributions
and beam pipe profiles. The simplest case is to assume a round beam pipe of radiusrc and a
round beam of constant density within the radiusa. The linear charge densityλ is

λ = −Np̄e

L1

. (3)

Here,Np̄ is the number of stored antiprotons,e the elementary charge andL1 the length of the
barrier bucket bunches, e.g.L1 = 0.9C = 517.68 m. The potentialU(r), with the constraint
U(rc) = 0 at the surface of the beam pipe, is given by

U(r) =
λ

2πǫ0
ln
rc

r
r ≥ a,

U(r) =
λ

2πǫ0

[

1

2
− r2

2a2
+ ln

(

rc

a

)

]

r ≤ a. (4)

We note thatλ/(2πǫ0) = −0.556 V for 1.0 · 1011 antiprotons in the ring. The corresponding
electric fieldEr reads

Er(r) =
λ

2πǫ0

1

r
r ≥ a,

Er(r) =
λ

2πǫ0

r

a2
r ≤ a. (5)

Note the minus sign in the definition of the linear charge density! Therefore, the potentialU(r)
is negative and the electric fieldEr is directed to the beam center. The potential depth, i.e. the
absolute value of the beam potential is maximal at the beam centerr = 0,

U(0) =
λ

2πǫ0

[

1

2
+ ln

(

rc

a

)]

. (6)

Thus, the local depth of the beam potential depends on the ratio of the beam pipe radiusrc and
the beam radiusa. The absolute value of the electric field is maximal at the beam edger = a,

Er(a) =
λ

2πǫ0

1

a
. (7)

3.2 Potential well and electric field of a beam with a bi-Gaussian charge distribution

For a bi-Gaussian distribution of the beam particles with the rms valuesσx andσy and a round
beam pipe with inner radiusrc, the potential U(x,y) can be calculated using the equationsin
the appendix of Zhou’s PhD thesis [17]. We are only interested in the valuesU(s) at the beam
center(x, y, s) = (0, 0, s) which can be calculated using

U(s) = U(0, 0, s) =
λ

4πǫ0

[

γ + ln

(

2 r2
c

(σx + σy)2

)]

, (8)

whereγ ≈ 0.577 is Euler’s constant. The profile2 of the beam pipe radiusrc is shown in Fig. 5.
The resulting values shown in Fig. 6 are calculated assumingthe standard optics,pp̄ = 15 GeV/c

2If the electron cooler is installed the radiusrc amounts to 100 mm in the region of the electron cooler.
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andNp̄ = 1.0 ·1011 and a continuous inner beam pipe radius of 44.5 mm outside of the PANDA
target region (see Fig. 5). The potential distribution has minima at positions where the beam has
sharp waists (more precisely where the ratiorc/(σx + σy) has a local maximum). The positive
ions are accelerated in the longitudinal direction towardsthose potential minima which act as
trapping pockets. These are the ideal locations for the clearing electrodes.

The magnitude of the potentialU(x, y, s) and the potential depthU(s) depend on the
numberNp̄ of stored antiprotons. Sinceλ ∝ Np̄ we getU(s) ∝ Np̄ if the dependence of
(σx + σy) on Np̄ in the logarithmic term in Eq. (8) is ignored. Thus forNp̄ = 1.0 · 1010,
the potential depthU(s) is a factor of ten lesser. Taking the dependence of(σx + σy) onNp̄

(σx,y ∝ N
2/5

p̄ , see Sect. 2.) in the logarithmic term into account yields a reduction factor of
about eight.

For a bi-Gaussian distribution of beam particles withσx andσy and a round beam pipe
with inner radiusrc the electric field distribution can be calculated using the complex error
functionW (z) [32],

Ex =
λ

2 ǫ0

1
√

2π(σ2
x − σ2

y)
ℑ


W





x+ iy
√

2(σ2
x − σ2

y)



− e
− 1

2

(

x
2

σ
2
x

+
y
2

σ
2
y

)

W





xσy

σx

+ iy σx

σy
√

2(σ2
x − σ2

y)







 , (9)

Ey =
λ

2 ǫ0

1
√

2π(σ2
x − σ2

y)
ℜ


W





x+ iy
√

2(σ2
x − σ2

y)



− e
− 1

2

(

x
2

σ
2
x

+
y
2

σ
2
y

)

W





xσy

σx

+ iy σx

σy
√

2(σ2
x − σ2

y)







 . (10)

Here, the symbolsℜ[...] andℑ[...] denote the real and imaginary part of the analytical expression
[...], respectively.

The transverse electric field near the beam center, which is needed in order to estimate the
oscillation frequency of the trapped ions, can be calculated using the following linear approxi-
mation

Ex(x, y) =
λ

2πǫ0

1

(σx + σy)

x

σx
, (11)

Ey(x, y) =
λ

2πǫ0

1

(σx + σy)

y

σy
. (12)

The transverse electric field componentsEr, Ex andEy of a round Gaussian beam with
σx = σy = σr can be evaluated quite simply using

Er(r) =
λ

2πǫ0

(

1 − exp− r2

2σ2
r

)

1

r
, (13)

Ex(x, y) =
λ

2πǫ0

(

1 − exp−x
2 + y2

2σ2
r

)

x

x2 + y2
, (14)

Ey(x, y) =
λ

2πǫ0

(

1 − exp−x
2 + y2

2σ2
r

)

y

x2 + y2
. (15)
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3.3 Maximum transverse electric field

The absolute value of the transverse electric field is maximal on the short axis of the elliptical
beam distribution. For instance ifσy < σx, the maximum is neary = 1.6σy and can be
calculated using Eqs. (9) and (10). The electric fields of theclearing electrodes should be
essentially larger than the maximum values of the transverse electric field in order to extract the
positive ions out of the beam. Therefore we calculate a safe upper limitEmax of the transverse
electric field distribution using the following simple formula

Emax =
|λ|

2πǫ0

1√
2
√

σ2
x + σ2

y

. (16)

This equation holds true for the maximal transverse electric field component|Ey,max| if σy < σx

and for the maximal transverse electric field component|Ex,max| if σx < σy. The resulting
valuesEmax shown in Fig. 7 are calculated assuming the standard optics,pp̄ = 15 GeV/c and
Np̄ = 1.0 · 1011. If positive ions are trapped within the negative antiproton beam the potentials
and the electric fields are reduced by the factor(1 − η) whereη is the neutralization factor.

If the electron cooler is installed the effects of the electron beam have to be taken into
account. The resulting modifications are discussed in Sect.16..

Fig. 5: Inner beam pipe radiusrc(s) (without electron cooler). Left: the complete HESR ring from s = 0 m to

s = 575 m. Right: the PANDA target region froms = 500 m to s = 525 m. The PANDA target is located at

s = 509.481 m.
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Fig. 6: Central beam potentialU(s) assuming the standard optics,L1 = 0.9C, pp̄ = 15 GeV/c,Np̄ = 1.0 · 1011

andη = 0. Left: the complete HESR ring froms = 0 m to s = 575 m. Right: the PANDA target region from

s = 500 m to s = 525 m.

Fig. 7: Upper limitEmax of the transverse electric field distribution of the antiproton beam assuming the standard

optics,L1 = 0.9C, pp̄ = 15 GeV/c,Np̄ = 1.0 · 1011 andη = 0. Left: the complete HESR ring froms = 0 m to

s = 575 m. Right: the PANDA target region froms = 500 m tos = 525 m.
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3.4 Longitudinal electric field componentsEs

It is important to study the longitudinal electric field componentsEs of the antiproton beam. In
drift spaces (and solenoids) the produced ions are accelerated in the longitudinal direction by
those field components towards the potential minima. Knowing the central potentialU(s) in
fine stepssi one can deduce numerically the longitudinal electric field componentEs,

Es = −Ui+1 − Ui

si+1 − si
. (17)

The resulting longitudinal electric field along the beam axis is shown in Fig. 8. The longitudinal
field Es is directed in the positive or negative direction dependingon the local gradient of the
central potential. The zero crossings mark the positions ofmaxima and minima of the beam
potentialU(s). The longitudinal electric field components vary on the average between a few
mV/m and about 100 mV/m. The peak-like structures near the PANDA target are due to sudden
changes of the inner radius of the beam pipe which are listed in the following list.

1. Betweens = 506.606 m ands = 506.856 m, the inner radius increases from 44.5 mm to
75 mm within 0.25 m yielding a longitudinal field excursion ofup to +1.29 V/m which is
large and has the same sign as the preceding longitudinal field of about +0.12 V/m.

2. Betweens = 509.231 m ands = 509.481 m, the inner radius decreases from 75 mm to
10 mm within 0.25 m yielding a longitudinal field excursion ofup to -7.5 V/m which is
very large and has an opposite sign compared to the precedinglongitudinal field values
of about +0.01 V/m.

3. Betweens = 509.631 m ands = 509.731 m, the inner radius increases from 10 mm
to 20 mm within 0.10 m yielding a longitudinal field excursionof +3.79 V/m with an
opposite sign with respect to the neighbouring field values of about -0.13 V/m.

4. Betweens = 510.631 m ands = 510.731 m, the inner radius increases from 20 mm
to 32 mm within 0.10 m yielding a longitudinal field excursionof +2.48 V/m with an
opposite sign with respect to the neighbouring field values of about -0.13 V/m.

5. Betweens = 512.331 m ands = 512.581 m, the inner radius increases from 32 mm to
52 mm within 0.25 m yielding a longitudinal field excursion ofup to +1.35 V/m again
with an opposite sign with respect to the neighbouring field values of about -0.12 V/m.

6. Betweens = 512.781 m ands = 513.181 m, the inner radius decreases from 52 mm to
50 mm within 0.40 m yielding a longitudinal field excursion ofup to -0.22 V/m in the
same direction as the neighbouring field values of about -0.11 V/m.

7. Betweens = 515.631 m ands = 515.831 m, the inner radius increases from 50 mm to
90 mm within 0.20 m yielding a longitudinal field excursion ofup to +2.02 V/m with an
opposite sign with respect to the neighbouring field values of about -0.08 V/m.

8. Betweens = 520.031 m ands = 520.231 m, the inner radius increases from 90 mm to
125 mm within 0.20 m yielding a longitudinal field excursion of up to +1.01 V/m with an
opposite sign with respect to the neighbouring field values of about -0.048 V/m.

9. Betweens = 521.731 m ands = 522.031 m, the inner radius decreases from 125 mm
to 75 mm within 0.30 m yielding a longitudinal field excursionof up to -1.52 V/m in the
same direction as the neighbouring field values of about -0.0428 V/m.

10. Betweens = 522.131 m ands = 522.231 m, the inner radius decreases from 75 mm to
44.5 mm within 0.10 m yielding a longitudinal field excursionof up to -2.94 V/m in the
same direction as the neighbouring field values of about -0.042 V/m.
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The longitudinal electric field components can be used in order to accelerate trapped ions
towards clearing electrodes. This is possible in the regionof straight sections which consist of
drift spaces, quadrupole magnets, sextupole magnets and solenoids. However, it is not possible
to use this effect in the region of dipole magnets. There, theions gyrate around the magnetic
field lines. Finally, we note that the longitudinal electricfield componentsEs depend strongly
on the numberNp̄ of stored antiprotons. ForNp̄ = 1.0 · 1010, the potential depths and there-
with the field componentsEs decrease by about a factor of eight, see discussion at the endof
Subsect. 3.1.
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Fig. 8: Longitudinal electric field componentEs of the antiproton beam assuming the standard optics,L1 = 0.9C,

pp̄ = 15 GeV/c andNp̄ = 1.0 · 1011.The modification of the beam potential by the neutralization η is neglected.

Top: the complete HESR ring froms = 0 m to s = 575 m. Bottom: the PANDA target region froms = 485 m to

s = 535 m. The peak-like structures near the PANDA target are due to sudden changes of the inner radius of the

beam pipe.
18



4. UHV Update

In order to cure the adverse effects of trapped ions in the region of the dipole magnets an
especially high UHV vacuum is needed in the region of the arcs. The original design value of
the UHV pressure was≤ 1.0 · 10−9 mbar. Now, it is planned to improve the UHV vacuum
substantially in the North and Sout arc [23]. This can be achieved by sputtering thin-film NEG3

coatings onto the surface of the vacuum chamber and by using heating jackets along the beam
tubes. The aim is to achieve residual gas pressures of about1.0 · 10−11 mbar in the North and
South arc, see Fig. 9.

Outside the arcs and the PANDA target region the UHV vacuum pressure amounts to
≤ 1.0 · 10−9 mbar which can be achieved without heating the beam pipes. Nevertheless, it is
recommended to install bake-out jackets everywhere outside the PANDA target region. The
baked UHV vacuum system at the CERN Antiproton Accelerator was operated at pressures of
about1.3 · 10−11 mbar.

In the region of the PANDA target the pressure rises up to about 6 ·10−5 mbar if the pellet
target is used [24, 25]. The target is located ats = 509.481 m. The pressure as a function of
the positions in the ring is shown in Fig. 9. The residual gas contains mainly H2 molecules.
Therefore, the beam neutralization by trapped ions is dominated by H+

2 ions. The interaction of
the beam with trapped H+2 ions yields also a certain amount of trapped H+ ions in the beam. In
addition, there are always heavier ions, especially CO+ ions present. The CO molecules in the
residual gas of the UHV are produced by surface processes near gauges and pumps. Surface
hydroxides are reduced by hot electrons or ions (in gauges and ion pumps) and liberate oxygen
which combines with carbon on surfaces (which is always there also) [26].

Fig. 9: Vacuum pressurep(s). Left: Complete HESR ring froms = 0 m to s = 575 m with p ≤ 1.0 · 10−9 mbar

outside of the PANDA target region and withp = 1.0 ·10−11 mbar in the region of the North and South arc. Right:

PANDA target region froms = 485 m tos = 535 m. The PANDA target is located ats = 509.481 m.

3Non-Evaporating Getter Material
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5. The Ionization Process

5.1 Energy transfer

The circulating antiprotons interact with the electrons ofthe residual gas molecules. The dif-
ferential cross section for an ionization process with an energy transfer betweenE andE + dE
may be written

dσ

dE
= 2 π

mec
2

β2
r2
e

Z

A

(

1 − β2 E

Emax

)

1

E2
. (18)

Here,Z/A refers to the residual gas molecule. The constants are the electron mass,mec
2 =

0.511 MeV, the classical electron radius,re = 2.818 · 10−13 cm and the maximum energy
transferEmax,

Emax =
2mec

2β2γ2

1 + 2 γ(me/m) + (me/m)2
. (19)

Here,me is the electron mass,m the antiproton mass andβ andγ depend on the beam energy.
We get for instance for a kinetic energy of 8.0 GeVβ = 0.9945, γ = 9.526 andEmax =
91.7 MeV. This numerical example shows that the energy transfer can be very high. But due to
the1/E2 dependence of the differential cross section, ionization events occur mainly at rather
low transfer energies. It is interesting to evaluate the mean energy transfer̄E,

Ē =
∫ Emax

I

dσ

dE
EdE /

∫ Emax

I

dσ

dE
dE. (20)

The minimum energy transfer is not zero. It is given by the mean excitation energyI of the
residual gas molecule. An ionization occurs only if the energy transferred to the electron is
above the ionization potential. Solving (20), we get

Ē = I
(

ln
Emax

I
− β2

)

. (21)

For H2 gas moleculesI amounts to 19.2 eV. For an antiproton beam of 8.0 GeV kinetic energy
and H2 molecules we get a mean energy transfer to the electron of

Ē = 430 eV. (22)

This example shows that the mean electron energies from ionization processes are much larger
than the mean thermal energy of 0.039 eV at 300 K. The corresponding rms velocity amounts
to about1.23 · 107 m/s. Thus, the electrons leave the potential well of the antiproton beam with
rather high velocities.

In contrast the energy transfer to the ion is negligibly small. Therefore, the rms veloc-
ities of the ions can be estimated using the mean thermal energy of 0.039 eV at 300 K, see
Subsection 6..

5.2 Ionization cross section

The ionization cross sectionσ depends on the molecules in the residual gas and the velocity
β = v/c of the beam particles. It does not depend on the charge and themass of the beam
particles. Using Bethe’s formula it can be described by

σ = 4π

(

h̄

mec

)2 {

M2

[

1

β2
ln

(

β2

1 − β2

)

− 1

]

+
C

β2

}

, (23)
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where

4π

(

h̄

mec

)2

= 1.874 · 10−24 m2. (24)

The other constants are listed in Table 1. The resulting ionization cross sections are listed in
Table 2 for different molecules and four beam momenta. The cross sections for CO and N2 are
nearly equal.

Table 1: The constantsM2 andC for the calculation of the ionization cross section.

Molecule M2 C Z A

H2 0.695 8.115 2 2
CH4 4.23 41.85 10 16
H2O 3.24 32.26 10 18
N2 3.74 34.84 14 28
CO 3.70 35.14 14 28
O2 4.20 38.80 16 32

CO2 5.75 55.92 22 44

Table 2: Ionization cross sections.

pp̄ (GeV/c) σ(H2) (m2) σ(CH4) (m2) σ(H2O) (m2) σ(CO) (m2) σ(O2) (m2)

1.500 2.16 · 10−23 1.12 · 10−22 8.60 · 10−23 9.37 · 10−23 1.04 · 10−22

3.825 1.87 · 10−23 9.88 · 10−23 7.61 · 10−23 8.35 · 10−23 9.27 · 10−23

8.889 2.00 · 10−23 1.07 · 10−22 8.27 · 10−23 9.11 · 10−23 1.01 · 10−22

15.000 2.12 · 10−23 1.15 · 10−22 8.84 · 10−23 9.78 · 10−23 1.09 · 10−22

Finally, we note that the ionization cross sections depend only weakly on the beam veloc-
ity in the momentum range 1.5 - 15 GeV/c of the HESR. Therefore, we take in the following
the calculated values at 15 GeV/c.
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6. Mean Thermal Energy and Mean Thermal Velocity

Since the momentum transfer during the ionization process is negligibly small the mean energy
of the ions at the moment of ionization is equal to the mean thermal energy of the molecules,

W̄i =
3

2
kT. (25)

ForT = 300 K we getW̄i = 0.039 eV. This mean thermal energy of the positive ions is small
compared to the typical well depth of the antiproton beam (1 V- 3 V). Therefore, the positive
ions can be trapped by the antiproton beam.

The corresponding mean velocities are the rms velocityvrms

vrms =

√

3kT

mi

, (26)

and the mean value of the magnitude of the velocities in one directionv̄‖,

v̄‖ =< |vx| >=< |vy| >=< |vz| >=

√

2kT

πmi
. (27)

They are listed in Tab. 3.

Table 3: Mean thermal velocities (T = 300 K, W̄i = 0.039 eV).

Particle A vrms (m/s) v̄‖ (m/s)

e 1/1836 1.17·105 5.38·104

H 1 2.73·103 1.26·103

H2 2 1.93·103 8.89·102

CH4 16 6.81·102 3.14·102

H2O 18 6.42·102 2.96·102

CO/N2 28 5.15·102 2.37·102

O2 32 4.82·102 2.22·102

CO2 44 4.11·102 1.89·102
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7. Production TimeTp, Clearing Time Tc and Neutralization η

7.1 Production timeTp

In order to estimate the amount of neutralization we define the production timeTp,i, the pro-
duction rateRp,i = 1/Tp,i, the clearing timeTc,i and the clearing rateRc,i = 1/Tc,i. The index
i is refers to the special ion. The production timeTp,i refers to the ionization produced by one
single antiproton in the beam. It is defined as the time which is needed to neutralize the nega-
tive elementary charge of the antiproton. The corresponding production rateRp,i = 1/Tp,i of a
certain ion species may be written

Rp,i(s) = σiρm,i(s)βc. (28)

Here,σi is the ionization cross section,ρm,i(s) the local number of molecules per volume, and
βc the beam velocity. The local number densityρm,i(s) is given by

ρm,i(s) =
dNm,i(s)

dV
=
pi(s)

kT
. (29)

Here,pi(s) is the partial pressure,k the Boltzmann constant and T the absolute temperature.
With pi = 1.0 · 10−9 mbar =1.0 · 10−7 Pa andT = 293 K we get for instance

ρm,i = 2.47 · 1013 m−3. (30)

The resulting production of ions depends on the numberNp̄ of antiprotons in the ring and the
production timeTp,i

dNi(s)

dt
=

Np̄

Tp,i(s)
. (31)

We note that the production timeTp,i(s) depends on the local partial densitiesρm,i(s) and
therewith on the local partial pressurespi(s).

In Fig. 10 we show the production timeTp(s) of H+
2 ions assuming that the partial pres-

sure ofH2 molecules is equal to the total pressure,pH2
(s) = p(s). This assumption neglects the

contributions from other ions. It yields a rough estimate ofTp(s). The vacuum pressure in the
HESR ring outside the PANDA target region will bep ≤ 1 · 10−9 mbar. In the North and South
arc the residual gas pressure is much lower,p = 1 · 10−11 mbar. In the PANDA target region
the pressure rises up to about6 · 10−5 mbar. In order to take this pressure bump into account
the pressure profilep(s) near the PANDA target [24, 25] has been taken into account in the cal-
culations. The pressure profile is shown in Fig. 9. In the PANDA target region, the production
time has a marked dip with nearly1 · 10−4 s at the minimum. In regions with1 · 10−9 mbar, the
production time amounts to 6.4 s (at 15 GeV/c). In the region of the North and South arc the
production time amounts to 640 s.
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Fig. 10: Production timeTp(s) for H+

2 ions assuming that the total pressurep(s) is dominated by the partial

pressure of H2 molecules, i.e.pi(s) = p(s), taking the pressure profilep(s) shown in Fig. 9, and assuming the

standard optics,L1 = 0.9C, pp̄ = 15 GeV/c andNp̄ = 1.0 · 1011. Top: the complete HESR ring froms = 0 m

to s = 575 m. Bottom: the PANDA target region froms = 485 m to s = 535 m. The PANDA target is located at

s = 509.481 m.
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7.2 Clearing timeTc

The local clearing timeTc,i(s) refers to the mean time which is needed to remove one positive
elementary charge of a certain ioni out of the beam. If singly charged ions dominate it is the
time needed to remove one single ion. In other words, the clearing timeTc,i(s) defines the mean
lifetime of the positive ion in the beam. The clearing rate isthe inverse of the clearing time,

Rc,i(s) =
1

Tc,i(s)
. (32)

The clearing time depends on the velocity of the ions moving towards the clearing electrodes.
Therefore, we need the indexi in order to discriminate betweenH+

2 ions and heavier ions like
for instanceCO+ ions.

