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Ion Trapping in the High-Energy Storage Ring HESR

Frank Hinterberger
Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Germany

Abstract
The problem of ion trapping in the high-energy storage ring HESR is
studied in the present report. Positive ions are trapped in the negative
potential well of the antiproton beam. The ions are producedby the
interaction between the antiproton beam and the residual gas. The ad-
verse effects of ion trapping like tune shifts, tune spreadsand coherent
instabilities are reviewed. The ion production rate by ionization of the
residual gas molecules is estimated. The negative potential well and the
corresponding electric fields of the antiproton beam are evaluated in or-
der to study the transverse and longitudinal motion of the ions and the
accumulation in trapping pockets. The removal of ions can beachieved
using clearing electrodes and under certain conditions resonant trans-
verse beam shaking. Diagnostic tools and measurements of trapped ion
effects are sketched.
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1. Introduction

The High-Energy Storage Ring (HESR) of the future International Facility for Antiprotons and
Ion Research (FAIR) at GSI in Darmstadt is designed as synchrotron and storage ring for an-
tiprotons in the momentum range 1.5 – 15 GeV/c [1, 2]. Internal target experiments with an-
tiprotons are planned by the PANDA collaboration [3]. In addition, two other collaborations
(PAX [4, 5], ASSIA [6]) proposed spin physics experiments with polarized antiprotons. In the
present work the problem of ion trapping by the antiproton beam is studied. In this context we
mention that estimates of trapped ion effects were made in two previous reports [7, 8].

The effects of trapped ions and trapped electrons have been observed in many accelerators
and storage rings [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The beam particles interact with
the molecules of the residual gas in the vacuum and produce positive ions and electrons. Elec-
trons are trapped in positive particle beams while ions are trapped in negative particle beams.
The trapped particles can cause emittance growth, instability and beam loss. The CERN An-
tiproton Accumulator (AA), the Fermilab Accumulator and the Fermilab Recycler Ring (RR)
have observed the adverse effects of trapped ions, and have used various methods in order to
remove the ions.

In the present report we evaluate the trapped ion effects which are caused by the circulat-
ing antiproton beam. The special effects due to the electronbeam of the electron cooler (EC)
are discussed in Sect. 14..

2. Beam Parameters and HESR Lattice

The layout of the HESR ring is shown in Fig. 1. In Fig. 2, the lattice functionsβx, βy and the
horizontal dispersionDx of the standard HESR optics ’optic4’ withγtr = 6.2, Qx = 7.5995
andQy = 7.6216 are shown as a function ofs with s = 0 at the beginning of the upper arc. The
beta functions amount to about 175 m in the region of the electron cooler and about 2 m in the
region of the PANDA target. In Figs. 3 and 4, the beam envelopes, i.e. the 1-sigma valuesσx

andσy, are plotted as a function ofs for 1.0 · 1011 antiprotons at 15 GeV/c.

For the calculation of the negative potential well of the antiproton beam we need the beam
envelopesσx andσy as a function ofs. We perform the calculations using the standard optics
’optic4’ and the HESR List of beam parameters from July 2011 [21]. We calculate the en-
velopes assuming stochastic cooling. The effective targetdensity of the PANDA target will be
4.0 · 1015 hydrogen atoms per cm2. The stochastic cooling will be adjusted such that the trans-
verse emittance growth by the beam-target interactions is compensated and the highest-possible
momentum resolution is achieved. Therefore, the transverse rms emittances stay constant and
we can assume normalized rms emittancesǫx andǫy as given by the RESR beam at HESR injec-
tion. The longitudinal emittance is characterized by a longbunch of constant lengthL1 = 0.9C
and the relative rms momentum spreadδ. The rms values ofδ which can be achieved with
stochastic cooling are taken for the calculation of the envelopes. They are listed below. The
corresponding momentum spreads are lesser than the momentum spreads at injection.

We assume the geometric rms emittances without cooling as given by the RESR beam
at HESR injection. The kinetic energy at injection amounts to 3.0 GeV, the corresponding
beam momentum is 3.825 GeV/c andβγ = 4.077. The normalized geometric rms emittances1

ǫnormalized
x,y amount to 1.0 mm mrad for3.5 · 1010 antiprotons in the ring. They scale as(Np̄/3.5 ·

1010)4/5 with the numberNp̄ of antiprotons. The relative rms momentum spread scales as

1ǫnormalized
x,y = ǫx,yβγ
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(Np̄/3.5 · 1010)2/5. Taking as reference values the emittancesǫ3 and relative beam spreadsδ3 at
injection energyTp̄ = 3.0 GeV one has

• Np̄ = 1.0 · 1011: ǫ3 = 0.58 mm mrad,δ3 = 0.50 · 10−3,
• Np̄ = 1.0 · 1010: ǫ3 = 0.090 mm mradδ3 = 0.20 · 10−3.

Accelerating or decelerating the injected beam yields geometric rms emittancesǫ = ǫx = ǫy

and relative rms momentum spreadsδ which scale according to the adiabatic damping law,

ǫ = ǫ3
β3γ3

βγ

δ = δ3
β3γ3

βγ
(1)

As mentioned, these values are kept constant by stochastic cooling during the measurements
with the PANDA target.

At the beginning, the HESR will be operated with the collector ring (CR) as injector.
Then, the start rms emittance at 3 GeV will beǫ3 = 1.25 mm mrad and the relative rms mo-
mentum spreadδ3 = 0.25 · 10−3. We assume the barrier bucket mode of operation with a bunch
lengthL1 = 0.9C and a beam free gap of lengthL2 = 0.1C. The circumferenceC amounts to
575.2 m.

Assuming Gaussian beam distributions the envelopes are represented by the one standard
deviationsσx(s) andσy(s),

σx =
√

ǫxβx + (Dxδ)2

σy =
√

ǫyβy. (2)

Here,ǫx andǫy represent the geometrical rms emittances,βx andβy the horizontal and vertical
beta-functions,δ the rms width of the relative momentum deviation andDx is the horizontal
dispersion. The momentum range of the HESR ring is between 1.5 GeV/c and 15 GeV/c.
Usually, four standard momenta are considered. Here, we list the beam parametersǫ and δ
which are used for the calculation of the envelopes assuming1011 antiprotons in the HESR
ring,

1. S1:p = 1.5 GeV/c,T = 0.831 GeV,ǫ = 1.48 mm mrad,δ = 1.9 · 10−4,
2. S2:p = 3.825 GeV/c,T = 3.0 GeV,ǫ = 0.58 mm mrad,δ = 1.4 · 10−4,
3. S3:p = 8.889 GeV/c,T = 8.0 GeV,ǫ = 0.28 mm mrad,δ = 1.2 · 10−4,
4. S4:p = 15 GeV/c,T = 14.091 GeV.ǫ = 0.148 mm mrad,δ = 0.9 · 10−4.

The corresponding list for1010 antiprotons reads

1. S1:p = 1.5 GeV/c,T = 0.831 GeV,ǫ = 0.23 mm mrad,δ = 1.1 · 10−4,
2. S2:p = 3.825 GeV/c,T = 3.0 GeV,ǫ = 0.089 mm mrad,δ = 5.1 · 10−5,
3. S3:p = 8.889 GeV/c,T = 8.0 GeV,ǫ = 0.043 mm mrad,δ = 5.4 · 10−5,
4. S4:p = 15 GeV/c,T = 14.091 GeV.ǫ = 0.023 mm mrad,δ = 3.9 · 10−5.
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Fig. 1: Layout of the HESR ring.

7



Fig. 2: The lattice functionsβx, βy and the dispersionDx of the standard HESR optics withγtr = 6.2.
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Fig. 3: Horizontal beam envelopeσx(s) for 1.0 · 1011 antiprotons at 15 GeV/c. The electron cooler is located

betweens = 207.390 m ands = 231.890 m. The PANDA target is located ats = 509.481 m.
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Fig. 4: Vertical beam envelopeσy(s) for 1.0 ·1011 antiprotons at 15 GeV/c. The electron cooler is located between

s = 207.390 m ands = 231.890 m. The PANDA target is located ats = 509.481 m.
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3. Electric Field and Potential Well of the Antiproton Beam

3.1 Electric potential well

The potential well of the antiproton beam can be calculated for various particle distributions
and beam pipe profiles. The simplest case is to assume a round beam pipe of radiusrc and a
round beam of constant density within the radiusa. The linear charge densityλ is

λ = −Np̄e

L1

. (3)

Here,Np̄ is the number of stored antiprotons,e the elementary charge andL1 the length of the
barrier bucket bunches, e.g.L1 = 0.9C. The potentialU(r), with the constraintU(rc) = 0 at
the surface of the beam pipe, is given by

U(r) =
λ

2πǫ0
ln

rc

r
r ≥ a,

U(r) =
λ

2πǫ0

[

1

2
− r2

2a2
+ ln

(

rc

a

)

]

r ≤ a. (4)

We note thatλ/(2πǫ0) = −0.556 V for 1.0 · 1011 antiprotons in the ring. The corresponding
electric fieldEr reads

Er(r) =
λ

2πǫ0

1

r
r ≥ a,

Er(r) =
λ

2πǫ0

r

a2
r ≤ a. (5)

Note the minus sign in the definition of the linear charge density! Therefore, the potentialU(r)
is negative and the electric fieldEr is directed to the beam center. The absolute value of the
beam potential is maximal at the beam centerr = 0,

U(0) =
λ

2πǫ0

[

1

2
+ ln

(

rc

a

)]

. (6)

Thus, the local depth of the beam potential depends on the ratio of the beam pipe radiusrc and
the beam radiusa. The absolute value of the electric field is maximal at the beam edger = a,

Er(a) =
λ

2πǫ0

1

a
. (7)

For a bi-Gaussian distribution of the beam particles with the rms valuesσx andσy and a
round beam pipe with inner radiusrc, the potential U(x,y) can be calculated using the equations
in the appendix of Zhou’s PhD thesis [16]. We are only interested in the valuesU(s) at the
beam center(x, y, s) = (0, 0, s) which can be calculated using

U(s) = U(0, 0, s) =
λ

4πǫ0

[

γ + ln

(

2 r2
c

(σx + σy)2

)]

, (8)

whereγ ≈ 0.577 is Euler’s constant. The profile2 of the beam pipe radiusrc is shown in Fig. 5.
The resulting values shown in Fig. 6 are calculated assumingthe standard optics,pp̄ = 15 GeV/c

2If the electron cooler is installed the radiusrc amounts to 100 mm in the region of the electron cooler. The
resulting modifications are discussed in Sect. 14..
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andNp̄ = 1.0 ·1011 and a continuous inner beam pipe radius of 44.5 mm outside of the PANDA
target region (see Fig. 5). The potential distribution has minima at positions where the beam has
sharp waists (more precisely where the ratiorc/(σx + σy) has a local maximum). The positive
ions are accelerated in the longitudinal direction towardsthose potential minima which act as
trapping pockets. These are the ideal locations for the clearing electrodes.

The magnitude of the potentialU(x, y, s) and the potential depthU(s) depend strongly
on the numberNp̄ of stored antiprotons. Sinceλ ∝ Np̄ we getU(s) ∝ Np̄ if the dependence
of (σx + σy) on Np̄ in the logarithmic term in Eq. (8) is ignored. Thus forNp̄ = 1.0 · 1010,
the potential depthU(s) is a factor of ten lesser. Taking the dependence of(σx + σy) on Np̄

(σx,y ∝ N
2/5
p̄ , see Sect. 2.) in the logarithmic term into account yields a reduction factor of

about eight.

3.2 Transverse electric field componentsEx and Ey

The transverse electric field near the beam center, which is needed in order to estimate the oscil-
lation frequency of the trapped ions, can be calculated using the following linear approximation

Ex(x, y) =
λ

2πǫ0

1

(σx + σy)

x

σx

,

Ey(x, y) =
λ

2πǫ0

1

(σx + σy)

y

σy

. (9)

The absolute value of the transverse electric field is maximal on the short axis of the
elliptical beam distribution. For instance ifσy < σx, the maximum is neary = 1.6σy and can
be calculated using the equation (2.6) in Zhou’s thesis [16]. The electric fields of the clearing
electrodes should be essentially larger than the maximum values of the transverse electric field
in order to extract the positive ions out of the beam. Therefore we calculate a safe upper limit
Emax of the transverse electric field distribution using the following simple formula

Emax =
|λ|

2πǫ0

1√
2
√

σ2
x + σ2

y

. (10)

This equation holds true for the maximal transverse electric field component|Ey,max| if σy < σx

and for the maximal transverse electric field component|Ex,max| if σx < σy. The resulting
valuesEmax shown in Fig. 7 are calculated assuming the standard optics,pp̄ = 15 GeV/c and
Np̄ = 1.0 · 1011. If positive ions are trapped within the negative antiproton beam the potentials
and the electric fields are reduced by the factor(1 − η) whereη is the neutralization factor.

If the electron cooler is installed the effects of the electron beam have to be taken into
account. The resulting modifications are discussed in Sect.14..
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Fig. 5: Inner beam pipe radiusrc(s) (without electron cooler). Left: the complete HESR ring from s = 0 m to

s = 575 m. Right: the PANDA target region froms = 500 m to s = 525 m. The PANDA target is located at

s = 509.481 m.

Fig. 6: Central beam potentialU(s) assuming the standard optics,L1 = 0.9C, pp̄ = 15 GeV/c,Np̄ = 1.0 · 1011

andη = 0. Left: the complete HESR ring froms = 0 m to s = 575 m. Right: the PANDA target region from

s = 500 m to s = 525 m.
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Fig. 7: Upper limitEmax of the transverse electric field distribution of the antiproton beam assuming the standard

optics,L1 = 0.9C, pp̄ = 15 GeV/c,Np̄ = 1.0 · 1011 andη = 0. Left: the complete HESR ring froms = 0 m to

s = 575 m. Right: the PANDA target region froms = 500 m tos = 525 m.
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3.3 Longitudinal electric field componentsEs

It is important to study the longitudinal electric field componentsEs of the antiproton beam. In
drift spaces (and solenoids) the produced ions are accelerated in the longitudinal direction by
those field components towards the potential minima. Knowing the central potentialU(s) in
fine stepssi one can deduce numerically the longitudinal electric field componentEs,

Es = −Ui+1 − Ui

si+1 − si
. (11)

The resulting longitudinal electric field along the beam axis is shown in Fig. 8. The longitudinal
field Es is directed in the positive or negative direction dependingon the local gradient of the
central potential. The zero crossings mark the positions ofmaxima and minima of the beam
potentialU(s). The longitudinal electric field components vary on the average between a few
mV/m and about 100 mV/m. The peak-like structures near the PANDA target are due to sudden
changes of the inner radius of the beam pipe which are listed in the following list.

1. Betweens = 506.606 m ands = 506.856 m, the inner radius increases from 44.5 mm to
75 mm within 0.25 m yielding a longitudinal field excursion ofup to +1.29 V/m which is
large and has the same sign as the preceding longitudinal field of about +0.12 V/m.

2. Betweens = 509.231 m ands = 509.481 m, the inner radius decreases from 75 mm to
10 mm within 0.25 m yielding a longitudinal field excursion ofup to -7.5 V/m which is
very large and has an opposite sign compared to the precedinglongitudinal field values
of about +0.01 V/m.

3. Betweens = 509.631 m ands = 509.731 m, the inner radius increases from 10 mm
to 20 mm within 0.10 m yielding a longitudinal field excursionof +3.79 V/m with an
opposite sign with respect to the neighbouring field values of about -0.13 V/m.

4. Betweens = 510.631 m ands = 510.731 m, the inner radius increases from 20 mm
to 32 mm within 0.10 m yielding a longitudinal field excursionof +2.48 V/m with an
opposite sign with respect to the neighbouring field values of about -0.13 V/m.

5. Betweens = 512.331 m ands = 512.581 m, the inner radius increases from 32 mm to
52 mm within 0.25 m yielding a longitudinal field excursion ofup to +1.35 V/m again
with an opposite sign with respect to the neighbouring field values of about -0.12 V/m.

6. Betweens = 512.781 m ands = 513.181 m, the inner radius decreases from 52 mm to
50 mm within 0.40 m yielding a longitudinal field excursion ofup to -0.22 V/m in the
same direction as the neighbouring field values of about -0.11 V/m.

7. Betweens = 515.631 m ands = 515.831 m, the inner radius increases from 50 mm to
90 mm within 0.20 m yielding a longitudinal field excursion ofup to +2.02 V/m with an
opposite sign with respect to the neighbouring field values of about -0.08 V/m.

8. Betweens = 520.031 m ands = 520.231 m, the inner radius increases from 90 mm to
125 mm within 0.20 m yielding a longitudinal field excursion of up to +1.01 V/m with an
opposite sign with respect to the neighbouring field values of about -0.048 V/m.

9. Betweens = 521.731 m ands = 522.031 m, the inner radius decreases from 125 mm
to 75 mm within 0.30 m yielding a longitudinal field excursionof up to -1.52 V/m in the
same direction as the neighbouring field values of about -0.0428 V/m.

10. Betweens = 522.131 m ands = 522.231 m, the inner radius decreases from 75 mm to
44.5 mm within 0.10 m yielding a longitudinal field excursionof up to -2.94 V/m in the
same direction as the neighbouring field values of about -0.042 V/m.
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The longitudinal electric field components can be used in order to accelerate trapped ions
towards clearing electrodes. This is possible in the regionof straight sections which consist of
drift spaces, quadrupole magnets, sextupole magnets and solenoids. However, it is not possible
to use this effect in the region of dipole magnets. There, theions gyrate around the magnetic
field lines. Finally, we note that the longitudinal electricfield componentsEs depend strongly
on the numberNp̄ of stored antiprotons. ForNp̄ = 1.0 · 1010, the potential depths and there-
with the field componentsEs decrease by about a factor of eight, see discussion at the endof
Subsect. 3.1.

16



Fig. 8: Longitudinal electric field componentEs of the antiproton beam assuming the standard optics,L1 = 0.9C,

pp̄ = 15 GeV/c andNp̄ = 1.0 · 1011.The modification of the beam potential by the neutralization η is neglected.

Top: the complete HESR ring froms = 0 m to s = 575 m. Bottom: the PANDA target region froms = 485 m to

s = 535 m. The peak-like structures near the PANDA target are due to sudden changes of the inner radius of the

beam pipe.
17



4. Residual Gas Pressure

In order to estimate the ionization of the residual gas molecules one needs the densityρm =
Nm/V of the residual gas molecules. Outside of the PANDA target region the UHV vacuum
pressure amounts to≤ 1.0 · 10−9 mbar which can be achieved without heating the beam pipes.
There is a large pressure bump in the region of the PANDA target where the pressure rises up to
about6 · 10−5 mbar [22, 23]. The target is located ats = 509.481 m. The pressure as a function
of the positions in the ring is shown in Fig. 9. The residual gas contains mainly H2 molecules.
Therefore, the beam neutralization by trapped ions is dominated by H+

2 ions. The interaction of
the beam with trapped H+2 ions yields also a certain amount of trapped H+ ions in the beam. In
addition, there are always CO molecules present in the UHV. The CO molecules are produced
by surface processes near gauges and pumps. Surface hydroxides are reduced by hot electrons
or ions (in gauges and ion pumps) and liberate oxygen which combines with carbon on surfaces
(which is always there also) [24].

In order to cure the adverse effects of trapped ions a very good UHV vacuum is needed. In
this context, we mention a recommendation of Alain Poncet [24] who recommends the instal-
lation of bake-out jackets from the start (even if not used atthe beginning ”cheap” start with no
power and control equipment for bake-out). The baked UHV vacuum system at the CERN An-
tiproton Accelerator was operated at pressures of about1.3 · 10−11 mbar! But the main problem
of HESR is the huge pressure bump in the region of the PANDA target.

Fig. 9: Vacuum pressurep(s). Left: the complete HESR ring froms = 0 m to s = 575 m. Right: the PANDA

target region froms = 485 m to s = 535 m. The PANDA target is located ats = 509.481 m.
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5. The Ionization Process

5.1 Energy transfer

The circulating antiprotons interact with the electrons ofthe residual gas molecules. The dif-
ferential cross section for an ionization process with an energy transfer betweenE andE + dE
may be written

dσ

dE
= 2 π

mec
2

β2
r2
e

Z

A

(

1 − β2 E

Emax

)

1

E2
. (12)

Here,Z/A refers to the residual gas molecule. The constants are the electron mass,mec
2 =

0.511 MeV, the classical electron radius,re = 2.818 · 10−13 cm and the maximum energy
transferEmax,

Emax =
2 mec

2β2γ2

1 + 2 γ(me/m) + (me/m)2
. (13)

Here,me is the electron mass,m the antiproton mass andβ andγ depend on the beam energy.
We get for instance for a kinetic energy of 8.0 GeVβ = 0.9945, γ = 9.526 andEmax =
91.7 MeV. This numerical example shows that the energy transfer can be very high. But due to
the1/E2 dependence of the differential cross section, ionization events occur mainly at rather
low transfer energies. It is interesting to evaluate the mean energy transfer̄E,

Ē =
∫ Emax

I

dσ

dE
EdE /

∫ Emax

I

dσ

dE
dE. (14)

The minimum energy transfer is not zero. It is given by the mean excitation energyI of the
residual gas molecule. An ionization occurs only if the energy transferred to the electron is
above the ionization potential. Solving (14), we get

Ē = I
(

ln
Emax

I
− β2

)

. (15)

For H2 gas moleculesI amounts to 19.2 eV. For an antiproton beam of 8.0 GeV kinetic energy
and H2 molecules we get a mean energy transfer

Ē = 430 eV. (16)

This example shows that the mean electron energies from ionization processes are much larger
than the mean thermal energy of 0.039 eV at 300 K. The corresponding rms velocity amounts
to about1.23 · 107 m/s. Thus, the electrons leave the potential well of the antiproton beam with
rather high velocities.

In this context we mention that the energy transfer to the ionis negligibly small. There-
fore, the rms velocities of the ions can be estimated using the mean thermal energy of 0.039 eV
at 300 K, see Subsection 7..

5.2 Ionization cross section

The integrated ionization cross section depends on the molecules in the residual gas and the
velocity β = v/c of the beam particles. It does not depend on the charge and themass of the
beam particles. Using Bethe’s formula it can be described by

σ = 4π

(

h̄

mec

)2 {

M2

[

1

β2
ln

(

β2

1 − β2

)

− 1

]

+
C

β2

}

, (17)
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where

4π

(

h̄

mec

)2

= 1.874 · 10−24 m2. (18)

The constants are listed in Table 1. The resulting ionization cross sections are listed in Table 2
for different molecules and four beam momenta. The cross sections for CO and N2 are nearly
equal.

Table 1: The constantsM2 andC for the calculation of the ionization cross section.

