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B.1 JUMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.2 JUBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.3 Run-time restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C Evaluation of continued fractions 125

D Particle - hole symmetry 127

Acknowledgements 129

Bibliography 131

iii



1 Introduction

1.1 The setting

At the heart of many modern technologies are the electronic properties of solids.
Ubiquitous computing for example strives after integrating small embedded computer
systems into everybody’s environment. Those devices have to be small and have to
work with ever increasing speed. To fulfill these requirements we need to understand
the physics of solids, in particular their electronic properties.

Fortunately we do know the Schrödinger equation describing solids in principle
exactly. Neglecting relativistic effects it reads

i~
∂

∂t
|Ψ〉 = H |Ψ〉

where

H = −
Nn∑

α=1

P2
α

2Mα
−

Ne∑

j=1

p2
j

2m
−

Ne∑

j=1

Nn∑

α=1

Zαe
2

|rj −Rα|
+

Ne∑

j<k

e2

|rj − rk|
+

Nn∑

α<β

ZαZβe
2

|Rα − Rβ|

and Zα is the atomic number, Mα the mass, Rα the position and Pα the momentum
of nucleus α. pj and rj denote the jth electron’s momentum and position and Ne,
Nn the number of electrons, nuclei respectively.

If we solve this equation, we will be able to understand current materials and
might even design new ones with superior properties. There is, however, a severe
problem which makes a brute-force approach infeasible. Let us for example consider
an iron atom, neglecting the spin of the electrons. With its Ne = 26 electrons the
total electronic wave function depends on 26 times 3 coordinates. Choosing a very
crude approximation by specifying the wave function on a hyper-cubic grid with 10
points per variable would yield 1078 numbers to store and process. Even if we could
store one number in a single hydrogen atom, the required memory would weight
1051 kg – far more than our home-galaxy, the milky way. Such a memory would be
inherently relativistic: to transport a signal from one end of the data storage device
to the other would either take ten thousands of years or, if we shrank the device to
a manageable size, it would collapse into a black hole. Thus, storing and processing
full wave functions is impossible.

Now one might believe that gaining quantitative understanding of solids is hopeless.
But do we really need the full wave function? Or are there more efficient ways
to determine electronic properties with sufficient accuracy? Thus, a major part of
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solid state theory is to answer this question by searching for simulation techniques,
which yield reliable results with a minimum of phenomenological input while being
applicable to a wide range of problems.

DFT The most successful approach to electronic structure calculations so far is
density-functional theory (DFT). A cornerstone of DFT is the Hohenberg-Kohn the-
orem. Its first statement is that the ground-state energy E of a many-electron system
in an external (nuclear) potential is a functional of the electron-density, which can
be written as,

E [ρ, Vext] = F [ρ] +

∫

d3r Vext(r)ρ(r) ,

where F [ρ] is unknown but universal (in the sense, that it does not depend on Vext,
i.e. on the specific system). While the second states that E [ρ, Vext] is minimized
by the ground-state density. This leads to a significant reduction of complexity.
We only need to determine the ground state density, which is a function of three
coordinates, whereas the wave function depends on 3Ne coordinates. In spite of this
reduction density-functional theory is in principle exact. In practice, however, we
have to rely on approximations since F [ρ] is unknown. The most common ansatz
to find the functional used in ”density-functional practice” (DFP) is the Kohn-Sham
method. It proceeds by mapping the system of interacting electrons to a system
of independent particles Tind in a mean-field Hartree potential plus the exchange-
correlation potential under the constraint that the ground-state density of both the
interacting and the non-interacting system is the same. The exchange-correlation
term describes the difference between the true F [ρ] and the Tind+ Hartree energy:

F [ρ] = Tind [ρ] +
e2

2

∫

d3r d3r′
ρ(r)ρ(r′)

|r− r′| + Exc [ρ] . (1.1)

A simple yet very successful approximation to Exc is the local density approximation
(LDA). It approximates Exc by

Exc [ρ] =

∫

d3r ρ(r)εxc(ρ(r)) ,

where εxc(ρ(r)) is the exchange and correlation energy per electron of the homo-
geneous electron gas. Since the Kohn-Sham-Hamiltonian is a full single-particle
Hamiltonian with non-vanishing potential, it gives rise to a shell structure, which is
e.g. at the heart of the periodic table of elements. The LDA and its generalizations
work astonishingly well for materials which have an electronic structure that can be
understood by filling single-particle energy levels.