In order to illustrate the relation between production time, clearing time and neutralization
we consider the neutralization caused by a certain ion species, e.g.H+

2 ions. To this end, we
consider the differential equation of the number of ionsNi in the beam as a function of the time
t (again assuming only singly charged ions),

dNi

dt
=
Np̄

Tp,i
− Ni

Tc,i
. (33)

The production of ions is proportional to the number of antiprotons. The number of removed
ions per second depends on the momentary number of ionsNi in the beam. The solution may
be written

Ni(t) = Ni(0) exp(− t

Tc,i
) +Np̄

Tc,i

Tp,i
[1 − exp(− t

Tc,i
)]. (34)

Normally, the number of ionsNi(0) at the beginning is zero and the number of ions in the beam
tends asymptotically towardsNp̄Tc,i/Tp,i. That means the number of produced ions is equal to
the number of cleared ions and we have in the steady state

Ni = Np̄
Tc,i

Tp,i
= Np̄

Rp,i

Rc,i
. (35)

This steady state is quickly reached after a few time periodsTc,i.

7.3 Neutralization η

The resulting local neutralizationηi(s) of the beam caused by a certain ion species may be
written

ηi(s) =
L1

C

Tc,i(s)

Tp,i(s)
=
L1

C

Rp,i(s)

Rc,i(s)
. (36)

Thus, the local clearing timeTc,i(s) and the local production timeTp,i(s) are needed in order to
estimate the local neutralizationηi(s) caused by a certain ion species. We note thatL1/C = 0.9
for the barrier bucket mode of the HESR. Thus, we getηi(s) = 0.9 Tc,i(s)/Tp,i(s) for the HESR.
Summing all contributionsηi(s) yields the total neutralizationη(s),

η(s) =
∑

ηi(s) =
L1

C

∑ Tc,i(s)

Tp,i(s)
. (37)
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8. Ion Motion in Dipole Magnets

8.1 Cyclotron motion of trapped ions in bending magnets

The motion of an ion in the vertical direction along the magnetic field ~B = (0, By, 0) of the
bending magnets is like in a field-free drift space. Thus, thevertical ion oscillations due to the
vertical componentEy of the electric field of the beam are not influenced by the magnet field.
In order to extract ions out of the beam one should install clearing electrodes yielding external
electric fields in the verticaly-direction.

The motion of the ions in the transversex- and the longitudinalz-direction is far from
being free. An ion with a velocityv⊥ perpendicular to the uniform magnetic field of a bending
magnet performs the well known cyclotron motion around the magnetic field lines. The angular
frequencyωi (cyclotron frequency) is given by

ωi =
qiB

mi
. (38)

The radius of the gyration around the magnetic field depends on the velocityvi perpendicular
to the field lines,

ri =
mivi

qiB
. (39)

In the following Tables we list for some typical magnetic fieldsB the angular frequency
ωi, the revolution frequencyfi = ωi/(2π), the revolution timeTi = 1/fi and the cyclotron
radiusri = vi/ωi for H+, H+

2 and CO+ ions. Forvi, we take the mean thermal velocity in one

direction,v̄‖ =
√

2kT/(πmi), with T = 300 K (see Table 3). We mention that the cyclotron
frequenciesfi of the ions are generally quite high, and the radiiri for mean thermal velocities
v̄‖ are very small.

Table 4: Cyclotron motion of thermalH+ ions (T = 300 K): magnetic fieldB, angular frequencyωi, cyclotron

frequencyfi, revolution timeTi, mean radius̄ri.

B (T) ωi (s−1) fi (Hz) Ti (s) r̄i (m)

3.0 2.87 · 108 4.57 · 107 2.19 · 10−8 4.37 · 10−6

2.0 1.92 · 108 3.06 · 107 3.29 · 10−8 6.56 · 10−6

1.7 1.63 · 108 2.59 · 107 3.86 · 10−8 7.71 · 10−6

1.5 1.44 · 108 2.29 · 107 4.37 · 10−8 8.74 · 10−6

0.2 1.92 · 107 3.06 · 106 3.28 · 10−7 6.55 · 10−5

0.17 1.63 · 107 2.59 · 106 3.86 · 10−7 7.71 · 10−5

0.03 2.87 · 106 4.57 · 105 2.19 · 10−6 4.37 · 10−4

0.02 1.92 · 106 3.06 · 105 3.28 · 10−6 6.55 · 10−4

0.01 0.96 · 106 1.52 · 105 6.57 · 10−6 1.31 · 10−3
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Table 5: Cyclotron motion of thermalH+

2 ions (T = 300 K): magnetic fieldB, angular frequencyωi, cyclotron

frequencyfi, revolution timeTi, mean radius̄ri.

B (T) ωi (s−1) fi (Hz) Ti (s) r̄i (m)

3.0 1.44 · 108 2.29 · 107 4.37 · 10−8 6.18 · 10−6

2.0 9.60 · 107 1.53 · 107 6.54 · 10−8 9.27 · 10−6

1.7 8.14 · 107 1.30 · 107 7.72 · 10−8 1.09 · 10−5

1.5 7.18 · 107 1.14 · 107 8.75 · 10−8 1.24 · 10−5

0.2 9.58 · 106 1.52 · 106 6.56 · 10−7 9.27 · 10−5

0.17 8.14 · 106 1.30 · 106 7.72 · 10−7 1.09 · 10−4

0.03 1.44 · 106 2.29 · 105 4.37 · 10−6 6.18 · 10−4

0.02 9.58 · 105 1.52 · 105 6.56 · 10−6 9.27 · 10−4

0.01 4.79 · 105 7.60 · 104 1.31 · 10−5 1.85 · 10−3

Table 6: Cyclotron motion of thermalCO+ ions (T = 300 K): magnetic fieldB, angular frequencyωi, cyclotron

frequencyfi, revolution timeTi, mean radius̄ri.

B (T) ωi (s−1) fi (Hz) Ti (s) r̄i (m)

3.0 1.03 · 107 1.64 · 106 6.10 · 10−7 2.30 · 10−5

2.0 6.91 · 106 1.10 · 106 9.08 · 10−7 3.46 · 10−5

1.7 5.87 · 106 9.32 · 105 1.07 · 10−6 4.06 · 10−5

1.5 5.18 · 106 8.24 · 105 1.21 · 10−6 4.61 · 10−5

0.2 6.91 · 105 1.10 · 105 9.08 · 10−6 3.45 · 10−4

0.17 5.87 · 105 9.32 · 104 1.07 · 10−5 4.06 · 10−4

0.03 1.03 · 105 1.64 · 104 6.10 · 10−5 2.30 · 10−3

0.02 6.91 · 104 1.10 · 104 9.08 · 10−5 3.45 · 10−3

0.01 3.46 · 104 5.50 · 103 1.82 · 10−4 6.90 · 10−3

8.2 ~E × ~B/B2 cross-field drift velocity in dipole magnets

Now, we discuss the combined effect of an electric field~E and a magnetic field~B, the so-called
cross-field drift velocity~vD. The cross-field drift velocity~vD arises, if~E is perpendicular to~B,

~vD =
~E × ~B

B2
. (40)

Thus, for an electric field~E = (Ex, 0, 0) directed in the positive/negativex-direction and a
magnetic field in they-direction, ~B = (0, By, 0), the cross-field drift velocity~vD is directed
into the positive/negativez-direction and amounts to

vz =
Ex

By
. (41)

The illustrative explanation of the cross-field drift velocity is shown in Fig. 11. An ion created
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Fig. 11: Illustrative explanation of the cross-field (~E × ~B) drift velocity~vD of a positive ion.

with the start velocityv⊥ moves on a cyclotron-like trajectory around the magnetic field lines.
During the time where the ion moves in the direction of the electric fieldEx it is accelerated
and the radius of it’s trajectory is increased. During the time where the ion moves against the
direction of the electric field it is decelerated and the radius of it’s trajectory is decreased. As a
consequence, a mean drift velocity~vD perpendicular to the~B- and ~E fields arises. The cross-
field drift velocity~vD is independent of the start velocityv⊥, the chargeqi, the sign of the charge
qi and the massmi of the ion. Thus, ions (of whatever mass and charge) and electrons move in
the same direction at the same velocity~vD.

We note that the electric fieldEx(x) is not constant. Near the beam axisEx depends
linearly onx, Ex = λ

2 πǫ0
1

σx+σy

x
σx

. Therefore, Eq. (41) only applies if the variation of the
electric fieldEx over the cyclotron motion is small, i.e. if

|ri∂Ex/∂x| ≪ |Ex(x)|. (42)

This condition is fulfilled if the Larmor radiusri of the ions is very small and if the ions are
created at a certain distancex from the central axis with

|x| ≫ ri. (43)
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For instance, the Larmor radius of H+
2 ions atBy = 1.7 T amounts to about 11µm, see Table 5.

Thus, one can apply Eq. (41) for transverse distancesx with |x| ≫ 11 µm.

The cross-field drift velocities due to the electric field componentsEx of the antiproton
beam are largest near the edge of the beam. The absolute valueof the electric field component
|Ex| of a bi-Gaussian beam distribution withσx ≈ σy has a maximum at|x| = 1.585 σx.
For λ/(2πǫ0) = −0.556 V (1.0 · 1011 antiprotons) andσx = 1.5 mm at 15 GeV/c we get
|Ex| = 167 V/m. This yields withBy = 1.7 T

|vD| ≈ 98 m/s. (44)

We note that the cross-field drift velocity along the beam is in opposite directions on either side
of the central beam axis. On the right side it is directed in the forward direction, on the left side
in the backward direction. The electric field componentsEx and therewith the drift velocities
fall to very low values for ions born near the center of the beam. They are even zero at the beam
center. Therefore, high ion concentrations and high neutralization levels can exist in bending
magnets, if only the mean cross-field drift velocity (see Subsect. 8.3) is used in order to extract
the ions in the longitudinal direction.

There is another cross-field drift velocity componentvx = Es/By due to the longitudinal
electric fieldEs of the beam (see Fig. 8). It is directed in the transversex-direction. In dipole
magnets, the longitudinal electric field componentsEs together with the transverse magnetic
field componentBy yield drift velocitiesvx = Es/By which are much too small to extract
the ions in the transversex-direction. We get for a typical longitudinal electric fieldof about
0.01 V/m|vx| = 0.006 m/s at 15 GeV/c.

Magnetic mirror effects occur for ions drifting from field-free regions towards the fringe
field of magnets. The longitudinal gradient of the magnetic field can reverse the ion motion thus
creating a barrier. Therefore, it is also important to install clearing electrodes in the field-free
sections between the magnets.

8.3 Estimate of the mean cross-field drift velocity in dipolemagnets

Here, we evaluate the mean cross-field drift velocitiesv̄D in dipole magnets forx > 0, i.e.
for ions created on the left side of the beam axis and driftingin the backward direction. Ions
created on the right side of the beam axis drift in the forwarddirection. They experience the
same mean cross-field drift velocity in opposite direction,i.e. v̄D(x ≤ 0) = − v̄D(x ≥ 0). We
assume bi-Gaussian beam distributions withσx = σy = σ in the region of the dipole magnets.
The transverse electric fieldEx due to the beam charge is given by

Ex(x, y) =
λ

2πǫ0

(

1 − exp−x
2 + y2

2σ2

)

x

x2 + y2
(45)

with λ/(2πǫ0) = −0.556 V for 1.0 · 1011 antiprotons. The absolute value ofEx is zero at the
beam center and rises linearly for smallx. It has a maximum nearx = 1.585 σ, y = 0. The
normalized transverse beam distribution functionf(x, y) is given by

f(x, y) =
1

2πσ2
exp−x

2 + y2

2σ2
. (46)

The mean valuēEx of the electric field componentsEx(x, y) on the left side of the beam distri-
bution, i.e. forx ≥ 0, is obtained by foldingEx(x, y) with f(x, y),

Ēx =

∫

+∞
−∞

∫

+∞
0 Ex(x, y)f(x, y)dxdy

∫ +∞
−∞

∫+∞
0 f(x, y)dxdy

. (47)
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The folding can be done analytically. It yields the mean value Ēx,

Ēx =
λ

2πǫ0

1√
2πσ

2 −
√

2

π
. (48)

The absolute value of the mean drift velocity|v̄D| in longitudinal direction reads

|v̄D| =
|Ēx|
By

. (49)

The lengthL of the dipole magnets amounts to 4.2 m. Now, we assume that theions are
captured by clearing electrodes with clearing fieldsEy at the entrance and exit of a dipole
magnet. We assume that the clearing electrodes are located outside of the dipole magnets and
that the distance between them amounts to about 4.5 m. Thus, the mean drift distance isL/2 =
2.25 m and the mean clearing timeTc is given by

Tc =
L

2|v̄D|
. (50)

This equation holds true for ions created atx ≥ 0 as well asx ≤ 0. We note that the beam width
σ scales like1/

√
p according to the adiabatic damping law withσ ≈ 1.5 mm at 15 GeV/c. This

scaling is taken into account in the evaluation ofĒx. The transverse magnetic fieldBy scales
linearly with the beam momentump. In Table 7, we list the mean cross-field drift velocity|v̄D|
and the mean clearing timeTc for L/2 = 2.25 m. We recall that the cross-field drift velocity
does not depend on the mass and charge of the ions. Thus, CO+ ions experience the same drift
velocity as H+

2 ions.

Table 7: Mean cross-field drift velocity|v̄D| and mean clearing timeTc for 1.0 · 1011 antiprotons andL = 4.5 m.

p GeV/c |v̄D| (m/s) Tc (s)

1.5 51.3 0.0439
3.825 32.1 0.0701
8.889 21.1 0.107
15.0 16.2 0.139

The mean cross-field drift velocities|v̄D| are rather small. This is due to the fact that
the electric fieldEx and therewith the cross-field drift velocityvD drops down to zero at the
beam center. Therefore, ions created near the beam center are practically not cleared and the
resulting mean cross-field drift velocities are rather low in dipole magnets when averaged over
the Gaussian beam profile. As a consequence, the resulting clearing timesTc are rather high.

In addition, the mean electric fields and therewith the mean cross-field drift velocities
depend critically on the numberNp̄ of stored protons. The linear charge densityλ is proportional
toNp̄, and the beam widthσ is proportional toN2/5

p̄ (see Sect. 2.). Therefore, the mean cross-

field drift velocity v̄D is proportional toN3/5

p̄ . Compared to1.0 · 1011 antiprotons the mean
cross-field drift velocities for1.0 · 1010 antiprotons are by a factor of103/5=3.98 lesser and the
mean clearing timesTc are by a factor of103/5=3.98 larger, see Table 8.
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Table 8: Mean cross-field drift velocity|v̄D| and mean clearing timeTc for 1.0 · 1010 antiprotons andL = 4.5 m.

p GeV/c |v̄D| (m/s) Tc (s)

1.5 12.9 0.175
3.825 8.06 0.279
8.889 5.30 0.426
15.0 4.07 0.553

9. Ion Motion in Solenoids

The ion motion in solenoids has been analyzed in detail in a previous report [1]. Here, we
summarize the main results of this study.

A speciality of the HESR ring are solenoids which are used forspecial purposes. The
electron cooler (EC) consists of a long solenoid of about 24.0 m length which guides the electron
beam along the axis of the antiproton beam. The solenoid fieldamounts to 0.2 T yielding a
solenoid strength of 4.8 Tm. In addition, there are two compensation solenoids of about 5.0 m
length with a maximum solenoid fieldB = 1.5 T and a maximum solenoid strength of 7.5 Tm.
They are located upstream and downstream near by the EC solenoid. In the region of the
PANDA target the spectrometer magnet consists of a superconducting solenoid with external
iron return yoke which allows to achieve a uniform longitudinal field of 2.0 T and to keep
enough space for detectors surrounding the interaction point. The maximum solenoid strength
is about 7.0 Tm. In addition, there is one compensation solenoid of about 5.0 m length with a
maximum solenoid field of 1.5 T and a maximum solenoid strength of 7.5 Tm in front of the
target solenoid.

9.1 Cyclotron motion of trapped ions in solenoids

First, we discuss the situation in the beam-free time gaps. An ion which is created inside of a
solenoid cannot escape in the transverse direction. The Lorentz forceqi~vi × ~B causes each ion
to spiral around a magnetic field line. We assume that the ion has a certain thermal velocity
with velocity components perpendicular and parallel to themagnetic field,v⊥ andv‖. In the
transverse direction (i.e. in the plane perpendicular to the magnetic field direction) the ion
performs a cyclotron motion around the magnetic field lines of the solenoid. In the longitudinal
direction the ion moves freely along the magnetic field line of its guiding center. The cyclotron
frequencyωi depends on the magnetic field strengthB, ωi = qiB/mi. The cyclotron radiusri

depends on the transverse thermal velocityv⊥, ri = (miv⊥)/(qiB). Typical values ofωi andri

are listed in subsection 8.1 in the Tables 4, 5 and 6.

9.2 Magnetron motion and modified cyclotron motion in solenoids due to the electric
field of the beam

The superposition of the radial electric field~E of the beam and the longitudinal magnetic field
~B yields a modified cyclotron motion and a slow motion around the solenoid axis. The latter
motion is due to the~E× ~B drift in azimuthal direction. It is called magnetron motionsince it has
been first observed during the development of the magnetron [36]. This motion has also been
analyzed during the development of the Penning traps [37]. The modified cyclotron motion and
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the resulting magnetron motion is illustrated in the left panel of Fig. 12. The figure shows the
projection of the ion motion upon the (x,y) plane. The cyclotron motion due to the longitudinal
magnetic field is modified by the radial acceleration and deceleration. If the ion moves in
the direction of the electric field it is accelerated and the radius of the trajectory is increased.
If the ion moves against the direction of the electric field itis decelerated and the radius of
the trajectory is decreased. As a consequence a mean drift velocity in the azimuthal direction
arises. The rotational direction of the magnetron motion (ω−) is opposite to that of the cyclotron
motion. This is due to the fact that the electric field~E of the antiproton beam is directed radially
towards the central axis. The resultant motion can be described by an epicycloid, i.e. the
superposition of a slow circular magnetron motion with radiusr− and angular velocityω− and
a modified cyclotron motion with radiusr+ and angular velocityω+, see right panel of Fig. 12.
The fast cyclotron motion with a small radiusr+ is carried along by the slow magnetron motion
with a large radiusr−.

B

y

x

E

ω

B

y

x

E

ω+
+rω

r

Fig. 12: Left: Illustration of the motion of trapped ions in asolenoid. The cyclotron motion is modified by the

acceleration and deceleration due to the electric field~E of the antiproton beam. The resulting magnetron motion

(ω−) is opposite to the cyclotron motion (ω+). Right: The motion can be described as an epicycloid that isthe

superposition of a slow circular magnetron motion with radiusr− and angular velocityω− and a modified cyclotron

motion with radiusr+ and angular velocityω+.

Here, we sketch the solution. We use a Cartesian coordinate system(x, y.z) which cor-
responds to the standard coordinate system(x, y, s) of accelerator physics. Thez-axis is the
central axis of the solenoid. The ion motion is described radially by ~ρ = (x, y) and axially by
z. The equations of motion read

m~̈ρ = q( ~Eρ + ~̇ρ× ~B), (51)

mz̈ = qEz. (52)

We assume a linear approximation of the radially attractiveelectric field

~Eρ = −E0~ρ. (53)
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We note thatE0 = |λ|/(2πǫ0a2) for a round beam with constant density within the radiusa,

see Eq. 5. We introduce the angular frequency4 ωb =
√

qE0/m in order to take the electric field
strength into account,

ω2
b =

q

m

|λ|
2πǫ0

1

a2
. (54)

We assume that the magnetic field is oriented in the negativez-direction

~B = −(0, 0, B). (55)

The magnetic field strength is represented by the angular frequencyωc = qB/m of the free
cyclotron motion (i.e. for~Eρ = 0). The solution of the radial equation (51) may be written

~ρ = ~r+ + ~r−, (56)

~r+ = r+(cos(ω+t+ α+), sin(ω+t+ α+)), (57)

~r− = r−(cos(ω−t+ α−), sin(ω−t+ α−)), (58)

where

ω+ =
ωc

2
+

√

(

ωc

2

)2

+ ω2
b , (59)

ω− =
ωc

2
−
√

(

ωc

2

)2

+ ω2
b . (60)

The radial motion of an ion is characterized by the superposition of two motions: (i) the modi-
fied cyclotron motion with angular frequencyω+ and radiusr+ and (ii) the magnetron motion
with angular frequencyω− and radiusr−. The angular velocityω+ is positive whereas the an-
gular velocityω− is negative. This is due to the radially attractive electricpotential, see Fig. 12.
The parametersr+, r−,α+ andα− are constants of integration determined by the initial position
and velocity of the ion in the moment of ionization.

It is interesting to evaluate the velocityv− = r−ω− of the magnetron motion. Ifω2
b ≪

(ωc/2)2 we get

r− ω− = −r−
ω2

b

ωc
= −r−

E0

B
= −| ~E|

B
=

~E × ~B

B2
. (61)

That means, the velocityv− of the magnetron motion is given by the~E× ~B cross-field velocity.

9.3 Fringe field of solenoids

The inside magnetic field of a long solenoid is nearly uniform. The field strengthBz along the
axis may be written

Bz(z) =
B0

2





L+ z
√

(L+ z)2 + a2
− z√

z2 + a2



 . (62)

Here,B0 = µ0NI with µ0 is the magnetic field constant,N the number of windings per meter,
I the current,L the length,a the radius of the solenoid coil andz the longitudinal position with

4In drift spacesωb is the ’bouncing frequency’ of a trapped ion
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z = 0 at the exit of the solenoid. Thus, the extent of the fringe field depends on the radiusa.
We have for instanceBz = 0.985B0 atz = −4 a andBz = 0.015B0 at z = +4 a.

The PANDA spectrometer solenoid [40] consists of three large coils in a large iron yoke.
The inner radius of the coils amounts to 0.930 m and the total coil length amounts to about
2.8 m. The magnetic field distribution has been calculated with the program TOSCA [40].
The solenoid strength amounts to about 7.0 Tm. The longitudinal field distribution along the
solenoid axis can be approximated using a trapezoidal modelwith a minor basis of 1.5 m and a
major basis (at zero field) of about 5.5 m. The minor basis, i.e. the central part, exhibits a highly
uniform magnetic fieldB0 = 2.0 T. It is about 1.5 m long. The upstream and downstream fringe
fields extend to aboutl = 2.0 m. The magnetic fieldBz(z) in the fringe field region0 ≤ |z| ≤ l
can be approximated using

Bz(z) ≈ B0

(

1 − |z|
l

)

, 0 ≤ |z| ≤ l. (63)

The total length of the trapezoidal field distribution amounts to about 5.5 m.

The equations (63) - (65) may be used in order to calculate theincreasing radiir+ andr−
of trapped ions at the entrance and exit of the solenoids, seenext Subsection.