Molecule M2 C Z A

H2 0.695 8.115 2 2
CH4 4.23 41.85 10 16
H2O 3.24 32.26 10 18
N2 3.74 34.84 14 28
CO 3.70 35.14 14 28
O2 4.20 38.80 16 32

CO2 5.75 55.92 22 44

Table 2: Ionization cross sections.

pp̄ (GeV/c) σ(H2) (m2) σ(CH4) (m2) σ(H2O) (m2) σ(CO) (m2) σ(O2) (m2)

1.500 2.16 · 10−23 1.12 · 10−22 8.60 · 10−23 9.37 · 10−23 1.04 · 10−22

3.825 1.87 · 10−23 9.88 · 10−23 7.61 · 10−23 8.35 · 10−23 9.27 · 10−23

8.889 2.00 · 10−23 1.07 · 10−22 8.27 · 10−23 9.11 · 10−23 1.01 · 10−22

15.000 2.12 · 10−23 1.15 · 10−22 8.84 · 10−23 9.78 · 10−23 1.09 · 10−22

5.3 Ionization rate

The production of ions, i.e. the ionization ratedNion/dt, depends on the local densityNm/V
of the molecules in the residual gas of the beam pipe vacuum, the beam current, i.e. the number
of stored antiprotonsNp̄ times the revolution frequencyf and the ionization cross sectionσ. In
order to get a rough estimate, we first calculate the ionization rate assuming a constant vacuum
pressure of about1.0 · 10−9 mbar everywhere in the HESR ring. At this pressure the residual
gas consists mainly of hydrogen molecules. Therefore, we assume a partial hydrogen pressure
p = 1.0 · 10−9 mbar =1.0 · 10−7 Pa. The corresponding number of hydrogen molecules per
volumeρm = Nm/V reads

ρm =
Nm

V
=

p

kT
. (19)

Here,p is the partial pressure,k the Boltzmann constant and T the absolute temperature. With
p = 1.0 · 10−9 mbar =1.0 · 10−7 Pa andT = 293 K we get

ρm = 2.47 · 1013 m−3. (20)
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The ionization rate of singly ionized molecules can be calculated using

dNion

dt
= σNp̄fρmC = Np̄σρmβc. (21)

Here,Np̄ is the number of antiprotons in the ring,f the revolution frequency,C the circum-
ference andβc the velocity,βc = Cf . Assuming the maximum momentum of 15 GeV/c we
get for H2 molecules (ρm = 2.47 · 1013 m−3) with C = 575.1894 m, f = 5.202 · 105 s−1 and
Np̄ = 1.0 · 1011

dNion

dt
= 1.57 · 1010 s−1. (22)

If there are no losses one has1.0 · 1011 positive ions in a very short time, i.e. within6.4 s and,
taking the short time gap of the barrier bucket bunches into account, the negative space charge
of the beam is fully neutralized within 7.1 s. In the region ofthe PANDA target, the residual gas
pressure is much higher and the neutralization of the beam isachieved in a much shorter time.

Before we discuss the local ionization rate, we estimate theionization rate of CO molecules
assuming a typical partial pressure of1.0 · 10−10 mbar, i.e. 10 % of1.0 · 10−9 mbar. We note
that the ionization cross section of the heavier molecules is larger than that of hydrogen. Thus,
we get

dNion

dt
= 0.70 · 1010 s−1. (23)

Taking such a contribution into account the total ionization rate increases by about 45 % and
amounts to2.27 · 1010 s−1. Without losses1.0 · 1011 positive ions would be produced within
4.4 s.

These first estimates show that it is mandatory to remove the ions quickly, i.e. to suppress
the accumulation of ions in the potential well of the beam. This is necessary in view of the
adverse effects of positive ions in the stored antiproton beam.

5.4 Local ionization rate, neutralization rate and neutralization time

The ionization rate depends on the local pressure of the residual gas molecules. In the region
of the PANDA target the pressure is several orders of magnitude higher than1.0 · 10−9 mbar.
Thus, the molecule densityρm depends on the positions, ρm = ρm(s). In order to describe the
ionization rate as a function of the positions in the ring, we define the ionization rate per length
dṄion/ds and write

dṄion

ds
= σNp̄fρm(s). (24)

Taking the effect of different moleculesi in the residual gas into account the local ionization
rate may be written

dṄion/ds =
n
∑

i=1

σiNp̄fρm,i(s), (25)

whereσi is the ionization cross section andρm,i the number of moleculesi per volume.

The local neutralization factorη is defined as the number of positive elementary charges
per meterdNion/ds divided by the number of negative antiprotons per meter. Assuming that
the ions are singly charged, we can write

η =
dNion

ds

L1

Np̄
. (26)
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If there is a build-up of multiply charged ions the last equation has to be modified accordingly.
Neglecting losses, the corresponding local neutralization rateη̇ may be written

η̇ =
dṄion

ds

L1

Np̄

= σρm(s)βc
L1

C
. (27)

Here,L1 is the length of the barrier bucket bunch andNp̄/L1 denotes the line density of the
beam particles. It is interesting to note that the number of antiprotons cancels if neutralization
ratesη̇ and the resulting neutralizationη are considered. In the literature, the corresponding
neutralization timeTn is defined as the time it takes to achieve full neutralizationof the beam
bunches, if one starts withη = 0 and ion losses are neglected. Then, the line density of antipro-
tons is compensated by a corresponding line density of positive ions. The neutralization time
Tn is given by

Tn =
1

η̇
=

1

σρm(s)βc

C

L1
. (28)

For a partial pressure of1.0 · 10−9 mbar for hydrogen molecules andL1/C = 0.9 one gets

η̇ = 0.141 s−1, Tn = 7.1 s (1.0 · 10−9 mbar). (29)

For a partial pressure of1.0 · 10−5 mbar for hydrogen molecules one gets

η̇ = 1410 s−1, Tn = 7.1 · 10−4 s (1.0 · 10−5 mbar). (30)

That means, if losses are neglected, the local neutralization η amounts to 14.1 % after 0.1 ms
and the beam is fully neutralized in a very short time period of 0.71 ms. In Sect. 6.1 we define
the so-called production timeTp. This quantity is equivalent to the neutralization timeTn, i.e.
Tp = TnL1/C.
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6. Production Time Tp, Clearing Time Tc and Neutralization η

6.1 Production timeTp

In order to estimate the amount of neutralization we define the production timeTp, the produc-
tion rateRp, the clearing timeTc and the clearing rateRc. The production timeTp refers to
the ionization produced by one single antiproton in the beam. It is defined as the time which is
needed to neutralize the negative elementary charge of the antiproton. The production rateRp

is the inverse ofTp. Taking the effect of different moleculesi in the residual gas into account
the production rate may be written

Rp =
n
∑

i=1

σiρm,iβc, (31)

whereσi is the ionization cross section andρm,i the number of moleculesi per volume. If the
ionization process is dominated by the production of singlycharged H+2 ions we haveRp =
σρmβc. The resulting ionization rate is given by the numberNp̄ of antiprotons in the ring and
the production rateRp

dNion

dt
= Np̄Rp. (32)

Finally, we note

Tp =
1

Rp
. (33)

We mention that the production timeTp is proportional to the neutralization timeTn defined
in Eq. (28), i.e. Tp = TnL1/C. Thus, the production time is simply the time which one
single antiproton needs in order to produce one single ion (if singly charged ions dominate the
ionization process). We note that the production timeTp depends on the local partial densities

Fig. 10: Production timeTp(s) for H+

2 ions assuming the standard optics,L1 = 0.9C, pp̄ = 15 GeV/c and

Np̄ = 1.0 · 1011. Left: the complete HESR ring froms = 0 m to s = 575 m. Right: the PANDA target region

from s = 485 m to s = 535 m. The PANDA target is located ats = 509.481 m.
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ρm,i(s) and therewith on the local partial pressurespi(s). Since the residual vacuum of the
HESR ring is dominated by hydrogen molecules H2 we assume in the following estimates only
the effect of hydrogen molecules. In this context, we recallthat other molecules like for instance
N2 and CO exhibit larger ionization cross sections (see Table 2). They should be taken into
account if the partial pressure of those molecules is substantial. In Sects. 12. and 13. the effects
of heavier molecules are estimated by assuming 20 % CO molecules, i.e. by assuming partial
pressures of0.2 · 10−9 mbar for CO and0.8 · 10−9 mbar for H2 molecules. Here we assume,
that the partial pressure of H2 molecules is practically equal to the total pressure,pH2

= p.
Then, the local production timeTp(s) is inversely proportional to the local pressurep(s). The
vacuum pressure in the HESR ring will bep = 1 · 10−9 mbar. In the PANDA target region
the pressure rises up to about6 · 10−5 mbar. In order to take this pressure bump into account
the pressure profilep(s) near the PANDA target [22, 23] has been taken into account in the
following calculations. The pressure profile is shown in Fig. 9. The resulting production time
Tp(s) is shown in Fig. 10. In the PANDA target region, the production time has a marked dip
with nearly1 · 10−4 s at the minimum. In regions with1 · 10−9 mbar, the production time
amounts to 6.4 s (at 15 GeV/c).

6.2 Clearing timeTc

The clearing timeTc refers to the time which is needed to remove one positive elementary
charge out of the beam. If singly charged ions dominate it is the time needed to remove one
single ion. In other words, the clearing timeTc defines the mean lifetime of the positive ion in
the beam. The clearing time is the inverse of the clearing rate,

Tc =
1

Rc

. (34)

The clearing rate depends on many different clearing processes,

Rc =
m
∑

i=1

Rc,i. (35)

Now, we consider the differential equation of the numberNion in the beam (again assum-
ing only singly charged ions),

dNion

dt
=

Np̄

Tp
− Nion

Tc
. (36)

The production (and the trapping) of ions is proportional tothe number of antiprotons. The
number of removed ions per second depends on the momentary number of ions in the beam.
The solution may be written

Nion(t) = Nion(0) exp(− t

Tc
) + Np̄

Tc

Tp
[1 − exp(− t

Tc
)]. (37)

Normally, the number of ionsNion(0) at the beginning is zero and the number of ions in the
beam tends asymptotically towardsNp̄Tc/Tp. That means the number of produced ions is equal
to the number of cleared ions and we have in the steady state

Nion = Np̄
Tc

Tp
= Np̄

Rp

Rc
. (38)

This steady state is quickly reached after a few time periodsTc.
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6.3 Neutralization

The resulting neutralizationη of the beam may be written

η =
Nion

C

L1

Np̄

=
L1

C

Tc

Tp

=
L1

C

Rp

Rc

. (39)

These equations can be generalized in order to describe the local neutralizationη(s),

dNion

ds
=

Np̄

C

Tc(s)

Tp(s)
=

Np̄

C

Rp(s)

Rc(s)
, (40)

η(s) =
dNion

ds

L1

Np̄

=
L1

C

Tc(s)

Tp(s)
=

L1

C

Rp(s)

Rc(s)
. (41)

Thus, one has to estimate the local clearing timeTc(s) and the local production timeTp(s) in
order to estimate the local neutralizationη(s). We note thatL1/C = 0.9 for the barrier bucket
mode of the HESR. Thus, we getη(s) = 0.9 Tc(s)/Tp(s) for the HESR.
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7. Mean Thermal Energy and Mean Thermal Velocity

Since the momentum transfer during the ionization process is negligibly small the mean energy
of the ions at the moment of ionization is equal to the mean thermal energy of the molecules,

W̄i =
3

2
kT. (42)

For T = 300 K we getW̄i = 0.039 eV. This mean thermal energy of the positive ions is small
compared to the typical well depth of the antiproton beam (1 V- 3 V). Therefore, the positive
ions can be trapped by the antiproton beam.

The corresponding mean velocities are the rms velocityvrms

vrms =

√

3kT

mi

, (43)

and the mean value of the magnitude of the velocities in one directionv̄‖,

v̄‖ =< |vx| >=< |vy| >=< |vz| >=

√

2kT

πmi
. (44)

They are listed in Tab. 3.

Table 3: Mean thermal velocities (T = 300 K, W̄i = 0.039 eV).

Particle A vrms (m/s) v̄‖ (m/s)

e 1/1836 1.17·105 5.38·104

H 1 2.73·103 1.26·103

H2 2 1.93·103 8.89·102

CH4 16 6.81·102 3.14·102

H2O 18 6.42·102 2.96·102

CO/N2 28 5.15·102 2.37·102

O2 32 4.82·102 2.22·102

CO2 44 4.11·102 1.89·102
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8. Ion Motion in Dipole, Quadrupole and Sextupole Magnets

8.1 Cyclotron motion of trapped ions in bending magnets

The motion of an ion in the vertical direction along the magnetic field ~B = (0, By, 0) of the
bending magnets is like in a field free drift space. Thus, the vertical ion oscillations due to the
vertical componentEy of the electric field of the beam are not influenced by the magnet field.
In order to extract ions out of the beam one should install clearing electrodes yielding external
electric fields in the verticaly-direction.

The motion of the ions in the transversex- and the longitudinalz-direction is far from
being free. An ion with a velocityv⊥ perpendicular to the uniform magnetic field of a bending
magnet performs the well known cyclotron motion around the magnetic field lines. The angular
frequencyωi (cyclotron frequency) is given by

ωi =
qiB

mi
. (45)

The radius of the gyration around the magnetic field depends on the velocityvi perpendicular
to the field lines,

ri =
mivi

qiB
. (46)

In the following Tables we list for some typical magnetic fieldsB the angular frequency
ωi, the revolution frequencyfi = ωi/(2π), the revolution timeTi = 1/fi and the cyclotron
radiusri = vi/ωi for H+ and H+

2 ions. Forvi, we take the mean thermal velocity in one

direction,v̄‖ =
√

2kT/(πmi), with T = 300 K (see Table 3). We mention that the cyclotron
frequenciesfi of the ions are generally quite high, and the radiiri for mean thermal velocities
v̄‖ are very small.

Table 4: Cyclotron motion of thermalH+ ions (T = 300 K): magnetic fieldB, angular frequencyωi, cyclotron

frequencyfi, revolution timeTi, radiusri.

B (T) ωi (s−1) fi (Hz) Ti (s) r̄i (m)

3.0 2.87 · 108 4.57 · 107 2.19 · 10−8 4.37 · 10−6

2.0 1.91 · 108 3.05 · 107 3.29 · 10−8 6.56 · 10−6

1.7 1.63 · 108 2.59 · 107 3.86 · 10−8 7.71 · 10−6

1.5 1.44 · 108 2.29 · 107 4.37 · 10−8 8.74 · 10−6

0.2 1.92 · 107 3.05 · 106 3.28 · 10−7 6.55 · 10−5

0.17 1.63 · 107 2.59 · 106 3.86 · 10−7 7.71 · 10−5

0.03 2.87 · 106 4.57 · 105 2.19 · 10−6 4.37 · 10−4

0.02 1.92 · 106 3.05 · 105 3.28 · 10−6 6.55 · 10−4

0.01 0.96 · 106 1.52 · 105 6.57 · 10−6 1.31 · 10−3
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Table 5: Cyclotron motion of thermalH+

2
ions (T = 300 K): magnetic fieldB, angular frequencyωi, cyclotron

frequencyfi, revolution timeTi, radiusri.

B (T) ωi (s−1) fi (Hz) Ti (s) r̄i (m)

3.0 1.44 · 108 2.29 · 107 4.37 · 10−8 6.18 · 10−6

2.0 9.60 · 107 1.53 · 107 6.54 · 10−8 9.27 · 10−6

1.7 8.14 · 107 1.30 · 107 7.72 · 10−8 1.09 · 10−5

1.5 7.18 · 107 1.14 · 107 8.75 · 10−8 1.24 · 10−5

0.2 9.58 · 106 1.52 · 106 6.56 · 10−7 9.27 · 10−5

0.17 8.14 · 106 1.30 · 106 7.72 · 10−7 1.09 · 10−4

0.03 1.44 · 106 2.29 · 105 4.37 · 10−6 6.18 · 10−4

0.02 9.58 · 105 1.52 · 105 6.56 · 10−6 9.27 · 10−4

0.01 4.79 · 105 7.60 · 104 1.31 · 10−5 1.85 · 10−3

8.2 ~E × ~B/B2 cross-field drift velocity in dipole magnets

Now, we discuss the combined effect of an electric field~E and a magnetic field~B, the so-called
cross-field drift velocity~vD. The cross-field drift velocity~vD arises, if~E is perpendicular to~B,

~vD =
~E × ~B

B2
. (47)

Thus, for an electric field~E = (Ex, 0, 0) directed in the positive/negativex-direction and a
magnetic field in they-direction, ~B = (0, By, 0), the cross-field drift velocity~vD is directed
into the positive/negativez-direction and amounts to

vz =
Ex

By

. (48)

The illustrative explanation of the cross-field drift velocity is shown in Fig. 11. An ion created

z

x

E
B

vD

Fig. 11: Illustrative explanation of the cross-field (~E × ~B) drift velocity~vD of a positive ion.

with the start velocityv⊥ moves on a cyclotron-like trajectory around the magnetic field lines.
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During the time where the ion moves in the direction of the electric field Ex it is accelerated
and the radius of it’s trajectory is increased. During the time where the ion moves against the
direction of the electric field it is decelerated and the radius of it’s trajectory is decreased. As
a consequence, a mean drift velocity~vD perpendicular to the~B- and ~E fields arises. The drift
velocity~vD is independent of the start velocityv⊥, the chargeqi, the sign of the chargeqi and
the massmi of the ion. Thus, ions (of whatever mass and charge) and electrons move in the
same direction at the same velocity~vD.

We note that the electric fieldEx(x) is not constant. Near the beam axisEx depends
linearly onx, Ex = λ

2 πǫ0
1

σx+σy

x
σx

. Therefore, Eq. (48) only applies if the variation of the
electric fieldEx over the cyclotron motion is small, i.e. if

|ri∂Ex/∂x| ≪ |Ex(x)|. (49)

This condition is fulfilled if the Larmor radiusri of the ions is very small and if the ions are
created at a certain distancex from the central axis with

|x| ≫ ri. (50)

For instance, the Larmor radius of H+
2 ions atBy = 1.7 T amounts to about 11µm, see Table 5.

Thus, one can apply Eq. (48) for transverse distancesx with |x| ≫ 11 µm.

The cross-field drift velocities due to the electric field componentsEx of the antiproton
beam are largest near the edge of the beam. The absolute valueof the electric field component
|Ex| of a bi-Gaussian beam distribution withσx ≈ σy has a maximum at|x| = 1.585 σx.
For λ/(2πǫ0) = −0.556 V (1.0 · 1011 antiprotons) andσx = 1.5 mm at 15 GeV/c we get
|Ex| = 167 V/m. This yields withBy = 1.7 T

|vD| ≈ 98 m/s. (51)

We note that the cross-field drift velocity along the beam is in opposite directions on either side
of the central beam axis. On the right side it is directed in the forward direction, on the left side
in the backward direction. The electric field componentsEx and therewith the drift velocities
fall to very low values for ions born near the center of the beam. They are even zero at the beam
center. Therefore, high ion concentrations and high neutralization levels can exist in bending
magnets, if only the mean cross-field drift velocity (see Subsects. 8.3 and 10.4) is used in order
to extract the ions in the longitudinal direction. In Subsects. 10.5, 10.6 and 10.7 three different
methods are presented in order to reduce the neutralizationin dipole magnets substantially.

There is another cross-field drift velocity componentvx = Es/By due to the longitudinal
electric fieldEs of the beam (see Fig. 8). It is directed in the transversex-direction. In dipole
magnets, the longitudinal electric field componentsEs together with the transverse magnetic
field componentBy yield drift velocitiesvx = Es/By which are much too small to extract the
ions in the transversex-direction. We get for a typical longitudinal electric fieldof about 0.01
V/m |vx| = 0.006 m/s at 15 GeV/c.

Magnetic mirror effects occur for ions drifting from field-free regions towards the fringe
field of magnets. The longitudinal gradient of the magnetic field can reverse the ion motion thus
creating a barrier. Therefore, it is also important to install clearing electrodes in the field-free
sections between the magnets.
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8.3 Estimate of the mean cross-field drift velocity in dipolemagnets

Here, we evaluate the mean cross-field drift velocitiesv̄D in dipole magnets forx > 0, i.e.
for ions created on the left side of the beam axis and driftingin the backward direction. Ions
created on the right side of the beam axis drift in the forwarddirection. They experience the
same mean cross-field drift velocity in opposite direction,i.e. v̄D(x ≤ 0) = − v̄D(x ≥ 0). We
assume bi-Gaussian beam distributions withσx = σy = σ in the region of the dipole magnets.
The transverse electric fieldEx due to the beam charge is given by

Ex(x, y) =
λ

2πǫ0

(

1 − exp−x2 + y2

2σ2

)

x

x2 + y2
(52)

with λ/(2πǫ0) = −0.556 V for 1.0 · 1011 antiprotons. The absolute value ofEx is zero at the
beam center and rises linearly for smallx. It has a maximum nearx = 1.585 σ, y = 0. The
normalized transverse beam distribution functionf(x, y) is given by

f(x, y) =
1

2πσ2
exp−x2 + y2

2σ2
. (53)

The mean valuēEx of the electric field componentsEx(x, y) on the left side of the beam distri-
bution, i.e. forx ≥ 0, is obtained by foldingEx(x, y) with f(x, y),

Ēx =

∫ +∞
−∞

∫+∞
0 Ex(x, y)f(x, y)dxdy

∫ +∞
−∞

∫+∞
0 f(x, y)dxdy

. (54)

The folding can be done analytically. It yields the mean value Ēx,

Ēx =
λ

2πǫ0

1√
2πσ

2 −
√

2

π
. (55)

The absolute value of the mean drift velocity|v̄D| in longitudinal direction reads

|v̄D| =
|Ēx|
By

. (56)

The lengthL of the dipole magnets amounts to 4.2 m. Now, we assume that theions are
captured by clearing electrodes with clearing fieldsEy at the entrance and exit of a dipole
magnet. We assume that the clearing electrodes are located outside of the dipole magnets and
that the distance between them amounts to about 4.5 m. Thus, the mean drift distance isL/2 =
2.25 m and the mean clearing timeTc is given by

Tc =
L

2|v̄D|
. (57)

This equation holds true for ions created atx ≥ 0 as well asx ≤ 0. We note that the beam width
σ scales like1/

√
p according to the adiabatic damping law withσ ≈ 1.5 mm at 15 GeV/c. This

scaling is taken into account in the evaluation ofĒx. The transverse magnetic fieldBy scales
linearly with the beam momentump. In Table 6, we list the mean cross-field drift velocity|v̄D|
and the mean clearing timeTc for L/2 = 2.25 m. We recall that the cross-field drift velocity
does not depend on the mass and charge of the ions. Thus, CO+ ions experience the same drift
velocity as H+

2 ions.
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Table 6: Mean cross-field drift velocity|v̄D| and mean clearing timeTc for 1.0 · 1011 antiprotons andL = 4.5 m.

p GeV/c |v̄D| (m/s) Tc (s)

1.5 51.3 0.0439
3.825 32.1 0.0701
8.889 21.1 0.107
15.0 16.2 0.139

The mean cross-field drift velocities|v̄D| are rather small. This is due to the fact that
the electric fieldEx and therewith the cross-field drift velocityvD drops down to zero at the
beam center. Therefore, ions created near the beam center are practically not cleared and the
resulting mean cross-field drift velocities are rather low in dipole magnets when averaged over
the Gaussian beam profile. As a consequence, the resulting clearing timesTc are rather high.

In addition, the mean electric fields and therewith the mean cross-field drift velocities
depend critically on the numberNp̄ of stored protons. The linear charge densityλ is proportional
to Np̄, and the beam widthσ is proportional toN2/5

p̄ (see Sect. 2.). Therefore, the mean cross-

field drift velocity v̄D is proportional toN3/5
p̄ . Compared to1.0 · 1011 antiprotons the mean

cross-field drift velocities for1.0 · 1010 antiprotons are by a factor of103/5=3.98 lesser and the
mean clearing timesTc are by a factor of103/5=3.98 larger than the values listed in Table 6.

8.4 Gradient and curvature drift velocity in quadrupole magnets

Now, we discuss the so-called gradient and curvature drift velocity which occurs in the magnetic
field of a quadrupole. The gradient drift velocity depends onthe ion velocityv⊥ perpendicular
to the magnetic field lines. We have already seen that

v⊥ = ri
qB

mi
= riωi. (58)

Here, we discuss the effect for an ion in the magnetic midplane making revolutions due to the
local magnetic field componentBy with a periodic variation of the horizontal displacement,
x = ri cos ωit. The radiusri is a very small quantity due to the low thermal velocities of the
ions. Denoting the magnetic field atx0 by By(x0), the magnetic field in the neighbourhood of
x0, i.e. atx0 + x may be written

By = By(x0) +
∂By

∂x
x. (59)

The projection of the velocity on z is given by

vz = v⊥ cos ωit = ri
qiBy

mi

cos ωit =

[

ri
qiBy(x0)

mi

]

cos ωit +

[

ri
qi

mi

∂By

∂x
(ri cos ωit)

]

cos ωit.