Although there is a wide class of materials which can be sufficiently well described
by DFP, it fails to capture the physics of systems with strong correlations1. For-
tunately there are other means of simplifying the full Schrödinger equation, which
might lead to an understanding of these more exotic materials.

1This is, however, at least in principle only a matter of finding good methods to construct appropriate
functionals.
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Model Hamiltonians Instead of investigating the full Hamiltonian, we can replace
it with an effective- or model- Hamiltonian, which only contains dominant effects and
important single-particle orbitals. In theory one can obtain those model Hamiltonians
by integrating out the unwanted part of the Hamiltonian’s spectrum, a process called
renormalization. In practice, though, this is often difficult to perform for realistic
systems and renormalization is done more by intuition.

The simplest model, which describes itinerant electrons and Coulomb repulsion, is
the one-band Hubbard model,

H = −
∑

σ,ij

tijc
†
i,σcj,σ + U

∑

i

ni↑ni↓ . (1.2)

The first term denotes the kinetic energy, where tij is the Hermitian hopping matrix

and the c
(†)
i are the (creation)/annihilation operators of Wannier orbitals. It describes

the hopping of electrons from the Wannier orbital on site i to the Wannier orbital
on site j. In this Hamiltonian only very few orbitals, in many cases only one, per
lattice site are considered explicitly. All the others are either neglected or, more
accurately, renormalized (downfolded) into the explicit ones. This might be justified,
if the resulting band is close to the Fermi level and all other bands are sufficiently
far away. This way, we reduce complexity as far as the one-particle properties are
concerned. This is quite the opposite compared to Kohn-Sham-DFP. The second
term describes the on-site Coulomb potential. Although this is an approximation to
the real Coulomb potential the feature that it is a pair interaction is retained which
is obviously not the case in any single-particle theories.

1.2 Physics of strong correlations

The Hubbard model is the prototype for studying effects of strong correlations. It
describes the interplay between Coulomb and kinetic energy. Evidently, there are
two limiting cases:

Band-limit For U ≪ t correlations are weak, at least for dimensions greater than
one, since the electrons hardly feel each other. They behave as, and at U = 0 actually
are, independent particles. We get a band structure and the system will be metallic
(see left part of figure 1.1), unless the band is not completely filled. The kinetic
energy term is diagonal in k-space.

Atomic limit If U is large compared to t the Coulomb repulsion dominates. Since it
is diagonal in real-space, the movement of a single-electron strongly depends on the
positions of the other electrons. This situation cannot be reduced to a single-particle
image and those systems are called strongly correlated. For a half-filled chain hop-
ping is forbidden, since it would lead to an energetically expensive double occupation.
Thus the system is an insulator, a so-called Mott insulator (cf. figure 1.1).
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Figure 1.1: Band vs. atomic limit: the left figure shows the band-limit U/t≪ 1. The
system is a metal, unless the band is completely filled. The right figure
shows the atomic limit, i.e. U/t ≫ 1 for half-filling, thus the systems is
an insulator.

Clearly, in-between those limits for a half-filled system there has to be a metal-
insulator transition at some value of U/t. At this value the system changes from a
metal for small U/t to an insulator for U/t large. In one dimension, however, the
situation is special. Here the half-filled system is a Mott insulator for any U > 0.

Transition metals oxides Many transition metals have open d- shells. The Hubbard
model fits these materials perfectly, since we (a) can restrict our calculations to the d-
orbitals, renormalized to take the neglected s- and p- shells in a mean-field way into
account. And (b) because the d- shells are rather localized and as a consequence the
Coulomb repulsion between the electrons in those shells is quite strong. We should
regard it as a pair interaction giving rise to a genuine many-body problem. Examples
for those systems are high-Tc cuprates and manganites, showing the effect of colossal
magneto resistance (CMR).

Organics There are organic materials, which show effects of strong correlations.
Typically there is only a weak overlap between molecular orbitals of different molecules,
giving rise to relatively small hopping-matrix elements t, compared to the transition
metal oxides. Since the ratio U/t is a measure for the importance of correlations, a
relatively small value of t leads to strong correlations as well. Examples for those sys-
tems are molecular metals like TTF-TCNQ, showing exotic physics like spin-charge
separation. Other organic crystals, the Bechgaard salts like TMTSF2PF6, are super-
conductors as are the alkali-doped C60 Fullerenes.