9.4 Adiabatic motion of trapped ions in the fringe field of solenoids

In the fringe field of the solenoid a slow ion (i.e. the guidingcenter of the ion) follows adiabat-
ically the expanding field lines. Thus, the cyclotron radiusri and the distanceRi of the guiding
center from the solenoid axis increase according to

Bzr
2
i = const, BzR

2
i = const. (64)

The last two equations follow directly from Busch’s theorem, i.e. the magnetic flux through
the cyclotron orbit with radiusri and the magnetic flux through a circle around thez-axis with
radiusRi are conserved. Thus,ri andRi increase in the fringe field like

ri(z) =

√

√

√

√

Bz(z0)

Bz(z)
ri(z0), Ri(z) =

√

√

√

√

Bz(z0)

Bz(z)
Ri(z0). (65)

Another consequence of the adiabatic motion is the fact thatthe velocity componentv⊥
perpendicular to the field line decreases slowly in the fringe field while the velocity component
v‖ parallel to the field line increases,

v⊥(z) =

√

√

√

√

Bz(z)

Bz(z0)
v⊥(z0), (66)

v‖(z) =
√

v2
0 − v2

⊥(z), (67)

wherev2
0 = v2

⊥ + v2
‖ = const. The last equation is due to the conservation of kinetic energy.

9.5 Magnetic mirror effect of solenoids

Now, we consider an ion near a solenoid which moves in the direction of increasing longitudinal
field Bz(z). The magnetic field componentBz(z0) at the starting pointz0 is rather low. The
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velocity components at the starting pointz0 are denoted byv⊥(z0) and v‖(z0) and the total
velocity amounts tov0 =

√

v2
⊥(z0) + v2

‖(z0). Now, the velocity componentv⊥(z) perpendicular
to the field line increases slowly in the fringe field while thevelocity componentv‖(z) parallel to
the field line decreases, see Eqs. (66) and (67). If the velocity componentv⊥(z) perpendicular
to the field line becomes equal tov0, the velocity componentv‖(z) parallel to the field line
becomes zero and the motion parallel to the field line is stopped. As a consequence the ion
spirals back. The stop occurs if

v2
0 −

Bz(z)

Bz(z0)
v2
⊥(z0) = 0, (68)

i.e. if

v2
‖(z0) + v2

⊥(z0) −
Bz(z)

Bz(z0)
v2
⊥(z0) = 0. (69)

That means if
Bz(z)

Bz(z0)
= 1 +

v2
‖(z0)

v2
⊥(z0)

. (70)

9.6 Mean thermal ion drift and clearing timesTc in solenoids

In the longitudinal direction, the ions move freely along the magnetic field lines of the solenoids.
Here, we estimate the resulting clearing timesTc if the ions are moving with their mean thermal
velocity in the longitudinal direction and are captured by clearing electrodes at the entrance and
exit of the solenoids. These estimates are only valid if the longitudinal electric fieldsEs of
the beam are negligibly small. Such a situation occurs for1.0 · 1011 antiprotons in the region
of the EC-solenoid and the EC-compensation solenoids, seeEs in Fig. 8 betweens = 190 m
ands = 250 m. For1.0 · 1010 antiprotons, the longitudinal electric field components ofthe
beam are negligibly small everywhere in the ring. The mean thermal velocity in one direction,
v̄‖, amounts to 889 m/s for H+2 ions and 238 m/s for CO+ ions. We assume as mean path
length the half length of a solenoid, i.e.l̄ = L/2 = 12 m for the electron cooler solenoid and
l̄ = L/2 = 2.5 m for the compensation solenoids The resulting mean clearing times are given
by

Tc = l̄/v̄‖. (71)

They are listed in Table 9 for various molecules.

Table 9: Mean thermal ion drift velocitȳv‖ in one direction and clearing timesTc in solenoids.

Molecule A v‖ (m/s) Tc (s), EC solenoid Tc (s), compensation solenoid

H 1 1.2·103 10·10−3 2.1·10−3

H2 2 8.9·102 13·10−3 2.8·10−3

CH4 16 3.1·102 37·10−3 7.9·10−3

H2O 18 3.0·102 40·10−3 8.3·10−3

CO/N2 28 2.4·102 50·10−3 10·10−3

CO2 44 1.9·102 63·10−3 13·10−3
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10. Clearing Electrodes

10.1 Introductory remarks

The positive ions can be extracted by clearing electrodes ifthe external electric fields are larger
than the electric fields created by the antiproton beam, see Fig. 7. Thus, isolated electrodes near
the inner surface of the beam pipe (inner diameter: 89 mm) providing sufficiently large electric
fields of more than 500 V/m can be used in order to extract the produced ions. The electrodes
of the beam position monitors in the ring can also be used to extract the positive ions out of the
antiproton beam. Finally, we mention that the closed orbit distortions by the transverse electric
fields of the clearing electrodes are negligibly small.

We differentiate between single isolated clearing electrodes and continuous clearing elec-
trodes extending over several meters. The technology of single isolated clearing electrodes has
been described in the literature. Often, clearing electrodes of the button type are used in order
to achieve negligible coupling to the beam, i.e. low impedances [20]. Continuous electrodes
can be used in regions where extremely high clearing rates are needed. In the neighbourhood
of the PANDA target such electrodes are mandatory in order tocounteract the high production
rates of trapped ions. Continuous clearing electrodes are described in Subsection 10.3.

The number of single isolated clearing electrodes should beas large as possible. Ideal
locations are the minima of the beam potential which act as trapping pockets. In the arcs, it
is mandatory to locate clearing electrodes at the entrance and exit of the dipole magnets, see
Subsection 13.1.

Clearing electrodes can also provide valuable diagnostic information if the clearing cur-
rent on each electrode can be measured using fast picoamperemeters [17]. For instance such
measurements yield a relatively good information about thelocal production timeTp(s) which
depends on the local pressurep(s). Switching on and off of certain clearing electrodes or groups
of clearing electrodes allows to study the local effects of trapped ions.

10.2 Clearing rates using single isolated clearing electrodes in straight sections

Here, we estimate the clearing ratesRc and clearing timesTc assuming that the ions move with
a mean thermal velocitȳv‖ (see Table 3) towards single isolated clearing electrodes.We assume
drift spaces with a distanceL = 5 m between the single isolated electrodes. The resulting mean
clearing timeTc can be evaluated using

Tc =
L

2 v̄‖
. (72)

We note that similar estimates are obtained if one takes the longitudinal accelerationas =
qEs/m due to the longitudinal electric field components of the beaminto account. The resulting
beam neutralizationη = 0.9 Tc/Tp depends on the production timeTp of the ions. The clearing
timesTc, the clearing ratesRc, the production timesTp and the resulting neutralizationsη are
estimated for H+2 and CO+ ions assuming total pressures of about1.0 ·10−9 mbar pressures, see
Tables 10 and 11.
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Table 10: Mean thermal velocity|v̄‖|, mean clearing timeTc (L = 5 m), production timeTp and neutralizationη

for H+

2 ions using single isolated clearing electrodes and assuming a partial H2 pressure of0.8 · 10−9 mbar.

p (GeV/c) |v̄‖| (m/s) Tc (s) Rc(s−1) Tp (s) η

1.5 889 0.00281 356 9.22 2.74 · 10−4

3.825 889 0.00281 356 9.292.72 · 10−4

8.889 889 0.00281 356 8.692.91 · 10−4

15.0 889 0.00281 356 7.98 3.17 · 10−4

Table 11: Mean thermal velocity|v̄‖|, mean clearing timeTc (L = 5 m), production timeTp and neutralizationη

for CO+ ions using single isolated clearing electrodes and assuming a partial CO pressure of0.2 · 10−9 mbar.

p (GeV/c) |v̄‖| (m/s) Tc (s) Rc(s−1) Tp (s) η

1.5 237 0.0106 94.3 8.50 1.12 · 10−3

3.825 237 0.0106 94.3 8.331.15 · 10−3

8.889 237 0.0106 94.3 7.451.28 · 10−3

15.0 237 0.0106 94.3 6.92 1.38 · 10−3
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10.3 Continuous clearing electrodes

The highest clearing rates can be achieved using continuousclearing electrodes inside the beam
pipes. However, long clearing electrodes inside the beam tubes must be compatible with the re-
quirements of the HESR ring. They must have good vacuum properties, little aperture reduction
and a low beam coupling impedance. Such clearing electrodeshave recently been developed
at CERN [28, 29]. We suggest to use this new design at HESR. Similar clearing electrodes for
electron cloud mitigation at KEKB positron ring have been developed recently [30].

The continuous electrode consists of a highly resistive layer deposited onto a very thin
isolating strip inside the beam pipe, see Fig. 13. In Ref. [28] beam pipes with different inner
radii have been studied. We refer to the investigation of thePS beam pipe with an inner radius
of 50 mm. This inner radius is comparable to the inner radius of 44.5 mm of the HESR beam
pipe. The 0.1 mm thick and about 30 mm wide isolating layer canbe made by the application
of enamel or by plasma spraying of alumina (Al2O3). On top of the isolating layer a 25 mm
wide highly resistive thick film coating with a few10µm thickness is applied. The length of
such an electrode can be a few meters. It can be installed in straight sections and in magnetic
dipole sections. The clearing voltage can be applied by feedthroughs at one or both ends of the
electrode. Clearing voltages up to -1.0 kV are possible.

The surface resistanceRsurface of the highly resistive layer must be higher than the free
space impedanceZ0 = 377 Ω but small enough that the voltage drop along the electrode isnot
too high. IfRsurface ≫ Z0 the layer is “invisible” to the electromagnetic waves. Therefore
values ofRsurface = 10 kΩ to 100 kΩ are recommended. In this context we note that the
currents from the ion clearing are very small.

The longitudinal and transverse impedances of the new electrode have been estimated in
Ref. [28]. The real part of the longitudinal impedance,ℜ(Z/n), is not affected by a thin lossless
dielectric. The imaginary part of the longitudinal impedanceℑ(Z/n) can be estimated in first
order approximation (for a thin dielectric layer inside a round beam pipe extending over the
machine circumference)

ℑ(
Z

n
) =

√

µ0

ǫ0

(

1 − 1

ǫr

)

t

ri
. (73)

Here,t is the dielectric thickness,ri the inner radius of the beam pipe andǫr the permittivity
(ǫr = 5 for enamel). The longitudinal impedance of a single 25 mm wide and 0.1 mm thick
high resistive layer inside a beam pipe with inner radiusri = 50 mm has been estimated to yield
ℑ(Z/n) ≈ 0.07 (Ω) [28].

The real part of the transverse impedance,ℜ(Ztr), is not affected by the new electrode.
The imaginary part is also not affected at low frequencies (up to 10 kHz). Above 10 kHzℑ(Ztr)
is increased. For thin layersℑ(Ztr) is proportional to the layer thickness.

Concerning the dielectrics Fritz Caspers recommended recently [29] to useAl2O3 instead
of vitreous enamel due to it’s better mechanical stability.A thin 30 mm wideAl2O3 layer can
be deposited at the bottom of the beam pipe using plasma spraying. The highly resistive coating
on top of the dielectric can be realized using commercially available thick film pastes from
Heraeus. These thick film pastes are developed for the production of electronic circuits and
sensors [31].
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Fig. 13: Continuous clearing electrodes.Top: Clearing electrodes on the bottom of the beam pipe in the region of

drift spaces and dipole magnets.Bottom: Clearing electrodes in the region of quadrupole magnets. The ions are

extracted under−45◦ along the principal direction of the magnetic field lines towards the clearing electrode.
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10.4 Electric field of continuous clearing electrodes

We assume 25 mm wide clearing electrodes at the bottom of the beam pipes. The positive ions
which are created inside the beam envelopes are immediatelyaccelerated towards the clearing
electrode. The clearing rate depends on the electric field distribution inside the beam pipe,
especially on the electric field componentEy at the beam center.

The potential distributionΦ(ρ, φ) inside the beam pipe can be evaluated using the fol-
lowing equation (see Problem 2.12 in the book ’Classical Electrodynamics’, by John David
Jackson, John Wiley & Sons Inc., New York (1998), Third Edition, page 89)

Φ(r, φ) =
1

2π

∫ 2π

0

Φ(b, φ′)
b2 − r2

b2 + r2 − 2br cos(φ′ − φ)
dφ′. (74)

Here,Φ(b, φ′) is the potential specified on the surface of a cylinder of radius b, r andφ are
the cylinder coordinates inside the cylinder. The potential on the surface is mainly zero (earth
potential of the beam pipe). In a small angle interval∆φ′ nearφ′ = 3π/2, i.e. 3π/2−∆φ′/2 <
φ′ < 3π/2 + ∆φ′/2, it is equal to the clearing voltageΦ0 = −1.0 kV. Thus we have

Φ(b, φ′) = Φ0 for 3π/2 − ∆φ′/2 < φ′ < 3π/2 + ∆φ′/2,

Φ(b, φ′) = 0 for 0 < φ′ < 3π/2 − ∆φ′/2 and 3π/2 + ∆φ′/2 < φ′ < 2π. (75)

We are mainly interested in the potentialΦ and the electric field componentEy along they-axis,
i.e. forφ = 3π/2 along the negativey-axis and forφ = π/2 along the positivey-axis. The angle
interval∆φ′ which is covered by the 25 mm wide clearing electrode is very small. Therefore,
cos(φ′ − φ) is practically constant in the angle interval∆φ′ and we get approximately

cos(φ′ − φ) ≈ +1 for φ = 3π/2,

cos(φ′ − φ) ≈ −1 for φ = π/2. (76)

Using this approximation5 we can solve the integral (74),

Φ(r, φ) = Φ0

∆φ

2π

b2 − r2

b2 + r2 − 2br
for φ = 3π/2,

Φ(r, φ) = Φ0

∆φ

2π

b2 − r2

b2 + r2 + 2br
for φ = π/2. (77)

Using Cartesian coordinatesx = r cosφ andy = r sinφ yields the solution along they-axis in
the following form

Φ(x = 0, y) = Φ0

∆φ

2π

b2 − y2

b2 + y2 + 2by
. (78)

Using ~E = −gradΦ yields the electric field~E inside the beam pipe. The electric field compo-
nentEy = −∂Φ/∂y along they-axis can be written

Ey(x = 0, y) =
∆φ

2π
Φ0

2y(b2 + y2 + 2by) + (2y + 2b)(b2 − y2)

(b2 + y2 + 2by)2
. (79)

Numerically, we get for a 25 mm wide clearing electrode and a beam pipe radiusb =
44.5 mm ∆φ = 25/(2π 44.5) = 0.08941 rad = 5.12◦ and∆φ/(2 π) = 0.0142. Assuming a

5The approximation cannot be used for test points very close to the clearing electrode.
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clearing voltageΦ0 = −1.0 kV we get for(x, y) = (0, 0), i.e. for the beam center

Φ(0, 0) = −14.2 V.

Ey(0, 0) = −640 V/m. (80)

We note that the beam pipe radius is not alwaysb = 44.5 mm. For instance in the
region of the PANDA dipole magnet the radiusb amounts to 50 mm. Thus, assuming a 25 mm
wide clearing electrode and a clearing voltageΦ0 = −1.0 kV we getΦ(0, 0) = −12.7 V and
Ey(0, 0) = −507 V/m.

10.5 Estimate of the beam deflection by continuous clearing electrodes

Finally, we estimate the beam deflection by the electric fieldof continuous clearing electrodes.
We assume an electric field componentEy of -640 V/m at the beam center and an effective
lengthL of about 20 m. As discussed in the previous Subsection such electric fields can be
made using clearing voltages of -1.0 kV in a 89 mm wide beam pipe. The resulting deflection
angleΘ can be calculated using

Θ =
eEyL

pv
. (81)

Here,p is the momentum andv = βc the velocity of the beam. For a typical beam momentum
p = 8.889 GeV/c we get

Θ = 1.45 · 10−6 rad. (82)

Thus, the deflection angle is negligibly small.

10.6 Clearing rates using continuous clearing electrodes

Here, we estimate the clearing ratesRc and clearing timesTc of continuous clearing electrodes.
The clearing rateRc is related to the mean clearing timeTc which is needed in order to extract
a trapped ion out of the antiproton beam,Rc = 1/Tc.

We assume an electric field at the beam center ofEy = −640 V/m. The average value of
the electric field of the beam (averaged over the full Gaussian beam distribution) is zero since
Ey,beam is positive fory < 0 and negative fory > 0. Thus, we assume a mean electric field
Ēy = −640 V/m. For singly charged trapped ions the resulting mean acceleration is

āy =
eĒy

m
. (83)

Estimating the mean clearing timeTc we assume a mean flight path length of3σy. That means
ions which are created in the beam centery = 0 reach the beam edge aty = 3σy. This
assumption yields

Tc ≈
√

6σy

|āy|
. (84)

For σy we takeσy = 3 mm which is a typical value near the PANDA target, see Fig. 4. The
resulting mean accelerations|āy|, clearing timesTc, clearing ratesRc, production timesTp and
neutralizationsη are listed forH+

2 andCO+ ions in Tables 12 and 13.

Summarizing we note that continuous clearing electrodes yield very high clearing rates.
They can be used to counteract trapped ion effects in the region of the PANDA target, see
Sect. 12..
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Table 12: Mean acceleration|āy|, mean clearing timeTc (L = 3σy ≈ 9 mm), production timeTp and neutralization

η for H+

2 ions using continuous clearing electrodes and assuming a partial H2 pressure of0.8 · 10−9 mbar.

p (GeV/c) |āy| (m/s2) Tc (s) Rc(s−1) Tp (s) η

1.5 3.07 · 1010 7.66 · 10−7 1.31 · 106 9.22 7.48 · 10−8

3.825 3.07 · 1010 7.66 · 10−7 1.31 · 106 9.29 7.42 · 10−8

8.889 3.07 · 1010 7.66 · 10−7 1.31 · 106 8.69 7.93 · 10−8

15.0 3.07 · 1010 7.66 · 10−7 1.31 · 106 7.98 8.64 · 10−8

Table 13: Mean acceleration|āy|, mean clearing timeTc (L = 3σy ≈ 9 mm), production timeTp and neutralization

η for CO+ ions using continuous clearing electrodes and assuming a partial CO pressure of0.2 · 10−9 mbar.

p (GeV/c) |āy| (m/s2) Tc (s) Rc(s−1) Tp (s) η

1.5 2.19 · 109 2.87 · 10−6 3.48 · 105 8.50 3.03 · 10−7

3.825 2.19 · 109 2.87 · 10−6 3.48 · 105 8.33 3.10 · 10−7

8.889 2.19 · 109 2.87 · 10−6 3.48 · 105 7.45 3.47 · 10−7

15.0 2.19 · 109 2.87 · 10−6 3.48 · 105 6.92 3.73 · 10−7
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11. Ion Clearing in Solenoids Using Transverse Cross-Field-Drift Velocities

In a field-free region of a drift space trapped ions can easilybe extracted using clearing elec-
trodes. Such a direct extraction is not possible in the region of a solenoid due to the longitudinal
magnetic field. However one can use the effect of the~E × ~B/B2 cross-field-drift velocity, see
Subsection 8.2 and Fig. 11.

By adjusting for instance a certain transverse electric field Ey the resulting cross-field-
drift velocity amounts to|Ey/Bz| and is directed in thex-direction. Using this effect one can
guide the trapped ions towards clearing electrodes locatedon the left- or right-hand side of the
beam. Similarly, it is possible to adjust a certain transverse electric fieldEx in order to extract
trapped ions with electrodes located above or below the antiproton beam.

The scheme of ion clearing in a solenoid is shown in Fig. 14. The ion clearing device
consists of two metallic half cylinders separated by high-resistive-glass insulators connected
to earth and acting as clearing electrodes. The clearing device and the neighbouring vacuum
chamber have the same inner diameter (89 mm). The length can be chosen freely. One can take
for instance the effective length of the solenoid.

The voltagesV2 = −U0 andV1 = +U0 on the opposite electrodes are oppositely equal.
Thus, we haveV2−V1 = −2U0. The resulting electric field must be higher than the electric field
of the p̄-beam. The electric field can be evaluated using the following equation (see Problem
2.12 in the book ’Classical Electrodynamics’, by John DavidJackson, John Wiley & Sons Inc.,
New York (1998), Third Edition, page 89)

Φ(r, φ) = −2U0

π
arctan

(

2br sinφ

b2 − r2

)

. (85)

whereb is the radius of the half-cylinders andφ is measured from a plane through the gap (i.e.
thex-axis). Using Cartesian coordinates instead of cylinder coordinates we havex = r cosφ
andy = r sin φ. The electric field~E inside a very long clearing device is given by

(Ex, Ey, Ez) = −
(

∂Φ

∂x
,
∂Φ

∂y
, 0

)

. (86)

We are mainly interested to evaluateEy,

Ey =
2U0

π

(

1 + tan2
2by

b2 − (x2 + y2)

)

2b(b2 − (x2 + y2)) + 4by2

(b2 − (x2 + y2))2
. (87)

This yields for the beam center(x, y) = (0, 0)

Ey(x, 0) =
4

π

U0

b
. (88)

We note thatEy(x, 0) increases on the way from the beam center towards the clearing electrode.
For a radiusb = 44.5 mm and a voltageU0 = 105 V we getEy(0, 0) ≈ 3.0 kV/m in the beam
center.

An electric field of about 3.0 kV/m and a solenoid field of 1.5 T yield rather high cross-
field-drift velocities of about 2000 m/s. The ions drift towards the high-resistive-glass electrodes
where they are neutralized. We mention that such clearing devices have been used at LEAR in
order to extract the secondary electrons from the ionization processes of the residual gas in the
electron-cooling beam [49].
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Fig. 14: Scheme of ion clearing in a solenoid: The transverseelectric field ~E is generated with two metallic half

cylinders separated by high-resistive-glass insulators which act as clearing electrodes. Here, the resulting cross-

field-drift velocity~vD = ~E × ~B/B2 is directed in the positivex-direction. The modified cyclotron motion of the

ions is not true to scale. In reality the cyclotron radii of thermal ions amount to a few micrometers.
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12. Counteracting Trapped Ion Effects near the PANDA Target

12.1 Preliminary remark

In the immediate neighbourhood of the PANDA target (see Figs. 15 and16) the vacuum pressure
is very high due to theH2 cluster jet or pellet target [25], see Figs. 17 and 18. Therefore,
theH+

2 ion production rate is much higher than in the remaining sections outside the target
region. Without clearing the antiproton beam is fully neutralized within a few milliseconds.
It is interesting to note that the pressure bump of the pellettarget is about a factor of hundred
higher than that of the cluster jet target. Therefore, we consider in the following the worst case,
i.e. the H2 gas input from the pellet target.

In the following Subsection 12.2 we estimate the clearing timesTc(s) and the neutraliza-
tionsη(s) which can be achieved using either single isolated clearingelectrodes (see Subsect.
10.2) or continuous clearing electrodes (see Subsects.10.3 - 10.6). The comparison of both
methods shows that a sufficient low neutralization can only be achieved using continuous clear-
ing electrodes.