(60)
The averaging over the time yields zero for the first term but nonzero for the second term. Thus,
the longitudinal drift velocityvD is given by the mean longitudinal velocity< vz >,

vD =< vz >=
1

2
r2
i

qi

mi

∂By

∂x
. (61)
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This derivation only applies if the field variation over the cyclotron motion is small, i.e. if

ri∂By/∂x ≪ By(x0). (62)

This condition is fulfilled if the ion is created at a certain distancex0 from the quadrupole axis
with x0 > ri. For instance, a typical magnetic field gradient of 10 T/m andx0 = 2 mm yields
By(x0) = 0.02 T and the corresponding Larmor radiiri of H+ and H+

2 ions are very small
(ri < 1 mm) at thermal velocities, see Tables 4 and 5.

The gradient drift velocity can also be written

vD =
mi

2
v2
⊥

1

qiB2

∂By

∂x
. (63)

An alternative form [25] independent of the choice of coordinates is

~vD =
mi

2
v2
⊥

1

qiB2
( ~B × ~∇⊥B) =

ωir
2
i

2B2
( ~B × ~∇⊥B). (64)

Here,ωi is the gyration frequency andri the gyration radius as defined in Eqs. (45) and (46).
The sense of the drift velocity for positive particles is given by (64). For negative particles
the sign of the drift velocity is opposite. The change of signcomes from the chargeqi or the
definition ofωi. The gradient drift velocity can be understood by considering the variation of
the radiusri in the inhomogeneous quadrupole field as the particle moves in and out of regions
of larger than average and lesser than average field strength. The gradient drift velocity can be
illustrated just like the~E × ~B cross-field drift velocity (see Fig. 11).

The gradient of the magnetic field in a quadrupole implies automatically a curvature of
the magnetic field lines. An ion with a velocity componentv‖ follows adiabatically the field
lines. The resulting centripetal force acting perpendicular to the magnetic field~B yields an
additional contribution to the drift velocity, the so-called curvature drift velocity. In other words,
the curvature radiusR of the field lines yields an additional drift velocity in the longitudinal
direction. The curvature drift velocity can be written

vD = miv
2
‖

1

qiB2

∂By

∂x
. (65)

Combining the gradient drift velocity and the curvature drift velocity in one equation yields

vD = (miv
2
‖ +

mi

2
v2
⊥)

1

qiB2

∂By

∂x
. (66)

Thus, the ion drift velocity in a quadrupole magnet depends on two velocity components in the
(x, y) plane perpendicular to~B, i.e. on the velocityv⊥ perpendicular to the magnetic field lines
and the velocityv‖ parallel to the field lines.

Introducing the kinetic energy termsW‖ = (mi/2)v2
‖ andW⊥ = (mi/2)v2

⊥ yields

vD = (2W‖ + W⊥)
1

qiB2

∂By

∂x
. (67)

An alternative form [25] independent of the choice of coordinates is

~vD = (miv
2
‖ +

mi

2
v2
⊥)

1

qiB2
( ~B × ~∇⊥B). (68)
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Expressing~vD in terms of the radius vector~R of the field line curvature yields [25]

~vD =
(2W‖ + W⊥)

qiR B

~R × ~B

R B
. (69)

This equation can also be written as

~vD =
(v2

‖ + v2
⊥/2)

ωiR

~R × ~B

R B
=

(v2
‖ + v2

⊥/2)

v⊥

ri

R

~R × ~B

R B
. (70)

The direction of the drift velocity is specified by the vectorproduct, in which~R is the
radius vector from the effective center of curvature to the position of the ion. The direction is
appropriate for positive ion charges. For negative ions, the opposite sign arises. We note that
the two-dimensional field of a quadrupole yields

~R × ~B

R B
= −~ez (71)

where~ez is the unit vector along thez axis. Thus, we can write

~vD = − (2W‖ + W⊥)

qiR B
~ez. (72)

The local curvature radiusR of the field lines in a quadrupole is given by

R = R(x, y) =
(x2 + y2)3/2

y2 − x2
. (73)

In order to illustrate the gradient and curvature drift velocity we give an example taking
the mean thermal energies of the ions into account. We take from the optic4 Mad-file as typical
k-value for the quadrupolesk = 0.3 m−2. Thek value is defined ask = (∂By/∂x)/(Bρ).
The maximumBρ value amounts to 50 Tm at 15 GeV/c. Thus, we get typical gradients like
(∂By/∂x) = 15 T/m at 15 GeV/c,(∂By/∂x) = 10 T/m at 10 GeV/c and so on. We assume
a quadrupole with a positive gradient,g = ∂By/∂x = +10 T/m, a positive ion produced at
x0 = 10 mm, y0 = 0 mm thusB(x0) = 0.10 T. Concerning the temperatureT , we assume
T = 300 K. The mean thermal energy with velocities perpendicular tothe magnetic field lines
is given by

< W⊥ >=
m

2
(< v2

x > + < v2
z >) =

1

2
kT +

1

2
kT = 0.0259 eV (74)

and the mean thermal energy with velocities parallel to the magnetic field lines is given by

< W‖ >=
m

2
< v2

y >=
1

2
kT = 0.0129 eV. (75)

The drift velocity for singly charged ions is directed in thepositive z-direction and amounts to

vD = +52 m/s. (76)

We note that the equations (64) and (72) can only be used for rather largex-values, i.e.x ≥
10 mm. For smallx-values the condition (62) is not fulfilled.

We emphasize that positive ions created near thex-axis in a quadrupole with a positive
gradient∂By/∂x > 0 drift in the positivez-direction. Those created near they-axis drift in the
negativez-direction. The drift velocities are maximal along thex- andy-axis. They are zero
along the diagonals where(y2 − x2) = 0, see Eqs. (72) and (73).
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8.5 ~E × ~B/B2 cross-field drift velocity in quadrupole magnets

Now, we consider the~E × ~B/B2 cross-field drift velocity in quadrupole magnets which occurs
due to the electric field of the antiproton beam when passing the quadrupole magnet. We men-
tion the technical note of Macek and Pivi [26] where the formalism of the~E× ~B/B2 cross-field
drift velocity in quadrupole magnets is described. We assume a long bunch with a line density
of the beam chargesλ as prepared by the barrier-bucket mode of operation. The transverse
beam distribution is described by an elliptical bi-Gaussian distribution. Near the beam axis we
have in first-order approximation the following expressionfor the electric field vector~E

~E =
λ

2πǫ0

1

σx + σy







x/σx

y/σy

0





 . (77)

The magnetic field vector~B of the quadrupole is given by

~B = g







y
x
0





 . (78)

Here,g = ∂By/∂x is the magnetic field gradient. The resulting cross-field drift velocity is
given by

~vD =
~E × ~B

B2
=

λ

2πǫ0

1

σx + σy

1

g(x2 + y2)







0
0

x2/σx − y2/σy





 . (79)

The cross-field drift velocities in quadrupoles are exclusively directed in the longitudinal direc-
tion. Depending on the azimuth angleϕ, the ions move in the forward or backward direction.
We note that the magnitude of the drift velocities is highestif the ions are produced near thex-
andy-axes. Ions produced near the axes with(x2/σx − y2/σy) = 0 experience zero drift veloc-
ities,~vD = 0. Ions starting in the quadrants near thex-axis move into the negativez-direction
and ions starting in the quadrants near they-axis move into the positivez-direction if the field
gradientg = ∂By/∂x is positive (and vice versa if the field gradient is negative). We note
that the cross-field drift velocities and the curvature and gradient drift velocities have opposite
directions in quadrupoles.

In order to estimate the drift velocity we give a numerical example. WithNp̄ = 1 · 1011

antiprotons and a bunch lengthL1 = 517.5 m we haveλ = −3.10 · 10−11 C/m andλ/(2πǫ0) =
−0.556 V. Assuming for the maximum momentum 15 GeV/c the typical valuesg = +15 T/m,
σx = 1.5 mm,σy = 1.5 mm yields for ions created along thex-axis (x > 0 mm andy = 0)

~vD =







0
0

−8 237 m/s





 . (80)

This example shows that rather high cross-field drift velocities would be reached. The cor-
responding kinetic energies would be 0.71 eV for H+

2 ions and 9.9 eV for CO+ ions. These
kinetic energies would have to be provided by the potential well of the antiproton beam. We
note that the depth of the beam potential well is rather weak (about 2 V for1.0 · 1011 and 0.2 V
for 1.0 · 1010 antiprotons in the ring). In addition, the potential well has a shallow minimum
near the beam axis and the electric fieldEx of the beam decreases to zero nearx = 0. Thus,
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the estimated cross-field drift velocities will never be reached and Eqs. (79) and (80) cannot be
applied [12]. Therefore, the longitudinal ion motion in quadrupoles is dominated by the mean
thermal velocities in one direction̄v‖ and/or the longitudinal accelerationas due to longitudinal
electric fieldsEs of the antiproton beam.

8.6 ~E × ~B/B2 cross-field drift velocity in sextupole magnets

Here, we consider the~E × ~B/B2 cross-field drift velocity in sextupole magnets which occurs
due to the electric field of the antiproton beam when passing asextupole magnet. We derive
the equations in a similar way as in the preceding subsection. We assume a long bunch with a
line density of the beam chargesλ as prepared by the barrier-bucket mode of operation. The
transverse beam distribution is described by an ellipticalbi-Gaussian distribution. Near the
beam axis we have in first-order approximation the followingexpression for the electric field
vector ~E

~E =
λ

2πǫ0

1

σx + σy







x/σx

y/σy

0





 . (81)

The magnetic field vector~B of the sextupole is given by

~B = gs







xy
(x2 − y2)/2

0





 . (82)

Here,gs = ∂2By/∂x2 = ∂2Bx/∂y2 = 2 B0/a
2 is the characteristic sextupole parameter as

given by the pole-tip fieldB0 and the pole-tip radiusa. The resulting drift velocity is given by

~vD =
~E × ~B

B2
=

λ

2πǫ0

1

σx + σy

2

gs

1

(x2 + y2)2









0
0

x(x2−y2)
σx

− 2 xy2

σy









. (83)

This equation may be written withx = r cos ϕ, y = r sin ϕ and the unit vector~ez in z-direction

~vD =
λ

2πǫ0

1

σx + σy

2

gs

1

r

(

cos3 ϕ − cos ϕ sin2 ϕ

σx
− 2 cos ϕ sin2 ϕ

σy

)

~ez. (84)

The ion drift velocities are directed in the longitudinal direction. Depending on the az-
imuth angleϕ, the ions move in the forward or backward direction. As in thecase of quadrupole
magnets very high cross-field drift velocities would be reached. This is due to the fact that the
magnitude of the magnetic fieldB is very low near the beam axis. The corresponding kinetic
energies would never be reached and Eqs. (83) and (84) cannotbe applied [12]. Therefore, the
longitudinal ion motion in sextupoles is also dominated by the mean thermal velocitȳv‖ and the
longitudinal accelerationas = q Es/m due to the electric field of the beam.
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9. Ion Motion in Solenoids

A speciality of the HESR ring are solenoids which are used forspecial purposes. (i) The electron
cooler (EC) uses a ’cold’ electron beam in order to cool the circulating antiproton beam. It
consists of a long solenoid of about 24.0 m length which guides the electron beam along the
axis of the antiproton beam. The solenoid field amounts to 0.2T yielding a solenoid strength
of 4.8 Tm. The electron beam is injected and extracted using merging modules which consist
of dipole magnets and bent solenoids. (ii) In addition, there are two compensation solenoids
of about 5.0 m length with a maximum solenoid fieldB = 1.5 T and a maximum solenoid
strength of 7.5 Tm. They are located upstream and downstreamnear by the EC solenoid. (ii) In
the region of the PANDA target the spectrometer magnet consists of a superconducting solenoid
with external iron return yoke which allows to achieve a uniform longitudinal field of 2.0 T and
keep enough space for detectors surrounding the interaction point. The maximum solenoid
strength is about 7.0 Tm. (iv) In addition, there is one compensation solenoid of about 5.0 m
length with a maximum solenoid field of 1.5 T and a maximum solenoid strength of 7.5 Tm in
front of the target solenoid.

Here, we discuss first the mean thermal ion drift along the longitudinal magnetic fields
of the EC-solenoid and the EC-compensation solenoids, and we estimate the resulting clearing
timesTc. Then, we discuss the modified cyclotron motion and the magnetron motion of trapped
ions in solenoids.

9.1 Cyclotron motion of trapped ions in solenoids

First, we discuss the situation in the beam-free time gaps. An ion which is created inside of a
solenoid cannot escape in the transverse direction. The Lorentz forceqi~vi × ~B causes each ion
to spiral around a magnetic field line. We assume that the ion has a certain thermal velocity
with velocity components perpendicular and parallel to themagnetic field,v⊥ andv‖. In the
transverse direction (i.e. in the plane perpendicular to the magnetic field direction) the ion
performs a cyclotron motion around the magnetic field lines of the solenoid. In the longitudinal
direction the ion moves freely along the magnetic field line of its guiding center. The cyclotron
frequencyωi depends on the magnetic field strengthB, ωi = qiB/mi. The cyclotron radiusri

depends on the transverse thermal velocityv⊥, ri = (miv⊥)/(qiB). Typical values ofωi andri

are listed in subsection 8.1 in the Tables 4 and 5.

9.2 Adiabatic motion of trapped ions in the fringe field of solenoids

Again, we discuss first the situation during the beam-free time gaps. Inside of the solenoid
the magnetic field is nearly uniform yielding a nearly constant radiusri of the cyclotron motion
around the magnetic field line and a constant distanceRi of the guiding center from the solenoid
axis. In the longitudinal direction (z-direction) the ion moves freely according to the start
velocityv‖ towards the fringe field of the solenoid.

The slow thermal ion motion can be considered as an adiabaticmotion if the relative
change of the magnetic field componentBz is small during one cyclotron revolution periodTi,
i.e. if

∣

∣

∣

∣

∣

vzTi

Bz

∂Bz

∂z

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2πmivz

qiB2
z

∂Bz

∂z

∣

∣

∣

∣

∣

≪ 1. (85)

The thermal velocities of the ions are so low that the adiabatic condition (85) is well fulfilled.
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In the fringe field of the solenoid a slow ion (i.e. the guidingcenter of the ion) follows
adiabatically the expanding field lines. Thus, the cyclotron radiusri and the distanceRi of the
guiding center from the solenoid axis increase according to

Bzr
2
i = const, BzR

2
i = const. (86)

The last two equations follow directly from Busch’s theorem, i.e. the magnetic flux through
the cyclotron orbit with radiusri and the magnetic flux through a circle around thez-axis with
radiusRi are conserved. Thus,ri andRi increase in the fringe field like

ri(z) =

√

√

√

√

Bz(z0)

Bz(z)
ri(z0), Ri(z) =

√

√

√

√

Bz(z0)

Bz(z)
Ri(z0). (87)

Another consequence of the adiabatic motion is the fact thatthe velocity componentv⊥
perpendicular to the field line decreases slowly in the fringe field while the velocity component
v‖ parallel to the field line increases,

v⊥(z) =

√

√

√

√

Bz(z)

Bz(z0)
v⊥(z0), (88)

v‖(z) =
√

v2 − v2
⊥(z), (89)

wherev2 = v2
⊥ + v2

‖ = const. The last equation is due to the conservation of kinetic energy.

9.3 Magnetron motion and modified cyclotron motion in solenoids due to the electric
field of the beam

Ions which are created by the interaction of the antiproton beam with the residual gas molecules
of the UHV vacuum cannot escape in the transverse direction due to the electric field~E of the
antiproton beam. There is an additional trapping effect in solenoids due to the cyclotron motion
around the longitudinal magnetic field~B. This trapping effect is also present in the beam-free
time gaps. But the situation is more complicated during the passage of the antiproton beam.

The superposition of the radial electric field~E and the longitudinal magnetic field~B
yields a modified cyclotron motion and a slow motion around the solenoid axis. The latter
motion is due to the~E× ~B drift in azimuthal direction. It is called magnetron motionsince it has
been first observed during the development of the magnetron [28]. This motion has also been
analyzed during the development of the Penning traps [29]. The modified cyclotron motion and
the resulting magnetron motion is illustrated in the left panel of Fig. 12. The figure shows the
projection of the ion motion upon the (x,y) plane. The cyclotron motion due to the longitudinal
magnetic field is modified by the radial acceleration and deceleration. If the ion moves in
the direction of the electric field it is accelerated and the radius of the trajectory is increased.
If the ion moves against the direction of the electric field itis decelerated and the radius of
the trajectory is decreased. As a consequence a mean drift velocity in the azimuthal direction
arises. The rotational direction of the magnetron motion (ω−) is opposite to that of the cyclotron
motion. This is due to the fact that the electric field~E of the antiproton beam is directed radially
towards the central axis. The resultant motion can be described by an epicycloid, i.e. the
superposition of a slow circular magnetron motion with radiusr− and angular velocityω− and
a modified cyclotron motion with radiusr+ and angular velocityω+, see right panel of Fig. 12.
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The fast cyclotron motion with a small radiusr+ is carried along by the slow magnetron motion
with a large radiusr−. As to the equations of motion, we refer to review articles byBrown and
Gabrielse [30] and Blaum [31]. The detailed solution of the equations of motion is presented in
the Appendix.

B

y

x

E

ω

B

y

x

E

ω+
+rω
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Fig. 12: Left: Illustration of the motion of trapped ions in asolenoid. The cyclotron motion is modified by the

acceleration and deceleration due to the electric field~E of the antiproton beam. The resulting magnetron motion

(ω−) is opposite to the cyclotron motion (ω+). Right: The motion can be described as an epicycloid that isthe

superposition of a slow circular magnetron motion with radiusr− and angular velocityω− and a modified cyclotron

motion with radiusr+ and angular velocityω+.

Here, we sketch the solution. We use a Cartesian coordinate system(x, y.z) which cor-
responds to the standard coordinate system(x, y, s) of accelerator physics. Thez-axis is the
central axis of the solenoid. The ion motion is described radially by ~ρ = (x, y) and axially by
z. The equations of motion read

m~̈ρ = q( ~Eρ + ~̇ρ × ~B), (90)

mz̈ = qEz. (91)

We assume a linear approximation of the radially attractiveelectric field

~Eρ = −E0~ρ. (92)

We note thatE0 = |λ|/(2πǫ0a
2) for a round beam with constant density within the radiusa,

see Eq. 5. We introduce the angular frequencyωb =
√

qE0/m in order to take the electric field
strength into account,

ω2
b =

q

m

|λ|
2πǫ0

1

a2
. (93)

We assume that the magnetic field is oriented in the negativez-direction

~B = −(0, 0, B). (94)
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The magnetic field strength is represented by the angular frequencyωc = qB/m of the free
cyclotron motion (i.e. for~Eρ = 0). The solution of the radial equation (90) may be written

~ρ = ~r+ + ~r−, (95)

~r+ = r+(cos(ω+t + α+), sin(ω+t + α+)), (96)

~r− = r−(cos(ω−t + α−), sin(ω−t + α−)), (97)

where

ω+ =
ωc

2
+

√

(

ωc

2

)2

+ ω2
b , (98)

ω− =
ωc

2
−
√

(

ωc

2

)2

+ ω2
b . (99)

The radial motion of an ion is characterized by the superposition of two motions: (i) the modi-
fied cyclotron motion with angular frequencyω+ and radiusr+ and (ii) the magnetron motion
with angular frequencyω− and radiusr−. The angular velocityω+ is positive whereas the an-
gular velocityω− is negative. This is due to the radially attractive electricpotential, see Fig. 12.
The parametersr+, r−, α+ andα− are constants of integration determined by the initial position
and velocity of the ion in the moment of ionization.

It is interesting to evaluate the velocityv− = r−ω− of the magnetron motion. Ifω2
b ≪

(ωc/2)2 we get

r− ω− = −r−
ω2

b

ωc
= −r−

E0

B
= −| ~E|

B
=

~E × ~B

B2
. (100)

That means, the velocityv− of the magnetron motion is given by the~E× ~B cross-field velocity.

9.4 Magnetron motion and modified cyclotron motion in the fringe field of solenoids

As stated in the preceding subsection, the radial motion of an ion is characterized by the su-
perposition of the modified cyclotron motion with angular frequencyω+ and radiusr+ and the
slow magnetron motion around the central axis with angular frequencyω− and radiusr−. The
radiusr+ corresponds to the radiusri and the radiusr− corresponds to the radiusRi introduced
in subsection 9.2. The radiusr− denotes the distance of the center of the cyclotron motion from
the symmetry axisz of the solenoid.

The motion of trapped ions in the fringe field of a solenoid canbe considered as an
adiabatic motion since the longitudinal velocity of the trapped ions is very low and the relative
change of the magnetic field componentBz is very small during one cyclotron revolution period
T+ = 2π/ω+ of the modified cyclotron motion. Therefore, the radiir+ andr− increase like

r±(z) =

√

√

√

√

Bz(z0)

Bz(z)
r±(z0) (101)

at the entrance and exit of a solenoid due to the decreasing magnetic field strengthBz(z).

Simultaneously, the modified cyclotron frequencyω+ and the magnetron frequencyω−

decrease slowly in the fringe field of the solenoid. This is due to the fact that the characteristic
quantitiesωc = qB/m andω2

b decrease in the fringe field, see Eqs. (98) and (99). Concerning
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ω2
b , we know that the electric field strength|Eρ| decreases as1/ρ outside of the antiproton beam.

Therefore, the electric field outside of the antiproton beammay be written

~E =
λ

2πǫ0

~r+ + ~r−
(~r+ + ~r−)2

≈ λ

2πǫ0

~r+ + ~r−
r2
−

. (102)

This approximation is possible ifr+ ≪ r−. Thus, the characteristic quantityω2
b decreases in

the fringe field and we get instead of Eq. (93)

ω2
b =

q

m

|λ|
2πǫ0

1

r2
−

. (103)

Summarizing, the radiir+ andr− increase and the modified cyclotron frequencyω+ and the
magnetron frequencyω− decrease slowly in the fringe field of the solenoid.

9.5 Fringe field of solenoids

The inside magnetic field of a long solenoid is nearly uniform. The field strengthBz along the
axis may be written withB0 = µ0NI

Bz(z) =
B0

2





L + z
√

(L + z)2 + a2
− z√

z2 + a2



 . (104)

Here,µ0 is the magnetic field constant,N the number of windings per meter,I the current,L
the length,a the radius of the solenoid coil andz the longitudinal position withz = 0 at the
exit of the solenoid. Thus, the extent of the fringe field depends on the radiusa. We have for
instanceBz = 0.985 B0 at z = −4 a andBz = 0.015 B0 atz = +4 a.

The PANDA spectrometer solenoid [32] consists of three large coils in a large iron yoke.
The inner radius of the coils amounts to 0.930 m and the total coil length amounts to about
2.8 m. The magnetic field distribution has been calculated with the program TOSCA [32].
The solenoid strength amounts to about 7.0 Tm. The longitudinal field distribution along the
solenoid axis can be approximated using a trapezoidal modelwith a minor basis of 1.5 m and a
major basis (at zero field) of about 5.5 m. The minor basis, i.e. the central part, exhibits a highly
uniform magnetic fieldB0 = 2.0 T. It is about 1.5 m long. The upstream and downstream fringe
fields extend to aboutl = 2.0 m. The magnetic fieldBz(z) in the fringe field region0 ≤ |z| ≤ l
can be approximated using

Bz(z) ≈ B0

(

1 − |z|
l

)

, 0 ≤ |z| ≤ l. (105)

The total length of the trapezoidal field distribution amounts to about 5.5 m.