1.3 Methods

In this work we will use the Lanczos method to solve extended Hubbard Hamiltonians
exactly. Because the size of the Hilbert space grows exponentially with the system
size the major challenge is to cope with huge vectors. We therefore work on the very
latest supercomputers like the massively parallel Blue Gene system JUBL in Jülich.

The Lanczos algorithm is an iterative method for finding the extremal eigenval-
ues and eigenvectors of a symmetric or Hermitian matrix, in our case a Hubbard
Hamiltonian. It works by building a Krylov subspace, a space spanned by increasing
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powers of the matrix H applied to a random state b, i.e. {b, Hb, . . . , Hmb}, and
then diagonalizing the matrix in this subspace. It turns out that relatively small
subspaces already yield very good approximations to the lowest eigenpair.

Evidently the matrix-vector multiplication plays a crucial role in this algorithm.
Calculating the matrix-vector product is only feasible for large system, if the matrix
is sufficiently sparse. Even then it remains the most time-consuming part of this
method.Moreover, it is the main problem for implementing an efficient massively
parallel Lanczos algorithm, for example for BlueGene.

Having solved the Hamiltonian we have the ground-state wave function. From
this we can directly obtain all ground-state expectation values or wave function
functionals,

〈

Ô
〉

=
〈Ψ0|O|Ψ0〉
〈Ψ0|Ψ0〉

.

In addition we can efficiently compute single-particle Green’s functions and dynam-
ical response functions. Thus, the Lanczos method is ideal, since we have means to
calculate about everything. Everything, that is, in a relatively small system.

Effects of finite system size are for example particularly severe when we are inter-
ested in the angular-resolved (k-dependent) spectral functions, for instance to study
exotic effects like spin-charge separation. Since our Hubbard system only comprises
relatively few sites, typically 10-20, the resolution in k-space is quite low. Introduc-
ing complex boundary conditions improves the situation. This way we can achieve
an arbitrarily good resolution in k. For each different complex boundary condition,
however, we study in principle a different system. This manifests itself for example
in shifts in the chemical potential µ. And we thus cannot get reliable results from
this method.

A more advanced approach is cluster perturbation theory. To obtain an arbitrary
high resolution in k-space, we calculate the one-particle Green’s matrix in real-space
for a finite cluster. Hereafter we recover the original lattice by considering a su-
perlattice of these clusters, treating the hopping between them perturbatively. This
essentially yields the Green’s function for the infinite system. The approach is exact
in both the strong- (t/U = 0) and weak-coupling (U/t = 0) limit and it yields quite
a good approximation to the spectral functions for each wave vector in the Brillouin
zone.

1.4 Overview

In chapter 2 we introduce the Hubbard model and some of its features like the Mott-
Hubbard transition or antiferromagnetic correlations.

The following chapter deals with exact diagonalization. We introduce the power
method as a simple way of obtaining the ground state of a matrix as well as the
more sophisticated Lanczos algorithm. Moreover we show, how to calculate Green’s
functions using the Lanczos method and in the end describe numerical artifacts, like
ghosts.
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In chapter 4 we discuss our efficient implementation of the Lanczos method. Ex-
amining the functions, that consume the bulk of execution time, shows that they
can be parallelized. We first describe our shared-memory implementation based on
OpenMP. The main part of the chapter gives implementation details of our massively
parallel code for BlueGene like supercomputers. Finally, we describe how we tested
our implementations.

In chapter 5 we discuss techniques for overcoming the limitations posed by the
finite size of our clusters. We introduce how to use complex boundary conditions to
get a higher resolution in k-space and study a second far superior method – called
cluster perturbation theory.

In the final chapters we apply our methods to physical problems. In chapter 6 we
use a characterization technique developed by Kohn, which enables us to distinguish
a metal from an insulator from the ground state alone, to look at band and Mott
insulator transitions.

And in the final chapter we investigate the properties of the one-dimensional or-
ganic conductor TTF-TCNQ. Using a simple Hubbard model description we find
Luttinger liquid signatures in the angular-resolved spectral function computed with
cluster perturbation theory. With a more realistic extended Hubbard model we can
resolve a long standing problem in the understanding of the experimental width of
the photoemission spectra.