Continuous ion clearing in the immediate neighbourhood of the PANDA target would
be the optimum solution to the trapped ion problem. However,it is necessary to consider the
geometrical constraints which are due to the PANDA experiment. The possibility to abandon
continuous ion clearing in the regions of the target solenoid and the compensation solenoid is
discussed in Subsections 12.3-12.4.

In Subsection 12.5, we show the resulting neutralization profile η(s) near the PANDA
target if continuous clearing is abandoned in the regions ofthe compensation solenoid and the
PANDA target solenoid.

The remaining sections betweens = 488 m ands = 508 m and betweens = 512.5 m
ands = 532 m consist of a dipole spectrometer, drift spaces, quadrupole magnets and cor-
rection dipole magnets of the PANDA chicane. Most critical are the transition regions where
the neutralization decreases slowly from 100 % to 1 %. There,dangerous coherent ion-beam
oscillations can occur. The necessity of continuous ion clearing in those regions is discussed in
Subsections 12.6 - 12.9.
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Fig. 15: PANDA target spectrometer with solenoid and detector components. The figure is taken from the Technical

Design Report for the PANDA Internal Targets [25].
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Fig. 16: Cross section of the PANDA target spectrometer withsolenoid and detector components. The target and

dump lines are marked in red, thēp beam pipe in blue. The dimensions are given in mm. The diameters refer to

inner diameters of the tubes. The figure is taken from the Technical Design Report for the PANDA Internal Targets

[25].
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Fig. 17: Pressure profile with cluster-jet target. The beam pipe is shown above the plots. The figure is taken from

the Technical Design Report for the PANDA Internal Targets.[25].
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Fig. 18: Pressure profile with pellet target. The beam pipe isshown above the plots. The figure is taken from the

Technical Design Report for the PANDA Internal Targets. [25].
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12.2 Counteracting the very high production rates of H+
2 ions near the PANDA target

In order to counteract the very high production rates of H+
2 ions near the PANDA target es-

pecially high clearing rates are necessary. We show that thenecessary clearing rates can be
achieved with continuous clearing electrodes, see Subsect. 10.6. The clearing rates of single
isolated clearing electrodes (see Subsect. 10.2) are not sufficient. In the following we consider
only the dominating H+2 ions.

Concerning single isolated clearing electrodes (see Subsect. 10.2) we assume that they
are located at a distanceL = 5.0 m. We note that this distance corresponds to the length of
the compensation solenoid. The clearing timeTc depends on the longitudinal electric fieldEs

of the antiproton beam. The resulting accelerationas may be writtenas = (e/m)Es. Taking

as mean flight-path lengthL/2 = 2.5 m yields a mean clearing timeTc =
√

L/as and a
neutralizationη = 0.9 Tc/Tp. The longitudinal electric fieldEs depends strongly on the number
Np̄ of circulating antiprotons. For1.0 · 1011 antiprotons the longitudinal electric field varies
between 0.057 V/m and 0.11 V/m in the region of the compensation solenoid. For1.0 · 1010

antiprotons the longitudinal electric field is about a factor of eight lower. In the top graphs of
Fig. 19 and 20 the resulting neutralizationη(s) is shown forNp̄ = 1.0 ·1011 andNp̄ = 1.0 ·1010,
respectively.

The continuous clearing electrodes (see Subsect. 10.6) aredeposited at the bottom of
the beam pipe. In the region of quadrupole magnets the electrodes are deposited at the−45◦

side. The positive ions which are created inside the beam envelopes are immediately accelerated
towards the clearing electrode. We assume an electric field at the beam center ofEy = 640 V/m.
This can be achieved with a clearing voltage of -1.0 kV for a beam pipe diameter of 89 mm.
For H+

2 ions the resulting mean acceleration isay = 3.07 · 1010 m/s2. Estimating the mean
clearing timeTc we assume a mean flight path length of3σy. That means, ions which are
created in the beam centery = 0 reach the beam edge aty = 3σy. This assumption yields

Tc ≈
√

6σy/ay andη = 0.9Tc/Tp. Taking for instanceσy = 3 mm anday = 3.07 · 1010 m/s2

yieldsTc = 7.66 · 10−7 s.

In the region of solenoids (PANDA target solenoid betweens = 508.0 m ands = 512.5 m
and compensation solenoid betweens = 500.2 m ands = 505.2 m) continuous clearing can
be achieved using the transverse cross-field velocity, see Sect. 11.. To this end, the beam pipe
consists of two metallic half cylinders separated by high resistive glass-insulators acting as
clearing electrodes. A transverse electric fieldEy and a longitudinal magnetic fieldBz yield
a transverse cross-field velocityvx = Ey/Bz. A high velocity of 1000 m/s can be achieved
with Ey = 1.5 kV/m andBz = 1.5 T in the region of the compensation solenoid and with
Ey = 2.0 kV/m andBz = 2.0 T in the region of the target solenoid. Assuming a mean flight
path length of3σx the clearing time may be estimated usingTc = 3σx/vx. The resulting
clearing times are sufficient low. Taking for instanceσx = 3 mm andvx = 2000 m/s yields
Tc = 1.5 · 10−6 s. In the bottom graphs of Fig. 19 and 20 the resulting neutralizationη(s) is
shown forNp̄ = 1.0 · 1011 andNp̄ = 1.0 · 1010, respectively.

Summarizing, single isolated electrodes yield dangerous high neutralizations near the
PANDA target. The highest neutralizations result for1.0 · 1010 antiprotons (see top graphs
in Figs. 19 and 20) yieldingη > 0.1 between abouts = 500 m ands = 515 m andη > 0.01
between abouts = 490 m ands = 530 m. Sufficient low neutralizations withη < 0.01 can
only be achieved with continuous clearing electrodes, see bottom graphs in Figs. 19 and 20.
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Fig. 19: Neutralizationη(s) near PANDA target forNp̄ = 1.0 · 1011 andpp̄ = 8.889 GeV/c.Top: Single isolated

clearing electrodes (distance 5.0 m).Bottom: Continuous clearing electrodes.
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Fig. 20: Neutralizationη(s) near PANDA target forNp̄ = 1.0 · 1010 andpp̄ = 8.889 GeV/c.Top: Single isolated

clearing electrodes (distance 5.0 m).Bottom: Continuous clearing electrodes.
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12.3 The PANDA target solenoid

Here, we discuss the necessity to abandon continuous clearing in the region of the PANDA
target solenoid. We first sketch the geometrical constraints in the region of the PANDA target
solenoid. Then, we discuss the situation if continuous clearing is abandoned in the region of the
PANDA target solenoid.

The PANDA target solenoid surrounds the interaction point,see Figs. 15 and 16. It is used
as spectrometer for the detection of scattered particles ina highly homogeneous solenoidal field.
The magnetic field of the solenoid is provided by a large superconducting coil with an inner
diameter of 2.010 m and a length of 2.80 m. The maximum magnetic field amounts to 2.0 T.
The detectors are located inside the large solenoid. Including the fringe fields, the magnetic
field of the PANDA solenoid extends over a distance of about 5.50 m froms = 507.5 m to
s = 513.0 m. The PANDA target is located ats = 509.481 m.

In order to sketch the geometrical constraints near the PANDA target we consider the
geometry of the beam pipe, see Fig. 16. The upstream beam pipebetween the pumping station
outside the target solenoid and the target point has a total length of about 2.86 m and a large
inner diameter of 150 mm. Near the target the beam pipe changes over to a very small inner
diameter of 20 mm. The downstream beam pipe next to the targetis a very small and fragile
tube with a total length of 0.200 m, an inner diameter of 20 mm and a wall thickness of 0.5 mm.
It consists of a special BeAl alloy in order to keep the small angle scattering of the scattered
particles as small as possible. The downstream beam pipe continues with a transition to an inner
diameter of 40 mm and a total length of 0.923 m.

The upstream and downstream beam pipe is tightly surroundedby the PANDA detec-
tor system nested inside the solenoidal magnetic field. It consists of Micro-Vertex Detectors
(MVD), Central Trackers, Barrel DIRC’s and Disc DIRC’s (Detectors of Internally Reflected
Cherenkov light), Barrel Time-Of-Flight (TOF) detectors,Gas Electron Multiplier (GEM) de-
tectors, Drift Detectors and Electromagnetic Calorimeters (EMC).

In view of the tight geometrical constraints it is probably not possible to install continuous
ion clearing in the region PANDA target solenoid. Especially, it is very difficult to cut the 0.5
mm thick beam pipe next to the interaction point into two halfcylinders separated by very
thin and high resistive glass-insulators acting as clearing electrodes. Therefore, we discuss the
situation if continuous clearing is abandoned.

The local density of H2 molecules is very high near the PANDA target due to the gas
input from the PANDA target. As mentioned, we consider the gas input from the pellet target.
Near the target point the pressure and the production timeTp for H+

2 ions amount to about
6.0 · 10−5 mbar and 0.113 ms, respectively, see Figs. 9 and 10. At the entrance and exit of
the target solenoid the pressures are still very high. They amount to about5.2 · 10−6 mbar and
6.0 · 10−6mbar, respectively. The corresponding production timesTp amount to about 1.3 ms
and 1.1 ms, respectively.

In addition, there is a narrow beam waist inx- andy-direction at the target point. As a
consequence the longitudinal electric fieldEs of the antiproton beam is directed towards the
target point, both downstream and upstream, see Fig. 8. Thus, positive ions are accelerated
towards the target point instead of being accelerated towards clearing electrodes at the entrance
and exit of the target solenoid. The magnetic field of the solenoid and the longitudinal electric
field component of the beam act as a perfect ion trap. Without clearing the antiproton beam is
fully neutralized within a very short period of time (t < 1 ms) and the longitudinal electric field
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Es of the beam is canceled by the space charge of the trapped ions.

Then, the antiproton beam produces continuously further ions and electrons with a very
high production rate. These ions and electrons can only escape in the longitudinal direction
along the magnetic field lines of the target solenoid. In the fringe field of the solenoid the ions
and electrons follow adiabatically the magnetic field linestowards the beam pipe where they
are neutralized, see Subsect. 9.4.

There are two reasons why dangerous transverse ion oscillations cannot occur. (i) The
potential well of the antiproton beam is fully neutralized by the trapped ions. (ii) The ions
perform tight cyclotron motions around the longitudinal magnetic field lines of the PANDA
solenoid (2.0 T). Therefore, one can abandon continuous clearing in the region of the PANDA
target solenoid.

12.4 The compensation solenoid near the PANDA target

Here, we discuss the possibility to abandon continuous clearing in the region of the compen-
sation solenoid as shown in Fig. 14. The 5 m long compensationsolenoid with a magnetic
field direction opposite to the magnetic field direction of the PANDA target solenoid extends
from s = 500.23 m to s = 505.23 m. First, we estimate the neutralization in the region of the
compensation solenoid. Fortunately, the longitudinal electric fieldEs is unidirectional (directed
in the positives-direction). The trapped ions move along the magnetic field lines towards the
fringe field of the compensation solenoid. There, the ions follow adiabatically the magnetic
field lines towards the beam pipe where they are neutralized,see Subsect. 9.4. The mean clear-
ing timeTc depends on the strength of the longitudinal electric field. For 1.0 · 1011 antiprotons
the longitudinal electric field varies between 0.057 V/m and0.11 V/m and the clearing timeTc

is dominated by the longitudinal acceleration of the ions. It yields for H+
2 ionsTc ≈ 1.1 ms and

η ≈ 0.11 in the region of the compensation solenoid. For1.0 · 1010 antiprotons the longitudinal
electric field is about a factor of eight lower but the clearing timeTc is still dominated by the
longitudinal acceleration of the ions. It yields for H+

2 ionsTc ≈ 3.0 ms andη ≈ 0.29 in the
region of the compensation solenoid. Thus, the potential well of the antiproton beam is not fully
neutralized by the trapped ions. But dangerous transverse ion oscillations cannot be excited due
to the longitudinal magnetic field of the solenoid. The ions perform tight cyclotron motions
around the longitudinal magnetic field lines of the PANDA solenoid (1.5 T). Therefore, one can
abandon continuous clearing in the region of the compensation solenoid.

12.5 Neutralization η(s) if continuous ion clearing is abandoned in the region of the
compensation solenoid and the PANDA target solenoid

Here, we show the resulting neutralizationη(s) if continuous ion clearing is abandoned in the
region of the compensation solenoid and the PANDA target solenoid as discussed in the previous
Subsects. 12.3 and 12.4. We emphasize that it is absolutely necessary to provide continuous ion
clearing in the dipole specrometer, the drift spaces, the quadrupole magnets and the correction
dipoles near the PANDA target, see Subsects. 12.6 - 12.9. Otherwise, the neutralization levels
would be in the most critical range1% < η < 100% where dangerous coherent ion-beam oscil-
lations can occur. The resulting neutralizationη(s) is shown in Fig. 21 forpp̄ = 8.889 GeV/c.
The top and bottom graphs refer toNp̄ = 1.0 · 1011 andNp̄ = 1.0 · 1010, respectively.
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Fig. 21: Neutralizationη(s) near PANDA target forpp̄ = 8.889 GeV/c if continuous ion clearing is abandoned

in the regions of the compensation solenoid and the PANDA target solenoid.Top: Np̄ = 1.0 · 1011. Bottom:

Np̄ = 1.0 · 1010.
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12.6 The dipole spectrometer magnet near the PANDA target

Dangerous coherent oscillations in the verticaly-direction can occur in the region of the dipole
magnet of the PANDA Forward Spectrometer, see Fig. 22. The field integral of the dipole
spectrometer magnet amounts to 2 Tm at 15 GeV/c. The magnet yoke will occupy about 1.6 m
in beam direction starting from 3.9 m downstream of the target. The magnetic field of the dipole
spectrometer magnet [40] extends from abouts = 512.5 m to abouts = 516.5 m, see Fig. 22. It
is part of the HESR lattice. The resulting bending angle of the beam amounts to 40 mrad. Two
0.5 m long correcting dipole magnets are located ats = 496.181 m ands = 522.781 m in order
to compensate the bending angle caused by the dipole spectrometer magnet.

The dipole spectrometer magnet with a maximum bending powerof 2.0 Tm provides the
necessary field strength in order to determine the momentum of scattered charged particles with
a momentum resolution of 1 %. The gap of the dipole covers the entire angular acceptance of
the target spectrometer of±10◦ and±5◦ in the horizontal and vertical directions, respectively.
It will be 3 m wide and between 0.8 m (at the entrance) and 1.0 m (at the exit) high. The detector
system will be equipped with drift chambers for particle tracking and scintillation counters for
time-of-flight measurements inside the dipole magnet. The deflection of particle trajectories
will be measured with three pairs of tracking drift detectors. The first pair is placed in front,
the second within and the third behind the dipole magnet. Thedetector system inside the dipole
magnet will be completed by a full forward detection system including luminosity detectors.

The PANDA dipole spectrometer magnet is located in a region where the residual H2
gas pressure is still rather high (about4.2 · 10−7 mbar), see Fig. 18 and the production time
Tp for H+

2 ions is rather low (about 16 ms), see Fig. 10. The vertical magnetic field of the
spectrometer has the advantage that ion oscillations in thehorizontalx-direction are suppressed.
The disadvantage is the fact that dangerous ion oscillations can occur in the verticaly-direction.
Therefore, continuous clearing electrodes6 are needed in order to extract the ions in they-
direction along the magnetic field lines, see Subsects. 10.3and 10.4.

6The feasibilty of continuous clearing electrodes in the dipole region has recently been discussed during a
meeting in the FZ Jülich (04.07.2012).
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Fig. 22: Top: PANDA Forward Spectrometer with dipole magnet. The figure is from the PANDA-Target-TDR

[41]. Bottom: Magnetic field along three straight lines in the horizontal plane of the dipole magnet. The straight

lines originate at the PANDA interaction point with angles respective to the beam direction0◦ (red solid curve),7◦

(blue dashed curve) and10◦ (black dotted curve). The figure is from the PANDA-Magnet-TDR [40].
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12.7 The drift spaces near the PANDA target

Dangerous neutralization levels can also occur in the region of drift spaces near the PANDA
target, i.e. drift spaces located upstream betweens = 488 m ands = 507.5 m with Tp between
503 ms and 2.33 ms and downstream betweens = 513.0 m ands = 532 m with Tp between
2.17 ms and 6.37 s, see Fig. 10. Clearing times down toTc < 2.4 µs are needed in order
to achieve a neutralization of less than 0.1 %. This can be achieved with continuous clearing
electrodes inside the beam tubes, see Subsects. 10.3 and 10.4.

12.8 The quadrupole magnets near the PANDA target

Now, we discuss separately the situation in the region of thequadrupole magnets near the
PANDA target. In order to produce a sharp double waist at the PANDA target point ever four
quadrupoles are used as a quadrupole triplet. The centres ofthe quadrupoles QT3, QT4, QT4,
QT3 in front of the target are located at 489.879 m, 491.479 m,493.079 m and 494.679 m. The
centres of the quadrupoles QT3B, QT4B, QT4B, QT3B after the target are located at 524.283 m,
525.883 m, 527.483 m and 529.083 m. The iron length of the quadrupoles is 0.58 m, the mag-
netic length is 0.60 m. The drift space between two adjacent quadrupole magnets is 1.0 m. The
total length of a four-quadrupole array amounts to 5.4 m.

The continuous clearing in the region of the quadrupoles canbe realized by extracting the
ions along the principal direction of the magnetic field lines towards one of the pole tips, i.e.
along one of the45◦ diagonals of the quadrupole, see bottom graph in Fig. 13. To this end,
the clearing electrode isnot deposited at the bottom of the beam pipe but at the side of one of
the45◦ diagonals of the quadrupole. In the bottom graph of Fig. 13 the azimuthal position of
the clearing electrode is−45◦. The extraction along one of the45◦ diagonals is necessary in
order to keep the magnetic deflection of the ions on their way towards the clearing electrode
negligibly small.

In principle, one can also use the−45◦ clearing electrode in the drift spaces between the
quadrupoles. Thus, it is possible to use a single 5.4 m long clearing electrode in the region of a
four-quadrupole array near the PANDA target.

12.9 The upstream and downstream dipole magnets of the PANDAchicane

The insertion of an internal dipole spectrometer in a straight section requires two additional
dipole magnets in order to compensate the beam deflection. These correction dipole magnets
are located near the PANDA target, i.e. DIPOL1 upstream ats = 496.181 m and DIPOL3
downstream ats = 522.781 m. The magnetic length of those dipole magnets amounts to
0.6 m, i.e. DIPOL1 extends froms = 495.881 m to 496.481 m and DIPOL3 from522.481 m
to 523.081 m. These dipole magnets are located in a region where the residual gas pressure
is still rather high (3.8 · 10−8 mbar and3.0 · 10−8 mbar respectively) and the corresponding
production timeTp of H+

2 ions is rather low (0.177 s and 0.227 s, respectively). In order to
avoid dangerous vertical ion oscillations, the ions are extracted along the magnetic field lines in
the vertical direction using continuous clearing electrodes as in the region of drift spaces, see
top graph in Fig. 13.
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13. Mitigation of Trapped Ion Effects in the Dipole Magnets of the Arcs

13.1 Ion clearing in dipole magnets by mean cross-field driftvelocities

The cross-field drift velocity~vD = ~E × ~B/B2 can be used in order to guide the trapped ions to
the entrance and exit of the dipole magnets (see Subsects. 8.2 and 8.3). There, the ions can be
extracted using single isolated clearing electrodes. The cross-field drift velocity yields a longi-
tudinal velocity componentvD = Ex/By. Here,Ex is the transverse electric field component
of the beam inx-direction andBy the transverse magnetic field component iny-direction. The
cross-field drift velocities of ions created on the left sideof the beam axis are negative, i.e. they
are directed in the backward direction. Ions created on the right side of the beam axis drift in
the forward direction. On either side the mean cross-field drift velocity |v̄D| is rather small.
This is due to the fact that the electric field componentEx and therewith the cross-field drift
velocity drops down to zero at the beam center. Therefore, ions created near the beam center
are practically not cleared and the resulting mean cross-field drift velocity |v̄D| is rather low on
either side.

As a consequence, the resulting beam neutralization is rather high assuming a residual
gas pressure of1.0 · 10−9 mbar. In Tables 14 and 15, we list the mean cross-field drift ve-
locity |v̄D|, the mean clearing timeTc for a mean drift ofL/2 = 2.25 m (we assume that the
clearing electrodes are located in the 0.3 m long drift spaces at the entrance and exit of the
dipole magnets), the production timeTp for H+

2 and CO+ ions and the resulting neutralization
η = (L1/C)(Tc/Tp) = 0.9(Tc/Tp) assumingNp̄ = 1.0 · 1011. In Table 14, we list the results
for H+

2 ions assuming a partial pressure of0.8 · 10−9 mbar for H2 molecules and in Table 15 for
CO+ ions assuming a partial pressure of0.2 · 10−9 mbar for CO molecules. We mention that a
CO molecule content of about 10-20 % is always present in the UHV of storage rings.

The situation is yet worse for1.0 · 1010 antiprotons. The mean cross-field drift velocities
for 1.0 · 1010 antiprotons are by a factor of103/5=3.98 lesser7 and the mean clearing timesTc

and the resulting neutralizationη are by a factor of103/5=3.98 larger than the values listed in
Tables 14 and 15, see Tables 18 and 19.

Such neutralization levels are dangerous in view of possible coherent instabilities. In this
context, it should be noted that 44 dipole magnets are installed in the HESR ring. The total
length of 44 dipole magnets amounts to 184.8 m which is about one third of the circumference.
A possible solution of the problem is to improve the residualvacuum substantially.

In order to counteract the trapped ion effects, it is plannedto improve the residual vacuum
by about a factor 100 [23]. This can be achieved by sputteringthin-film NEG8 coatings onto
the surface of the vacuum chamber and by using heating jackets along the beam tubes. The
aim is to achieve residual gas pressures of about1.0 · 10−11 mbar. In Tables 16 and 17 we
list the resulting neutralizationsη for H+

2 and CO+ ions assumingNp̄ = 1.0 · 1011 and partial
pressures of0.8 · 10−11 mbar and0.2 · 10−11 mbar for H2 and CO molecules, respectively. The
corresponding results forNp̄ = 1.0 · 1010 are listed in Tables 20 and 21.

Unfortunately, the cross-field drift velocityvD = Ex/By vanishes at the beam center, see
next Subsection 13.2. Ions created near the beam center are not cleared. In order to avoid the
build-up of a trapped ion peak in the beam center we suggest toshift the beam periodically back
and forth, see Subsects. 13.3 - 13.6.