The equations (104) and (105) together with (101) may be usedin order to calculate the
increasing radiir+ andr− of trapped ions at the entrance and exit of the solenoids.

9.6 Mean thermal ion drift and clearing times Tc in solenoids

In the longitudinal direction, the ions move freely along the magnetic field lines of the solenoids.
Here, we estimate the resulting clearing timesTc if the ions are moving with their mean thermal
velocity in the longitudinal direction and are captured by clearing electrodes at the entrance and
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exit of the solenoids. These estimates are only valid if the longitudinal electric fieldsEs of
the beam are negligibly small. Such a situation occurs for1.0 · 1011 antiprotons in the region
of the EC-solenoid and the EC-compensation solenoids, seeEs in Fig. 8 betweens = 190 m
ands = 250 m. For1.0 · 1010 antiprotons, the longitudinal electric field components ofthe
beam are negligibly small everywhere in the ring. The mean thermal velocity in one direction,
v̄‖, amounts to 889 m/s for H+2 ions and 238 m/s for CO+ ions. We assume as mean path
length the half length of a solenoid, i.e.l̄ = L/2 = 12 m for the electron cooler solenoid and
l̄ = L/2 = 2.5 m for the compensation solenoids The resulting mean clearing times are given
by

Tc = l̄/v̄‖. (106)

They are listed in Table 7 for various molecules.

Table 7: Mean thermal ion drift velocitȳv‖ in one direction and clearing timesTc in solenoids.

Molecule A v‖ (m/s) Tc (s), EC solenoid Tc (s), compensation solenoid

H 1 1.2·103 10·10−3 2.1·10−3

H2 2 8.9·102 13·10−3 2.8·10−3

CH4 16 3.1·102 37·10−3 7.9·10−3

H2O 18 3.0·102 40·10−3 8.3·10−3

CO/N2 28 2.4·102 50·10−3 10·10−3

CO2 44 1.9·102 63·10−3 13·10−3
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10. Ion Clearing Using Clearing Electrodes

10.1 Clearing electrodes

Since the energy transfer is negligibly small in ionizationprocesses ions are produced with a
kinetic energy similar to the thermal energy which is about 0.04 eV at 300 K. The thermal rms
velocity amounts to 1900 m/s for H+2 ions and 520 m/s for CO+ ions. Therefore the positive
ions are trapped in the negative potential well of the antiproton beam which is in the order of
-2 V for 1.0 · 1011 antiprotons (see Fig. 6). The ions start to perform transverse oscillations in
the potential well. In addition they are accelerated longitudinally in the direction to the potential
minima. We mention that the typical depth of the potential well is only -0.25 V for 1.0 · 1010

antiprotons.

The positive ions can be extracted by clearing electrodes ifthe external electric fields are
larger than the electric fields created by the antiproton beam, see Fig. 7. Thus, isolated elec-
trodes near the inner surface of the beam pipe (inner diameter: 89 mm) providing sufficiently
large electric fields of more than 500 V/m can be used in order to extract the produced ions. For
instance, clearing electrodes mounted on the inner surfaceof a beam pipe yield electric fields of
about 2250 V/m with a clearing voltage of -200 V. The electrodes of the beam position monitors
in the ring can also be used to extract the positive ions out ofthe antiproton beam.

The number of clearing electrodes should be as large as possible. Ideal locations are the
minima of the beam potential which act as trapping pockets. In principle it is mandatory to
locate clearing electrodes near the potential minima in order to avoid trapping pockets. Ions
which are produced inside the bending magnets can be extracted with electric fields in the
vertical direction, i.e. in the direction of the magnetic field lines, see Subsect. 10.5. It is also
possible to extract the ions in the longitudinal direction using the~E × ~B/B2 cross-field drift
velocity, see Subsects. 10.4 and 10.6.

Clearing electrodes can also provide valuable diagnostic information if the clearing cur-
rent on each electrode can be measured using fast picoamperemeters [16]. For instance such
measurements yield a relatively good measurement of the local neutralization timeTn(s) which
is equivalent to the so-called production timeTp(s) and depends on the local pressurep(s).
Switching on and off of certain clearing electrodes or groups of clearing electrodes allows to
study the local effects of trapped ions.

Finally, we mention that the closed orbit distortions by thetransverse electric fields of the
clearing electrodes are negligibly small.

10.2 Ion clearing in straight sections by mean thermal velocities

For 1.0 · 1010 stored antiprotons the longitudinal electric fieldsEs are so weak that the ion
drift is dominated by the mean thermal velocityv̄‖ in the longitudinal direction. We assume
that the distanceL between neighbouring clearing electrodes in the straight sections amounts
to about 5 m. This distance corresponds to the effective length of the compensation solenoids.
We estimate the mean clearing timeTc assuming the mean thermal velocityv̄‖ of the ions (see
Table 3) as a typical mean drift velocity. The resulting meanclearing timeTc reads

Tc =
L

2 v̄‖
. (107)

We note that similar estimates are obtained if one takes the longitudinal accelerationas =
qEs/m due to the longitudinal electric field components of the beaminto account, see next
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subsection. The resulting beam neutralizationη = 0.9 Tc/Tp depends on the production time
Tp. The production timesTp and the resulting neutralizationsη are estimated for H+2 and CO+

ions assuming different partial pressures, see Tables 8-10. We mention that the UHV pressure
of the HESR ring amounts to about1.0 ·10−9 mbar. The resulting estimates of the neutralization
η in the full HESR ring are shown in Figs. 15, 16, 19 and 20.

Table 8: Mean thermal velocity|v̄‖|, mean clearing timeTc (L = 5 m), production timeTp and neutralizationη

for H+

2
ions assuming a partial H2 pressure of1.0 · 10−9 mbar.

p GeV/c |v̄‖| (m/s) Tc (s) Tp (s) η

1.5 889 0.00281 7.38 3.43 · 10−4

3.825 889 0.00281 7.44 3.40 · 10−4

8.889 889 0.00281 6.95 3.64 · 10−4

15.0 889 0.00281 6.38 3.96 · 10−4

Table 9: Mean thermal velocity|v̄‖|, mean clearing timeTc (L = 5 m), production timeTp and neutralizationη

for H+

2 ions assuming a partial H2 pressure of0.8 · 10−9 mbar.

p GeV/c |v̄‖| (m/s) Tc (s) Tp (s) η

1.5 889 0.00281 9.22 2.74 · 10−4

3.825 889 0.00281 9.29 2.72 · 10−4

8.889 889 0.00281 8.69 2.91 · 10−4

15.0 889 0.00281 7.98 3.17 · 10−4

Table 10: Mean thermal velocity|v̄‖|, mean clearing timeTc (L = 5 m), production timeTp and neutralizationη

for CO+ ions assuming a partial CO pressure of0.2 · 10−9 mbar.

p GeV/c |v̄‖| (m/s) Tc (s) Tp (s) η

1.5 237 0.0106 8.50 1.12 · 10−3

3.825 237 0.0106 8.33 1.12 · 10−3

8.889 237 0.0106 7.45 1.12 · 10−3

15.0 237 0.0106 6.92 1.37 · 10−3
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10.3 Ion clearing in straight sections by longitudinal acceleration

For 1.0 · 1011 antiprotons the longitudinal accelerationas of ions by the longitudinal electric
field componentEs are so large that they must be taken into account in the estimates of the
clearing timeTc. The produced positive ions are accelerated towards the clearing electrodes
due to the longitudinal gradient of the beam potential, i.e.the longitudinal electric fieldEs,
see Fig. 8. This accelerated motion occurs in the region of drift spaces, quadrupole magnets,
sextupole magnets and solenoids. However, an accelerated motion does not occur in the region
of dipole magnets. This is due to the cyclotron motion aroundthe magnetic field lines and the
resulting~E × ~B cross-field drift velocity which occurs in crossed electricand magnetic fields,
see Sect. 8..

The longitudinal accelerationas of a singly charged ion is given by

as =
e

m
Es. (108)

Here,m is the mass of the ion. The resulting acceleration for H+
2 ions is shown in Fig. 13.

Outside of the PANDA target region the acceleration varies between104 m/s2 and5 · 106 m/s2.

Here, we assume that the ion clearing is dominated by the longitudinal accelerationas

and we neglect the thermal velocities of the ions. An ion which is produced in a drift space at a
certain positionx, y, s makes transverse oscillations inside the potential well and is accelerated
in the longitudinal direction by the longitudinal electricfield componentEs. It moves inside the
potential well of the antiproton beam until it sees the strong transverse electric field of a clearing
electrode. The mean clearing timeTc is given by the distanceL between neighbouring clearing
electrodes and the longitudinal accelerationas. Assuming constant longitudinal acceleration
yields a mean clearing time

Tc =

√

8

9

L

as
≈
√

L

as
. (109)

We assume a distance ofL = 5 m between neighbouring clearing electrodes3. The resulting
estimates of the neutralizationη in the full HESR ring are shown in Figs. 17, 18, 21 and 22.

We note that these estimates neglect the dependence ofEs on the transverse coordinates
(x, y). The longitudinal field componentEs is weaker near the beam edge than in the center of
the beam. However, the potential depth and therewith the field componentEs decrease rather
weakly with increasing transversal distancer =

√
x2 + y2 from the beam axis. For instance,

if the beam pipe radiusrc is about10
√

σ2
x + σ2

y the reduction is only 25 % near the beam edge

r = 2
√

σ2
x + σ2

y .

We mention that the longitudinal acceleration near the PANDA target solenoid cannot
be used for trapped ion clearing. The direction of the longitudinal electric field is such that
all ions from upstream and downstream are accelerated towards the beam waist at the target
point. The peak-like structures ofas near the PANDA target are due to the sudden changes of
the longitudinal electric fieldsEs as discussed in subsection 3.3. The neutralization near the
PANDA target will be discussed separately in section 15..

3It is foreseen to use also the electrodes of the beam positionmonitors BPM as clearing electrodes. There are
about 50 BPM’s in the ring.
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Fig. 13: Estimates of the longitudinal accelerationas(s) of H+

2 ions assuming the standard optics,L1 = 0.9C,

pp̄ = 15 GeV/c andNp̄ = 1.0 · 1011. The modification of the beam potential by the neutralization η is neglected.

Top: the complete HESR ring froms = 0 m to s = 575 m. Bottom: the PANDA target region froms = 485 m to

s = 535 m. The peak-like structures near the PANDA target are due to sudden changes of the inner radius of the

beam pipe.
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10.4 Ion clearing in dipole magnets by mean cross-field driftvelocities

We first discuss the possibility to use clearing electrodes at the entrance and exit of dipole
magnets. There is a cross-field drift velocityvD = Ex/By in the longitudinal direction (see
Subsection 8.2) which can be used in order to guide trapped ions to the entrance and exit of the
dipole magnets. This cross-field drift velocity is due to thetransverse electric field component
Ex of the beam and the transverse magnetic field componentBy. The concurrent cross-field drift
velocity componentsvx = Es/By due to longitudinal electric field components of the beam are
neglected. On average, the longitudinal field componentsEs are very small in comparison to
the transverse field componentsEx, see Figs. 7 and 8.

We note that the cross-field drift velocities~vD = ~E × ~B/B2 for ions created on the
left side of the beam axis are negative, i.e. they are directed in the backward direction. Ions
created on the right side of the beam axis exhibit positive drift velocities, i.e. they drift in
the forward direction. The mean cross-field drift velocities |v̄D| on either side are evaluated
assuming Gaussian beam distributions, see Subsection 8.2.

In Tables 11-13, we list the mean cross-field drift velocity|v̄D|, the mean clearing time
Tc for a mean drift ofL/2 = 2.25 m (we assume that the clearing electrodes are located in
the 0.3 m long drift spaces at the entrance and exit of the dipole magnets), the production time
Tp for H+

2 and CO+ ions assuming different partial pressures and the resulting neutralization
η = (L1/C)(Tc/Tp) = 0.9(Tc/Tp) for four beam momenta. In Table 11, we list the results for
H+

2 ions assuming a partial pressure of1.0 · 10−9 mbar for H2 molecules, in Table 12, we list
the results for H+2 ions assuming a partial pressure of0.8 · 10−9 mbar for H2 molecules and in
Table 13 for CO+ ions assuming a partial pressure of0.2 · 10−9 mbar for CO molecules. We
mention that a CO molecule content of about 10-20 % is always present in the UHV of storage
rings.

We note that the mean cross-field drift velocity|v̄D| is rather small. This is due to the fact
that the electric fieldEx and therewith the cross-field drift velocityvD drops down to zero at the
beam center. Therefore, ions created near the beam center are practically not cleared and the
resulting mean cross-field drift velocities are rather low in dipole magnets when averaged over
the Gaussian beam profile. As a consequence, the resulting beam neutralization is rather high
(between 0.9 % at 1.5 GeV/c and 3.4 % at 15 GeV/c assuming1.0·1011 antiprotons and a partial
H2 pressure of0.8 ·10−9 mbar and a partial CO pressure of0.2 ·10−9 mbar). The situation is yet
worse for1.0·1010 antiprotons. The mean cross-field drift velocities for1.0·1010 antiprotons are
by a factor of103/5=3.98 lesser4 and the mean clearing timesTc and the resulting neutralization
η are by a factor of103/5=3.98 larger than the values listed in Tables 11 - 13. Such neutralization
levels are dangerous in view of possible coherent instabilities. In this context, it should be noted
that 44 dipole magnets are installed in the HESR ring. The total length of 44 dipole magnets
amounts to 184.8 m which is about one third of the circumference. Therefore, we recommend
additional measures in order to reduce substantially the neutralization in dipole magnets, see
Subsects. 10.5, 10.6 and 10.7.

We first discuss ion clearing by vertical electric fieldsEy, see Subsect. 10.5. The idea
is to use continuous clearing electrodes in the beam pipe in order to extract the ions along the
magnetic field lines in the vertical direction. Another technique could be to provide horizontal
electric fieldsEx in the beam pipe. The resulting cross-field drift velocityEx/By could be used
in order to extract the ions in the longitudinal direction, see Subsect. 10.6. A third possibility

4λ ∝ Np̄, σ ∝ N
2/5

p̄ , |v̄D| ∝ N
3/5

p̄ , see Subsect. 8.3.
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could be to improve the ultra-high vacuum (UHV) substantially, see Subsect. 10.7.

Table 11: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη for

H+

2 ions assuming a partial H2 pressure of1.0 · 10−9 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 7.38 0.00535
3.825 32.1 0.0701 7.44 0.00848
8.889 21.1 0.107 6.95 0.0139
15.0 16.2 0.139 6.38 0.0196

Table 12: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη for

H+

2 ions assuming a partial H2 pressure of0.8 · 10−9 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 9.22 0.00429
3.825 32.1 0.0701 9.29 0.00679
8.889 21.1 0.107 8.69 0.0111
15.0 16.2 0.139 7.98 0.0157

Table 13: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη for

CO+ ions assuming a partial CO pressure of0.2 · 10−9 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 8.50 0.00464
3.825 32.1 0.0701 8.33 0.00757
8.889 21.1 0.107 7.45 0.0129
15.0 16.2 0.139 6.92 0.0181
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10.5 Ion clearing in dipole magnets by vertical electric fields

The optimum solution for dipole magnets are continuous clearing electrodes. In dipole magnets,
only vertical electric fields with field componentsEy along the magnetic field lines can be used
in order to accelerate the trapped ions towards clearing electrodes. Continuous band electrodes
could be mounted together with a thin insulator inside the beam pipe. An ideal insulator would
be a 100µm thick layer of vitreous enamel (’Emaille’). Electrode potentials of±100 V yield
an electric field of about 2250 V/m in a beam pipe of 89 mm diameter.

The positive ions which are created inside the beam envelopes are immediately acceler-
ated towards the clearing electrode. For H+

2 ions the resulting acceleration is

ay =
eEy

m
= 1.08 · 1011 m/s2. (110)

Estimating the mean clearing timeTc we assume a mean flight path length of3σy. That means
ions which are created in the beam centery = 0 reach the beam edge aty = 3σy. This
assumption yields

Tc ≈
√

6σy

ay

. (111)

The resulting clearing timesTc(s) are below1.0 ·10−6 s and the neutralizationη near1.0 ·10−7,
see Figs. 15 - 22.
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10.6 Ion clearing in dipole magnets by horizontal electric fields

Another technique has been suggested by Rudolf Maier [33] inorder to remove trapped ions
in dipole magnets. He suggested to use elliptic beam pipes instead of round beam pipes in
the region of dipole magnets. Using this technique one has sufficient space for electrodes pro-
viding electric fieldsEx in the horizontal direction. Electric fieldsEx of about 3400 V/m in
combination with the vertical magnetic fieldBy between 0.17 T and 1.7 T yield cross-field drift
velocitiesvs = Ex/By between 20000 m/s and 2000 m/s. The total length of a dipole magnet
amounts to 4.2 m. The clearing electrodes are located at the entrance and exit of the dipole
magnets. Assuming that the ions travel a mean drift distanceof aboutL/2 = 2.25 m yields
clearing timesTc = (L/2)/|v̄D| between 0.113 ms and 1.13 ms, and neutralizationsη of order
of magnitude10−4 and below, see Tables 14-16.

Table 14: Cross-field drift velocity|v̄D| assumingEx = 3.4 kV/m, mean clearing timeTc, production timeTp and

neutralizationη for H+

2 ions assuming a partial H2 pressure of1.0 · 10−9 mbar.

p GeV/c |v̄D| (m/s) Tc (ms) Tp (s) η

1.5 20000 0.113 7.38 1.59 · 10−5

3.825 7843 0.287 7.44 3.86 · 10−5

8.889 3375 0.667 6.95 8.64 · 10−5

15.0 2000 1.13 6.38 1.59 · 10−4

Table 15: Cross-field drift velocity|v̄D| assumingEx = 3.4 kV/m, mean clearing timeTc, production timeTp and

neutralizationη for H+

2
ions assuming a partial H2 pressure of0.8 · 10−9 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (ms) Tp (s) η

1.5 20000 0.113 9.22 1.27 · 10−5

3.825 7843 0.287 9.29 3.09 · 10−5

8.889 3375 0.667 8.69 6.91 · 10−5

15.0 2000 1.13 7.98 1.27 · 10−4

Table 16: Cross-field drift velocity|v̄D| assumingEx = 3.4 kV/m, mean clearing timeTc, production timeTp and

neutralizationη for CO+ ions assuming a partial CO pressure of0.2 · 10−9 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (ms) Tp (s) η

1.5 20000 0.113 8.50 1.20 · 10−5

3.825 7843 0.287 8.33 3.10 · 10−05

8.889 3375 0.667 7.45 8.06 · 10−5

15.0 2000 1.13 6.92 1.47 · 10−4
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10.7 UHV upgrade in dipole magnets

Another technique would be to upgrade the UHV vacuum substantially. First vacuum tests
with a setup similar to the planned vacuum system near the dipole magnets (4.2 m long beam
pipes of 89 mm diameter with vacuum pumps at the entrance and exit of the dipole magnets)
showed that pressures below1.0 · 10−10 mbar can be achieved without heating, i.e. without
baking out the beam pipe. A further substantial improvementof the UHV (order of magnitude
improvement) can be achieved by baking out the beam pipes. Tothis end bake-out jackets
must be installed from the start. The baked UHV vacuum systemat the CERN Antiproton
Accelerator was operated at pressures of about1.3 · 10−11 mbar.

Lowering the UHV vacuum pressure from1.0 · 10−9 mbar to about1.0 · 10−11 mbar has
the advantage that the ion production timeTp increases by about a factor of hundred. Thus, ion
clearing by mean cross-field drift velocities (as in Tables 11-13) with clearing electrodes at the
entrance and exit of the dipole magnets yields a sufficientlylow neutralization. This is even true
for 1.0 · 1010 antiprotons yielding a factor of four lower cross-field drift velocities and a factor
of four higher neutralization. In Tables 17-19 we list the resulting neutralizations for1.0 · 10−11

mbar and1.0 · 1011 antiprotons.

Table 17: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη for

H+

2 ions assuming a partial H2 pressure of1.0 · 10−11 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 738 5.35 · 10−5

3.825 32.1 0.0701 744 8.48 · 10−5

8.889 21.1 0.107 695 1.39 · 10−4

15.0 16.2 0.139 638 1.96 · 10−4

Table 18: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη for

H+

2 ions assuming a partial H2 pressure of0.8 · 10−11 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 922 4.29 · 10−5

3.825 32.1 0.0701 929 6.79 · 10−5

8.889 21.1 0.107 869 1.11 · 10−4

15.0 16.2 0.139 798 1.57 · 10−4

Table 19: Mean cross-field drift velocity|v̄D|, mean clearing timeTc, production timeTp and neutralizationη for

CO+ ions assuming a partial CO pressure of0.2 · 10−11 mbar (Np̄ = 1.0 · 1011).

p GeV/c |v̄D| (m/s) Tc (s) Tp (s) η

1.5 51.3 0.0439 850 4.64 · 10−5

3.825 32.1 0.0701 833 7.57 · 10−5

8.889 21.1 0.107 745 1.29 · 10−4

15.0 16.2 0.139 692 1.81 · 10−4
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11. Local Density of Trapped Ions and Secondary Reactions

11.1 Transverse distribution of trapped ions

Here, we estimate the local density of trapped ions which is necessary to estimate double ion-
ization processes and other adverse effects like small angle Coulomb scattering and hadronic
reactions due to trapped ions. In the longitudinal direction, the local density of trapped ions,
ρion(s) is proportional to the local neutralizationη(s). However, the transverse distribution of
trapped ions is not simply a replica of the transverse distribution of the beam. This is due to the
fact that the ions perform harmonic oscillations in the potential well of the antiproton beam.

If one assumes that the ions are created at rest, i.e. if one neglects the thermal velocity
of the molecules, the ions start at the turning point of theirharmonic oscillation. During the
harmonic oscillation the ions spend most of the time at the turning points. But the time period
where the ions move through the beam center is not negligible. This effect yields an enrichment
in the beam center and a depletion of the tails. The transverse distribution of ions trapped
in a Gaussian beam has been studied by explicitly solving theLiouville equation in a one-
dimensional model [27]. The resulting modification of the ion distribution depends on the
parameterα =

√

U/(kT/2), i.e. on the ratio of the potential energyU at the beam edge
(x, y) = (σx.0) or (x, y) = (0, σy) to the mean thermal energy per degree of freedom,kT/2. For
the HESR beam the ring-averaged value ofα atT = 3.0 GeV and1.0 ·1011 antiprotons amounts
to α ≈ 10. Thus, the transverse ion distributions are characterizedby a narrow central core and
tails greatly diluted at the beam edges when comparing with the Gaussian beam distributions.
However, this effect is less pronounced if one decreases thenumber of stored antiprotons by a
factor of ten.