2 Hubbard model

The Hubbard model, introduced by John Hubbard [1],[2],[3], Martin C. Gutzwiller
[4] and Junjiro Kanamori [5], is the simplest many-body model, which cannot be
reduced to an effective single-particle system. Although it is a very simple model it
has rich physics and is used to study phenomena of correlated electrons like high-Tc

superconductivity, Mott transitions in transition metal oxides, or one dimensional
organic conductors. Unfortunately the exact solution is not known aside from the
ground state in the one dimensional model [6], hence we depend on approximations
and/or computer simulations.

The kinetic energy part of the Hubbard model is derived from the tight-binding
approximation (see e.g. chapter 11 of [7]) of solid state theory. It is an independent-
particle theory and thus contains no many-body features. We will study this approx-
imation in the first part of the chapter.

The second part will take the Coulomb electron-electron repulsion into account,
leading to the complete Hubbard model. Whereas other methods like mean-field
theory replace this interaction with an average one, retaining an effective single-
particle picture, the Hubbard model incorporates the Coulomb potential as a pair
interaction leading to a genuine many-particle problem.

2.1 The tight-binding approximation (TBA)

The tight-binding approximation (TBA) is used to describe tightly bound electrons
in solids. Tightly bound means that the electrons are rather localized at the nuclei,
i.e. the electron density is concentrated around the nuclei. There is only a small
overlap of the electron’s wave functions of neighboring atoms. We can consider the
atoms almost as isolated and hence the splitting of atomic energy levels is relatively
weak, leading to narrow bands. This situation can be found in transition metals’ d-
and f - shells to a good approximation.

2.1.1 Theoretical derivation

The picture of almost isolated atoms suggests an ansatz of atomic orbitals, which
are exponentially localized. Assuming that φν(r − Ri) = φiν is the νth atomic or-
bital centered around the nucleus at Ri. In order to satisfy the Bloch condition we
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construct the wave function as 1

φkµ (r) =
∑

i

eik ·Riφµ(r −Ri) . (2.1)

The one-body Hamiltonian of the system looks like

h0 = − ~2

2m
∇2 + V ion(x) = − ~2

2m
∇2 +

∑

i

vi(x) , (2.2)

where vi(x) is the ith nuclear potential centered at Ri. Let us take a look at its
representation in atomic orbitals. The diagonal elements 〈φiν |h0|φiµ〉 look like,

〈

φiν

∣
∣
∣
∣
∣
− ~2

2m
∇2 + vi(x) +

∑

j 6=i

vj(x)

∣
∣
∣
∣
∣
φiµ

〉

= ενδµν +

〈

φiν

∣
∣
∣
∣
∣

∑

j 6=i

vj(x)

∣
∣
∣
∣
∣
φiµ

〉

,

where the first term of the right hand side yields the main contribution. The off-
diagonal elements are given by,

〈
φiν

∣
∣h0
∣
∣φjµ

〉
= εν 〈φiν |φjµ〉 +

〈

φiν

∣
∣
∣
∣
∣

∑

l 6=i

vi(x)

∣
∣
∣
∣
∣
φjµ

〉

= εν 〈φiν |φjµ〉 − tijνµ ,

where 〈φiν |φjµ〉 6= 0, since the atomic orbitals are non-orthogonal. These terms are,
however, usually very small and are therefore often neglected. Except for nearest-
neighbors, we expect also tijµν to be very small. As a further simplification we
assume, that the bandwidth is small compared to the difference of atomic energy
levels. Then, the hopping between bands can be neglected, i.e. tijµν = tijµδµν .

Let us calculate the energy expectation value of the Bloch function, equation (2.1),

ǫkν =

∑

i,j e
ik · (Ri−Rj) 〈φiν |h0|φjν〉

〈φkν |φkν〉
,

yielding

ǫkν = εν −
∑

ij

tijνe
ik · (Ri−Rj) ,

where the overlap of the atomic orbitals at different sites in the denominator are
neglected, and thus the Bloch waves are considered orthogonal. For only nearest and
second nearest neighbor hopping the resulting energy is given by

ǫkν = εν − tν
∑

n.n.

eikRi − t′ν
∑

2nd n.n.

eikRj , (2.3)

1This is the simplest ansatz possible. If the band width is wider than the energetic difference between
the atomic levels, we have to make a more complex ansatz of linear combinations of atomic orbitals
(LCAO).
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where tν = t01ν = t10ν and t′ν = t02ν = t20ν . Ri and Rj denote nearest, second nearest
neighbor vectors respectively, as seen from a representative lattice site R0.