7λ ∝ Np̄, σ ∝ N
2/5

p̄ , |v̄D| ∝ N
3/5

p̄ , see Subsect. 8.3.
8Non-Evaporating Getter Material
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Table 14: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for H+2 ions assuming a partialH2 pressure of0.8 · 10
−9 mbar andNp̄ = 1.0 · 10

11.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 9.22 4.29 · 10−3

3.825 32.1 0.0701 9.29 6.79 · 10−3

8.889 21.1 0.107 8.69 1.11 · 10−2

15.0 16.2 0.139 7.98 1.57 · 10−2

Table 15: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for CO+ ions assuming a partialCO pressure of0.2 · 10
−9 mbar andNp̄ = 1.0 · 10

11.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 8.50 4.64 · 10−3

3.825 32.1 0.0701 8.33 7.57 · 10−3

8.889 21.1 0.107 7.45 1.29 · 10−2

15.0 16.2 0.139 6.92 1.81 · 10−2

Table 16: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for H+2 ions assuming a partialH2 pressure of0.8 · 10
−11 mbar andNp̄ = 1.0 · 10

11.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 922 4.29 · 10−5

3.825 32.1 0.0701 929 6.79 · 10−5

8.889 21.1 0.107 869 1.11 · 10−4

15.0 16.2 0.139 798 1.57 · 10−4

Table 17: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for CO+ ions assuming a partialCO pressure of0.2 · 10
−11 mbar andNp̄ = 1.0 · 10

11.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 850 4.64 · 10−5

3.825 32.1 0.0701 833 7.57 · 10−5

8.889 21.1 0.107 745 1.29 · 10−4

15.0 16.2 0.139 692 1.81 · 10−4
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Table 18: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for H+2 ions assuming a partialH2 pressure of0.8 · 10
−9 mbar andNp̄ = 1.0 · 10

10.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 12.9 0.175 9.22 1.71 · 10−2

3.825 8.07 0.279 9.29 2.70 · 10−2

8.889 5.30 0.426 8.69 4.42 · 10−2

15.0 4.07 0.553 7.98 6.25 · 10−2

Table 19: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for CO+ ions assuming a partialCO pressure of0.2 · 10
−9 mbar andNp̄ = 1.0 · 10

10.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 12.9 0.175 8.50 1.85 · 10−2

3.825 8.07 0.279 8.33 3.01 · 10−2

8.889 5.30 0.426 7.45 5.13 · 10−2

15.0 4.07 0.553 6.92 7.20 · 10−2

Table 20: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for H+2 ions assuming a partialH2 pressure of0.8 · 10
−11 mbar andNp̄ = 1.0 · 10

10.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 12.9 0.175 922 1.71 · 10−4

3.825 8.07 0.279 929 2.70 · 10−4

8.889 5.30 0.426 869 4.42 · 10−4

15.0 4.07 0.553 798 6.25 · 10−4

Table 21: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη in

dipole magnets for CO+ ions assuming a partialCO pressure of0.2 · 10
−11 mbar andNp̄ = 1.0 · 10

10.

p (GeV/c) |v̄D| (m/s) Tc (s) Tp (s) η

1.5 12.9 0.175 850 1.85 · 10−4

3.825 8.07 0.279 833 3.01 · 10−4

8.889 5.30 0.426 745 5.13 · 10−4

15.0 4.07 0.553 692 7.20 · 10−4
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13.2 Vanishing of cross-field drift velocity in the beam center

The transverse electric field componentEx is zero at the beam centerx = 0. Therefore, the
cross-field drift velocityvD = Ex/By vanishes also at the beam center. This effect is shown for
a bi-Gaussian beam distribution withσx = σy = 1.5 mm in Fig. 23.

Fig. 23: Left: Electric field componentEx (solid line) of a Gaussian antiproton beam (dashhed line) with σx =

σy = 1.5 mm andNp̄ = 1.0 · 1011. Right: Resulting cross-field drift velocityvD = Ex/By with By = 1.7 T at

maximum beam momentum of 15 GeV/c. Positivex values correspond to the left side of the beam.

Fig. 24: Cross-field drift velocityvD = Ex/By (solid line) yielding a delta-function peak of trapped ions(dashhed

line) in the beam center of a Gaussian antiproton beam withσx = σy = 1.5 mm andNp̄ = 1.0 · 1011. Positivex

values correspond to the left side of the beam.
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13.3 Suppression of the ion peak in the center of dipole magnets

The absolute value of the cross-field drift velocity is very small near the beam center. It is
exactly zero at the beam center. Ions created near the beam center are practically not cleared by
the mechanism of the cross-field drift velocity. The continuous production of ions yields a high
ion concentration near the beam center. The resulting ion distribution as a function ofx looks
like a delta function, see Fig. 24. Such a massive and narrow ion distribution inside the dipole
magnets should be avoided since it causes highly nonlinear electric fields [27].

Fig. 25: Left: Electric field componentsEx (solid lines) of Gaussian antiproton beams (dashhed lines)with σx =

σy = 1.5 mm andNp̄ = 1.0 · 1011 shifted back and forth by∆x = ±1 mm. Right: Resulting cross-field

drift velocitiesvD = Ex/By with By = 1.7 T at maximum beam momentum of 15 GeV/c. Positivex values

correspond to the left side of the beam.

Fig. 26: Cross-field drift velocitiesvD = Ex/By (solid lines) of Gaussian antiproton beams withσx = σy =

1.5 mm andNp̄ = 1.0 · 1011 shifted back and forth by by∆x = ±1 mm. The delta peak of trapped ions at

x = −1.0 mm is cleared if the beam is shifted tox = +1.0 mm. Vice versa, the delta peak atx = +1.0 mm is

cleared if the beam is shifted tox = −1.0 mm.
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Therefore, we suggest to move the beam center horizontally back and forth in order to
avoid the accumulation of trapped ions nearx = 0. This can easily be achieved by local closed
orbit distortions in the region of the first and second arc (North arc and South arc). The closed
orbit distortion can be evaluated using the following equation,

x(s) = Θx(s1)
√

βx(s1)βx(s) sin [ψx(s) − ψx(s1)]. (89)

Here,Θx(s1) is the angle kick (unit: rad) at the position of the kickers1 in the ring,βx(s1)
andβx(s) the corresponding horizontal betatron function ats1 ands, respectively, and[ψx(s)−
ψx(s1)] the horizontal betatron-phase advance betweens1 ands.

We suggest to produce a small angle kickΘx(s1) at the entrance of the first arc using a
steerer magnet located at positions1 = 0.990 m. The angle kick yields a sine-like distortion
of the central orbit. The resulting closed orbit distortionis canceled at the exit of the first arc
by producing a small angle kickΘx(s2) with a second steerer at positions2 = 167.656 m. The
horizontal betatron phase advance betweens1 ands2 is exactly6 π, see Fig. 27. The closed
orbit distortion in the first arc is achieved if

Θx(s2) = Θx(s1)
√

βx(s1)/βx(s2). (90)

Similarly, we suggest to produce a small angle kickΘx(s3) at the entrance of the second
arc using a steerer magnet located at positions3 = 275.9983 m. The angle kick yields a sine-like
distortion of the central orbit. The resulting closed orbitdistortion is canceled at the exit of the
second arc by producing a small angle kickΘx(s4) using a steerer at positions4 = 442.7891 m.
The horizontal betatron phase advance betweens3 ands4 is also exactly6 π, see Fig. 28. The
closed orbit distortion in the second arc is achieved if

Θx(s4) = Θx(s3)
√

βx(s3)/βx(s4). (91)

13.4 Timing of beam shifting in the arcs

A possible timing of beam shifting in the arcs is a periodic square wave-oscillation. That means
the angle kicksΘ1 - Θ4 are positive in the first half period and negative in the second half period.
The half periodTs/2 for a single position should be larger than the clearing timeTc which can
be achieved by the mean cross-field drift velocityv̄D, see Tables 16 and 17. In addition it should
be shorter than the production timeTp. A reasonable timing is given ifTs/2 = 1.0 s yielding a
frequencyfs = 0.5 Hz.

13.5 Estimate of beam neutralization with beam shifting in the arcs

The main effect of beam shifting in the region of the dipole magnets is to remove the delta-like
peak of trapped ions in the beam center. But there is an additional advantage. The mean clearing
rateRc = 1/Tc increases. This can be seen by inspecting Fig. 26. The standard mean clearing
rateRc is not affected by shifting the beam back and forth. But in addition, the delta peaks of
trapped ions atx = ±1.0 mm are cleared by rather high cross-field drift velocities ifthe beam
is shifted tox = ∓1.0 mm. This additional clearing yields a substantial enhancement of the
clearing rateRc. The enhancement depends on the shift∆x and the beam widthσx.
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Fig. 27: Closed orbit distortion in the first arc with angle kick Θx(s1) = 0.2500 mrad ats1 = 0.9900 m and

compensation kickΘx(s2) = 0.23843 mrad ats2 = 167.6497 m. The location of the 22 dipole magnets (4.2 m

long) is indicated by the vertical bars.
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Fig. 28: Closed orbit distortion in the second arc with anglekick Θx(s3) = 0.1958 mrad ats3 = 275.9983 m and

compensation kickΘx(s4) = 0.2500 mrad ats4 = 442.7891 m. The location of the 22 dipole magnets (4.2 m

long) is indicated by the vertical bars.

66



13.6 Shift of zero crossings of the closed orbit distortion inside of dipole magnets

A closer look to the closed orbit distortions in Figs. 27 and 28 reveals that four zero crossings of
the closed orbit distortion are located in the region of dipole magnets. In the first arc (North arc)
the zero crossings are located at the entrance of dipole 4, inside of the dipoles 9 and 13 and at
the exit of dipole 17. In the second arc (South arc) the zero crossings are located at the entrance
of dipole 6, inside of the dipoles 10 and 14 and at the exits of dipoles 19 and 22. In order to
avoid the build-up of ion peaks at those zero crossings we suggest to provide two additional
closed orbit distortions where the zero crossings are shifted longitudinally.

This can be achieved in the first arc by locating the kicker 1 ats1 = −0.7849 m and
kicker 2 ats2 = 165.3395 m, and in the second arc by locating the kicker 3 ats3 = 278.4395 m
and kicker 4 ats4 = 444.5640 m, see Figs. 29 and 30. Comparing Figs. 27 and 28 with 29
and 30 one sees that the zero crossings inside of dipole magnets are shifted. Now, in the first
arc (North arc) the zero crossings are located inside of the dipoles 3, 8, 12, 16 and at the exit of
dipole 21. In the second arc (South arc) the zero crossings are located at the entrance of dipole
2 and inside of the dipoles 7, 11, 15 and 20.
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Fig. 29: Shifted closed orbit distortion in the first arc withangle kickΘx(s1) = 0.2500 mrad ats1 = −0.7849 m

and compensation kickΘx(s2) = 0.2081 mrad ats2 = 165.3396 m. The location of the 22 dipole magnets (4.2 m

long) is indicated by the vertical bars.
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Fig. 30: Shifted closed orbit distortion in the second arc with angle kickΘx(s3) = 0.2500 mrad ats3 =

278.4395 m and compensation kickΘx(s4) = 0.2986 mrad ats4 = 444.5640 m. The location of the 22 dipole

magnets (4.2 m long) is indicated by the vertical bars.
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13.7 Ion clearing in dipole magnets by continuous clearing electrodes

The optimum solution of the trapped ion problem in dipole magnets is the installation of contin-
uous clearing electrodes. In dipole magnets, only verticalelectric fields with field components
Ey along the magnetic field lines can be used in order to accelerate the trapped ions towards
clearing electrodes.

As discussed in Subsect. 10.3 such clearing electrodes can be produced by plasma spray-
ing a 0.1 mm thick and 30 mm wideAl2O3 layer at the bottom of the beam pipes. On top of the
isolating layer a 25 mm wide highly resistive thick film coating can be applied. The clearing
voltage of about -1.0 kV can be supplied by feedthrouhgs at one or both ends of the electrode.
Such clearing electrodes have been developed at CERN [28, 29].

The electric field componentEy in the beam center is about -640 V/m. The estimated
clearing timesTc amount to about7.66 · 10−7 s forH+

2 ions and2.87 · 10−6 s forCO+ ions, see
Subsect. 10.6. The resulting clearing rates are so high thateven UHV pressures of more than
1.0 · 10−9 mbar can be tolerated, see Tables 22 and 23.

In principle, we recommend the installation of continuous clearing electrodes inside the
4.2 m long dipole magnets, even if the are not needed at the beginning. They can always be used
if problems with the ultra-high vacuum occur. In the following Subsection we discuss another
interesting method which can be used in order to achieve continuous ion clearing inside of the
dipole magnets.

Table 22: Continuous clearing electrodes in dipole magnets: Mean clearing timeTc, production timeTp and

neutralizationη for H+

2 ions assuming a partial H2 pressure of0.8 · 10−9 mbar andNp̄ = 1.0 · 1011.

p (GeV/c) Tc (s) Tp (s) η

1.5 7.66 · 10−7 9.22 7.48 · 10−8

3.825 7.66 · 10−7 9.29 7.42 · 10−8

8.889 7.66 · 10−7 8.69 7.93 · 10−8

15.0 7.66 · 10−7 7.98 8.64 · 10−8

Table 23: Continuous clearing electrodes in dipole magnets: Mean clearing timeTc, production timeTp and

neutralizationη for CO+ ions assuming a partial CO pressure of0.2 · 10−9 mbar andNp̄ = 1.0 · 1011.

p (GeV/c) Tc (s) Tp (s) η

1.5 1.0 · 10−6 8.50 3.04 · 10−7

3.825 1.0 · 10−6 8.33 3.10 · 10−7

8.889 1.0 · 10−6 7.45 3.47 · 10−7

15.0 1.0 · 10−6 6.92 3.73 · 10−7
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13.8 Continuous ion clearing in dipole magnets using two half-cylinder electrodes

Another possibility to achieve continuous ion clearing in dipole magnets has been discussed
during a recent meeting at FZ Jülich (03.07.2012). The ideais to cut the beam pipe along the
horizontal midplane. The two halfs are joined together using a suitable dielectric as for instance
a highly resistive glass insulator, see Fig. 31. Applying opposite voltages+U0 and−U0 yields
an electric field componentEy which can be used in order to extract the ions. This techniquehas
the additional advantage that the UHV vacuum can still be improved substantially by sputtering
thin-film NEG9 coatings onto the surface of the half cylinders and by using heating jackets
along the beam tubes.

Fig. 31: Scheme of continuous ion clearing in a dipole magnet: The transverse electric field~E is generated with

two metallic half cylinders separated by high-resistive-glass insulators. The resulting electric field componentEy

is directed along the magnetic field componentBy of the dipole magnet.

9Non-Evaporating Getter Material
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14. Damping of Coherent Instabilities

Here, we discuss the possibility to damp the coherent instabilities which are caused by trapped
ions. Transverse coherent instabilities have been observed at several antiproton machines.
There, collective oscillations of the beam center (dipole mode) or the beam shape (quadrupole
mode) grow exponentially due to the interaction of the beam with the trapped ions. The most
dangerous mode is the dipole mode, i.e. the coherent oscillation of the beam center. The coher-
ent instabilities can be estimated using the two-beam instability theory developed by Koshkarev
and Zenkevich [10], Laslett, Sessler and Möhl [11] Keil andZotter [12] and Alves-Pires et
al. [14]. Additional information can be found in the thesis of Zhou [17] and in the references
[13, 21].

Trapped ions oscillate in the electric field of the antiproton beam. They cause forces back
on the beam. Vice versa, the beam disturbs the motion of the ions which interact with trailing
beam particles. Thus, the beam is forced to interact coherently with itself. This phenomenon
is very similar to the interaction between beam and wake fields which are described by the
machine impedanceZ(ω). Here,ω is the angular frequency of the resulting coherent oscillation.
The effect of trapped ions can be described by some extra impedanceZi(ω). Since the real part
of Z(ω) + Zi(ω) is positive the fast-wave mode with the sideband frequencyω = (n + Q)ω0

is always stable [17]. Here,ω0 is the revolution frequency,Q the betatron tune andn an integer
with n > −Q. Without Landau damping, i.e. without any frequency spreads the slow-wave
mode withω = (n − Q)ω0 is always unstable. Here,n is an integer withn > Q. Thus,
dangerous coherent oscillations can occur if the trapped ions oscillate at frequencies near the
sideband frequencies(n−Q)ω0.

14.1 Ion oscillations

Ions trapped in the potential well of the antiproton beam perform oscillations. Using the linear
approximation of the electric field the equation of motion reads for an ion of massmi and charge
Zie

d2xi

dt2
=

Zie

mi

Ex = − e2Np̄

2πǫ0L1

Zi

mi

1 − η

σx(σx + σy)
xi = −q2

xω
2
0xi

d2yi

dt2
=

Zie

mi

Ey = − e2Np̄(1 − η)

2πǫ0L1mσy(σx + σy)
yi = −q2

yω
2
0yi. (92)

Here,mi ≈ Aimp is the mass of the ion andZi is the charge number of the ionization where
Zi = 1 for singly charged ions,Zi = 2 for doubly charged ions and so on. The other quantities
are defined in Sect. 3.. The transverse and longitudinal velocities of the ion are so small that the
weak Lorentz force due to the magnetic field of the beam can be neglected. The ions perform
harmonic oscillations. The frequenciesfx andfy of the ion oscillations (’bounce frequency’)
read

fx =
1

2π

√

√

√

√

Zie2Np̄(1 − η)

2πǫ0L1miσx(σx + σy)
= qxf0

fy =
1

2π

√

√

√

√

Zie2Np̄(1 − η)

2πǫ0L1miσy(σx + σy)
= qyf0. (93)

whereη is the neutralization factor,ω0 the angular revolution frequency andf0 the revolution
frequency of the antiprotons (f0 = 520.2 kHz at 15 GeV/c) andqx, qy the ’tune numbers’ of the
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ion oscillations. These equations can also be written in thefollowing form,

q2
x =

1

ω2
0

Zie
2Np̄(1 − η)

2πǫ0L1miσx(σx + σy)
=

2R2

L1

Np̄rp

β2

Zi

Ai

1 − η

σx(σx + σy)
,

q2
y =

1

ω2
0

Zie
2Np̄(1 − η)

2πǫ0L1miσy(σx + σy)
=

2R2

L1

Np̄rp

β2

Zi

Ai

1 − η

σy(σx + σy)
. (94)

Here,rp = e2/(4πǫ0mpc
2) = 1.535 · 10−18 m is the classical proton radius.

In the region of solenoids the ion motion is modified by the presence of the longitudinal
magnetic fieldB. The resulting motion can be described by a superposition ofa fast modified
cyclotron motion around the field lines (large angular frequencyω+ and small radiusr+) and
a slow magnetron motion around the beam center (angular frequencyω− and radiusr−), see
Sect. 9.2. Direct transverse oscillations inx- andy-direction are not possible. Therefore, we set
qx = 0 andqy = 0 in the region of solenoids.

In the region of dipole magnets the transverse ion motion inx-direction is strongly af-
fected by the magnetic fieldBy. The ions perform a fast cyclotron motion around the vertical
field lines. This motion is modified by the transverse electric field componentEx of the an-
tiproton beam. The resulting~E × ~B/B2 cross-field drift velocity is directed in the longitudinal
direction. A transverse oscillation inx-direction is not possible. Therefore, we setqx = 0 in the
region of dipole magnets.

The resulting ’tune numbers’qx andqy depend on the positions in the HESR ring since
the rms envelopesσx andσy and the neutralizationη are functions ofs. The danger of coherent
oscillations is especially high if the rms values ofqx and/orqy are close to a resonance line.
This occurs for instance forqy(H+) near 1.5 GeV/c,qx(H+) near 3.825 GeV/c, forqy(H

+
2 ) near

3.825 GeV/c and forqx(H
+
2 ) near 8.889 GeV/c. The ’tune numbers’ of CO+ ions are always

below the critical resonance lines(8 −Qx) and(8 −Qy).

We note that the ’tune numbers’qx andqy depend not only on the ion mass, ion charge and
beam momentum but also on the number of stored antiprotons and the neutralizationη which
determine the depth of the potential well and the electric field strengthsEx andEy. The ’tune

numbers’qx,y are proportional to
√

Np̄/[σx,y(σx + σy)]. The beam widthsσx,y are proportional

to N2/5

p̄ (see Sect. 2.). Therefore, we getqx,y ∝
√

N
1/5

p̄ , and the ’tune numbers’ for1.0 · 1010

antiprotons are by a factor
√

101/5 = 1.26 lower than those for1.0 · 1011 antiprotons.

We mention that the bounce frequencies of the trapped ions decrease with increasing
oscillation amplitude. This effect is due to the nonlinearity of the electric field of a Gaussian
beam distribution. The non-linear detuning of the ion bounce frequency plays an important role
when resonant transverse shaking is applied in order to remove the ions out of the beam (see
Sect. 15.).

14.2 Formalism of coherent instabilities

Here, we sketch the formalism of coherent oscillations of the p̄-beam and trapped ions, see Refs.
[13, 14, 21]. Because beam instabilities develop on a time scale much larger than the revolu-
tion period, the theoretical description of coupled oscillations can be simplified by introducing
ring-averaged forces. Usually, the ring-averaged forces are calculated assuming a constant neu-
tralizationη in the ring and using a smooth approximation for the envelopes,σx =

√

ǫx〈βx〉 and

σy =
√

ǫy〈βy〉 with 〈βx〉 = R/Qx and〈βy〉 = R/Qy. However, in the HESR ring the neutral-
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izationη depends strongly on the positions due to the large pressure bump in the vicinity of the
PANDA target. Also the envelopes depend strongly on the position s due to the low beta values
at the PANDA target and the large beta values in the region of the electron-cooler. Therefore,
the HESR ring is segmented in small sections and the ring-averaged forces are numerically
evaluated.

In the following we write the coupled equations for coherentoscillations in they-direction
and we omit the indexy for the characteristic forcesFβ , Fsc, Fc, Fi,sc andFi,c and the related
quantitiesQ2

0,Q
2
sc,Q

2
c , q

2
sc andq2

c . Similar equations can be written for the coupled oscillations
in x-direction.

The model for coupled oscillations yields the following coupled equations for the motion
of an individual antiproton (y) and ion (yi),

γmp̄
d2y

dt2
= 〈Fβ〉 + 〈Fsc〉 + 〈Fc〉, (95)

mi
d2yi

dt2
= 〈Fi,sc〉 + 〈Fi,c〉. (96)

Here,〈Fβ〉 represents the external focusing forces of the betatron oscillation, 〈Fsc〉 thep̄ space-
charge forces acting on thēp beam particles,〈Fc〉 the trapped ion space-charge forces acting on
thep̄ beam particles,〈Fi,sc〉 the trapped ion space-charge forces acting on the ions and〈Fi,c〉 the
p̄ space-charge forces acting on the ions. We note that space charge image forces are neglected.
These equations are rewritten by introducing the tune number Q0 of the unperturbed betatron
oscillation and the ’tune numbers’Qsc,Qc, qsc andqc. The ring averaged forces are represented
by the corresponding ’tune numbers’ times the angular frequencyω0 of the beam using the
following definitions

〈Fβ〉
γmp̄

= Q2
0ω

2
0 y,

〈Fsc〉
γmp̄

= Q2
scω

2
0 (y − ȳ),

〈Fc〉
γmp̄

= Q2
cω

2
0 (y − ȳi), (97)

〈Fi,sc〉
mi

= q2
scω

2
0 (yi − ȳi),

〈Fi,c〉
mi

= q2
cω

2
0 (yi − ȳ).