11.2 Estimate of trapped ion luminosity and secondary reactions

The trapped ions represent an additional target in the antiproton beam. For a rough estimate we
neglect the modifications of the trapped ion distributions as discussed in the previous subsec-
tion. Thus, we assume that the trapped ion distributions area replica of the beam distribution.
Assuming a bi-Gaussian distribution the total ring-averaged luminosityLion may be written

Lion = Np̄f
∮

1

4πσx(s)σy(s)

dNion

ds
ds. (112)

In the barrier bucket mode of operation with a bunch lengthL1, the line densitydNion/ds can
be expressed by the local neutralizationη(s),

dNion

ds
=

Np̄

L1
η(s). (113)

Thus, we get
dLion

ds
=

N2
p̄ f

4πL1

η(s)

σx(s)σy(s)
(114)

and

Lion =
N2

p̄ f

4πL1

∮

η(s)

σx(s)σy(s)
ds. (115)

A simple estimate of the total ring-averaged luminosityL̄ion can be achieved by inserting
ring-averaged values̄η, σ̄x andσ̄y. Using β̄x = R/Qx andβ̄y = R/Qy whereR the effective
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radius of the HESR ring,R = C/(2π) = 91.5 m, yields withQx,y ≈ 7.6

β̄x,y ≈ 12.0 m. (116)

Taking as a characteristic value for the emittanceǫx,y = 0.148 mm mrad for1.0·1011 antiprotons
yields for a beam momentum of 15 GeV/c

σ̄x,y = 1.33 mm. (117)

This yields

L̄ion = η̄
1.0 · 1022

4π(0.133 cm)2

5.2 · 105 s−1

0.9
= η̄ · 2.6 · 1028 cm−2 s−1. (118)

For a mean neutralization of̄η = 0.01 we getL̄ion ≈ 2.6 · 1026 cm−2 s−1. The ionization
cross section for H2 molecules amounts toσion = 2.12 · 10−19 cm2. Taking the same value for
ionization processes on H+2 ions yields a ring-averaged ionization rate ofL̄ionσion = 5.5·107 s−1.

11.3 Comparison of primary and secondary reaction rates

It is interesting to compare the primary reaction rates of the antiproton beam due to the inter-
action with a certain species of residual gas molecules and the secondary reaction rates due to
the interaction with the corresponding trapped ions. To this end we comparedLion/ds (see
Eq. 114) for a certain species (e.g. H+

2 ions) with the corresponding expressiondL/ds for the
luminosity due to the interaction with the residual gas molecules (local number densityρm(s)),

dL

ds
= Np̄fρm(s). (119)

In the following, we denote the ionization cross section byσion. Taking into account that the
neutralization due to a certain molecule species is given by

η(s) =
L1

C

Tc(s)

Tp(s)
=

L1

C
Tc(s)σionρm(s)βc, (120)

the ratioR = (dLion/ds)/(dL/ds) of the luminosity due to trapped ions to the luminosity due
to residual gas molecules (see Eqs. (114) and (119)) may be written

R = Np̄f
Tc(s)

4πσx(s)σy(s)
σion. (121)

Inserting typical values for the dominant H2 molecules,Tc = 0.00281 s andσion = 2.12 ·
10−23 m2 and takingNp̄ = 1.0 · 1011, f = 5.2 · 105 Hz andσxσy = (1.33 · 10−3)2 m2 yields

R = 1.39 · 10−4. (122)

This example shows that secondary reactions on trapped ionsare negligibly small com-
pared to the primary reactions on residual gas molecules. This holds true even if the clearing
time Tc rises up to about 1.0 s. In addition we note that the ratioR decreases by a factor of
101/5 = 1.58 if only 1.0 · 1010 antiprotons are stored.
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12. Neutralization in the Arcs

The arcs consist mainly of dipole magnets, see Fig. 1. The space between the dipole magnets is
filled with a regular sequence of sextupole magnet, quadrupole magnet, sextupole magnet. The
arrangement of magnetic elements is very compact and the drift spaces between the different
elements are very short. There are only two longer drift spaces in the arcs which replace the
missing dipoles near the entrance and exit of the arcs. Theirlength amounts to about 4.5 m.
There are 22 dipole magnets of 4.2 m length in one arc yieldinga total length of about 92.4 m.
The total length of one arc amounts to 153.310 m. That means that about 60 % of the total arc
length is covered by the dipole magnets and the mean neutralization of the arc depends very
much on the mean neutralization in the dipole magnets.

We first assume that clearing electrodes near the entrance and exit of the dipole magnets
are used in order to extract the ions coming from the inside ofthe dipole magnets. The mean
cross-field drift velocities̄vD and the resulting clearing rates1/Tc are rather low and the neu-
tralizationsη are rather high in the region of the dipole magnets, see estimates in Tables 11-13
in Subsection 10.4 for1.0 · 1011 antiprotons. We assume an UHV pressure of1.0 · 10−9 mbar
with 80 % H2 and 20 % CO molecule content. The assumption of 20 % CO molecules takes
approximately the contribution of CO and other heavier molecules like CH4, H2O, N2 etc. into
account. Taking the mean neutralization values for H+

2 and CO+ from Tables 12 and 13 yields
for 1.0 · 1011 antiprotons a mean neutralization̄η between 0.9 % at 1.5 GeV/c and 3.4 % at
15 GeV/c. For1.0 · 1010 antiprotons the mean neutralization would be even about a factor of
four larger, i.e. about 3.6 % at 1.5 GeV/c and 13.5 % at 15 GeV/c.

Such neutralizations in the dipole magnets are dangerous inview of possible coherent
instabilities. Therefore, we suggest to use continuous vertical clearing electrodes in the dipole
magnets, see Sect. 10.5. Assuming vertical electric fieldsEy of about 2250 V/m yields acceler-

ationsay of about1.08·1011 m/s2 for H+
2 and7.70·109 m/s2 for CO+. AssumingTc ≈

√

6σy/ay

the resulting clearing timesTc(s) are below1.0 ·10−6 s and the neutralizationη below1.0 ·10−7.

Another possibility to reduce the neutralization is clearing with horizontal electric fields,
see Subsect. 10.6. Assuming horizontal electric fieldsEx of about 3400 V/m yields rather high
cross-field drift velocitiesEx/By and neutralizationsη of order of magnitude10−4 and below,
see Tables 14-16.

A third possibility to reduce the neutralization is a substantial improvement of the UHV
vacuum by a factor of about hundred, see Subsect. 10.7. This yields immediately a reduction of
the neutralizationη by a factor of hundred, see Tables 17-19 in Subsect. 10.7.

The clearing electrodes near the entrance and exit of the dipole magnets are also used in
order to extract the ions coming from the straight sections between the dipole magnets which
consist of a regular sequence of sextupole, quadrupole and sextupole. The distance between
the clearing electrodes amounts to about 2.0 m. We assume that the ion drift velocities in the
straight sections between the dipole magnets are dominatedby the mean thermal drift velocity
in one direction,̄v‖. (We mention that the rather high~E × ~B cross-field drift velocities in
quadrupole and sextupole magnets estimated in subsections8.5 and 8.6 can never be reached
by transverse acceleration in the rather weak electric fieldEx of the antiproton beam). The
resulting mean neutralization̄η due to H+

2 and CO+ varies between5.6 · 10−4 at 1.5 GeV/c and
4.5 · 10−4 at 15 GeV/c.

The neutralizationη(s) at 15 GeV/c is shown in Fig. 14 in the top panel for clearing
by mean cross-field drift velocities with clearing electrodes at the entrance and exit of dipole
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magnets and in the bottom panel for adding continuous vertical clearing electrodes inside dipole
magnets. Using only clearing by mean cross-field drift velocities with clearing electrodes at the
entrance and exit of dipole magnets yields an average neutralization η̄ of the arcs of 2.1 % at
15 GeV/c. Adding continuous vertical clearing electrodes inside dipole magnets yields̄η =
1.8 · 10−4.

In Sect. 13. we show also results assuming an UHV pressure of1.0·10−9 mbar with 100 %
H2 and 0 % CO molecule content. In addition, we show results assuming that the clearing in
the straight sections is mainly due to the longitudinal acceleration by the electric fieldsEs.
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Fig. 14: Neutralizationη in the arcs at 15 GeV/c assuming1.0 · 1011 antiprotons,0.8 · 10−9 mbar for H2 and

0.2 · 10−9 mbar for CO. Clearing in the straight sections by mean thermal drift velocities v̄‖. Top: Clearing

electrodes at the entrance and exit of dipoles magnets.Bottom: Continuous clearing electrodes inside dipole

magnets and clearing electrodes at the entrance and exit of dipoles magnets. Dashed lines: Average neutralization

of the arcs. 55



13. Neutralization in the Full HESR Ring

13.1 Estimates with different assumptions

Here, we show the neutralization of the full HESR ring assuming different scenarios. The HESR
storage ring has a racetrack shape with two long straight sections, see Fig. 1. The long straight
sections are located betweens1 = 154.75 m ands2 = 289.03 m and betweens3 = 442.34 m and
s4 = (575.18+1.44) m. The total length of one long straight section amounts to 134.282 m. We
differentiate between the cooler straight section and the target straight section. The 24 m long
electron cooler will be installed in the cooler straight section. The PANDA target together with
the spectrometer solenoid and a dipole chicane will be installed in the target straight section.
The problem of trapped ions in the electron cooler is discussed in Sect. 14.. The problem of
trapped ions in the PANDA target region is discussed in Sect.15.. We present eight scenarios
with different assumptions:

(i) The HESR ring is assembled without electron cooler, see Figs 15 - 18. In the long
straight sections the mean distance between the clearing electrodes amounts to about 5 m. This
distance corresponds to the magnetic length of the compensation solenoids. In the arcs, the
clearing electrodes are located near the entrance and exit of the dipole magnets. We assume
that the clearing is either due to the mean thermal drift velocity5 v̄‖ or due to the longitudi-
nal acceleration by the electric fieldEs of the antiproton beam. The pressure outside of the
PANDA target region amounts to about1.0 · 10−9 mbar and the residual gas consists either of
H+

2 molecules (100 %) or H+2 molecules (80 %) and CO molecules (20 %). The neutralization
in the PANDA target region is estimated assuming that the residual gas consists mainly of H2
molecules and assuming clearing by the mean thermal velocity of H2 molecules withL = 5 m.
Overneutralization is not possible. Therefore we setη = 1 in regions where0.9 Tc/Tp > 1.
The special problems of the PANDA target region are discussed in Sect. 15.. The resulting mean
neutralization̄η is indicated in the Figure captions.

(ii) The HESR ring is assembled with an electron cooler (EC),see Figs. 19 - 22. In the
region of the electron cooler, i.e. betweens1 = 209.890 m ands2 = 233.890 m, the mean
neutralization amounts to about 0.012, see the final HESR electron cooler design study [34] and
Sect. 14.. It refers to the sum of the electron and antiprotonbeam current, i.e. to 1.00833 A. The
corresponding linear charge density amounts toλ(e + p̄) = −3.36 · 10−9 C/m. Thus we get a
linear charge density of trapped ions ofλ(ion) = +4.04 · 10−11 C/m. The linear charge density
of the antiproton beam alone (0.00833 A for1.0 · 1011 antiprotons and 15 GeV/c) amounts to
λ(p̄) = −2.78 · 10−11 C/m. Referring the linear charge density of trapped ions in the EC only
to the linear charge density of the antiproton beam yieldsλ(ion)/λ(p̄) = 1.45, i.e. more than
100 %!

13.2 Discussion

The drift of ions in the straight sections depends on the meanthermal velocity in one direction̄v‖
(see Table 3) as well as on the longitudinal accelerationas = q Es/m by the longitudinal electric
field Es of the antiproton beam (see Fig. 8). The longitudinal electric field Es and therewith
the longitudinal accelerationas depends on the number of stored antiprotons. For1.0 · 1010

antiprotons the longitudinal accelerations are by a factorof about eight lesser than for1.0 · 1011

antiprotons (see discussion at the end of Subsects. 3.1 and 3.3). For1.0 · 1011 antiprotons,
the typical longitudinal accelerations of H+

2 and CO+ ions amount to about1.0 · 106 m/s2 and

5The resulting clearing timesTc, production timesTp and neutralizationsη are listed in the Tables 8 - 10.
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7.1 · 104 m/s2, respectively.

The ion clearing in straight sections is dominated by the mean thermal velocitȳv‖ if the
longitudinal accelerationas is relatively small, i.e. if|as| < v̄2

‖/L (L is the distance between
two clearing electrodes in a straight section). That means for L = 5 m |as| < 1.58 ·105 m/s2 for
H+

2 and|as| < 4.22 · 104 m/s2 for CO+. Then, we can estimate the mean clearing timeTc using

Tc ≈
L

2 v̄‖
. (123)

The conditionas < v̄2
‖/L occurs for1.0 · 1011 antiprotons at a few positions in the ring. It is

generally fulfilled for1.0 · 1010 antiprotons.

The ion clearing in straight sections is dominated by the longitudinal accelerationas if
|as| > v̄2

‖/L. That means forL = 5 m |as| > 1.58 · 105 m/s2 for H+
2 and|as| > 4.22 · 104 m/s2

for CO+. Then, we can estimate the mean clearing timeTc using

Tc ≈
√

8

9

L

|as|
≈
√

L

|as|
. (124)

For 1.0 · 1011 antiprotons, the ion clearing in straight sections is mainly due to the longitudinal
accelerationas, see Figs. 17, 18, 21 and 22.

Comparing Figs. 15, 16, 19 and 20 with Figs. 17, 18, 21 and 22 one sees that clearing by
mean thermal velocities̄v‖ yields similar results as clearing by the longitudinal accelerationas.

Comparing the contributions of H2 and CO molecules one sees that the neutralization
outside of the PANDA target is about a factor of four larger ifthe contribution of 20 % CO
molecules is taken into account. This is due to the larger ionization cross sections of CO
molecules.

The ring-averaged neutralization̄η is dominated by the pressure bump near the PANDA
target. A substantial contribution is due to the dipole magnets if the vacuum pressure amounts to
about1.0 · 10−9 mbar and the ions are cleared by mean cross-field drift velocities with clearing
electrodes at the entrance and exit of the dipole magnets, see top panels of Figs. 15 - 22. The
situation would be even worse for1.0 · 1010 antiprotons since the cross-field drift velocities
would be a factor of about four lower and the neutralization in the dipole magnets a factor of
about four higher. The contribution due to the dipole magnets is negligibly small for ion clearing
by vertical or horizontal electric fields, see Subsects. 10.5 and 10.6. The same holds true if the
residual gas pressure is reduced from1.0 · 10−9 mbar to1.0 · 10−11 mbar, see Subsect. 10.7.
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Fig. 15: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)without EC assuming outside of

the PANDA target region partial pressures of1.0 · 10−9 mbar for H2 and0.0 · 10−9 mbar for CO.Clearing in

the straight sections by mean thermal drift velocitiesv̄‖. Distance between clearing electrodes in the long

straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top: Clearing

electrodes only at the entrance and exit of dipole magnets,η̄ = 0.0232. Bottom: Clearing electrodes at the entrance

and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0162. Dashed line:

Mean neutralization̄η. 58



Fig. 16: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)without EC assuming outside of

the PANDA target region partial pressures of0.8 · 10−9 mbar for H2 and0.2 · 10−9 mbar for CO.Clearing in

the straight sections by mean thermal drift velocitiesv̄‖. Distance between clearing electrodes in the long

straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top: Clearing

electrodes only at the entrance and exit of dipole magnets,η̄ = 0.0289. Bottom: Clearing electrodes at the entrance

and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0168. Dashed line:

Mean neutralization̄η. 59



Fig. 17: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)without EC assuming outside of

the PANDA target region partial pressures of1.0 · 10−9 mbar for H2 and0.0 · 10−9 mbar for CO.Clearing in the

straight sections dominated by longitudinal accelerationas = qEs/m. Distance between clearing electrodes in

the long straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top:

Clearing electrodes only at the entrance and exit of dipole magnets,̄η = 0.0234. Bottom: Clearing electrodes at

the entrance and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0162.

Dashed line: Mean neutralization̄η. 60



Fig. 18: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)without EC assuming outside of

the PANDA target region partial pressures of0.8 · 10−9 mbar for H2 and0.2 · 10−9 mbar for CO.Clearing in the

straight sections dominated by longitudinal accelerationas = qEs/m. Distance between clearing electrodes in

the long straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top:

Clearing electrodes only at the entrance and exit of dipole magnets,̄η = 0.0293. Bottom: Clearing electrodes at

the entrance and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0168.

Dashed line: Mean neutralization̄η. 61



Fig. 19: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)with EC assuming outside of

the PANDA target region partial pressures of1.0 · 10−9 mbar for H2 and0.0 · 10−9 mbar for CO.Clearing in

the straight sections by mean thermal drift velocitiesv̄‖. Distance between clearing electrodes in the long

straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top: Clearing

electrodes only at the entrance and exit of dipole magnets,η̄ = 0.0237. Bottom: Clearing electrodes at the entrance

and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0167. Dashed line:

Mean neutralization̄η. 62



Fig. 20: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)with EC assuming outside of

the PANDA target region partial pressures of0.8 · 10−9 mbar for H2 and0.2 · 10−9 mbar for CO.Clearing in

the straight sections by mean thermal drift velocitiesv̄‖. Distance between clearing electrodes in the long

straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top: Clearing

electrodes only at the entrance and exit of dipole magnets,η̄ = 0.0294. Bottom: Clearing electrodes at the entrance

and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0172. Dashed line:

Mean neutralization̄η. 63



Fig. 21: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)with EC assuming outside of the

PANDA target region partial pressures of1.0 · 10−9 mbar for H2 and0.0 · 10−9 mbar for CO.Clearing in the

straight sections dominated by longitudinal accelerationas = qEs/m. Distance between clearing electrodes in

the long straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top:

Clearing electrodes only at the entrance and exit of dipole magnets,̄η = 0.0239. Bottom: Clearing electrodes at

the entrance and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0167.

Dashed line: Mean neutralization̄η. 64



Fig. 22: Neutralizationη in the HESR ring (1.0 · 1011 antiprotons, 15 GeV/c)with EC assuming outside of the

PANDA target region partial pressures of0.8 · 10−9 mbar for H2 and0.2 · 10−9 mbar for CO.Clearing in the

straight sections dominated by longitudinal accelerationas = qEs/m. Distance between clearing electrodes in

the long straight sections: 5 m. Distance between clearing electrodes in the straight sections of the arcs: 2 m.Top:

Clearing electrodes only at the entrance and exit of dipole magnets,̄η = 0.0297. Bottom: Clearing electrodes at

the entrance and exit of dipole magnets and continuous clearing electrodes inside dipole magnets,η̄ = 0.0173.

Dashed line: Mean neutralization̄η. 65



14. Electron Cooler

Here, we discuss the special problems due to the electron beam if the electron cooler (EC) is
installed. We refer to the final HESR electron cooler design study [34]. The electron beam
currentI amounts to 1.0 A. It is guided by the EC solenoid with a constant beam radiusa =
5 mm. The inner diameter of the EC vacuum chamber amounts to 200mm. The resulting
radius profilerc(s) is shown in Fig. 23. The total length of the EC solenoid isLEC = 24.0 m.
In addition, nine beam position monitors are foreseen. The beam position monitors consist of
four electrodes that together form a cylinder with an inner diameter of 200 mm and a length of
200 mm.

14.1 Negative potential well of the electron beam

We first estimate the negative potential well due to the strong electron beam. The linear charge
densityλ is given by

λ =
dQ

ds
=

I

v
. (125)

Here,I is the current andv = βc ≈ c the longitudinal velocity of the electrons. The resulting
potential well and the electric field can be calculated usingEqs. (4)-(6). A round electron beam
of 1.0 A with a constant density within a radiusa = 5 mm yields the following values:

λ

2πǫ0
= −59.9 V, (126)

U(0) = −195 V, (127)

Er(a) = −12 kV/m. (128)

The absolute value of the electric field component in radial direction, |Er|, is maximum at the
edge of the electron beam, i.e. atr = a. For comparison we calculate the corresponding
potential well parameters of the antiproton beam at 8.889 GeV/c using Eqs. (8)and (9). Inside
the EC the rms widths of the bi-Gaussian beam distribution areσx ≈ 6.5 mm andσy ≈ 6.5 mm,
the inner radius of the beam pipe amounts to 100 mm. These parameters yield for1.0 · 1011

antiprotons at 8.889 GeV/c

λ

2πǫ0
= −0.556 V, (129)

U(0) = −1.63 V, (130)

Er(a) = −42.8 V/m. (131)

Here, the absolute value ofEr(a) represents the value of the electric field at the 1-sigma edge
r = a = σx = σy of the antiproton beam. The depth of the electron potential well is a factor
of 120 larger than the depth of the antiproton potential welland the strength of the electric field
near the edge is a factor of 280 larger.

Summarizing, the negative potential well of the electron beam acts as a very deep pocket
for trapped ions (see Fig. 24). The positive ions perform modified cyclotron motions around
the magnetic field lines of the solenoid and magnetron motions around the central axis of the
electron beam, see Subsections 9.3.

It is interesting to note that the transverse electric field of the electron beam (about
12 kV/m at beam edge) is so strong thatωb = 1.07 · 107 s−1 for H+

2 ions. The magnetic field of

66



the EC solenoid is rather low (0.2 T) yieldingωc = 9.58 · 106 s−1 for H+
2 ions. Using Eqs. (98)

and (99), we getf+ = 2.63 · 106 Hz for the frequency of the modified cyclotron motion and
f− = 1.11 · 106 Hz for the frequency of the magnetron motion of H+

2 ions. The high value of
f− is a consequence of the high transverse electric field. In thePANDA target solenoid and the
compensation solenoids the frequencyf− is rather low.

14.2 Ionization rate and neutralization due to the electronbeam

The number of antiprotons per second amounts to aboutṄp̄ = 5.0 · 1016 s−1 if 1.0 · 1011

antiprotons are stored in the HESR ring. This corresponds toa p̄ current of about 8 mA. The
current of the electron beam amounts to 1.0 A. This corresponds to a number of electrons per
second ofṄe = 6.24 · 1018 s−1 which is a factor of 125 larger. Therefore, the ionization rate
due to the electron beam is also a factor of 125 larger. In the following estimates of ionization
and neutralization we neglect the very small contribution of the antiproton beam in the region
of the electron cooler.

We recall that the ionization cross section depends on the molecules in the residual gas
and the velocityβ = v/c of the beam particles. It does not depend on the charge and themass
of the beam particles. Now, the velocity of the electron beamis exactly equal to the velocity
of the antiproton beam. Therefore, applying Bethe’s formula (17) yields identical ionization
cross sectionsσ for electrons and antiprotons and we can use the values listed in Table 2. The
corresponding production rateRp for a certain ion species is given by

Rp = σρmβc. (132)

Here,σ is the ionization cross section,ρm the number density of the residual molecules andβc
the velocity of the beam particles. The production timeTp is the inverse of the production rate,
Tp = 1/Rp. It is simply the time which a single antiproton and/or electron needs in order to
produce one singly charged ion. We note that the production rateRp and the production time
Tp are also identical for electrons and antiprotons.

The following estimates are taken from the final electron cooler design study [34]. In the
region of the electron cooler big pumps on both sides of the straight cooling section and the
return straight section are installed. The distance between the pumps is 30 m. The outgassing
rate is assumed to beq = 1.0 · 10−12 mbar·liter/cm2/s after bake-out to 150◦C. The residual gas
is assumed to consist of H2 (75 %), CH4 (14 %) and CO (11 %). The average pressure for each
gas is calculated taking the specific molecular conductancew = 305 r3

√

T/M into account.
The calculated average partial pressures become

1. 5.5 · 10−10 mbar for H2 (ρm = 1.5 · 1013 m−3),
2. 1.3 · 10−10 mbar for CO (ρm = 3.5 · 1012 m−3),
3. 2.0 · 10−10 mbar for CH4 (ρm = 5.3 · 1012 m−3).

The ionization cross sectionsσ and the resulting production timesTp are

1. σ = 2 · 10−23 m2, Tp = 11 s for H2,
2. σ = 9 · 10−23 m2, Tp = 11 s for CO,
3. σ = 11 · 10−23 m2 Tp = 6 s for CH4.

It is planned to remove the trapped ions with clearing electrodes near the entrance and
exit of the straight cooling section [34]. The clearing electrodes are installed in the merging
modules. The resulting clearing times due to the mean thermal velocity in one direction are
estimated as [34]
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1. Tc = 13 ms for H2,
2. Tc = 50 ms for CO,
3. Tc = 38 ms for CH4.