The ansatz (2.1), the simplest possible, is not used in practice. First, the atomic
orbitals are not orthogonal with respect to the orbitals of other atoms and second the
ansatz of a simple atomic orbital is usually too oversimplified. One would rather use
linear combinations of atomic orbitals (LCAO) as ansatz for φiν retaining, however,
the problems of non-orthogonality. For application with the Hubbard model an
“inverse” approach is used.

2.1.2 From the TBA to the kinetic energy term of the Hubbard
model

Assuming we have the solution of some Hamiltonian H0 in terms of band structure
energies ǫkν and corresponding Bloch wave functions φkν . Fourier transforming the
Bloch waves leads to Wannier states

ϕiµ(x) =
1√
L

∑

k

e−ik ·xφkµ(x) . (2.4)

The on-site energies and hopping-matrix elements can be deduced from the ǫkν via
Fourier transformation, as well. We get

− tijνµ =
〈
ϕiν

∣
∣h0
∣
∣ϕjµ

〉
=

1

L

∑

k,k′

e−ik′ · rjeik · ri
〈
φkν

∣
∣h0
∣
∣φk′µ

〉
(2.5)

=
1

L

∑

k

e−ik · (rj−ri)ǫνkδµν ,

and for the on-site energies,
εiν = tiiν . (2.6)

In second quantized form the Hamiltonian reads,

H0 = −
∑

σ,i6=j,ν

tijνc
†
iνσcjνσ +

∑

σ,i,ν

εiνc
†
iνσciνσ , (2.7)

where c
(†)
iνσ creates/annihilates an electron in the νth Wannier state at lattice site

Ri. This representation has the advantage of being independent from the number of
particles.

Like the Bloch waves the Wannier states are orthonormal, since the unitary Fourier
transform conserves the scalar product. But unlike Bloch waves the Wannier func-
tions are usually localized like atomic orbitals. Localization means that for a Wannier
state centered at Ri, the density decays exponentially for |r− Ri| → ∞.

General results concerning the localization of Wannier functions are difficult to
obtain [8]. Actually this problem has been called “one of the few basic questions of
the quantum theory of periodic solids in the one-electron approximation which is not
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completely solved” [9]. What has been shown so far is the existence of exponentially
localized Wannier functions for isolated, simple bands in any dimension [9], as well
as for complex bands in perturbation theory [10] and in the tight-binding limit [10].

Though Wannier functions do not have a direct physical interpretation they are
very useful especially if they are exponentially localized. There exist different recipes
for constructing “maximally localized” Wannier functions. Marzari and Vanderbilt
for instance construct them by exploiting the arbitrariness of the phase. Before
Fourier transforming the Bloch waves φkµ are multiplied with a k-dependent phase
factor eiΦk in such a way, that after the Fourier transform the spatial width of the
Wannier functions is minimized [11].

Whenever phenomena occur in solids in which electrons or their effects are spatially
localized Wannier functions are the representation of choice. This is the case in the
Hubbard model. We will see that the Hubbard interaction term is local. Thus a
description in terms of Wannier functions is preferable.

2.1.3 Features in low dimension

In this part we will look at the features of the TBA in one and two dimensions.
Starting point is the band structure equation (2.3). We consider a chain of single
Wannier orbitals per site in one dimension with next-neighbor hopping t and second
next-neighbor hopping t′. Setting the on-site energies to zero (2.3) yields

ǫ1d
k = −2t cos(ka) − 2t′ cos(2ka) , (2.8)

where a denotes the distance in coordinate space between neighbor sites and k is
restricted to the first Brillouin zone, i.e. k ∈ (−π/a, π/a]. For different values of t′/t
this band structure is plotted in figure 2.1.
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Figure 2.1: Band structure of a linear chain (left) and a square lattice (right) in TBA
for different values of t′/t (from upper to lower at k = 0, Γ respectively
t′/t = {0.00, 0.25, 0.50, 0.75, 1.00}).