Thus, the model for linearized coupled oscillations as described in [14] yields the following
coupled equations for the dipole mode.

1

ω2
0

d2y

dt2
+ Q2

0 y −Q2
sc(y − ȳ) +Q2

c(y − ȳi) = 0, (98)

1

ω2
0

d2yi

dt2
− q2

sc(yi − ȳi) + q2
c (yi − ȳ) = 0. (99)

The external focusing forces are represented by the squaredtuneQ2
0 of the unperturbed be-

tatron oscillation. The other forces are represented by thecorresponding mean squared ’tune
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numbers’,

Q2
sc = 2

R2

L1

Np̄rp

β2γ3

〈

1

σy(s)(σx(s) + σy(s))

〉

, p̄ space charge acting on p̄, (100)

Q2
c = 2

R2

L1

Np̄rp

β2γ

〈

η(s)

σy(s)(σx(s) + σy(s))

〉

, ion space charge acting on p̄, (101)

q2
sc = 2

R2

L1

Np̄rpZi

β2Ai

〈

η(s)

σy(s)(σx(s) + σy(s))

〉

, ion space charge acting on ion, (102)

q2
c = 2

R2

L1

Np̄rpZi

β2Ai

〈

1

σy(s)(σx(s) + σy(s))

〉

, p̄ space charge acting on ion. (103)

Here,Zi is the charge number of the ion,Ai the mass number andrp the classical proton
radius. We assume that the neutralizationη(s) is dominated by singly charged H+

2 ions. The
coherent transverse motion of the ions is fixed in space and oscillates only in time. The coherent
transverse motion of thēp beam particles is oscillating in space and in time like a travelling
wave. We are interested in resonant harmonics of coupled oscillations of the beam centers̄y
andȳi. To this end, we make the following ansatz,

ȳ = a exp[i (k s− ω t)] = a exp[i (
n

R
s− ω t)] (104)

ȳi = ai exp [−iωt], (105)

Here, the resonance condition imposes that the wave numberk and the wave lengthλ of the
travelling wave satisfy the resonance condition

k =
n

R
, λ =

C

n
. (106)

wheren is an integer,C the circumference andR = C/(2π) the effective ’radius’ of the ma-
chine. The substitution of̄y andȳi from (104) and (105) into (98) and (99) gives two equations,

1

ω2
0

d2ȳ

dt2
+ (Q2

0 +Q2
c) ȳ = Q2

c ȳi, (107)

1

ω2
0

d2ȳi

dt2
+ q2

c ȳi = q2
c ȳ. (108)

Since thep̄ oscillations are oscillating in space (s) and time (t) (travelling wave ansatz, see
Eq. (104)) the total differentiald/dt in thep̄ equation of motion (98) must be written

d

dt
=

(

∂

∂t
+

∂

∂s
ṡ

)

. (109)

Inserting the travelling wave ansatz (104) yields

dȳ

dt
=

(

−iω + i
n

R
ṡ
)

ȳ = i(−ω + nω0)ȳ,

d2ȳ

dt2
= −(nω0 − ω)2ȳ. (110)

Similarly, we get
d2ȳi

dt2
= −ω2ȳi. (111)
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Using these relations in (107) and (108) yields
[

−(nω0 − ω)2

ω2
0

+ (Q2
0 +Q2

c)

]

ȳ = Q2
c ȳi, (112)

[

−ω
2

ω2
0

+ q2
c

]

ȳi = q2
c ȳ. (113)

Eliminatingȳ andȳi yields an equation for the angular frequencyω of the coherent oscillation.
Introducing the reduced frequencyw = ω/ω0 the resulting equation may be written

(q2
c − w2)[(Q2

0 +Q2
c) − (n− w)2] − q2

cQ
2
c = 0. (114)

In this equation,n, qc, Qc andQ0 are the parameters andw is the unknown. Stable solutions
occur ifw becomes real, i.e. ifω becomes real. Ifw is complex the solutions come in pairs,
one with a negative imaginary part corresponding to a damping of the oscillations and one with
a positive imaginary part corresponding to a growing (anti-damping) of the oscillations which
means instability!

SinceQc ≪ Q0, we can ignore it in the sum(Q2
0 +Q2

c) or slightly shift the value ofQ0 by
introducingQ2 = (Q2

0+Q2
c). Unstable values (complexw) can occur ifqc is close to a sideband

frequency(n − Q), i.e. qc ∼= (n − Q) andw ∼= (n − Q). Replacingw by w = (n − Q) + δ
yields an equation quadratic inδ,

δ2 + [(n−Q) − qc]δ +
q2
cQ

2
c

4qcQ
∼= 0. (115)

The solution reads

δ = −(n−Q) − qc
2

±

√

√

√

√

(

(n−Q) − qc
2

)2

− q2
cQ

2
c

4qcQ
. (116)

Thus, the equation yields complex solutions if

|(n−Q) − qc| <
qcQc√
qcQ

. (117)

This equation defines a bandδQ for qc in the vicinity of (n−Q),

δQ =
qcQc√
qcQ

, (118)

where instability can occur, i.e. where the solutionω = Re(ω) + iIm(ω) has a positive imagi-
nary part.

The fastest growth rate occurs in the center of the band where|(n−Q)− qc| = 0. There,
we getRe(ω) = (n − Q)ω0 andIm(ω) = (ω0/2)(qcQc)/

√
qcQ. Thus. the fastest growth rate

reads
1

τ
=
ω0

2

qcQc√
qcQ

. (119)
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14.3 Landau damping of coherent instabilities

The coherent instability can be suppressed by Landau damping. We denote thēp tune spread
by ∆p̄ and the ion oscillation tune spread∆i. Landau damping works if the following three
conditions are fulfilled simultaneously,

∆p̄ >

∣

∣

∣

∣

∣

Q2
sc

Q

∣

∣

∣

∣

∣

, (120)

∆i >

∣

∣

∣

∣

∣

q2
sc

q

∣

∣

∣

∣

∣

, (121)

∆p̄∆i >

∣

∣

∣

∣

∣

q2
cQ

2
c

qQ

∣

∣

∣

∣

∣

. (122)

Here, the space charge effects are taken into account in the definition of the betatron tuneQ
and the ion bounce frequencyq, Q2 = Q2

0 + Q2
c − Q2

sc andq2 = q2
c − q2

sc. We emphasize that
the suppression of the two-beam instability requires that the product of the two tune spreads is
larger than the right side of Eq. (122).

Including also the possibility of quadrupole modes, it is found that the risk of transverse
instabilities exists in a band around the resonance line(n−Q) given by

δQ = p
qcQc√
qcQ

, (123)

wherep = 1 for a dipole mode,p = 1/2 for a symmetric (ζ = ξ) quadrupole mode and
p = 1/4 for an antisymmetric (ζ = −ξ) quadrupole mode. The width of this band reflects the
risk of instability. It is proportional toQc, i.e. to the square root of the averaged neutralization
√

〈η/[σy(σx + σy)]〉 (see Eq. (101)). It is narrower for quadrupole modes than fordipole modes.
Including the possibility of quadrupole modes, the necessary condition for Landau damping
reads

∆p̄ > p

∣

∣

∣

∣

∣

Q2
sc

Q

∣

∣

∣

∣

∣

, (124)

∆i > p

∣

∣

∣

∣

∣

q2
sc

q

∣

∣

∣

∣

∣

, (125)

∆p̄∆i > p2

∣

∣

∣

∣

∣

q2
cQ

2
c

qQ

∣

∣

∣

∣

∣

. (126)

14.4 Numerical results

The HESR tune isQ ∼= 7.6 (Qx = 7.5995 andQy = 7.6216). Forn = 8 we get the smallest
value of(n − Qx) as 0.4005 which defines the ’tune number’qc,x where instability can occur.
Forn = 9, n = 10, etc. we get(n − Qx) as 1.4005, 2.4005, etc.. Similarly, forn = 8 we get
the smallest value of(n−Qy) as 0.3784 which defines the ’tune number’qc,y where instability
can occur. Forn = 9, n = 10, etc. we get(n−Qy) as 1.3784, 2.3784, etc..

The occurrence of coherent oscillations depends critically on the neutralization of the
beam by trapped ions. The coupling between beam and ions is determined byQ2

c which depends
on the neutralizationη (see Eq. (101)). The characteristic quantities i.e. the ring-averaged ’tune
numbers’q =

√

q2
c − q2

sc andQc of ion andp̄ bounce frequencies, the bandwidthδQ and the
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difference∆ = |(8 − Q) − q| − δQ are listed in Tables 24-27 for H+ and H+
2 ions and four

beam momenta. The danger of an unstable coherent oscillation is given in regions whereq is
near a resonance line(8−Q). Then, the difference|(8−Q)− q| can be very small. The risk of
instability is given ifq lies within the resonance band(8−Q)±δQ, i.e. if ∆ = |(8−Q)−q|−δQ
is negative. This occurs in our examples forqx and H+ ions near 3.825 GeV/c and forqx and
H+

2 ions near 8.889 GeV/c. In this context we note that∆y ≈ 0 for H+ ions near 1.5 GeV/c and
H+

2 ions near 3.825 GeV/c, that meansqy is very near to the resonance line(8 −Qy).

We note that the ’tune numbers’qx andqy of the ion oscillations depend on the numberNp̄

of stored antiprotons. For instance, they are by a factor
√

101/5 = 1.26 lower forNp̄ = 1.0·1010,
see Subsect. 14.1. Therefore, the occurence of unstable coherent oscillations depends also on
the number of stored antiprotons.

Finally, we note that the ion bounce frequencies for N+
2 and/or CO+ ions are always below

the critical resonance lines(8 −Qx) and(8 −Qy).

78



Table 24: Ring-averaged ’tune numbers’qx =
√

q2
c,x − q2

sc,x and Qc,x of ion and p̄ bounce frequencies, the

bandwidthδQx and the difference∆x = |(8 − Qx) − qc,x| − δQx for coherent H+ oscillations in x-direction

assumingNp̄ = 1.0 · 1011, a beam-free gap of 10% and the standard optics.

p (GeV/c) qx Qc,x δQx ∆x

1.500 0.282 0.0662 0.0128 0.106
3.825 0.393 0.0618 0.0141 -0.00615
8.889 0.582 0.0614 0.0170 0.165
15.00 0.754 0.0616 0.0194 0.334

Table 25: Ring-averaged ’tune numbers’qy =
√

q2
c,y − q2

sc,y and Qc,y of ion and p̄ bounce frequencies, the

bandwidthδQy and the difference∆y = |(8 − Qy) − qc,y| − δQy for coherent H+ oscillations in y-direction

assumingNp̄ = 1.0 · 1011, a beam-free gap of 10% and the standard optics.

p (GeV/c) qy Qc,y δQy ∆y

1.500 0.401 0.0722 0.0166 0.00597
3.825 0.558 0.0674 0.0182 0.162
8.889 0.829 0.0669 0.0221 0.428
15.00 1.07 0.0671 0.0252 0.669
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Table 26: Ring-averaged ’tune numbers’qx =
√

q2
c,x − q2

sc,x and Qc,x of ion and p̄ bounce frequencies, the

bandwidthδQx and the difference∆x = |(8 − Qx) − qc,x| − δQx for coherent H+
2 oscillations in x-direction

assumingNp̄ = 1.0 · 1011, a beam-free gap of 10% and the standard optics.

p (GeV/c) qx Qc,x δQx ∆x

1.500 0.199 0.0662 0.0107 0.190
3.825 0.278 0.0618 0.0118 0.111
8.889 0.412 0.0614 0.0143 -0.00299
15.00 0.533 0.0616 0.0163 0.116

Table 27: Ring-averaged ’tune numbers’qy =
√

q2
c,y − q2

sc,y and Qc,y of ion and p̄ bounce frequencies, the

bandwidthδQy and the difference∆y = |(8 − Qy) − qc,y| − δQy for coherent H+

2 oscillations in y-direction

assumingNp̄ = 1.0 · 1011, a beam-free gap of 10% and the standard optics.

p (GeV/c) qy Qc,y δQy ∆y

1.500 0.283 0.0722 0.0139 0.0810
3.825 0.395 0.0674 0.0153 0.000933
8.889 0.586 0.0669 0.0186 0.189
15.00 0.759 0.0671 0.0212 0.359
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14.5 Risk of coherent instabilities

The risk of instability depends on the beam neutralizationη. This is due to fact that the coupling
strengthQ2

c and the resulting band widthδQ for unstable oscillations depend on the neutraliza-
tion η. We mention that instabilities at low sideband frequenciesare the most unstable modes
because the frequency spreads are low. Thus, it is difficult to fulfill the conditions for the
Landau damping of those instabilities [18]. Therefore, dipole instabilities driven by H+ ions
and H+

2 ions occur already at very low neutralization levels (η < 0.01). It has been observed
that the neutralization from a single trapped-ion pocket created by a localized vacuum chamber
enlargement, may be sufficient to drive an instability [18, 45].

14.6 Damping of instabilities using feedback systems

Finally, we note that instabilities caused by ions can be effectively damped by transverse feed-
back systems using a highly sensitive resonant pick-up tuned at the frequency of the single
unstable mode [17, 18]. At the cooler synchrotron COSY a broad band feedback system has
been developed in order to damp transverse instabilities ofelectron cooled beams [46, 47]. The
effect of the damping system can be measured by it’s damping time τ . An oscillation with
an initial amplitudeA will be damped by the damper system asA exp(−t/τ). As long as the
damping timeτ is less than the growing time of the instability, the beam canbe stabilized [17].
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15. Beam Shaking

The beam shaking can be used in order to remove trapped ions and to decrease the neutralization
η and the coupling strengthQ2

c for coherent oscillations in regions where the clearing electrodes
cannot remove trapped ions sufficiently. Thep̄ beam is shaken using an RF electric field and the
p̄ beam shakes the ions. This method works if the shaking frequency is close to one of the side-
band frequencies(n−Q)ω0 (’slow wave’ frequency) or(n+Q)ω0 (’fast wave’ frequency) and
close to the ion bounce frequencyqcω0. This condition corresponds to the resonance condition
for coherent oscillations of beam and trapped ions as discussed in Sect. 14.2.

15.1 Formalism

We start with the coupled equations of motion (98) and (99) ofbeam and trapped ions in
Sect. 14.2. We extend this equation by adding the force term of the shaking kickerF exp [−iωt],

1

ω2
0

d2y

dt2
+ Q2

0 y −Q2
sc(y − ȳ) +Q2

c(y − ȳi) = F exp [−iωt]. (127)

1

ω2
0

d2yi

dt2
− q2

sc(yi − ȳi) + q2
c (yi − ȳ) = 0. (128)

The force termF on the r.h.s of (127) represents the shaking kicker assumed to be aδ function
in azimuth. The integrated electric fieldE0∆s exp [−iωt] enters as (see Refs. [14, 19])

F exp [−iωt] =
eE0∆s exp [−iωt]

mp̄γω2
0

δ(s) =
∆s

C

eE0

mp̄γω2
0

n=+∞
∑

n=−∞

exp [in
s

R
− iωt]. (129)

Only the resonant harmonic withω ≈ (n±Q)ω0 ≈ qcω0 is retained yielding

F =
∆s

C

eE0

mp̄γω2
0

exp [in
s

R
]. (130)

We are interested in the resonant excitation of coupled oscillations of the beam centers̄y and
ȳi. As in Sect. 14.2, we make the following ansatz for the coupled motion of the beam and ion
centers,

ȳ = a exp[i (k s− ω t)] = a exp[i (n
s

R
− ω t)] (131)

ȳi = ai exp [−iωt], (132)

The substitution of̄y andȳi from (131) and (132) into (127) and (128) yields two equations,

[−(nω0 − ω)2 + (Q2
0 +Q2

c)ω
2
0] ȳ −Q2

cω
2
0 ȳi = ω2

0F exp [−iωt], (133)

(−ω2 + q2
cω

2
0) ȳi − q2

cω
2
0ȳ = 0. (134)

Using these relations and definingQ2 = (Q2
0+Q

2
c), we get the equations of the forced oscillation

of two coupled oscillators,

ȳ =
−ω2 + q2

cω
2
0

[−(nω0 − ω)2 +Q2ω2
0](−ω2 + q2

cω
2
0) − q2

cQ
2
cω

4
0

ω2
0F exp [−iωt], (135)

ȳi =
q2
cω

2
0

[−(nω0 − ω)2 +Q2ω2
0](−ω2 + q2

cω
2
0) − q2

cQ
2
cω

4
0

ω2
0F exp [−iωt]. (136)
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Introducing the reduced frequencyw = ω/ω0 these equations may be written

ȳ = − w2 − q2
c

(w2 − q2
c )[(n− w)2 −Q2] − q2

cQ
2
c

F exp [−iωt], (137)

ȳi =
q2
c

(w2 − q2
c )[(n− w)2 −Q2] − q2

cQ
2
c

F exp [−iωt]. (138)

It is interesting to note that the denominator in those equations is equal to the l.h.s. of the
important equation (114). Shaking works if the amplitude ofȳi becomes large, i.e. when
the denominator approaches zero. Here, we must consider thenon-linear detuning and the
condition for the so-called ’lock-on’ of the ions onto the resonance. With increasing amplitudes
the bounce frequencyqc of the ions decreases. Thus,(w2 − q2

c ) is positive and increases. As a
consequence, in order to achieve a denominator approachingzero,[(n − w)2 − Q2] must also
be positive and the condition for̄yi becoming large may be written

(w2 − q2
c ) > 0, (139)

(n− w)2 −Q2 > 0. (140)

That means for the excitation near a slow wave sideband frequency withω ≈ (n − Q)ω0 and
positiven with n > Q,

w < n−Q, (141)

i.e. the excitation frequencyω must be slightly below the resonance frequency(n−Q)ω0. For
the excitation near a fast wave sideband frequency withω ≈ (n + Q)ω0 and negativen with
n > −Q,

w > n+Q, (142)

i.e. the excitation frequencyω must be slightly above the resonance frequency(n +Q)ω0.
Finally, we note the relation between̄y andȳi

ȳ = −ω
2 − q2

cω
2
0

q2
cω

2
0

ȳi = −w
2 − q2

c

q2
c

ȳi. (143)

Sinceω ≈ qcω0, the amplitude of the beam oscillation is very small compared to the large
amplitude of the ion oscillation.

15.2 Experimental observations

Here, we cite some important observations during shaking experiments at the CERN Antiproton
Accelerator (CERN AA) which are reported by Alain Poncet [16]:

“The effects of neutralization have been considerably reduced by exciting vertical co-
herent oscillations with a transverse kicker in the CERN AA.The shaking system has been
permanently implemented. It has the following parameters:
shaking: vertical
shaking frequency: 490 kHz
sideband frequency: 480 kHz
length of kicker electrodes: 0.6 m
kicker field:∼ 20 V/cm
The experimental observations can be summarized as follows:
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1. Beam shaking works best when applied vertically. A possible reason is that neutralization
is high in dipole fields due to the low ion drift velocity. In addition the ions can oscillate
freely along the vertical magnetic field lines.

2. The beam shaking relies on the longitudinal motion of the ions. Due to changing beam
dimensions, the ion ’bounce frequency’ is not constant. Butthe frequency of the shaking
kicker defines the positions in the ring where the bounce frequency is in resonance with
the kicker frequency. Thus, ions must move longitudinally to the resonance positions.
Therefore, beam shaking works best in conjunction with clearing electrodes which pro-
vide a low level of neutralization. Then, the ions can be accelerated by the longitudinal
gradients of the beam potential towards the resonance positions.

3. Beam shaking depends on the non-linearity of the space-charge field. This allows the
’lock-on’ of the sweeping ions onto the resonance. There, they keep large oscillation
amplitudes and their density is reduced in the beam center.

4. Beam shaking is efficient even with low RF fields of only 10 V/cm, provided it is applied
close to a beam betatron sideband whose frequency lies closeto the ion bounce frequency.
In this case, the beam resonant response yields sufficientlylarge non-linear forces on the
ion. Experimentally, it is found that for a weakly exciting RF field, shaking works best
above a band(n+Q) or below a band(n−Q). This observation of asymmetry of weak
resonant shaking is important in that it validates the non-linear character of the ion motion
and the ’lock-on’ conditions.”

15.3 Resonant transverse shaking of the HESR beam

The HESR ring is an energy variable machine yielding beam momenta between 1.5 and 15.0
GeV/c. Thus, the revolution frequenciesf0 = ω0/(2π) are not constant but depend on the beam
momentum. The betatron tunes amount toQx = 7.5995 andQy = 7.6216. In Table 28 we
list the corresponding slow-wave sideband frequencies(n− Q)f0 for n = 8 and the fast-wave
sideband frequencies(n+Q)f0 for n = −7.

Table 28: Slow- and fast-wave sideband frequencies.

p (GeV/c) f0 (kHz) (8 −Qx)f0 (kHz) (8 −Qy)f0 (kHz) (Qx − 7)f0 (kHz) (Qy − 7)f0 (kHz)

1.500 441.9 177.0 167.2 264.9 274.7
3.825 506.2 202.7 191.5 303.5 314.7
8.889 518.3 207.6 196.1 310.7 322.2
15.00 520.2 208.3 196.8 311.9 323.4

If we assume1.0 · 1011 antiprotons in the HESR ring the ’tune numbers’qx andqy of
H+ and H+

2 ions coincide at many places with one of the sideband tunes(8 − Qx) = 0.4005,
(8 − Qy) = 0.3784, (Qx − 7) = 0.5995 or (Qy − 7) = 0.6216. The ’tune numbers’ are

proportional to
√

Np̄/[σx,y(σx + σy)]. ForNp̄ = 1.0 · 1010 all ’tune numbers’ decrease by a

factor
√

101/5 = 1.26. Resonant transverse shaking is not all possible for heavier ions like CO+

ions. Even forNp̄ = 1.0 · 1011 the ’tune numbers’ of CO+ oscillations are below the sideband
tunes.
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The possible shaking frequencies are in the range of about 165-330 kHz. A broad-band
kicker covering this frequency range with field strengths ofabout 20 V/cm would be sufficient
for resonant transverse shaking of the most critical H+- and H+

2 -ions.