The resulting mean neutralizationη from H2, CO and CH4 amounts to

η =

(

Tc

Tp

)

H2

+

(

Tc

Tp

)

CO

+

(

Tc

Tp

)

CH4

=
0.013

11
+

0.050

11
+

0.038

6
= 0.012. (133)

The achievable neutralization is sufficiently small for theoperation of the electron cooler
[34]. However, the neutralization is rather high when comparing it with the neighbouring sec-
tions of the HESR ring, see Figs. 19 - 22. This is due to the factthat clearing electrodes can only
be installed outside of the 24 m long cooler section. In addition, the number of ions per meter
is about a factor 125 larger since the neutralization refersto the sum of electron and antiproton
beam.

We note that the neutralization in the EC could be reduced by removing the trapped ions
by short interruptions of the electron beam (for instance a 2µs interruption at 100 Hz). Such
a scheme has been tested with great success at the Fermilab [35]. Then, it would be possible
to extract the trapped ions with moderate electric fields using clearing electrodes inside of the
electron cooler. Electric fields of about(200V)/(0.2m) = 1000 V/m would be sufficient. To
this end, one could use the nine beam position monitors in theelectron cooler section.
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Fig. 23: Inner beam pipe radiusrc(s) after installation of the electron cooler.
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Fig. 24: Central potentialU(s) showing the large potential depth due to the electron beam.
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15. Target Region

15.1 Problems

The problem of trapped ions is especially virulent in the region of the PANDA target.
(i) The local density of H2 molecules is extremely high due to the pressure bump in the neigh-
bourhood of the PANDA target, see Fig. 9. Near the target point the production timeTp for H+

2

ions decreases strongly from 6.4 s to about 0.1 ms, see Fig. 10.
(ii) The produced ions cannot escape in the transverse direction due to the high magnetic field
of the PANDA target solenoid. The produced ions (mainly H+

2 ions) gyrate around the magnetic
field lines of the solenoid. They can only escape in the longitudinal direction along the magnetic
field lines.
(iii) There is a 2 m long dipole spectrometer in the immediateneighbourhood of the PANDA
solenoid.
(iv) There is a 5 m long compensation solenoid in front of the PANDA solenoid.
(v) There is a narrow beam waist inx- andy-direction at the target point. As a consequence the
longitudinal electric fieldEs of the antiproton beam is directed towards the target point,both
upstream and downstream, see Fig. 8. Thus, positive ions areaccelerated towards the target
point instead of being accelerated towards clearing electrodes at the entrance and exit of the
target solenoid. Therefore, ion clearing by the longitudinal electric field of the beam is not pos-
sible.
(vi) The inner diameter of the beam pipe near the PANDA targetamounts to 20 mm and 40 mm,
respectively. There is no room for clearing electrodes. Apart from that, a direct transverse accel-
eration of trapped ions towards clearing electrodes using transverse electric fields is not possible
due to the longitudinal magnetic field of the solenoid which causes a cyclotron motion around
the field lines.
(vii) Ion clearing using beam shaking is not possible. Transverse ion oscillations are suppressed
by the longitudinal magnetic field of the solenoid.

15.2 Possible solutions outside of the PANDA solenoid

The highly uniform part of the magnetic field of the PANDA solenoid extends over a distance of
1.5 m from the target point ats = 509.481 m to s = 510.981 m. Including the fringe fields, the
magnetic field of the PANDA solenoid extends over a distance of 5.50 m froms = 507.481 m
to s = 512.981 m. The high magnetic field of the PANDA solenoid (2.0 T) has twoimportant
advantages: (i) Transverse oscillations of trapped ions and the excitation of coherent ion-beam
oscillations cannot occur in this region due to the longitudinal magnetic field. (ii) Due to the
short production time of positive ions the antiproton beam is fully neutralized within a very short
time period and the longitudinal electric fieldEs directed towards the target point disappears.
The overshoot of ions which are produced continuously with avery high production rate can
escape along the magnetic field lines towards the fringe fieldof the solenoid. In the fringe field
region of the solenoid the ions follow adiabatically the magnetic field lines towards the beam
pipe where they are neutralized, see Subsect. 9.5.

Thus, it is only necessary to provide clearing electrodes outside of the PANDA solenoid
region. There, clearing times ofTc < 1 µs are needed in order achieve a neutralization of less
than 0.1 %. This can be achieved with continuous clearing electrodes. However, it is necessary
to take the additional constraints of the PANDA experiment into account. Clearing electrodes
must not disturb the PANDA experiment.
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In this context we mention the PANDA dipole spectrometer in the immediate neighbour-
hood of the PANDA solenoid which starts in the fringe field region of the solenoid and extends
over 2 m froms = 512.481 m to s = 514.481 m. The PANDA dipole spectrometer is located
in a region where the residual H2 gas pressure is still rather high and the production time for
H+

2 ions is rather low. The mean cross-field drift velocities in longitudinal direction are very
low and the beam is fully neutralized within a short period oftime. Then, the overshoot of
positive ions can escape along the vertical magnetic field lines towards the vacuum chamber.
Summarizing, the beam is fully neutralized in the region of the dipole spectrometer, i.e.η = 1
without clearing electrodes inside of the dipole spectrometer

In addition, there is a compensation solenoid with oppositefield direction which extends
over 5.0 m froms = 500.231 m to s = 505.231 m. Here, we estimate the neutralization in the
region of the compensation solenoid assuming that there areno clearing electrodes inside of the
solenoid. Fortunately, the longitudinal electric fieldEs is unidirectional (directed in the positive
direction). The trapped ions move along the magnetic field lines towards the fringe field of the
compensation solenoid. There, the ions follow adiabatically the magnetic field lines towards the
beam pipe where they are neutralized, see Subsect. 9.5. The mean clearing timeTc depends on
the strength of the longitudinal electric field. For1.0 · 1011 antiprotons the longitudinal electric
field varies between 0.057 V/m and 0.11 V/m and the clearing time Tc is dominated by the
longitudinal acceleration of the ions. It yields for H+

2 ionsTc ≈ 1.1 ms andη ≈ 0.11 in the
region of the compensation solenoid. For1.0 · 1010 antiprotons the longitudinal electric field
is about a factor of eight lower but the clearing timeTc is still dominated by the longitudinal
acceleration of the ions. It yields for H+2 ionsTc ≈ 3.0 ms andη ≈ 0.29 in the region of the
compensation solenoid.
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16. Stability Condition for Ion Oscillations

The barrier-bucket mode of operation produces a long bunch of lengthL1 = 0.9C followed by
a short beam-free gap of lengthL2 = 0.1 C, with L1+L2 equal to the circumference,L1+L2 =
C. The corresponding times aret1 = L1/(βc) andt2 = L2/(βc). The barrier-bucket bunch
has a nearly constant linear charge densityλ. Positive ions perform oscillations during the long
time periodt1 in the negative potential well of the antiproton beam, see Sect. 18.1. During the
short beam-free time gapt2 the ions move freely in the direction of their momentary transverse
velocity. We consider the stability condition assuming that the neutralization is negligibly small.

16.1 Stability condition assuming neutralizationη = 0

During the beam-free time gapt2, the focusing force is zero and the ions behave like in a drift
space. The sequence of focusing and non-focusing can be represented by a transport matrix like
the TWISS matrix in accelerators,

Mx =

(

1 L2

0 1

)(

cos(
√

kxL1) sin(
√

kxL1)/
√

kx

−
√

kx sin(
√

kxL1) cos(
√

kxL1)

)
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My =

(

1 L2

0 1

)
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cos(
√

kyL1) sin(
√

kyL1)/
√

ky

−
√

ky sin(
√

kyL1) cos(
√

kyL1)



 , (135)

wherekx andky depend on the electric field componentsEx andEy of the antiproton beam,

kx =
1

(βc)2

e2Np̄

2πǫ0L1mσx(σx + σy)

ky =
1

(βc)2

e2Np̄

2πǫ0L1mσy(σx + σy)
. (136)

The ion oscillation and therewith the ion trapping is stablein regions where

|Tr(Mx)| ≤ 2 and |Tr(My)| ≤ 2. (137)

The ion oscillation becomes instable and the ions leave the potential well of the beam if

|Tr(Mx)| > 2 and/or |Tr(My)| > 2. (138)

In passing, we note that the TWISS matrix could also be written in terms oft1 andt2,

M̃x =
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0 1
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0 1
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k̃y sin(
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 , (140)

wherek̃x andk̃y depend on the electric field componentsEx andEy of the antiproton beam,

k̃x =
e2Np̄

2πǫ0L1mσx(σx + σy)

k̃y =
e2Np̄

2πǫ0L1mσy(σx + σy)
. (141)
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It should be noted that the calculations ofTr(Mx) andTr(My) presented in Figs. 25
and 26 have been done assuming1.0 · 1011 antiprotons in the HESR ring. Instabilities with
|Tr(Mx,y)| > 2 occur only at a few positions in the HESR ring. The regions of instability
would be larger if the beam-free gap would be 20 % instead of 10%,

In dipole magnets, vertical ion oscillations along the magnetic field lines are not hindered
and instabilities due to|Tr(My)| > 2 are possible. In thex-direction dangerous oscillations
are suppressed by the Lorentz forceq~v × ~B yielding cyclotron motions around the magnetic
field lines, see subsection 8.2. Thus, instabilities due to|Tr(Mx)| > 2 cannot occur in dipole
magnets. Therefore, we setTr(Mx) = 0 in the region of dipole magnets, see Fig. 25.

In the region of solenoids, the transverse ion oscillationsdue to the electric field~E of the
antiproton beam are completely suppressed and an instability due to|Tr(Mx,y)| > 2 cannot
occur. This is due to the Lorentz forceq~v × ~B yielding a strong confinement in the transverse
direction. The magnetic field of the solenoid and the electric field of the antiproton beam cause
the modified cyclotron motion and the slow magnetron motion around the central axis (see
subsection 9.3). Therefore, we setTr(Mx) = 0 andTr(My) = 0 in the region of solenoids,
see Figs. 25 and 26. It is interesting to note that the spectrometer solenoid near the PANDA
target prevents|Tr(Mx,y)| > 2 instabilities which would occur without solenoid. Therefore,
the huge amount of H+2 ions near the PANDA target cannot not be detrapped by|Tr(Mx,y)| > 2
instabilities.

In order to study the basic cause for instabilities a programhas been written where the
harmonic oscillation in the potential well of the antiproton beam is periodically interrupted
during the beam-free time gap. A detailed analysis shows that instabilities occur for a beam-free
time gap of 10 % if the ’tune numbers’ of the ion oscillations,qx = ωx/ω0 and/orqy = ωy/ω0,
are located in certain intervals, i.e. if0.50 < qx < 0.55, 1.0 < qx < 1.1, 1.5 < qx < 1.65, etc.
and/or0.50 < qy < 0.55, 1.0 < qy < 1.1, 1.5 < qy < 1.65, etc.. If the ion oscillation is instable
the oscillation amplitudes rise quickly and the ions are detrapped. For instance forqy = 0.53
only 21 oscillations are necessary in order to reach amplitudes of more than 50 mm.

It should be noted that ions with larger mass like for instance CO+ or N+
2 ions perform

always stable oscillations since the focusing strengths are nearly an order of magnitude lesser.
It should also be noted that instabilities with|Tr(Mx,y)| > 2 do not occur at all for1.0 · 1010

antiprotons in the ring since the electric fields and the focusing strengths are by a factor of ten
lesser.
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Fig. 25: Tr(Mx) vs. s with Tr(Mx) = 0 in the region of dipole magnets and solenoids. A beam-free gap of 10%

and the standard optics are assumed withpp̄ = 15 GeV/c,Np̄ = 1.0 · 1011 andη = 0. Left: the complete HESR

ring from s = 0 m to s = 575 m. Right: the PANDA target region froms = 420 m to s = 575 m. The trapped

ions are detrapped if|TrMx| > 2.

Fig. 26: Tr(My) vs. s with Tr(My) = 0 in the region of solenoids. A beam-free gap of 10% and the standard

optics are assumed withpp̄ = 15 GeV/c,Np̄ = 1.0 · 1011 andη = 0. Left: the complete HESR ring froms = 0 m

to s = 575 m. Right: the PANDA target region froms = 420 m to s = 575 m. The trapped ions are detrapped if

|TrMy| > 2.
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16.2 Stability condition assuming neutralizationη > 0

If positive ions are trapped in the potential well of the antiproton beam the neutralizationη is
nonzero. The corresponding TWISS matrix may be written as the product of a focusing and
defocusing matrix,
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where

k1,x =
1

(βc)2

e2Np̄(1 − η)

2πǫ0L1mσx(σx + σy)
, (144)

k1,y =
1
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76



17. Tune Shift and Tune Spread

17.1 Tune shifts due to trapped ions

The trapped ions affect the betatron oscillations of the antiproton beam particles. The space
charge of the trapped ions yields a focusing force whereas the beam space charge yields a
defocusing force. Assuming identical transverse distributions (elliptic and bi-Gaussian) of the
beam particles and the trapped ions the maximum total tune shifts6 ∆Qx and∆Qy are given in
linear approximation by

∆Qx =
Np̄rp

2πβ2γ

1

C

∫ C

0

βx(s)

σx(s)[σx(s) + σy(s)]

(

η(s) − 1

γ2

)

ds,

∆Qy =
Np̄rp

2πβ2γ

1

C

∫ C

0

βy(s)

σy(s)[σx(s) + σy(s)]

(

η(s) − 1

γ2

)

ds. (148)

Here,rp = 1.5347 · 10−18 m is the classical proton radius. The integral indicates theaveraging
around the ring.

The term with1/γ2 = 1 − β2 represents the effects of the electric and magnetic forces
from thep̄ beam charges and currents and the term withη represents the effects of the electric
forces from the positive ion charges. The ions, which are practically motionless contribute only
a focusing electric field. Without trapped ions (η = 0) the tune shifts are negative. If the space
charge effects are dominated by trapped ions the tune shiftsare positive. Thus, measuring the
tune shifts provides one means to estimate the average neutralization in the HESR ring.

The equation (148) gives the maximum tune shift. Beam particles with large betatron
amplitudes at the edge of the beam distribution experience less focusing and defocusing (zero
at the limit). Therefore, the∆Qx and∆Qy represent also approximately the tune spreads.

In order to estimate the effects of trapped ions we calculatethe maximum tune shifts
and tune spreads by solving numerically the integral expression (148). We take as an example
calculations assumingNp̄ = 1.0 · 1011 at 15 GeV/c, a UHV vacuum pressure of1.0 · 10−9 mbar
with 80 % H2 and 20 % CO outside of the target pressure bump, ion clearing using longitudinal
accelerationas by the longitudinal electric fields in the straight sectionsand cross-field drift
velocities in the dipole magnets. The electron cooler is also taken into account. To this end
we assume the neutralizationη(s) as a function ofs as estimated in Sect. 13. and shown in
the top panel of Fig. 22. In addition we calculate also separately the maximum tune shifts
∆Qion

x and∆Qion
y caused by the ion space charges taking only theη(s) term, and the∆Qbeam

x

and∆Qbeam
y caused by the beam space charge taking only the1/γ2 term. They are related by

∆Qx,y = ∆Qion
x,y +∆Qbeam

x,y . And we calculate numerically the average neutralizationη̄ as given
by

η̄ =
1

C

∫ C

0
η(s)ds. (149)

The results are listed in Table 20.

It is interesting to study what happens if we assume full neutralization in the HESR ring,
i.e. η = 1.0 everywhere. Full neutralization can be prepared approximately by switching off all
clearing electrodes. The resulting maximum tune shifts arelisted in Table 21.

6Often this tune shift is called incoherent tune shift since it refers to the incoherent motion of the beam particles.
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Table 20: Maximum tune shifts and tune spreads forη(s) shown in the bottom panel of Fig. 22 withNp̄ = 1.0·1011

at 15.0 GeV/c.

∆Qion
x ∆Qbeam

x ∆Qx ∆Qion
y ∆Qbeam

y ∆Qy η̄

1.51 · 10−4 −2.05 · 10−5 1.30 · 10−4 1.50 · 10−4 −1.93 · 10−5 1.31 · 10−4 2.97 · 10−2

Table 21: Maximum tune shifts and tune spreads forNp̄ = 1.0 · 1011 andη = 1.0 at 15.0 GeV/c.

∆Qion
x ∆Qbeam

x ∆Qx ∆Qion
y ∆Qbeam

y ∆Qy η̄

5.26 · 10−3 −2.05 · 10−5 5.24 · 10−3 4.96 · 10−3 −1.93 · 10−5 4.94 · 10−3 1.0

17.2 Estimate of tune shifts

A simple order of magnitude check can be performed [20] using

∆Qx,y ≈ Np̄rp

2πβ

1

2ǫn,rms

(

η̄ − 1

γ2

)

, (150)

whereǫn,rms is the normalized rms emittance. WithNp̄ = 1 · 1011 andǫn,rms = (10/3.5)0.8 ·
1.0 mm mrad = 2.32 mm mrad (see Sect. 2.) we get

∆Qion
x,y ≈ 0.00526

1

β
η̄,

∆Qbeam
x,y ≈ 0.00526

1

β

(

− 1

γ2

)

, (151)

∆Qx,y ≈ 0.00526
1

β

(

η̄ − 1

γ2

)

.

These equations can be used in the full momentum range of HESRbetween 1.5 and 15 GeV/c
in order to get a quick estimate.

They yield forη̄ = 0.0297 at 15 GeV/c

∆Qion
x,y ≈ 1.57 · 10−4,

∆Qbeam
x,y ≈ −2.05 · 10−5 (152)

∆Qx,y ≈ 1.37 · 10−4.

These values are in rather good agreement with the values in Tab. 20.

Assuming full neutralization (̄η = 1.0) at 15 GeV/c yields

∆Qion
x,y ≈ 5.26 · 10−3,

∆Qbeam
x,y ≈ −2.05 · 10−5 (153)

∆Qx,y ≈ 5.24 · 10−3.

These values are in rather good agreement with the values in Tab. 21.
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18. Coherent Instabilities

Transverse coherent instabilities have been observed at several antiproton machines. There,
collective oscillations of the beam center (dipole mode) orthe beam shape (quadrupole mode)
grow exponentially due to the interaction of the beam with the trapped ions. The most dan-
gerous mode is the dipole mode, i.e. the coherent oscillation of the beam center. The coherent
instabilities can be estimated using the two-beam instability theory developed by Koshkarev and
Zenkevich [9], Laslett, Sessler and Möhl [10] Keil and Zotter [11] and Alves-Pires et al. [13].
Additional information can be found in the thesis of Zhou [16] and in the references [12, 20].

Trapped ions oscillate in the electric field of the antiproton beam. They cause forces back
on the beam. Vice versa, the beam disturbs the motion of the ions which interact with trailing
beam particles. Thus, the beam is forced to interact coherently with itself. This phenomenon
is very similar to the interaction between beam and wake fields which are described by the
machine impedanceZ(ω). Here,ω is the angular frequency of the resulting coherent oscillation.
The effect of trapped ions can be described by some extra impedanceZi(ω). Since the real part
of Z(ω) + Zi(ω) is positive the fast-wave mode with the sideband frequencyω = (n + Q)ω0

is always stable [16]. Here,ω0 is the revolution frequency,Q the betatron tune andn an integer
with n > −Q. Without Landau damping, i.e. without any frequency spreads the slow-wave
mode withω = (n − Q)ω0 is always unstable. Here,n is an integer withn > Q. Thus,
dangerous coherent oscillations can occur if the trapped ions oscillate at frequencies near the
sideband frequencies(n − Q)ω0.

18.1 Ion oscillations

Ions trapped in the potential well of the antiproton beam perform oscillations. Using the linear
approximation of the electric field the equation of motion reads for an ion of massmi and charge
Zie

d2xi

dt2
=

Zie

mi

Ex = − e2Np̄

2πǫ0L1

Zi

mi

1 − η

σx(σx + σy)
xi = −q2

xω
2
0xi

d2yi

dt2
=

Zie

mi
Ey = − e2Np̄(1 − η)

2πǫ0L1mσy(σx + σy)
yi = −q2

yω
2
0yi. (154)

Here,mi ≈ Aimp is the mass of the ion andZi is the charge number of the ionization where
Zi = 1 for singly charged ions,Zi = 2 for doubly charged ions and so on. The other quantities
are defined in Sect. 3.. The transverse and longitudinal velocities of the ion are so small that the
weak Lorentz force due to the magnetic field of the beam can be neglected. The ions perform
harmonic oscillations. The frequenciesfx andfy of the ion oscillations (’bounce frequency’)
read

fx =
1

2π

√

√

√

√

Zie2Np̄(1 − η)

2πǫ0L1miσx(σx + σy)
= qxf0

fy =
1

2π

√

√

√

√

Zie2Np̄(1 − η)

2πǫ0L1miσy(σx + σy)
= qyf0. (155)

whereη is the neutralization factor,ω0 the angular revolution frequency andf0 the revolution
frequency of the antiprotons (f0 = 520.2 kHz at 15 GeV/c) andqx, qy the ’tune numbers’ of the
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ion oscillations. These equations can also be written in thefollowing form,

q2
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Here,rp = e2/(4πǫ0mpc
2) = 1.535 · 10−18 m is the classical proton radius.

In the region of solenoids the ion motion is modified by the presence of the longitudinal
magnetic fieldB. The resulting motion can be described by a superposition ofa fast modified
cyclotron motion around the field lines (large angular frequencyω+ and small radiusr+) and
a slow magnetron motion around the beam center (angular frequencyω− and radiusr−), see
Sect. 9.3. Direct transverse oscillations inx- andy-direction are not possible. Therefore, we set
qx = 0 andqy = 0 in the region of solenoids.

In the region of dipole magnets the transverse ion motion inx-direction is strongly af-
fected by the magnetic fieldBy. The ions perform a fast cyclotron motion around the vertical
field lines. This motion is modified by the transverse electric field componentEx of the an-
tiproton beam. The resulting~E × ~B/B2 cross-field drift velocity is directed in the longitudinal
direction. A transverse oscillation inx-direction is not possible. Therefore, we setqx = 0 in the
region of dipole magnets.

The resulting ’tune numbers’qx andqy depend on the positions in the HESR ring since the
rms envelopesσx andσy and the neutralizationη are functions ofs. They are shown in Figs. 27-
38 for H+, H+

2 and CO+ ions at four beam momenta (1.5 GeV/c, 3.825 GeV/c, 8.889 GeV/c
and 15.0 GeV/c). These typical examples are calculated assuming a local beam neutralization
η(s) as shown in the top panel of Fig. 22. The dotted lines indicatethe resonance frequencies
(n−Qx) and(n−Qy) where coherent oscillations of thēp beam and the trapped ions can occur.
The ring-averaged root mean square valuesqrms

x andqrms
y are indicated by the dashed lines.

The danger of coherent oscillations is especially high if the rms values ofqx and/orqy

are close to a resonance line. This occurs for instance forqy(H
+) near 1.5 GeV/c,qx(H

+)
near 3.825 GeV/c, forqy(H

+
2 ) near 3.825 GeV/c and forqx(H

+
2 ) near 8.889 GeV/c. The ’tune

numbers’ of CO+ ions are always below the critical resonance lines(8 − Qx) and(8 − Qy).

We note that the ’tune numbers’qx andqy depend not only on the ion mass, ion charge and
beam momentum but also on the number of stored antiprotons which determines the depth of
the potential well and the electric field strengthsEx andEy. The examples shown in Figs. 27-38
are calculated assumingNp̄ = 1.0 · 1011 antiprotons in the HESR ring. The ’tune numbers’qx,y

are proportional to
√

Np̄/[σx,y(σx + σy)]. The beam widthsσx,y are proportional toN2/5
p̄ (see

Sect. 2.). Therefore, we getqx,y ∝
√

N
1/5
p̄ , and the ’tune numbers’ for1.0 · 1010 antiprotons are

by a factor
√

101/5 = 1.26 lower than those shown in Figs.27 - 38.