Similarly we obtain for a square lattice in two dimensions, with nearest-neighbors at
R1,2 = ±a (1, 0)T , R3,4 = ±a (0, 1)T and second nearest neighbors at R′

1,2 = ±a/
√

2 (1, 1)T
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and R′
3,4 = ±a/

√
2 (1,−1)T ,

ǫ2d
k = −2t

(

cos (kxa) + cos (kya)

)

− 2t′
(

cos

(
a(kx + ky)√

2

)

+ cos

(
a(kx − ky)√

2

))

,

(2.9)
where k is restricted to the first Brillouin zone, i.e. ki ∈ (−π

a
, π

a
] ∀i. Examples for

several values of t′/t are shown in figure 2.1. Moreover figure 2.2 shows the energy
surface and its iso-energy contours for t′ = 0 and t′/t = −0.25.
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Figure 2.2: Energy surface and iso-energy lines for the two dimensional system with
t′ = 0 (left) and t′/t = −0.25 (right).

Density of states

The density of states in k-space for an arbitrary dimension n is constant. Each k-
state consistent with the boundary conditions occupies a volume of ∆k = (2π/L)n

in k-space and the density is therefore given by its inverse. This can be derived
by considering a particle in a n dimensional hypercube with side length L. More
interesting is the density of states as function of the energy. If L is sufficiently large
the sum over k-states can be regarded as an integral, i.e.

lim
L→∞

1

Ln

∑

k

→
∫

dnk

(2π)n

Thus, the density of states is given by

D(E) =

∫

1BZ

dnk

(2π)n
δ(E − ǫk) . (2.10)

This integral often has to be evaluated numerically. In the case of a one-dimensional
monotonous band structure, we can however obtain it with a quite simple method.

With the density in k-space

D1d(k) dk =
1

2π
dk
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we obtain using our tight-binding dispersion relation (2.8) for nearest-neighbor hop-
ping the density of states as

D1d(E) dE = 2
1

2π

∣
∣
∣
∣

dk

dE

∣
∣
∣
∣
dE =

1

2πa

dE

|t sin(ka)| =
1

2πa

dE

|t sin(arccos(E/2t))| . (2.11)

This density of states is plotted in the left plot of figure 2.3. At the Brillouin zone
boundaries, where the slope of the dispersion relation is vanishing, i.e. dE/dk → 0,
the density diverges.

In two dimensions the density of states is given by

D2d(E) =
K
(
1 − ( E

4t
)2
)

2π2a2t
, (2.12)

where K is the complete elliptic integral of the first kind. This function is plotted
in the left plot of figure 2.3. Again we observe a singularity in the density of states.
These singularities are named after van-Hove and arise whenever |∇kE| → 0.
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Figure 2.3: Density of states (DOS) in one (left) and two (right) dimension(s).

Two orbitals per cell

Consider a one-dimensional system with two Wannier orbitals per unit cell, denoted
by + and − with an energy difference of ∆. For symmetry reasons we define the on-
site energies as ε∓ = ∓∆/2. Hopping occurs only between nearest neighbors. This
situation is sketched in figure 2.4. Hence, the Hamiltonian describing the system

Figure 2.4: Two orbitals per cell, separated by ∆ in energy.
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looks like

H = −t
∑

i

(

c†i,+ci,− + h.c.
)

− t
∑

〈ij〉

(

c†j,−ci,+ + h.c.
)

+
∑

i

∆

2
(ni,+ − ni,−) , (2.13)

where i denotes the unit cell and ni,ν = c†i,νci,ν the occupation of its orbital ν =
{+,−}.

To solve this Hamiltonian we again make an ansatz of Bloch waves,

φk =
∑

j

eikRjuj , (2.14)

where Rj = 2aj is the coordinate vector of the ith unit cell and ui = αϕi,− + βϕi,+ is
a (unit cell) periodic function. We have to solve 〈φk|H|φk〉, where k is restricted to
k ∈ (− π

2a
, π

2a
]. With the unitary transformation Û †, which contains the phase factors

of the Bloch wave,
φk = Û †u , (2.15)

we shift the k-dependence into the Hamiltonian, yielding

〈φk|H|φk〉 =
〈

u
∣
∣
∣ÛHÛ †

∣
∣
∣u
〉

= 〈u|Hk|u〉 .

ÛHÛ † and u look like













. . .
. . .

. . . −∆/2 −teika 0 0
−te−ika ∆/2 −teika 0

0 −te−ika −∆/2 −teika

0 0 −te−ika ∆/2
. . .

. . .
. . .














,












...
α
β
α
β
...












.

u contains N → ∞ 2-vectors, where N is the number of unit cells in the chain. The
2-vectors actually are the ui = αϕi,− + βϕi,+ and thus are for all i the same due to
periodicity.