Summarizing, we note that beam shaking alone is not sufficient to remove trapped ions.
Clearing of trapped ions by shaking is only possible under certain conditions at discrete specific
positions in the ring and for light ions like H+ and H+

2 . Heavier ions cannot be removed by
beam shaking. Therefore, clearing of trapped ions in the HESR ring should be mainly done
with the aid of clearing electrodes.

Finally, we mention that beam shaking deteriorates the transverse beam quality. This fact
must be taken into account when applying beam shaking in the HESR ring.
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16. Trapped Ion Effects in the Electron Cooler

Here, we discuss the special problems due to the electron beam if the electron cooler (EC)
is installed. We refer to the final HESR Electron Cooler Design Study [43]. The electron
beam currentIe amounts to 1.0 A. It is guided by the EC solenoid with a constant beam radius
a = 5 mm. The inner diameter of the EC vacuum chamber amounts to 200mm. The resulting
radius profilerc(s) is shown in Fig. 32. The total length of the EC solenoid isLEC = 24.0 m.
In addition, nine beam position monitors are foreseen. The beam position monitors consist of
four electrodes that together form a cylinder with an inner diameter of 200 mm and a length of
200 mm.

16.1 Negative potential well of the electron beam

We first estimate the negative potential well due to the strong electron beam. The linear charge
densityλ is given by

λ =
dQ

ds
=
I

v
. (144)

Here, I is the current andv = βc the longitudinal velocity of the electrons. The resulting
potential well and the electric field can be calculated usingEqs. (4)-(6). A round electron beam
of 1.0 A with a constant density within a radiusa = 5 mm yields the following values (kinetic
energy of the electron beam: 4.5 MeV,β = 0.994787):

λ

2πǫ0
= −60.3 V, (145)

U(0) = −210.7 V, (146)

Er(a) = −12.1 kV/m. (147)

The absolute value of the electric field component in radial direction, |Er|, is maximum at the
edge of the electron beam, i.e. atr = a. For comparison we calculate the corresponding
potential well parameters of an antiproton beam withNp̄ = 1.0 · 1010 at 8.889 GeV/c using
Eqs. (8) and (13). In order to have more than 90% of the antiproton beam inside the electron
beam the beta-values in the EC section are chosen to beβx = βy = 80 m [43]. ForNp̄ =
1.0 · 1010 the rms emittance amounts toǫx = ǫy ≈ 0.043 mm mrad. These values yield the
rms-widths of the beam in the EC section,σx ≈ σy ≈ 1.86 mm. We note that these values are
used in the BETACOOL simulations of the EC [43]. They are considerably smaller than the
σx andσy values shown in Figs. 3 and 4 which are calculated forNp̄ = 1.0 · 1011 assuming
βx = βy ≈ 175 m andǫx = ǫy = 0.148 mm mrad at 15 GeV/c. Thus, we assume inside of
the EC a round Gaussian beam distribution withσr ≈ 1.86 mm. The maximum of the absolute
value of the electric field is located atrm = 1.585 σr = 2.94 mm. The inner radius of the beam
pipe amounts to 100 mm. These parameters yield for1.0 · 1010 antiprotons at 8.889 GeV/c

λ

2πǫ0
= −0.0556 V, (148)

U(0) = −0.219 V, (149)

Er(rm) = −17.4 V/m. (150)

The depth of the electron potential well is a factor of 962 larger than the depth of the antiproton
potential well and the maximum of the electric field is a factor of 694 larger.
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Summarizing, the negative potential well of the electron beam acts as a very deep pocket
for trapped ions (see Fig. 33). The positive ions perform modified cyclotron motions around
the magnetic field lines of the solenoid and magnetron motions around the central axis of the
electron beam, see Subsections 9.2.

It is interesting to note that the transverse electric field of the electron beam (about
12 kV/m at beam edge) is so strong thatωb = 1.07 · 107 s−1 for H+

2 ions. The magnetic field of
the EC solenoid is rather low (0.2 T) yieldingωc = 9.58 · 106 s−1 for H+

2 ions. Using Eqs. (59)
and (60), we getf+ = 2.63 · 106 Hz for the frequency of the modified cyclotron motion and
f− = 1.11 · 106 Hz for the frequency of the magnetron motion of H+

2 ions. The high value of
f− is a consequence of the high transverse electric field. In thePANDA target solenoid and the
compensation solenoids the frequencyf− is rather low.

16.2 Ionization rate and neutralization due to the electronbeam

The number of antiprotons per second amounts to aboutṄp̄ = 5.0 · 1016 s−1 if 1.0 · 1011

antiprotons are stored in the HESR ring. This corresponds toa mean̄p current of about 8 mA.
The current of the electron beam amounts to 1.0 A. This corresponds to a number of electrons
per second ofṄe = 6.24 · 1018 s−1 which is a factor of 125 larger. Therefore, the ionization rate
due to the electron beam is also a factor of 125 larger. In the following estimates of ionization
and neutralization we neglect the very small contribution of the antiproton beam in the region
of the electron cooler.

We recall that the ionization cross section depends on the molecules in the residual gas
and the velocityβ = v/c of the beam particles. It does not depend on the charge and themass
of the beam particles. Now, the velocity of the electron beamis exactly equal to the velocity
of the antiproton beam. Therefore, applying Bethe’s formula (23) yields identical ionization
cross sectionsσ for electrons and antiprotons and we can use the values listed in Table 2. The
corresponding production rateRp for a certain ion species is given by

Rp = σρmβc. (151)

Here,σ is the ionization cross section,ρm the number density of the residual molecules andβc
the velocity of the beam particles. The production timeTp is the inverse of the production rate,
Tp = 1/Rp. It is simply the time which a single antiproton and/or electron needs in order to
produce one singly charged ion. We note that the production rateRp and the production time
Tp are also identical for electrons and antiprotons.

The following estimates are taken from the final electron cooler design study [43]. In the
region of the electron cooler big pumps on both sides of the straight cooling section and the
return straight section are installed. The distance between the pumps is 30 m. The outgassing
rate is assumed to beq = 1.0 · 10−12 mbar·liter/cm2/s after bake-out to 150◦C. The residual gas
is assumed to consist of H2 (75 %), CH4 (14 %) and CO (11 %). The average pressure for each
gas is calculated taking the specific molecular conductancew = 305 r3

√

T/M into account.
The calculated average partial pressures become

1. 5.5 · 10−10 mbar for H2 (ρm = 1.5 · 1013 m−3),
2. 1.3 · 10−10 mbar for CO (ρm = 3.5 · 1012 m−3),
3. 2.0 · 10−10 mbar for CH4 (ρm = 5.3 · 1012 m−3).

The ionization cross sectionsσ and the resulting production timesTp are

1. σ = 2 · 10−23 m2, Tp = 11 s for H2,
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2. σ = 9 · 10−23 m2, Tp = 11 s for CO,
3. σ = 11 · 10−23 m2 Tp = 6 s for CH4.

It is planned to remove the trapped ions with clearing electrodes near the entrance and
exit of the straight cooling section [43]. The clearing electrodes are installed in the merging
modules. The resulting clearing times due to the mean thermal velocity in one direction are
estimated as [43]

1. Tc = 13 ms for H2,
2. Tc = 50 ms for CO,
3. Tc = 38 ms for CH4.

The resulting mean neutralizationη from H2, CO and CH4 amounts to

η =

(

Tc

Tp

)

H2

+

(

Tc

Tp

)

CO

+

(

Tc

Tp

)

CH4

=
0.013

11
+

0.050

11
+

0.038

6
= 0.012. (152)

We note that a neutralization of 1.2 % is rather high when comparing it with the neigh-
bouring sections of the HESR ring. This is due to the fact thatthe clearing electrodes are located
outside of the 24 m long cooler section. Taking the rotation of the electron beam by the space
charge of the trapped ions into account the allowed upper limit of η amounts to 6 % at 4.5 MeV
kinetic energy of the EC [43], see also Subsection 16.3. Thus, the achievable neutralization
of 1.2 % is sufficiently small for the operation of the electron cooler at high beam energies,
especially at the maximum energy 4.5 MeV [43].

However, it is not always desirable to haveη as small as possible. That means, there is
not only an upper limit forη but also a lower limit if the beam rotation is considered in the low-
energy range 0.45 MeV - 2.0 MeV, see Subsections 16.4 and 16.5. For instance at the lowest
energy 0.45 MeV, the neutralization should be limited to

0.247 ≤ η ≤ 0.319. (153)

The method to achieve a certain well defined neutralization of the electron-cooling beam is
presented in Subsections 18.1 and 18.3.
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Fig. 32: Inner beam pipe radiusrc(s) after installation of the electron cooler.
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Fig. 33: Central potentialU(s) showing the large potential depth due to the electron beam.
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16.3 Upper limit of EC neutralization by trapped ions at high beam energies

In order to estimate an upper limit of electron-beam neutralization the rotation of the electron
beam by the space-charge of trapped ions was calculated in Subsection 7.10.1 of the HESR
Electron Cooler Design Study [43]. The absolute value of theazimuthal velocity of an electron
at the beam edger = a is given by (for a derivation see Subsection 17.2):

|vaz(a)| =

∣

∣

∣

∣

∣

1 − ηγ2
e

γ2
e

∣

∣

∣

∣

∣

Ie
βec

1

2πǫ0

1

B

1

a
. (154)

Here,Ie is the electron beam current,η the neutralization,B the magnetic field of the solenoid,
a the radius of the electron beam. The quantitiesγe andβe are defined by the electron beam
energy. The upper limit is specified by the requirement

|vaz(a)|
βec

≤ 1.0 · 10−5 (155)

This condition corresponds to the maximum r.m.s. non-straightness of the magnetic field lines
[43]. Using this condition yields forIe = 1.0 A, a = 5 mm,B = 0.2 T and the maximum
kinetic energy 4.5 MeV of the electron cooler10

η ≤
(

1

γ2
e

+
10−5β2

ec
22πǫ0aB

Ie

)

= 0.06. (156)

16.4 Lower limit of EC neutralization by trapped ions at low beam energies

Taking the requirement|vaz(a)|/(βec) ≤ 1.0 ·10−5 at the lowest kinetic energy 0.45 MeV yields
not only an upper limit but also a lower limit for the neutralizationη. This is due to the fact that
the azimuthal velocityvaz(a) can be either positive or negative depending on the sign of1−ηγ2

e .
At the lowest energy 0.45 MeVγe is rather small (γe = 1.88 at 0.45 MeV) and|vaz(a)|/(βec)
becomes rather large ifη ≈ 0, see Table 31. Thus, ifη < 1/γ2

e the corresponding inequality
may be written

η ≥
(

1

γ2
e

− 10−5β2
ec

22πǫ0aB

Ie

)

. (157)

This yields forTe = 0.45 MeV
η ≥ 0.247. (158)

16.5 Consideration of lower and upper limits of EC neutralization

In the HESR Electron Cooler Design Study [43] only an upper limit of η at the highest energy
4.5 MeV has been considered. Here, we compile the lower and upper limits at different beam
energies between 0.45 MeV and 4.5 MeV. The requirement|vaz(a)|/(βec) ≤ 1.0 · 10−5 yields
the following inequality

(

1

γ2
e

− 10−5β2
ec

22πǫ0aB

Ie

)

≤ η ≤
(

1

γ2
e

+
10−5β2

e c
22πǫ0aB

Ie

)

. (159)

In Table 29 we list the resulting lower and upper limits ofη for the energy range 0.45 MeV-
4.5 MeV.

10There is a typo in the corresponding equation of Ref. [43]. The right side must be multiplied with1/γ2
e , i.e.

η ≤
(

1 +
10−5β2

eγ2
ec22πǫ0aB

Ie

)

1

γ2
e

.
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Table 29: Lower and upper limitsηmin andηmax yielding sufficiently low|vaz(a)|/(βec) ≤ 1.0 · 10−5.

Te (MeV) βe γe 1/γ2
e ηmin ηmax

0.45 0.847 1.88 0.283 0.247 0.319
1.5 0.967 3.94 0.0646 0.0178 0.111
2.0 0.979 4.91 0.0414 0.0 0.0893
2.5 0.985 5.89 0.0288 0.0 0.0774
3.5 0.992 7.85 0.0162 0.0 0.0654
4.5 0.995 9.81 0.0104 0.0 0.0599

We note that a neutralization with a negative sign cannot occur since negatively charged
ions cannot be created and trapped in the antiproton beam. Therefore, the entries ofηmin with
negative sign have been replaced by a zero. The list in Table 29 shows that a lower limit ofη
should be considered at low energies.
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17. Drawbacks of the Space-Charge Potential of the ElectronBeam

The electron beam of the HESR electron cooler is very intensive and dense (currentIe = 1.0 A,
radiusa = 5 mm). Here, we discuss the drawbacks of the high space-chargefor the cooling
process. (i) The space-charge potential of the electron beam causes a significant radial depen-
dence of the electron energies, see Subsection 17.1. (ii) Inaddition. there is the cross-field
drift velocity due to the longitudinal magnetic field of the cooler solenoid and the radial force
Fr caused by the electric and magnetic field of the fast-moving electron beam. Also this effect
must be taken into account. It yields a non-negligible transverse azimuthal velocityvaz, see
Subsection 17.2.

17.1 Dependence of the electron energy on the space-charge potential of the electron
beam

The space-charge potentialU(r) of the EC beam can be calculated using (160) – (162)

λ = − Ie
βec

. (160)

Here,Ie = 1.0 A is the electron current andβec the electron velocity. Taking the neutralization
η due to trapped ions into account and assumingU(rc) = 0 at the inner surface of the beam
pipe (radiusrc = 100 mm) the space-charge potentialU(r) may be written

U(r) =
λ(1 − η)

2πǫ0
ln
rc

r
= (−60.0 V)

(1 − η)

βe

ln
rc

r
r ≥ a, (161)

U(r) =
λ(1 − η)

2πǫ0

[

1

2
− r2

2a2
+ ln

(

rc

a

)

]

= (−60.0 V)
(1 − η)

βe

[

1

2
− r2

2a2
+ ln

(

rc

a

)

]

r ≤ a. (162)

In Fig. 34 we show the space-charge potential U(r) for two electron beam energies (0.45
MeV and 4.5 MeV). The potential is zero at the vacuum chamber (rc = 100 mm) and has its
deep minimum at the beam center. It depends strongly on the neutralizationη of the electron
beam, see factor(1−η) in Eqs. (161) and (162). If the neutralization is negligibly small (η ≈ 0)
the space charge potential is maximal. If the electron beam is fully neutralized (η = 1) the space
charge potential is zero.

The kinetic energy of the electronsTe is given by the absolute value of the cathode poten-
tial |Ucath| and thenegative space-charge potentialU(r),

Te = (γ − 1)mec
2 = e[|Ucath| + U(r)]. (163)

In Fig. 35 we show the variation of the electron energy due to the space-charge potential in the
region of the beam (r ≤ 5 mm). The full curve refers toη = 0, the dashed curve toη = 0.9.
The variation is zero if the electron beam is fully neutralized by trapped ions, i.e.η = 1.

The variation of the electron energy due to the space-chargepotential is rather large.
Taking the difference of kinetic energies,∆Te = e[U(a) − U(0)], between the beam edge and
the beam center yields the characteristic relative energy deviation∆Te/Te due to the space-
charge potential, see Table 30.
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Fig. 34: Space charge potentialU(r) of the electron beam (Ie = 1.0 A, beam radiusa = 5 mm, radius of vacuum

chamber:rc = 100 mm). Note: The space charge potential is zero at the vacuum chamber radiusrc = 100 mm.

Full line: Beam neutralizationη = 0.0. Dashed line: Beam neutralizationη = 0.9. Left: Nominal kinetic energy

0.45 MeV. Right: Nominal kinetic energy 4.5 MeV.

Fig. 35: Variation of the electron energy due to the space-charge potentialU(r) of the EC beam. Full line: Beam

neutralizationη = 0.0. Dashed line: Beam neutralizationη = 0.9. Left: Nominal kinetic energy 0.45 MeV. Right:

Nominal kinetic energy 4.5 MeV.
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The corresponding relative momentum deviation can be calculated using

∆pp̄

pp̄
=

∆pe

pe
=
γe − 1

γe

1

β2
e

∆Te

Te
. (164)

The velocityβp̄c of the antiproton beam approaches the velocityβec of the electron beam during
the cooling process. Therefore we get withβp̄ = βe andγp̄ = γe

∆pp̄

pp̄
=

∆pe

pe
. (165)

In order to see the effects of the space-charge potential at aglance we list the relative energy
and momentum deviations forη ≈ 0 in Table 30.

Table 30: Relative energy and momentum deviations due to space-charge effects assuming negligibly small neu-

tralization (η ≈ 0).

Te (MeV) ∆Te/Te ∆pe/pe

0.45 7.87 · 10−5 5.14 · 10−5

1.5 2.07 · 10−5 1.65 · 10−5

2.5 1.22 · 10−5 1.04 · 10−5

3.5 8.64 · 10−6 7.66 · 10−6

4.5 6.70 · 10−6 6.08 · 10−6

The rationale of the HESR EC is to reach a momentum resolutionof the antiproton beam
in the order of1.0 · 10−5. This cannot be achieved at low beam energies. Therefore, one should
try to reduce the variation of the electron energy which is due to the large space-charge potential
of the electron beam. This can be achieved by neutralizing the electron beam, see Subsect. 18.1.
However, the effect of transverse motions due to the space-charge of trapped ions must also be
taken into account, see Subsection 18.4.

17.2 Azimuthal velocities due to the space-charge potential of the electron beam

Now, we consider the transverse motion of an electron due to the interaction with the space-
charge of the EC beam and the space charge of trapped ions. Theradial forceFr due to the
space charge of a fast-moving beam may be written

Fr = e(1 − β2
e )
Ie
βec

1

2πǫ0

r

a2
. (166)

The term withβ2
e takes the azimuthal magnetic fieldBΘ of a fast-moving beam into account.

The resulting radial forceFr = e(Er − ~ve × ~B) = e(Er − βecBΘ) = e(1 − β2
e )Er is directed

outwards. In addition the radially attractive force due to the space charge of the trapped ions
must be taken into account. Thus, we get

Fr = e(1 − β2
e − η)

Ie
βec

1

2πǫ0

r

a2
. (167)
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Using(1 − β2
e ) = 1/γ2

e , this equation may be written

Fr = e
1 − ηγ2

e

γ2
e

Ie
βec

1

2πǫ0

r

a2
. (168)

This equation shows that the effect of the beam neutralization η is magnified by the factorγ2
e .

We note that the factorγ2
e is rather large (γ2

e = 3.54 at Te = 0.45 MeV andγ2
e = 96.2 at

Te = 4.5 MeV).

Writing the equations of motions one sees that the combination of a radial forceFr with
the cyclotron motion in a longitudinal magnetic fieldB yields a modified cyclotron motionω+

and a magnetron motionω− around the beam center, see Sect. 9. and Appendix of Ref. [1].
These two angular frequencies are related to the basic angular frequencyωc of the cyclotron
motion

ωc =
eB

γeme
, (169)

and the angular frequencyωb which takes the effect of the radial forceFr into account,

ω2
b =

e

γeme

1 − ηγ2
e

γ2
e

Ie
βec

1

2πǫ0

1

a2
. (170)

The resulting angular frequenciesω+ andω− may be written

ω+ =
ωc

2
+

√

(

ωc

2

)2

− ω2
b ,

ω− =
ωc

2
−
√

(

ωc

2

)2

− ω2
b . (171)

Numerically, we get forη = 0, Ie = 1.0 A, a = 0.005 m, B = 0.2 T and the kinetic
energy range0.45 MeV − 4.5 MeV

ωc = 1.87046 · 1010 s−1, ω2
b = 2.64845 · 1017 s−2, Te = 0.45 MeV,

ωc = 3.51763 · 109 s−1, ω2
b = 4.24034 · 1016 s−2, Te = 4.5 MeV, (172)

ω+ = 1.8690 · 1010 s−1, ω− = 1.4170 · 107 s−1, Te = 0.45 MeV,

ω+ = 3.5056 · 109 s−1, ω− = 1.2096 · 107 s−1, Te = 4.5 MeV. (173)

We are interested to estimate the transverse velocitiesvaz = rω− which are due to the
azimuthal magnetron motion around the beam center. Since(ωc/2)2 ≫ ω2

b , we can use the
approximation

ω− ≈ ω2
b

ωc

. (174)

Thus, we get forω−

ω− =
1 − ηγ2

e

γ2
e

Ie
βec

1

2πǫ0

1

B

1

a2
. (175)

The resulting transverse (azimuthal) velocityvaz(r) of the electrons may thus be written

vaz(r) = ω−r =
1 − ηγ2

e

γ2
e

Ie
βec

1

2πǫ0

1

B

r

a2
. (176)
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The transverse velocity is maximum at the beam edger = a,

vaz(a) = ω−a =
1 − ηγ2

e

γ2
e

Ie
βec

1

2πǫ0

1

B

1

a
. (177)

Assuming a negligibly small neutralization (η ≈ 0), we get for the azimuthal velocity
vaz(a) at the beam edge (r = a = 5 mm) the results listed in Table 31. The transverse velocities

Table 31: Electron beam rotationvaz due to space-charge effects assuming negligibly small neutralization (η ≈ 0).

Te (MeV) ω+ (s−1) ω− (s−1) vaz(a) (m/s) vaz(a)/βec

0.45 1.87 · 1010 4.00 · 106 2.00 · 104 7.89 · 10−5

1.5 8.94 · 109 8.01 · 105 4.00 · 103 1.38 · 10−5

2.0 7.16 · 109 5.07 · 105 2.54 · 103 8.64 · 10−6

2.5 5.97 · 109 3.50 · 105 1.75 · 103 5.93 · 10−6

3.5 4.48 · 109 1.96 · 105 9.81 · 102 3.30 · 10−6

4.5 3.59 · 109 1.25 · 105 6.25 · 102 2.10 · 10−6

vaz vary linearly between zero at the beam center and a maximum atthe beam edge. In order
to achieve a relative momentum resolution∆p/p ≤ 1.0 · 10−5 one can acceptvaz(a)/(βec) ≤
1.0 · 10−5. This corresponds to the r.m.s. non-straightness of the magnetic field lines [43]. At
low electron energiesTe < 2 MeV, this requirement is not fulfilled ifη ≈ 0, see Table 31. This
drawback can be avoided by neutralizing the electron-cooling beam, i.e. by adjustingη = 1/γ2

e .
Then, the numerator1 − ηγ2

e = 0 in Eq. (177) becomes zero and the azimuthal velocitiesvaz

vanish, see next Subsection.
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18. Counteracting Space-Charge Effects of the EC beam

The space-charge potential of the electron-cooling beam destroys the homogeneity of the longi-
tudinal velocity profilev‖ and causes a transverse (azimuthal) velocity spreadvaz. Both effects
affect the cooling process, i.e. the velocity matching between the electrons and the antiprotons.
Both effects can be mitigated by admitting a certain neutralization of the electron beam.