We mention that the bounce frequencies of the trapped ions decrease with increasing
oscillation amplitude. This effect is due to the nonlinearity of the electric field of a Gaussian
beam distribution. The non-linear detuning of the ion bounce frequency plays an important role
when resonant transverse shaking is applied in order to remove the ions out of the beam (see
Sect. 19.).
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Fig. 27: Bounce frequencies of transverseH+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 1.5 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines represent

the resonance lines(n− Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and 2.4005 for

(n−Qx) and 0.3784, 1.3784 and 2.3784 for(n−Qy), respectively. The dashed lines represent the ring-averaged

rms valuesqrms
x = 0.282 andqrms

y = 0.401. Top: qx. Bottom: qy.

81



Fig. 28: Bounce frequencies of transverseH+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 3.825 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.393 andqrms

y = 0.558. Top: qx. Bottom: qy.
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Fig. 29: Bounce frequencies of transverseH+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 8.889 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.581 andqrms

y = 0.829. Top: qx. Bottom: qy.
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Fig. 30: Bounce frequencies of transverseH+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 15.0 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.754 andqrms

y = 1.07. Top: qx. Bottom: qy.
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Fig. 31: Bounce frequencies of transverseH+

2 ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 1.5 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines represent

the resonance lines(n− Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and 2.4005 for

(n−Qx) and 0.3784, 1.3784 and 2.3784 for(n−Qy), respectively. The dashed lines represent the ring-averaged

rms valuesqrms
x = 0.199 andqrms

y = 0.283. Top: qx. Bottom: qy.
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Fig. 32: Bounce frequencies of transverseH+

2 ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 3.825 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.278 andqrms

y = 0.395. Top: qx. Bottom: qy.
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Fig. 33: Bounce frequencies of transverseH+

2 ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 8.889 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.412 andqrms

y = 0.586. Top: qx. Bottom: qy.
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Fig. 34: Bounce frequencies of transverseH+

2 ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 15.0 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.533 andqrms

y = 0.759. Top: qx. Bottom: qy.
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Fig. 35: Bounce frequencies of transverseCO+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 1.5 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines represent

the resonance lines(n− Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and 2.4005 for

(n−Qx) and 0.3784, 1.3784 and 2.3784 for(n−Qy), respectively. The dashed lines represent the ring-averaged

rms valuesqrms
x = 0.0533 andqrms

y = 0.0758. Top: qx. Bottom: qy.
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Fig. 36: Bounce frequencies of transverseCO+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 3.825 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.0742 andqrms

y = 0.105. Top: qx. Bottom: qy.
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Fig. 37: Bounce frequencies of transverseCO+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 8.889 GeV/c, Np̄ = 1.0 · 1011, η(s) as in top panel of Fig.22. The dotted lines

represent the resonance lines(n − Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and

2.4005 for(n − Qx) and 0.3784, 1.3784 and 2.3784 for(n − Qy), respectively. The dashed lines represent the

ring-averaged rms valuesqrms
x = 0.110 andqrms

y = 0.157. Top: qx. Bottom: qy.
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Fig. 38: Bounce frequencies of transverseCO+ ion oscillations represented as ’tune numbers’qx = fx/f0 and

qy = fy/f0, assumingpp̄ = 15.0 GeV/c, Np̄ = 1.0 ·1011, η(s) as in top panel of Fig.22. The dotted lines represent

the resonance lines(n− Qx) and(n − Qy) for n = 8, n = 9 andn = 10, yielding 0.4005, 1.4005 and 2.4005 for

(n−Qx) and 0.3784, 1.3784 and 2.3784 for(n−Qy), respectively. The dashed lines represent the ring-averaged

rms valuesqrms
x = 0.142 andqrms

y = 0.203. Top: qx. Bottom: qy.
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18.2 Formalism of coherent instabilities

Because beam instabilities develop on a time scale much larger than the revolution period, the
theoretical description of coupled oscillations can be simplified by introducing ring-averaged
forces. Usually, the ring-averaged forces are calculated assuming a constant neutralizationη in
the ring and using a smooth approximation for the envelopes,σx =

√

ǫx〈βx〉 andσy =
√

ǫy〈βy〉
with 〈βx〉 = R/Qx and〈βy〉 = R/Qy. However, in the HESR ring the neutralizationη depends
strongly on the positions due to the large pressure bump in the vicinity of the PANDA target.
Also the envelopes depend strongly on the positions due to the low beta values at the PANDA
target and the large beta values in the region of the electron-cooler. Therefore, the HESR ring
is segmented in small sections and the ring-averaged forcesare numerically evaluated.

In the following we write the coupled equations for coherentoscillations in they-direction
and we omit the indexy for the characteristic forcesFβ , Fsc, Fc, Fi,sc andFi,c and the related
quantitiesQ2

0, Q2
sc, Q2

c , q2
sc andq2

c . Similar equations can be written for the coupled oscillations
in x-direction.

The model for coupled oscillations yields the following coupled equations for the motion
of an individual antiproton (y) and ion (yi),

γmp̄
d2y

dt2
= 〈Fβ〉 + 〈Fsc〉 + 〈Fc〉, (157)

mi
d2yi

dt2
= 〈Fi,sc〉 + 〈Fi,c〉. (158)

Here,〈Fβ〉 represents the external focusing forces of the betatron oscillation, 〈Fsc〉 thep̄ space-
charge forces acting on thēp beam particles,〈Fc〉 the trapped ion space-charge forces acting on
thep̄ beam particles,〈Fi,sc〉 the trapped ion space-charge forces acting on the ions and〈Fi,c〉 the
p̄ space-charge forces acting on the ions. We note that space charge image forces are neglected.
These equations are rewritten by introducing the tune number Q0 of the unperturbed betatron
oscillation and the ’tune numbers’Qsc, Qc, qsc andqc. The ring averaged forces are represented
by the corresponding ’tune numbers’ times the angular frequencyω0 of the beam using the
following definitions

〈Fβ〉
γmp̄

= Q2
0ω

2
0 y,

〈Fsc〉
γmp̄

= Q2
scω

2
0 (y − ȳ),

〈Fc〉
γmp̄

= Q2
cω

2
0 (y − ȳi), (159)

〈Fi,sc〉
mi

= q2
scω

2
0 (yi − ȳi),

〈Fi,c〉
mi

= q2
cω

2
0 (yi − ȳ).

Thus, the model for linearized coupled oscillations as described in [13] yields the following
coupled equations for the dipole mode.

1

ω2
0

d2y

dt2
+ Q2

0 y − Q2
sc(y − ȳ) + Q2

c(y − ȳi) = 0, (160)

1

ω2
0

d2yi

dt2
− q2

sc(yi − ȳi) + q2
c (yi − ȳ) = 0. (161)
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The external focusing forces are represented by the squaredtuneQ2
0 of the unperturbed be-

tatron oscillation. The other forces are represented by thecorresponding mean squared ’tune
numbers’,

Q2
sc = 2

R2

L1

Np̄rp

β2γ3

〈

1

σy(s)(σx(s) + σy(s))

〉

, p̄ space charge acting on p̄, (162)

Q2
c = 2

R2

L1

Np̄rp

β2γ

〈

η(s)

σy(s)(σx(s) + σy(s))

〉

, ion space charge acting on p̄, (163)

q2
sc = 2

R2

L1

Np̄rpZi

β2Ai

〈

η(s)

σy(s)(σx(s) + σy(s))

〉

, ion space charge acting on ion, (164)

q2
c = 2

R2

L1

Np̄rpZi

β2Ai

〈

1

σy(s)(σx(s) + σy(s))

〉

, p̄ space charge acting on ion. (165)

Here, Zi is the charge number of the ion,Ai the mass number andrp the classical proton
radius. We assume that the neutralizationη(s) is dominated by singly charged H+

2 ions. The
coherent transverse motion of the ions is fixed in space and oscillates only in time. The coherent
transverse motion of thēp beam particles is oscillating in space and in time like a travelling
wave. We are interested in resonant harmonics of coupled oscillations of the beam centers̄y
andȳi. To this end, we make the following ansatz,

ȳ = a exp[i (k s − ω t)] = a exp[i (
n

R
s − ω t)] (166)

ȳi = ai exp [−iωt], (167)

Here, the resonance condition imposes that the wave numberk and the wave lengthλ of the
travelling wave satisfy the resonance condition

k =
n

R
, λ =

C

n
. (168)

wheren is an integer,C the circumference andR = C/(2π) the effective ’radius’ of the ma-
chine. The substitution of̄y andȳi from (166) and (167) into (160) and (161) gives two equa-
tions,

1

ω2
0

d2ȳ

dt2
+ (Q2

0 + Q2
c) ȳ = Q2

c ȳi, (169)

1

ω2
0

d2ȳi

dt2
+ q2

c ȳi = q2
c ȳ. (170)

Since thep̄ oscillations are oscillating in space (s) and time (t) (travelling wave ansatz, see
Eq. (166)) the total differentiald/dt in thep̄ equation of motion (160) must be written

d

dt
=

(

∂

∂t
+

∂

∂s
ṡ

)

. (171)

Inserting the travelling wave ansatz (166) yields

dȳ

dt
=

(

−iω + i
n

R
ṡ
)

ȳ = i(−ω + nω0)ȳ,

d2ȳ

dt2
= −(nω0 − ω)2ȳ. (172)
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Similarly, we get
d2ȳi

dt2
= −ω2ȳi. (173)

Using these relations in (169) and (170) yields
[

−(nω0 − ω)2

ω2
0

+ (Q2
0 + Q2

c)

]

ȳ = Q2
c ȳi, (174)

[

−ω2

ω2
0

+ q2
c

]

ȳi = q2
c ȳ. (175)

Eliminatingȳ andȳi yields an equation for the angular frequencyω of the coherent oscillation.
Introducing the reduced frequencyw = ω/ω0 the resulting equation may be written

(q2
c − w2)[(Q2

0 + Q2
c) − (n − w)2] − q2

cQ
2
c = 0. (176)

In this equation,n, qc, Qc andQ0 are the parameters andw is the unknown. Stable solutions
occur if w becomes real, i.e. ifω becomes real. Ifw is complex the solutions come in pairs,
one with a negative imaginary part corresponding to a damping of the oscillations and one with
a positive imaginary part corresponding to a growing (anti-damping) of the oscillations which
means instability!

SinceQc ≪ Q0, we can ignore it in the sum(Q2
0 +Q2

c) or slightly shift the value ofQ0 by
introducingQ2 = (Q2

0+Q2
c). Unstable values (complexw) can occur ifqc is close to a sideband

frequency(n − Q), i.e. qc
∼= (n − Q) andw ∼= (n − Q). Replacingw by w = (n − Q) + δ

yields an equation quadratic inδ,

δ2 + [(n − Q) − qc]δ +
q2
cQ

2
c

4qcQ
∼= 0. (177)

The solution reads

δ = −(n − Q) − qc

2
±

√

√

√

√

(

(n − Q) − qc

2

)2

− q2
cQ

2
c

4qcQ
. (178)

Thus, the equation yields complex solutions if

|(n − Q) − qc| <
qcQc√
qcQ

. (179)

This equation defines a bandδQ for qc in the vicinity of (n − Q),

δQ =
qcQc√
qcQ

, (180)

where instability can occur, i.e. where the solutionω = Re(ω) + iIm(ω) has a positive imagi-
nary part.

The fastest growth rate occurs in the center of the band where|(n−Q)− qc| = 0. There,
we getRe(ω) = (n − Q)ω0 andIm(ω) = (ω0/2)(qcQc)/

√
qcQ. Thus. the fastest growth rate

reads
1

τ
=

ω0

2

qcQc√
qcQ

. (181)
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18.3 Landau damping of coherent instabilities

The coherent instability can be suppressed by Landau damping. We denote thēp tune spread
by ∆p̄ and the ion oscillation tune spread∆i. Landau damping works if the following three
conditions are fulfilled simultaneously,

∆p̄ >

∣

∣

∣

∣

∣

Q2
sc

Q

∣

∣

∣

∣

∣

, (182)

∆i >

∣

∣

∣

∣

∣

q2
sc

q

∣

∣

∣

∣

∣

, (183)

∆p̄∆i >

∣

∣

∣

∣

∣

q2
cQ

2
c

qQ

∣

∣

∣

∣

∣

. (184)

Here, the space charge effects are taken into account in the definition of the betatron tuneQ
and the ion bounce frequencyq, Q2 = Q2

0 + Q2
c − Q2

sc andq2 = q2
c − q2

sc. We emphasize that
the suppression of the two-beam instability requires that the product of the two tune spreads is
larger than the right side of Eq. (184).

Including also the possibility of quadrupole modes, it is found that the risk of transverse
instabilities exists in a band around the resonance line(n − Q) given by

δQ = p
qcQc√
qcQ

, (185)

wherep = 1 for a dipole mode,p = 1/2 for a symmetric (ζ = ξ) quadrupole mode and
p = 1/4 for an antisymmetric (ζ = −ξ) quadrupole mode. The width of this band reflects the
risk of instability. It is proportional toQc, i.e. to the square root of the averaged neutralization
√

〈η/[σy(σx + σy)]〉 (see Eq. (163)). It is narrower for quadrupole modes than fordipole modes.
Including the possibility of quadrupole modes, the necessary condition for Landau damping
reads

∆p̄ > p

∣

∣

∣

∣

∣

Q2
sc

Q

∣

∣

∣

∣

∣

, (186)

∆i > p

∣

∣

∣

∣

∣

q2
sc

q

∣

∣

∣

∣

∣

, (187)

∆p̄∆i > p2

∣

∣

∣

∣

∣

q2
cQ

2
c

qQ

∣

∣

∣

∣

∣

. (188)

18.4 Numerical results

The HESR tune isQ ∼= 7.6 (Qx = 7.5995 andQy = 7.6216). Forn = 8 we get the smallest
value of(n − Qx) as 0.4005 which defines the ’tune number’qc,x where instability can occur.
For n = 9, n = 10, etc. we get(n − Qx) as 1.4005, 2.4005, etc.. Similarly, forn = 8 we get
the smallest value of(n −Qy) as 0.3784 which defines the ’tune number’qc,y where instability
can occur. Forn = 9, n = 10, etc. we get(n − Qy) as 1.3784, 2.3784, etc..

The occurrence of coherent oscillations depends critically on the neutralization of the
beam by trapped ions. The coupling between beam and ions is determined byQ2

c which depends
on the neutralizationη (see Eq. (163)). In the following we calculate the characteristic quantities
taking the assumptions onη(s) as in the top panel of Fig. 22, see Sect. 13.. The characteristic
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quantities i.e. the ring-averaged ’tune numbers’q =
√

q2
c − q2

sc andQc of ion andp̄ bounce
frequencies, the bandwidthδQ and the difference∆ = |(8 − Q) − qc| − δQ are listed in
Tables 22-25 for H+ and H+

2 ions and four beam momenta. The danger of an unstable coherent
oscillation is given in regions whereqc is near a resonance line(8 − Q). Then, the difference
|(8 − Q) − qc| can be very small. The risk of instability is given ifqc lies within the resonance
band(8−Q)± δQ, i.e. if ∆ = |(8−Q)− qc| − δQ is negative. This occurs in our example for
qx and H+ ions near 3.825 GeV/c and forqx and H+

2 ions near 8.889 GeV/c.

Table 22: Ring-averaged ’tune numbers’q =
√

q2
c − q2

sc andQc of ion andp̄ bounce frequencies, the bandwidth

δQ and the difference∆ = |(8 − Q) − qc| − δQ for coherent H+ oscillations in x-direction assumingNp̄ =

1.0 · 1011, η(s) as in top panel of Fig. 22, a beam-free gap of 10% and the standard optics.

p (GeV/c) qx Qc,x δQx ∆x

1.50 0.282 0.0662 0.0128 0.106
3.82 0.393 0.0618 0.0141 -0.00615
8.89 0.582 0.0614 0.0170 0.165
15.0 0.754 0.0616 0.0194 0.334

Table 23: Ring-averaged ’tune numbers’q =
√

q2
c − q2

sc andQc of ion andp̄ bounce frequencies, the bandwidth

δQ and the difference∆ = |(8 − Q) − qi| − δQ for coherent H+ oscillations in y-direction assumingNp̄ =

1.0 · 1011, η(s) as in top panel of Fig. 22, a beam-free gap of 10% and the standard optics.

p (GeV/c) qy Qc,y δQy ∆y

1.50 0.401 0.0722 0.0166 0.00597
3.82 0.558 0.0674 0.0182 0.162
8.89 0.829 0.0669 0.0221 0.428
15.0 1.07 0.0671 0.0252 0.669
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Table 24: Ring-averaged ’tune numbers’q =
√

q2
c − q2

sc andQc of ion andp̄ bounce frequencies, the bandwidth

δQ and the difference∆ = |(8 − Q) − qc| − δQ for coherent H+

2 oscillations in x-direction assumingNp̄ =

1.0 · 1011, η(s) as in top panel of Fig. 22, a beam-free gap of 10% and the standard optics.

p (GeV/c) qx Qc,x δQx ∆x

1.50 0.199 0.0662 0.0107 0.190
3.82 0.278 0.0618 0.0118 0.111
8.89 0.412 0.0614 0.0143 -0.00299
15.0 0.533 0.0616 0.0163 0.116

Table 25: Ring-averaged ’tune numbers’q =
√

q2
c − q2

sc andQc of ion andp̄ bounce frequencies, the bandwidth

δQ and the difference∆ = |(8 − Q) − qi| − δQ for coherent H+

2
oscillations in y-direction assumingNp̄ =

1.0 · 1011, η(s) as in top panel of Fig. 22, a beam-free gap of 10% and the standard optics.

p (GeV/c) qy Qc,y δQy ∆y

1.50 0.283 0.0722 0.0139 0.0810
3.82 0.395 0.0674 0.0153 0.000933
8.89 0.586 0.0669 0.0186 0.189
15.0 0.759 0.0671 0.0212 0.359

18.5 Risk of coherent instabilities

The risk of instability depends on the beam neutralizationη. This is due to fact that the coupling
strengthQ2

c and the resulting band widthδQ for unstable oscillations depend on the neutraliza-
tion η. We mention that instabilities at low sideband frequenciesare the most unstable modes
because the frequency spreads are low. Thus, it is difficult to fulfill the conditions for the
Landau damping of those instabilities [17]. Therefore, dipole instabilities driven by H+ ions
and H+

2 ions occur already at very low neutralization levels (η < 0.01). It has been observed
that the neutralization from a single trapped-ion pocket created by a localized vacuum chamber
enlargement, may be sufficient to drive an instability [17, 36].

18.6 Damping of instabilities using feedback systems

Finally, we note that instabilities caused by ions can be effectively damped by transverse feed-
back systems using a highly sensitive resonant pick-up tuned at the frequency of the single
unstable mode [16, 17]. At the cooler synchrotron COSY a broad band feedback system has
been developed in order to damp transverse instabilities ofelectron cooled beams [37, 38]. The
effect of the damping system can be measured by it’s damping time τ . An oscillation with
an initial amplitudeA will be damped by the damper system asA exp(−t/τ). As long as the
damping timeτ is less than the growing time of the instability, the beam canbe stabilized [16].
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19. Beam Shaking

The beam shaking can be used in order to decrease the neutralizationη and the coupling strength
Q2

c for coherent oscillations in regions where the clearing electrodes cannot remove trapped
ions sufficiently. Thēp beam is shaken using an RF electric field and thep̄ beam shakes the
ions. This method works if the shaking frequency is close to one of the sideband frequencies
(n − Q)ω0 (’slow wave’ frequency) or(n + Q)ω0 (’fast wave’ frequency) and close to the ion
bounce frequencyqcω0. This condition corresponds to the resonance condition forcoherent
oscillations of beam and trapped ions as discussed in Sect. 18.2.

19.1 Formalism

We start with the coupled equations of motion (160) and (161)of beam and trapped ions in
Sect. 18.2. We extend this equation by adding the force term of the shaking kickerF exp [−iωt],

1

ω2
0

d2y

dt2
+ Q2

0 y − Q2
sc(y − ȳ) + Q2

c(y − ȳi) = F exp [−iωt]. (189)

1

ω2
0

d2yi

dt2
− q2

sc(yi − ȳi) + q2
c (yi − ȳ) = 0. (190)

The force termF on the r.h.s of (189) represents the shaking kicker assumed to be aδ function
in azimuth. The integrated electric fieldE0∆s exp [−iωt] enters as

F exp [−iωt] =
eE0∆s exp [−iωt]

mp̄γω2
0

δ(s) =
∆s

C

eE0

mp̄γω2
0

n=+∞
∑

n=−∞

exp [in
s

R
− iωt]. (191)

Only the resonant harmonic withω ≈ (n ± Q)ω0 ≈ qcω0 is retained yielding

F =
∆s

C

eE0

mp̄γω2
0

exp [in
s

R
]. (192)

We are interested in the resonant excitation of coupled oscillations of the beam centers̄y and
ȳi. As in Sect. 18.2, we make the following ansatz for the coupled motion of the beam and ion
centers,

ȳ = a exp[i (k s − ω t)] = a exp[i (n
s

R
− ω t)] (193)

ȳi = ai exp [−iωt], (194)

The substitution of̄y andȳi from (193) and (194) into (189) and (190) yields two equations,

[−(nω0 − ω)2 + (Q2
0 + Q2

c)ω
2
0] ȳ − Q2

cω
2
0 ȳi = ω2

0F exp [−iωt], (195)

(−ω2 + q2
cω

2
0) ȳi − q2

cω
2
0ȳ = 0. (196)

Using these relations and definingQ2 = (Q2
0+Q2

c), we get the equations of the forced oscillation
of two coupled oscillators,

ȳ =
−ω2 + q2

cω
2
0

[−(nω0 − ω)2 + Q2ω2
0](−ω2 + q2

cω
2
0) − q2

cQ
2
cω

4
0

ω2
0F exp [−iωt], (197)

ȳi =
q2
cω

2
0

[−(nω0 − ω)2 + Q2ω2
0](−ω2 + q2

cω
2
0) − q2

cQ
2
cω

4
0

ω2
0F exp [−iωt]. (198)
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Introducing the reduced frequencyw = ω/ω0 these equations may be written

ȳ = − w2 − q2
c

(w2 − q2
c )[(n − w)2 − Q2] − q2

cQ
2
c

F exp [−iωt], (199)

ȳi =
q2
c

(w2 − q2
c )[(n − w)2 − Q2] − q2

cQ
2
c

F exp [−iωt]. (200)

It is interesting to note that the denominator in those equations is equal to the l.h.s. of the
important equation (176). Shaking works if the amplitude ofȳi becomes large, i.e. when
the denominator approaches zero. Here, we must consider thenon-linear detuning and the
condition for the so-called ’lock-on’ of the ions onto the resonance. With increasing amplitudes
the bounce frequencyqc of the ions decreases. Thus,(w2 − q2

c ) is positive and increases. As a
consequence, in order to achieve a denominator approachingzero,[(n − w)2 − Q2] must also
be positive and the condition for̄yi becoming large may be written

(w2 − q2
c ) > 0, (201)

(n − w)2 − Q2 > 0. (202)

That means for the excitation near a slow wave sideband frequency withω ≈ (n − Q)ω0 and
positiven with n > Q,

w < n − Q, (203)

i.e. the excitation frequencyω must be slightly below the resonance frequency(n − Q)ω0. For
the excitation near a fast wave sideband frequency withω ≈ (n + Q)ω0 and negativen with
n > −Q,

w > n + Q, (204)

i.e. the excitation frequencyω must be slightly above the resonance frequency(n + Q)ω0.
Finally, we note the relation between̄y andȳi

ȳ = −ω2 − q2
cω

2
0

q2
cω

2
0

ȳi = −w2 − q2
c

q2
c

ȳi. (205)

Sinceω ≈ qcω0, the amplitude of the beam oscillation is very small compared to the large
amplitude of the ion oscillation.