We can therefore construct a replacement Hamiltonian,

Hk = −t
(

c†+c− + h.c.
)

− t
(

e−ik2ac†−c+ + h.c.
)

+
∆

2
(n+ − n−) , (2.16)

which in matrix elements of the Wannier basis looks like

Hk =

(
−∆/2 −t

(
1 + e−ik2a

)

−t
(
1 + eik2a

)
∆/2

)

. (2.17)

The replacement Hamiltonian actually yields exactly the same physics. It is k-
dependent but operates only on a two dimensional space.
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Figure 2.5: Band structure for the two band model in one dimension for various values
of ∆/t = {5, 2, 1, 0.5, 0} (upper to lower in upper band).

By diagonalization we obtain two bands with energy dispersion,

ǫνk = ∓

√

4t2 cos2 ka+

(
∆

2

)2

, (2.18)

for k ∈ (− π
2a
, π

2a
]. The resulting band structure is plotted in figure 2.5 for various

values of ∆/t.

For ∆ = 0, the equation (2.18) coincides with equation (2.8) for t′ = 0. Aside from
the fact that we have different unit cells and therefore different Brillouin zones. In
the case of two orbitals per cell, we have a halved Brillouin zone but a second band.
It is the second half of the original band folded into the reduced Brillouin zone. We
retain our original band for one site per unit cell by folding it out in the unreduced
zone. Mathematically this means for an arbitrary number L of equivalent sites in
the unit cell,

ǫfull
k = −2t cos (ka) , (2.19)

with

k =
π

La
ν + k̃ ,

where k̃ is restricted to k̃ ∈ (− π
La
, π

La
].
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2.1.4 Many independent particles

Up to now we treated a single electron only. If the many-body Hamiltonian is a
separable sum of single-particle ones, we can regard the system as a Fermi gas and
obtain the solution of the full problem from the solution of the single-particle. For
the TBA Hamiltonian (2.7) this is for instance the case. Let {|φi〉}i denote the
orthonormal single-particle eigenbasis with eigenenergies ǫi.

Assume we have Ne electrons which occupy the spin orbitals of the set {|φi〉χσ}i.
For Fermions the total wave function has to be anti-symmetrized. This is ensured by
the construction with Slater determinants, which are in the real-space basis given by

〈x, σ|ψ〉 =
1√
Ne!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

〈x1, σ1|φi1,↑〉 〈x2, σ2|φi1,↑〉 . . . 〈xn, σn|φi1,↑〉
〈x1, σ1|φi2,↑〉 〈x2, σ2|φi2,↑〉 . . . 〈xn, σn|φi2,↑〉

...
...

...
〈x1, σ1|φin,↑〉 〈x2, σ2|φin,↑〉 . . . 〈xn, σn|φin,↑〉
〈x1, σ1|φi1,↓〉 〈x2, σ2|φi1,↓〉 . . . 〈xn, σn|φi1,↓〉
〈x1, σ1|φi2,↓〉 〈x2, σ2|φi2,↓〉 . . . 〈xn, σn|φi2,↓〉

...
...

...
〈x1, σ1|φin,↓〉 〈x2, σ2|φin,↓〉 . . . 〈xn, σn|φin,↓〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.20)

where
∣
∣φijσ

〉
=
∣
∣φijχσ

〉
are the occupied spin orbitals indexed by j ∈ [1, . . . , Ne].

Equivalently this state can be represented in second quantization by

|ψ〉 = |n1↑n1↓n2↑n2↓ . . .〉 =
∏

σ,i

(

c†iσ

)niσ

|0〉 , (2.21)

where c†iσ creates an electron in the spin orbital φi,σ and |0〉 denotes the vacuum
state. Anti-symmetry is ensured by the commutation rules for Fermions, i.e.

{

ciσ, c
†
jσ′

}

= δijδσσ′ (2.22)
{

ciσ, cjσ

}

= 0 . (2.23)

niσ represents the occupation of the spin orbitals and is therefore restricted to 0 or
1.

The eigenenergies of the full many-body Hamiltonian are given by summing over
the eigenenergies ǫi of the occupied spin orbitals. In the ground-state only the spin
orbitals of lowest energy are filled.