18.1 Neutralization of the electron-cooling beam with trapped ions

The drawback of the space-charge potential can be removed tosome extent by a space-charge
neutralization of the electron-cooling beam. Such a space-charge neutralization system has been
successfully implemented on the LEAR EC [49, 50, 51]. Instead of extracting the ions which
are produced by ionization of the residual gas in the EC, the ions are accumulated. To this end,
two sets of neutralization electrodes have been installed outside the interaction region towards
the electron gun and towards the electron collector, respectively. The electrodes consist of two
metallic half cylinders which are separated by a high-resistive-glass insulator, see Fig. 36. The
positive voltages on the electrodes are not equal in order togenerate also a transverse electric
field ~E. The low-energy ions and electrons from the ionization processes move in the longitudi-
nal direction towards the neutralization electrodes. The positively charged ions will be reflected,
and therefore stored. The low-energy electrons will be attracted by the positive voltages of the
neutralization electrodes. Thereby, the effect of the cross-field-drift velocity~vD = ~E × ~B/B2

is used in order to extract the low-energy electrons from theionization processes. They drift in
the crossed electric and magnetic fields towards the high-resistive-glass insulator.

Fig. 36: Scheme of a neutralization electrode for the HESR EC. The electrode consist of two metallic half cylinders

which are separated by a high-resistive-glass insulator. The positively charged ions will be reflected, and therefore

stored in the EC interaction region. The low-energy electrons drift in the crossed electric and magnetic fields

towards the high-resistive-glass insulator.

The ions are trapped in the cooling section of the EC and the neutralizationη increases
according to the production time. The production timeTp amounts to about 11 s for H+2 and
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CO+ ions and about 6 s for CH+4 ions. Thus, a specific neutralization (for instanceη = 1/γ2) is
quickly reached. In order to stabilize the neutralization level the continuously produced surplus
ions can be removed by shaking the ions with a sine-wave signal applied to a transverse kicker,
see Subsect. 18.3.

18.2 Measurement of the EC neutralization

There are two methods which can be used in order to determine the neutralizationη of the
EC beam [50]. Both methods rely on measurements of the velocity, i.e. the velocity of the
cooled antiproton beam or the velocity of the electron beam.A precise knowledge of the ve-
locity allows the determination of the kinetic energy of theelectron beam and therewith the
neutralizationη, see Eqs. (162) and (163).

(i) One can measure the cooled antiproton velocity by measuring the revolution frequency
of the antiproton beam. The mean velocityv̄p̄ of the cooled antiproton beam depends on the
neutralizationη of the electron beam, see Subsect. 17.1. An increase ofη implies a decrease of
the cathode potential|Ucath| if the the ion revolution frequency is kept constant. The corrections
of the cathode potential∆|Ucath| can be used in order to deduce∆η.

(ii) A more direct method has also been developed at LEAR [50]. The Time-Of-Flight
(TOF) method is based on the fact that a density modulation signal imposed on the electron
beam depends on the mean velocityv̄e of the electron beam and therewith also on the neutral-
izationη. The longitudinal density of the electron beam is weakly modulated by a sinusoidal
signal applied on the neutralization electrode at the entrance of the EC. This signal is taken from
a network analyzer at a frequency of about 300 MHz. The modulated signal is detected at the
neutralization electrode at the exit of the EC. The phase difference∆φ between the signals at
the entrance and exit can be used in order to determine the mean velocityv̄e of the EC beam and
therewith the neutralization levelη. The TOF method can be calibrated using the method (i),
i.e. by measuring the revolution frequency of the antiproton beam and readjusting the cathode
potential.

Caveat: We mention that sufficient high accuracies can only be obtained at relatively low
kinetic energiesT and therewith low values ofγ. This is due to the fact that

dT

T
= γ(γ + 1)

dβ

β
. (178)

In the electron kinetic energy range 0.45 - 4.5 MeV the relativistic Lorentz factorγ varies
between 1.88 and 9.81, and the factorγ(γ + 1) varies between 5.4 and 106. Fortunately, a
precise determination of the neutralizationη in the EC interaction region is only necessary at
low kinetic energies, i.e. forTe ≤ 1.63 MeV (γe ≤ 4.20, Tp̄ ≤ 3.0 GeV), see Subsect. 18.6.

18.3 Stabilization of the EC neutralization

Neutralization experiments at LEAR [49, 50, 51] have shown that instabilities of the neutral-
izationη occur at large electron currents. These instabilities cause energy jumps of the electron
beam and the circulating antiproton beam due to the sudden changes of the space charge po-
tential, see factor(1 − η) in Eq. (162). The energy jumps occur at regular intervals, related
to the production timeTp of the trapped ions. The repetitive energy jumps lead to heating and
sometimes even to losses of the antiproton beam. This harmful effect can only be avoided by a
very strict control of the neutralization level.
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In order to stabilize the neutralization level an additional device called ’LEAR shaker’ has
been installed in LEAR. The ’LEAR shaker’ consists of two electrodes, similar in shape to po-
sition pick-ups, which act as a transverse kicker. They are excited with a sinusoidal RF-voltage
of a few volts and at frequencies of some 100 kHz, in the range of the bounce frequencies of
the trapped ions in the electron beam. The RF-voltages heat up the trapped ions and they expel
continuously the surplus ions. In this way neutralization levels betweenη = 0 andη = 1 could
be stabilized at 1.5 A electron currents [51].

18.4 What is the optimum neutralization of the electron beamat low energies?

Here, we discuss the question: What is the optimum neutralization of the electron beam? To
this end, we consider∆pe/pe and |vaz(a)|/(βec) assuming three different options forη, see
Tables 32-34.

A solution with η ≈ 0 has the disadvantage that both,∆pe/pe and |vaz(a)|/(βec), are
rather large at low energies, see Table 32.

Concerning∆pe/pe, the optimum neutralization would beη = 1, see Table 33. Then, the
electron beam would be completely neutralized and the relative momentum deviation∆pe/pe

due to the space charge potential would be zero. However, theazimuthal velocities|vaz| of the
electron beam and the ratios|vaz(a)|/(βec) would be rather large ifη = 1, see Table 33. The
ratio |vaz(a)|/(βec) can be calculated using Eq. (177) in Subsection 17.2. Forη = 1 we get

|vaz(a)|
βec

=

(

1 − 1

γ2
e

)

1

β2
e

Ie
c22πǫ0Ba

=
Ie

c22πǫ0Ba
= 2.00 · 10−4. (179)

Since(1 − 1/γ2
e)/β

2
e = [1 − (1 − β2

e )]/β
2
e = 1, the ratio|vaz(a)|/(βec) would be independent

of the EC beam energy ifη = 1. We note that|vaz(a)|/(βec) = 2.0 · 10−4 is much too large and
cannot be tolerated.

Unfortunately, it is not possible to achieve simultaneously ∆pe/pe = 0 and|vaz(a)|/(βec) =
0. Therefore, we suggest to adjust the neutralizationη = 1/γ2

e as the optimum compro-
mise, see Table 34. Then,|vaz(a)|/(βec) would be zero and the relative momentum deviations
∆pe/pe would be somewhat smaller than withη ≈ 0. The resulting relative momentum devi-
ations∆pe/pe and the ratio|vaz(a)|/(βec) are listed in Table 34. A stable neutralization with
η = 1/γ2

e can be achieved by (i) accumulating and trapping the continuously produced ions in
the EC interaction region with neutralization electrodes (see Subsect. 18.1) and (ii) using the
Ion-Cyclotron-Resonance (ICR) heating for stabilization(see Subsect. 18.5).

According to the HESR Electron Cooler Design Study [43] it isplanned to run the EC
with η = 0.012, i.e. η ≈ 0. This option is well suited for the high-energy range. However,
at low energies∆pe/pe as well as|vaz(a)|/(βec) become larger than1.0 · 10−5, see Table 32.
The deviation of|vaz(a)|/(βec) from 1.0 · 10−5 becomes even larger if the magnetic field of
the EC solenoid is decreased. In this context we note a remarkin the HESR Electron Cooler
Design Study [43]: ’For experiments to be performed at the injection energy of 3 GeV, or
below, there is a desire to lower the magnetic field strength in the HESR ring to allow for
compensation of the tune shift.’ A kinetic energy of 3 GeV corresponds toγe = 4.20 and
Te = 1.63 MeV. Thus, if for instance the magnetic field of the solenoid is reduced by a factor
of two, i.e. B = 0.1 T, the relative azimuthal velocity|vaz(a)|/(βec) is increased by a factor
of two! That means, a very high azimuthal velocity would occur for η ≈ 0 at low energies, for
instance|vaz(a)|/(βec) = 1.58 · 10−4 at the lowest electron energy 0.45 MeV. This drawback
can be avoided by adjustingη = 1/γ2

e at low energies.
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Table 32: Relative momentum deviations and relative azimuthal velocities due to space-charge effects assuming a

neutralizationη ≈ 0.

Te (MeV) γe η ∆pe/pe vaz(a)/(βec)

0.45 1.88 0 5.24 · 10−5 7.89 · 10−5

1.5 3.94 0 1.65 · 10−5 1.38 · 10−5

2.5 5.89 0 1.04 · 10−5 5.93 · 10−6

3.5 7.85 0 7.66 · 10−6 3.30 · 10−6

4.5 9.81 0 6.08 · 10−6 2.10 · 10−6

Table 33: Relative momentum deviations and relative azimuthal velocities due to space-charge effects assuming a

neutralizationη = 1.

Te (MeV) γe η ∆pe/pe vaz(a)/(βec)

0.45 1.88 1 0 2.00 · 10−4

1.5 3.94 1 0 2.00 · 10−4

2.5 5.89 1 0 2.00 · 10−4

3.5 7.85 1 0 2.00 · 10−4

4.5 9.81 1 0 2.00 · 10−4

Table 34: Relative momentum deviations and relative azimuthal velocities due to space-charge effects assuming a

neutralizationη = 1/γ2
e (optimum neutralization ).

Te (MeV) γe η ∆pe/pe vaz(a)/(βec)

0.45 1.88 0.283 3.69 · 10−5 0
1.5 3.94 0.0646 1.54 · 10−5 0
2.5 5.89 0.0288 1.01 · 10−5 0
3.5 7.85 0.0162 7.54 · 10−6 0
4.5 9.81 0.0104 6.02 · 10−6 0

18.5 Stabilization of the optimum neutralizationη = 1/γ2
e at low energies

In order to adapt the LEAR method to the HESR EC we list in Table35 the characteristic cy-
clotron frequenciesfc = ωc/(2π) and bounce frequenciesfb = ωb/(2π). We note that the
resulting modified cyclotron frequenciesω+ and the magnetron frequenciesω− depend consid-
erably on the neutralizationη. Taking the neutralization in the expression forωb into account
the equations for the modified cyclotron frequencyω+ and the magnetron frequencyω− may be
written in the following form,

ω± =
ωc

2
±
√

(

ωc

2

)2

+ (1 − ηγ2
e )ω

2
b (η = 0). (180)

If the neutralizationη tends towards1/γ2 (i.e. η → 1/γ2) we have

ω+ → ωc ω− → 0. (181)
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That means the magnetron motion around the beam center tendsto zero and we are left with the
pure cyclotron motion around the magnetic field lines. Thesecyclotron frequencies are listed in
the second column of Table 35. Thus, in order to achieve a stable neutralization withη = 1/γ2

Table 35: Cyclotron frequenciesfc = ωc/(2π) and bounce frequenciesfb = ωb/(2π) in the HESR EC for

Ie = 1.0 A, B = 0.2 T anda = 5.0 mm.

Ion fc (kHz) fb (kHz) at 0.45 MeV fb (kHz) at 4.5 MeV

H+
2 1525

√

1 − ηγ2
e × 1854

√

1 − ηγ2
e × 1710

CH+
4 191

√

1 − ηγ2
e × 655

√

1 − ηγ2
e × 605

CO+ 109
√

1 − ηγ2
e × 495

√

1 − ηγ2
e × 457

one can use the Ion-Cyclotron-Resonance (ICR) heating of the ions by adjusting the cyclotron
resonance frequencies listed in Table 35. Then, the surplusions which are continuously pro-
duced are heated up resonantly ifη = 1/γ2 is reached. Due to the energy gain by the RF field
the cyclotron radius of those ions increases continuously until the ions are neutralized at the
vacuum chamber. This process is self-regulating. Ifη becomes less than1/γ2 the cyclotron
resonance condition is violated and the ICR heating is stopped since the modified cyclotron fre-
quencyω+ 6= ωc for η < 1/γ2, see Eq. (180). Thus, the shaker removes only ions ifη = 1/γ2

is reached.

In the HESR EC nine beam position monitors are foreseen. These position monitors can
also be used as shakers by applying the shaker RF voltage to pairs of position pick-up elec-
trodes. In view of the fact that different ion species are produced we suggest to use several
beam position monitors as shakers. They can be tuned to be in resonance with the characteristic
cyclotron frequencies of the ion species, see Table 35. The surplus ions which are produced out-
side the shaker positions move along the magnetic field lineswith their mean thermal velocities
towards the shaker positions where they are immediately neutralized.

18.6 Adjustment of the EC neutralization at higher energies

Finally, we mention that the adjustment of the ’optimum neutralization’ η = 1/γ2
e is only nec-

essary at the lowest kinetic energies of the antiproton beamTp̄ ≤ 3.0 GeV. The corresponding
kinetic energies of the electron beam amount toTe ≤ 1.63 MeV (γe ≤ 4.20). At higher energies
the EC can be operated withη ≈ 1.2 % as foreseen in the HESR Electron Cooler Design Study
[43]. This is due to the fact that the relative momentum deviations ∆pe/pe and the relative
azimthal velocities|vaz|/βec of the electron beam are sufficiently small at higher energies, see
Table 36.
Table 36: Relative momentum deviations and relative azimuthal velocities due to space-charge effects assuming a

neutralizationη ≈ 1.2 %.

Te (MeV) γe η ∆pe/pe |vaz(a)|/(βec)

2.5 5.89 0.012 1.03 · 10−5 3.46 · 10−6

3.5 7.85 0.012 7.57 · 10−6 8.60 · 10−7

4.5 9.81 0.012 6.01 · 10−6 3.25 · 10−7
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19. Summary and Conclusions

The first part of the present report (Sects. 1.-9.) serves as introduction to the issue of trapped
ions. It provides the basic informations on the HESR layout,the electric field of the antiproton
beam, the UHV update, the ionization process, the mean thermal velocities of trapped ions, the
production timeTp, the clearing timeTc, the neutralizationη, the ion motion in dipole magnets
and the ion motion in solenoids. The second part of the reportis devoted to the question of how
to counteract trapped ion effects in the HESR, see Sects. 10.- 18..

The circulating antiproton beam ionizes the residual gas molecules of the UHV vacuum.
The produced ions are trapped in the negative potential wellof the antiproton beam. The trapped
ions can cause emittance growth, beam instabilities, coherent beam-ion oscillations and beam
losses. In order to avoid the adverse effects of trapped ionsit is necessary to keep the beam
neutralizationη as low as possible. This can be achieved using clearing electrodes, see Sects. 10.
and 11..

The highest clearing efficiency can be achieved with continuous clearing electrodes along
the beam pipe, see Subsects. 10.3 - 10.6. In regions of very low residual gas pressures (1.0 ·
10−11 mbar < p < 1.0 · 10−9 mbar) the trapped ions can be extracted with single isolated
clearing electrodes, see Subsect. 10.2. Continuous ion clearing in the region of solenoids is
possible using transverse cross-field drift velocities~vD = ~E × ~B/B2, see Sect. 11..

Counteracting trapped ion effects near the internal PANDA target is treated in Sect. 12..
The residual gas pressure is very high (1.0·10−9 mbar < p < 6.0·10−5 mbar) near the PANDA
target, i.e. betweens = 488 m ands = 532 m. Continuous clearing electrodes can be used in
order to counteract the very high production of trapped ionsand to keep the neutralizationη(s)
sufficiently low, i.e.η(s) < 1.0 · 10−2, see Subsect. 12.2.

Continuous clearing electrodes all along the beam pipe nearthe PANDA target would be
the optimum solution of the trapped ion problem. However, itis necessary to consider the con-
straints due to the PANDA experiment. The possibility to abandon continuous ion clearing in
the immediate neighbourhood of the PANDA target, i.e. in theregion of the target solenoid and
the compensation solenoid is discussed in Subsects. 12.3 and 12.4. The resulting neutralization
η(s) is shown in Fig. 21, see Subsect. 12.5.

The remaining PANDA target regions betweens = 488 m ands = 508 m and between
s = 512.5 m ands = 532 m consist of a dipole magnet (PANDA Forward Spectrometer), drift
spaces, quadrupole magnets and two correction dipole magnets of the PANDA chicane. There,
the ion-production rate is still rather high and continuousclearing electrodes are mandatory in
order to avoid dangerous ion-beam oscillations, see Subsects. 12.6 - 12.9.

The mitigation of trapped ion effects in the region of the dipole magnets in the arcs is
treated in Sect. 13.. In principle, the cross-field drift velocity vD = Ex/By can be used in order
to guide the trapped ions to the entrance and exit of the 4.2 m long dipole magnets. But this
method is not very efficient since the cross-field drift velocities are very low. Therefore, it has
already been planned to improve the UHV vacuum considerably[23] by sputtering thin-film
NEG11 coatings onto the surface of the vacuum chamber and by using heating jackets along the
beam tubes. The aim is to achieve residual gas pressures of about1.0 · 10−11 mbar.

Unfortunately, the cross-field drift velocityvD = Ex/By vanishes at the beam center.
Therefore, ions created near the beam center are practically not cleared, see Subsect. 13.2. In
order to avoid the build-up of a trapped ion peak in the beam center we suggest to shift the beam

11Non-Evaporating Getter Material
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periodically back and forth, see Subsects. 13.3 - 13.6.

The highest clearing efficiencies can be achieved using continuous clearing electrodes
inside the 4.2 m long dipole magnets, see Subsect. 13.7. The trapped ions can be extracted
vertically along the magnetic field lines. As discussed in Subsect. 10.3 continuous clearing
electrodes can be produced by plasma spraying a 0.1 mm thick and 30 mm wideAl2O3 layer at
the bottom of the beam pipes. On top of the isolating layer a 25mm wide highly resistive thick
film coating can be applied. Using clearing voltages of -1.0 kV yields electric fields of about
640 V/m at the beam center. The resulting clearing rates are so high that even UHV pressures
of less than1.0 · 10−9 mbar can be tolerated.

Another possibility to achieve continuous ion clearing in dipole magnets has been dis-
cussed in Subsect. 13.8. Thereby, the beam pipe consists of two metallic half-cylinders sep-
arated by high-resistive-glass insulators. Applying opposite voltages+U0 and−U0 yields an
electric field componentEy which can be used in order to extract the produced ions.

Anyway, we recommend the installation of continuous clearing electrodes inside the
dipole magnets, even if they are not needed at the beginning.They can always be used if
problems with the ultra-high vacuum occur.

The possibility to damp coherent ion-beam oscillations is discussed in Sect. 14.. These
collective oscillations of the beam center (dipole mode) orthe beam shape (quadrupole mode)
grow exponentially due to the interaction of the beam with the trapped ions. The most danger-
ous mode is the dipole mode, i.e. the coherent oscillation ofthe beam center. Under specific
conditions the coherent instabilities can be suppressed byLandau damping if the tune spreads
of beam and ion oscillations are sufficiently large, see Subsect. 14.3. Another possibility is the
active damping of beam instabilities using feedback systems, see Subsect. 14.6.

Under certain conditions one can also use beam shaking in order to remove trapped ions
and to decrease the neutralizationη in regions where the clearing electrodes cannot remove
trapped ions sufficiently, see Sect. 15.. Transverse kickers can be used in order to excite coherent
oscillations of the beam. Thus, the beam is shaken by the applied RF field of a shaking kicker
and the oscillating beam shakes the ions. This method works if the shaking frequencyω is
close to one of the sideband frequencies(n−Q)ω0 (’slow wave’ frequency) or(n+Q)ω0 (’fast
wave’ frequency) and close to the ion bounce frequencyqcω0. A consequence of the resonance
condition is the fact that clearing of trapped ions by shaking is only possible at specific positions
in the ring and for light ions like H+ and H+

2 . Heavier ions cannot be removed by beam shaking.
In addition, we mention that beam shaking deteriorates the transverse beam quality. This fact
must be taken into account when applying beam shaking in the HESR ring.

The problem of trapped ions in the electron cooler (EC) beam and methods to counteract
trapped ion effects are discussed in Sects. 16. - 18.. The EC beam is guided by a 24 m long
solenoid with a constant beam radius of 5 mm. The EC beam current (1.0 A) is very much larger
than the current of the circulating antiproton beam. As a consequence, the EC potential well acts
as a very deep pocket for trapped ions. The trapped ions perform modified cyclotron motions
around the magnetic field lines of the solenoid and magnetronmotions around the central axis
of the EC beam. According to the electron cooler design study[43] it is planned to remove the
trapped ions with clearing electrodes near the entrance andexit of the straight cooling section.
The resulting mean neutralizationη from H2, CO and CH4 amounts to about 1.2 %.

However, it is not always desirable to keep the beam neutralization as small as possible.
Especially at low energies the drawbacks of the large space-charge potential of the EC beam are
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rather large, see Sect. 17.:
(i) The cooling efficiency is deteriorated by the space-charge potential of the electron beam
which causes a significant radial dependence of the electronenergies, see Subsection 17.1.
(ii) The cooling efficiency is deteriorated by the azimuthalcross-field drift velocity of the elec-
trons which is caused by the electric field of the electron beam, see Subsection 17.2.

Both effects can be mitigated by adjusting a certain neutralization of the electron beam
at low energies, see Sect. 18.. The optimum neutralization is reached ifη = 1/γ2

e , see Sub-
sect. 18.4. Then, the azimuthal cross-field drift velocity of the electrons is zero and the EC
space-charge potential is reduced. In order to achieve a stable neutralization withη = 1/γ2

e

one can use the Ion-Cyclotron-Resonance (ICR) heating. Thesurplus ions which are produced
continuously are heated up resonantly. To this end, the ninebeam position monitors can also be
used as ion shakers by applying the RF voltage to pairs of position pick-up electrodes. They can
be tuned to be in resonance with the characteristic cyclotron frequencies of the trapped ions.

The application of beam shakers has the additional benefit that instabilities of the neutral-
izationη can be prevented. Such instabilities can occur at large EC beam currents [49, 50, 51].
They cause energy jumps of the electron beam due to sudden changes of the space-charge po-
tential. This harmful effect can only be avoided by a strict control and stabilization of the
neutralization level.
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