19.2 Experimental observations

Here, we cite some important observations during shaking experiments at the CERN Antiproton
Accelerator (CERN AA) which are reported by Alain Poncet [15].

The effects of neutralization have been considerably reduced by exciting vertical coherent
oscillations with a transverse kicker in the CERN AA. The shaking system has been perma-
nently implemented. It has the following parameters:
shaking: vertical
shaking frequency: 490 kHz
sideband frequency: 480 kHz
length of kicker electrodes: 0.6 m
kicker field:∼ 20 V/cm
The experimental observations can be summarized as follows:
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1. Beam shaking works best when applied vertically. A possible reason is that neutralization
is high in dipole fields due to the low ion drift velocity. In addition the ions can oscillate
freely along the vertical magnetic field lines.

2. The beam shaking relies on the longitudinal motion of the ions. Due to changing beam
dimensions, the ion ’bounce frequency’ is not constant. Butthe frequency of the shaking
kicker defines the positions in the ring where the bounce frequency is in resonance with
the kicker frequency. Thus, ions must move longitudinally to the resonance positions.
Therefore, beam shaking works best in conjunction with clearing electrodes which pro-
vide a low level of neutralization. Then, the ions can be accelerated by the longitudinal
gradients of the beam potential towards the resonance positions.

3. Beam shaking depends on the non-linearity of the space-charge field. This allows the
’lock-on’ of the sweeping ions onto the resonance. There, they keep large oscillation
amplitudes and their density is reduced in the beam center.

4. Beam shaking is efficient even with low RF fields of only 10 V/cm, provided it is applied
close to a beam betatron sideband whose frequency lies closeto the ion bounce frequency.
In this case, the beam resonant response yields sufficientlylarge non-linear forces on the
ion. Experimentally, it is found that for a weakly exciting RF field, shaking works best
above a band(n + Q) or below a band(n − Q). This observation of asymmetry of weak
resonant shaking is important in that it validates the non-linear character of the ion motion
and the ’lock-on’ conditions.

19.3 Resonant transverse shaking of the HESR beam

The HESR ring is an energy variable machine yielding beam momenta between 1.5 and 15.0
GeV/c. Thus, the revolution frequenciesf0 = ω0/(2π) are not constant but depend on the beam
momentum. The betatron tunes amount toQx = 7.5995 andQy = 7.6216. In Table 26 we
list the corresponding slow-wave sideband frequencies(n − Q)f0 for n = 8 and the fast-wave
sideband frequencies(n + Q)f0 for n = −7.

Table 26: Slow- and fast-wave sideband frequencies.

p (GeV/c) f0 (kHz) (8 − Qx)f0 (kHz) (8 − Qy)f0 (kHz) (Qx − 7)f0 (kHz) (Qy − 7)f0 (kHz)

1.500 441.9 177.0 167.2 264.9 274.7
3.825 506.2 202.7 191.5 303.5 314.7
8.889 518.3 207.6 196.1 310.7 322.2
15.00 520.2 208.3 196.8 311.9 323.4

If we assume1.0 · 1011 antiprotons in the HESR ring the ’tune numbers’qx andqy of
H+ and H+

2 ions coincide at many places with one of the sideband tunes(8 − Qx) = 0.4005,
(8 − Qy) = 0.3784, (Qx − 7) = 0.5995 or (Qy − 7) = 0.6216, see Figs. 27 - 34. The ’tune

numbers’ are proportional to
√

Np̄/[σx,y(σx + σy)]. For Np̄ = 1.0 · 1010 all ’tune numbers’

decrease by a factor
√

101/5 = 1.26. Resonant transverse shaking is not all possible for heavier
ions like CO+ ions. Even forNp̄ = 1.0 · 1011 the ’tune numbers’ of CO+ oscillations are below
the sideband tunes.
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The possible shaking frequencies are in the range of about 165-330 kHz. A broad-band
kicker covering this frequency range with field strengths ofabout 20 V/cm would be sufficient
for resonant transverse shaking of the most critical H+- and H+

2 -ions.

Summarizing, we note that beam shaking alone is not sufficient to remove trapped ions.
Clearing of trapped ions by shaking is only possible under certain conditions at discrete specific
positions in the ring and for light ions like H+ and H+

2 . Heavier ions cannot be removed by
beam shaking. Therefore, clearing of trapped ions in the HESR ring should be mainly done
with the aid of clearing electrodes.

Finally, we mention that beam shaking deteriorates the transverse beam quality. This fact
must be taken into account when applying beam shaking in the HESR ring.
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20. Beam-free Time Gap

In this section, we summarize the effects of the beam-free time gap with respect to the produc-
tion and clearing of trapped ions. The barrier-bucket mode of operation produces a long bunch
of antiprotons witht1 = 0.9 T which is interrupted by a short beam-free time gapt2 = 0.1 T .
Here,T = 1/f is the revolution time of the antiproton beam. Taking 500 kHzas typical revo-
lution frequency the beam-free time gap amounts to about 0.2µs.

20.1 Extraction of trapped ions during the beam-free time gap

Taking only the mean thermal velocities into account (see Table 3), the trapped ions cannot
escape the potential well of the antiproton beam during the short beam-free time gap. For
instance the mean thermal velocityv̄‖ of H+

2 ions amounts to 889 m/s yielding a mean distance
of only 0.18 mm within 0.2µs.

In principle it should be possible to extract trapped ions using high transverse electric
fields during the beam-free time gaps. To this end high transverse electric fields could be
switched on during the beam-free time gaps. A quick estimateshows that transverse electric
fields of about 50 kV/m are needed in order to extract H+

2 ions within a time periodt2 of about
0.2µs. However the switch-on and switch-off time would be extremely short (about 0.01µs).
For heavier ions like for instance CO+ ions the necessary transverse electric fields of 700 kV/m
would be unrealistically high.

20.2 Instability of ion oscillations

Sect. 16. deals with the problem of instabilities of ion oscillations. Positive ions perform oscil-
lations during the long time periodt1 in the negative potential well of the antiproton beam, see
Sect. 18.1. During the short beam-free time gapt2 the ions move freely in the direction of their
momentary transverse velocity. But the ions cannot escape within 0.2µs. The only possibility
to escape is that the ion oscillation amplitudes increase steadily, i.e. that the ion oscillation
becomes instable due to the beam-free time gap. Instabilities occur if the ’tune numbers’qx,y

of the ion oscillations are located in certain specific intervals, for instance0.50 < qx,y < 0.55.
As shown in Sect. 16. the oscillations of H+

2 ions become instable at a few localized positions
in the ring if1.0 · 1011 antiprotons are circulating. Ions with larger mass like forinstance CO+

or N+
2 ions perform always stable oscillations since the focusingstrengths are nearly an order

of magnitude lesser.

Summarizing, the trapped ions perform mostly stable oscillations in the negative potential
well of the antiproton beam. The beam-free time gap causes instable oscillations of H+2 ions
only at a few localized positions in the ring and only for1.0·1011 antiprotons in the ring. Heavier
ions are not affected at all. Thus, the benefit of detrapping ions by instable ion oscillations is
negligibly small.
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21. Diagnostic Tools and Measurements of Trapped Ion Effects

21.1 Current measurements at clearing electrode

An important diagnostic tool is the measurement of the clearing currents at the clearing elec-
trodes. To this end each clearing electrode should be equipped with a Pico-Amperemeter. All
clearing electrodes should be computer controlled such that one can adjust individually the
clearing voltages and measure the clearing currents down topicoamps. Then, the electrode
clearing currents can be measured as a function of the electrode voltages in order to verify the
required maximum voltage for full clearing. The clearing current will saturate if a sufficiently
high voltage is reached.

Additional information about neutralization and trapped ion pockets can be obtained by
individually switching on and off, and by reversing the applied voltage from negative to positive.
The Pico-Amperemeter should be fast enough to allow the measurement of time dependent
processes. For instance the longitudinal mobility of trapped ions can be studied by switching
off the voltage in one channel of the clearing system and measuring the additional currents at
the neighbouring electrodes.

21.2 Tune-shift measurements

The HESR Schottky diagnostics can be used in order to study the behavior of the antiproton
beam. The signals from the transverse Schottky pickups allow precise tune-shift measurements.
The incoherent tune shifts depend on the average neutralization η of the beam, see Eqs. (148)
and (150). Thus, by measuring the tunesQx andQy with and without ion clearing one can
deduce the average neutralizationη. Similarly, one can study the effectiveness of the clearing
electrodes by measuring the residual neutralization as a function of the clearing voltages.

21.3 Beam emittance measurements

The power in the bands of the transverse Schottky spectrum can be used in order to deduce
information on the beam emittance. Thus, one can study the influence of trapped ion effects on
the beam emittance by switching the clearing voltages on andoff.

21.4 Measurement of the coherent ion-beam oscillations

Pockets of trapped ions can interact resonantly with the beam. As a result coherent oscillations
with large amplitudes can occur. Therefore it is necessary to measure the dipole spectrum of the
beam at the sideband frequencies(8−Qx,y) and(9−Qx,y). By decreasing the clearing voltage
one can study the growth of the dipole modes which is an indication of trapped ion effects.

21.5 Measurements of the transverse beam transfer function

The transverse beam transfer function is obtained by exciting the beam with a periodic signal
and measuring the response (amplitude and phase) as a function of the frequency. Measure-
ments at the the Fermilab Antiproton Accumulator [39] showed a double peak structure of the
amplitude response at the beam dipole resonance frequency(2 − q)f0 (q is here the fractional
part of the betatron tune) due to the presence of trapped ions. The double peak structure seems
to be caused by the non-linearity of the ion motion in the antiproton beam.
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22. Summary and Conclusion

The phenomenon of ion trapping in the future HESR antiprotonstorage ring is studied in the
present report. Outside of the PANDA target region the UHV vacuum pressure amounts to
about1.0 · 10−9 mbar yielding full neutralization of the negative beam potential within about
7 s. Near the PANDA target the pressure rises up to about6.0 · 10−5 mbar yielding full neu-
tralization within about 0.1 ms. The positive ions (mainly H+

2 ions) are trapped by the negative
beam potential and perform quasi-harmonic oscillations inthe potential well. The central beam
potential is calculated assuming the standard optics of theHESR ring. The local minima of the
potential are especially dangerous since they act as trapped ion pockets.

The positive ions can be extracted out of the beam using clearing electrodes with suffi-
ciently high electric fields. We recommend to install as manyelectrodes as possible at least one
electrode every 5 m in the two long straight sections. In the arcs clearing electrodes should be
located in the 2 m long straight sections at the entrance and exit of the dipole magnets.

The danger of a high neutralization in the region of dipole magnets has been discussed in
Subsect. 10.4. Ion clearing by mean cross-field drift velocities is not sufficient if the residual
gas pressure amounts to about1.0 · 10−9 mbar. In order to solve this problem three different
suggestions are discussed: (i) Continuous vertical clearing electrodes inside the beam pipes in
order to extract the trapped ions along the magnetic field lines in the vertical direction (see
Subsect. 10.5). (ii) Continuous horizontal clearing electrodes inside the beam pipes in order
to achieve sufficient cross-field drift velocities in the longitudinal direction (see Subsect. 10.6).
(iii) Improvement of the UHV vacuum by about a factor of hundred (see Subsect. 10.7). In view
of the difficulty to install continuous clearing electrodesinside of the 4.2 m long beam pipes
of a dipole magnet, the optimum solution is to improve the UHVvacuum to a level of about
1.0 · 10−11 mbar.

In solenoids the ions move freely along the longitudinal direction. Clearing electrodes
should be located at the entrance and exit of the solenoids. The problem of trapped ions in the
intense electron beam of the electron cooler has been separately discussed in Sect. 14..

A virulent problem represents the huge pressure bump in the neighbourhood of the PANDA
target. The ion production rate is so high that without sufficient clearing the antiproton beam
can be fully neutralized within 0.1 ms - 10 ms. In addition theproduced ions cannot escape in
the transverse direction due to the high magnetic field of thesolenoid. The special problems of
the target region and possible solutions are discussed in Sect. 15..

The effect of the beam-free time gap with respect to ion clearing has been studied in detail.
The barrier bucket mode of operation produces a long bunch oflengthL1 = 0.9 C followed by a
short beam-free gap of lengthL2 = 0.1 C with L1+L2 = C. It has been shown that the positive
ions perform mostly stable oscillations in the negative potential well. The stability condition is
practically not affected by the short beam-free gap of length L2 which acts ion-optically like a
drift space. Instabilities withTrMx,y > 2 occur only under certain conditions at a few discrete
positions in the HESR ring.

Trapped ions in the beam represent an additional target for secondary reactions with the
antiproton beam. However the estimate of the resulting luminosities shows that the secondary
reaction rates are negligibly small compared to the primaryreaction rates due to the residual
gas molecules.

The adverse effects of the trapped ions are due to the additional electric field of the trapped
ion clouds. First of all the trapped ions affect the betatronoscillations of the beam yielding
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incoherent tune shifts and tune spreads. The tune shifts andspreads have been estimated by
taking the beam envelopes around the ring into account and bynumerically integrating the
corresponding expressions. Simple order of magnitude checks confirm the numerical results.
The ion induced tune shifts are about1.3 · 10−4 if the mean neutralization is kept at the 3 %
level.

The most dangerous effects of trapped ions are coherent instabilities due to the interac-
tion of the antiproton beam with the trapped ions. Numericalcalculations of the ion bounce
frequencies show that coherent oscillations can be excitedby H+ and H+

2 ions at the sideband
frequencies(8 − Qx,y). The risk of instability depends on the neutralizationη, i.e. on the
coupling strength of the ion space charge acting on thep̄ beam. Dangerous oscillations can be
avoided by keeping the neutralization below10−3. Heavier ions like N+2 and CO+ cannot cause
dangerous oscillations. They exhibit bounce frequencies which are below the critical resonance
frequencies(8 − Qx,y). Coherent instabilities can be suppressed by Landau damping. If neces-
sary, the coherent instabilities can also be damped by transverse feedback systems using highly
sensitive resonant pick-up systems tuned at the frequency of the unstable mode.

The possibility of removing trapped ions by beam shaking hasalso been studied. The
p̄ beam can be shaken using a broad-band kicker with field strengths of about 20 V/cm. The
trapped ions are shaken by the forced oscillation of thep̄ beam. The amplitudes of the ion
oscillations become very large compared to the small amplitudes of thēp beam. Thus, the ions
are removed by neutralization at the beam pipe. The possibleshaking frequencies are in the
range of 165-330 kHz. Resonant transverse shaking is possible if the ion bounce frequencies
are slightly below the slow-wave sideband frequencies(8 − Qx,y) and/or slightly above the
fast-wave sideband frequency(Qx,y − 7). Resonant transverse shaking can only be used under
certain conditions (Np̄ > 1.0 · 1010) in order to remove light ions like H+ and H+

2 at discrete
positions in the ring. Heavier ions cannot be removed by beamshaking. Therefore, clearing of
trapped ions in the HESR should be mainly done using clearingelectrodes.

Finally, diagnostic tools and measurements of trapped ion effects are discussed. The cur-
rent measurements at clearing electrodes are very important. They provide information about
neutralization and trapped ion pockets. In addition they help to optimize the clearing volt-
ages. The average neutralizationη̄ of the beam can be measured using tune shift measurements.
Measurements of the beam emittances and the coherent ion-beam oscillations give additional
information about trapped ion effects.
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23. Appendix

23.1 Magnetron motion and modified cyclotron motion of trapped ions in solenoids

Here, we discuss first the magnetron motion and the modified cyclotron motion of trapped ions
in solenoids which is due to the superposition of a radial electric field ~E and a longitudinal
magnetic field~B. The magnetron motion and the modified cyclotron motion has been first
studied during the invention of the magnetron [28]. These motions have also been analyzed
during the development of Penning traps [29]. As to the equations of motion for a Penning trap,
we refer to review articles by Brown and Gabrielse [30] and Blaum [31].

The beam envelopes of the antiproton beam are nearly axial symmetric in the region of
the solenoids. The resulting radial acceleration by the electric field ~E of the antiproton beam is
directed radially towards the central axis. This is in contrast to magnetrons and Penning traps
where the radial acceleration is directed off the central axis. This important difference must be
taken into account in the solution of the equations of motion.

We use the Cartesian coordinate system(x, y, z) which coincides with the standard coor-
dinate system of accelerator physics(x, y, s). Thez-axis is oriented along the central axis of
the solenoid. We describe the ion motion radially by~ρ = (x, y) and axially byz. The equations
of motions read

m~̈ρ = q( ~Eρ + ~̇ρ × ~B), (206)

mz̈ = qEz. (207)

We first discuss the solution of the radial equation. We assume a linear approximation of an
axial symmetric electric field directed towards the centralaxis,

~Eρ = −E0~ρ. (208)

Without loss of generality, we assume a magnetic field~B oriented in the negativez-direction,

~B = −(0, 0, B). (209)

Thus, the resulting angular velocity~ωc of the cyclotron motion is directed in the positivez-
direction. We remember that the angular frequencyωc of the free cyclotron motion (i.e. for
~Eρ = 0) is given by

ωc =
qB

m
. (210)

We introduce the parameterωb in order to take the electric field strength in the following equa-
tions into account,

ωb =

√

qE0

m
. (211)

The parameterωb represents the angular frequency of trapped ion oscillations in the potential
well of the antiproton beam forB = 0. The radial equation of motion can be solved using the
following ansatz

~ρ = ~r+ + ~r−, (212)

~r+ = r+(cos(ω+t + α+), sin(ω+t + α+)), (213)

~r− = r−(cos(ω−t + α−), sin(ω−t + α−)). (214)
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Thus, the radial motion of an ion is characterized by two independent motional modes: (i) the
modified cyclotron motion with angular frequencyω+ and radiusr+ and (ii) the magnetron
motion with angular frequencyω− and radiusr−. Inserting the ansatz (212) into (206) yields

ω+ =
ωc

2
+

√

(

ωc

2

)2

+ ω2
b , , (215)

ω− =
ωc

2
−
√

(

ωc

2

)2

+ ω2
b . (216)

The magnetron motion has not the same direction of rotation as the modified cyclotron motion,
i.e. the angular velocity~ω+ is directed in the positivez-direction whereas the angular velocity
~ω− is directed in the negativez-direction. This is due to the radially attractive electricpotential,
see Fig. 12. In this context, we note thatω− in Eqs. (214) and (216) is a negative quantity.
However, the absolute value of the angular velocity reads

|~ω−| = |ω−| = −ωc

2
+

√

(

ωc

2

)2

+ ω2
b . (217)

This fact is important if one tries to find the solution of the equations of motion. The parameters
r+, r−, α+ andα− are constants of integration determined by the initial position and velocity
of the ion in the moment of ionization.

23.2 Proof

Now, we sketch the proof that the ansatz (212)-(214) with Eqs. (215) and (216) forω+ andω−

is a solution of the radial equation of motion. We insert~ρ = ~r+ +~r− into the equation of motion
(206),

m(~̈r+ + ~̈r−) = q(~̇r+ + ~̇r−) × ~B − qE0(~r+ + ~r−). (218)

Taking into account that
~̈r± = −ω2

±~r± (219)

and
~̇r± = ~ω± × ~r± (220)

we get

−(ω2
+~r+ + ω2

−~r−) =
q

m
(~ω+ × ~r+ + ~ω− × ~r−) × ~B − q

m
E0(~r+ + ~r−), (221)

−(ω2
+~r+ + ω2

−~r−) = − q

m
|~ω+|| ~B|~r+ +

q

m
|~ω−|| ~B|~r− − q

m
E0(~r+ + ~r−), (222)

−(ω2
+~r+ + ω2

−~r−) = −ω+ωc~r+ + |ω−|ωc~r− − ω2
b (~r+ + ~r−), (223)

~r+(ω2
+ − ω+ωc − ω2

b ) + ~r−(ω2
− + |ω−|ωc − ω2

b ) = 0. (224)

The last equation holds true because the coefficients of~r+ and~r− are equal to zero, i.e.

ω2
+ − ω+ωc − ω2

b = ω+(ω+ − ωc) − ω2
b = 0, (225)

which means




ωc

2
+

√

(

ωc

2

)2

+ ω2
b







−ωc

2
+

√

(

ωc

2

)2

+ ω2
b



− ω2
b = 0, (226)
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−
(

ωc

2

)2

+

(

(

ωc

2

)2

+ ω2
b

)

− ω2
b = 0, (227)

and
ω2
− + |ω−|ωc − ω2

b = |ω−|(|ω−| + ωc) − ω2
b = 0, (228)

which means


−ωc

2
+

√

(

ωc

2

)2

+ ω2
b







+
ωc

2
+

√

(

ωc

2

)2

+ ω2
b



− ω2
b = 0, (229)

−
(

ωc

2

)2

+

(

(

ωc

2

)2

+ ω2
b

)

− ω2
b = 0. (230)

23.3 Longitudinal motion of trapped ions in solenoids

Finally, the solution of the longitudinal equation of motion (207) yields the third independent
motion inz-direction. The longitudinal electric fieldEz is due to longitudinal variations of the
antiproton beam potentialU(s). It depends on the longitudinal variations of the beam envelopes
and the beam pipe radius (see Sect. 5). The longitudinal electric field yields an unidirectional
acceleration of the trapped ions out of the solenoid if the potential minima are located outside
of the solenoids. If the electric field componentEz equals to zero the ions move with their
constant thermal velocity in the longitudinal direction. An especially dangerous situation occurs
if a potential minimum occurs inside a solenoid. Then, the ions start to oscillate longitudinally
about the potential minimum. They are trapped radially as well as longitudinally as in a Penning
trap. Without clearing the beam is locally neutralized within a very short time.

23.4 Magnetron motion and modified cyclotron motion of electrons in solenoids

Now, we discuss the magnetron motion and the modified cyclotron motion of electrons in
solenoids which is due to the superposition of a radial electric field ~E and a longitudinal mag-
netic field ~B. The chargeq of electrons is negative,

q = −|q|. (231)

The resulting radial acceleration by the electric field~E of the antiproton beam is directed ra-
dially off the central axis. In addition the angular velocity ~ωc of the cyclotron motion is also
directed in the opposite direction, i.e. in the direction ofthe magnetic field~B. The angular
frequency of the free cyclotron motion (i.e. for~Eρ = 0) is given by

ωc =
|q|B
m

. (232)

The parameterωb takes the electric field strength in the following equationsinto account,

ωb =

√

|q|E0

m
. (233)

Before going into the details we anticipate that the angularvelocities~ω+ and~ω− of the modified
cyclotron and magnetron motions are directed in the same direction, i.e. both are directed in the
direction of the magnetic field~B.
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As before, the radial equation of motion (206) can be solved using the ansatz (212)-(214)
and the radial motion is characterized by two independent motional modes: (i) the modified
cyclotron motion with angular frequencyω+ and radiusr+ and (ii) the magnetron motion with
angular frequencyω− and radiusr−. Inserting the ansatz (212) into (206) yields

ω+ =
ωc

2
+

√

(

ωc

2

)2

− ω2
b , (234)

ω− =
ωc

2
−
√

(

ωc

2

)2

− ω2
b . (235)

The subtle distinction of this solution is the fact that a minus sign appears in the expression
under the square root. The proof that the equations (212)-(214) with (234) and (235) represent
the solution of the equation of motion (206) for particles with negative chargeq = −|q| goes as
before.
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