Spin-assigned Slater determinants Often we calculate expectation values of ob-
servables which have no explicit spin dependence. For these observables it can be
shown that using spin-assigned wave functions (see for example chapter A11 6-3.2
of [12]) yields the same results. They are however calculated more easily, since the
Slater determinants become smaller. Spin-assigning means that we give the first N↑
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particles the value σ =↑ and the next N↓ the value σ =↓. This leads to a block-
diagonal structure of the determinant (2.20) and thus to a product of determinants,
one for the up and one for the down electrons:

〈x|ψ〉 =

〈

x, {↑, . . . , ↑
︸ ︷︷ ︸

N↑

, ↓, . . . , ↓
︸ ︷︷ ︸

N↓

}

∣
∣
∣
∣
∣
∣
∣

ψ

〉

=
1√
Ne!

∣
∣
∣
∣
∣
∣
∣
∣
∣

〈x1|φi1,↑〉 . . .
〈
xN↑

∣
∣φi1,↑

〉

〈x1|φi2,↑〉 . . .
〈
xN↑

∣
∣φi2,↑

〉

...
...

...
〈x1|φin,↑〉 . . .

〈
xN↑

∣
∣φin,↑

〉

∣
∣
∣
∣
∣
∣
∣
∣
∣

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

〈
xN↑+1

∣
∣φi1,↓

〉
. . . 〈xN |φi1,↓〉〈

xN↑+1

∣
∣φi2,↓

〉
. . . 〈xN |φi2,↓〉

...
...

...
〈
xN↑+1

∣
∣φin,↓

〉
. . . 〈xN |φin,↓〉

.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.24)

Finite size scaling

For single particle theory, the k-space representation is optimal. The Hamiltonian
is diagonal and we can restrict our calculations to a single unit cell. Consider two
electrons in a unit cell consisting of a single orbital. The direct Coulomb repulsion
between them can be taken into account accurately. They however see mirror im-
ages of themselves on the periodically extended system, giving rise to non-physical
interactions.

Figure 2.6: (a) open, (b) periodic boundary conditions in one dimension.

When the Coulomb interaction becomes important and should be considered as a
pair interaction, a real-space representation in terms of Wannier functions is prefer-
able. Since we cannot handle infinitely large matrices, we approximate the infinite
physical system with a finite cluster. This of course gives rise to finite size effect,
which need to be studied systematically.

Let us consider a d dimensional bulk system. Its extensive quantities scale propor-
tional to Ld where L denotes a characteristic length of the system. In the bulk the
division of an extensive quantity by Ld yields a constant. Deviation from this con-
stant behavior is due to the system’s finite size. The surface for instance scales with
Ld−1 and thus the leading order of the finite size correction is in general proportional
to 1/L.

For the bulk, all physical properties must be invariant under translations. We
therefore introduce periodic boundary conditions (also called Born-von Karman-
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Figure 2.7: Finite size scaling: ground-state energy of one dimensional half-filled sys-
tems in TBA with varying (even) length and open (upper graph)/periodic
(lower graphs) boundary conditions. The OBC systems show a linear
scaling due to surface effects. With PBC theses are gone and the next or-
der correction is dominant. Extrapolated to infinite system yields the
same value for both system types as denoted by the horizontal line,
E∞,0 = −2a/π.

boundary condition) and expect, that they reduce finite size effects. Periodic bound-
ary conditions mean, that the single particle wave functions satisfies φ(r) = φ(r+Lj),
where Lj is the length of the system in dimension j. In one dimension for example
it can be regarded as closing a chain to a ring (cf. figure 2.6), or in two as closing a
plane to a torus.

Figure 2.7 shows the ground-state energy of a one-dimensional half-filled system
in TBA against 1/L. For open boundary conditions (OBC), i.e. treating the cluster
as a finite system, we obtain a linear correction in 1/L (surface correction). PBC
calculations indeed show better results. The surface effects are gone and the next
higher effects proportional to 1/L2 dominate. Moreover the absolute deviation from
the infinite system’s ground state energy (solid line) is considerably smaller. In the
limit of 1/L→ 0 boundary conditions become irrelevant and all extrapolations from
finite systems meet at the exact energy for the infinite system E∞,0 = −2a/π.

There are actually two parabolas for the PBC systems. The upper one represents
open-shell, whereas the lower one closed-shell systems. In closed shell systems each
occupied single-particle orbital in the ground state is doubly occupied. Thus the
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resulting ground-state wave function is unambiguously determined. In open-shell
systems on the other hand an energy shell is not completely filled and thus there
are several linear combinations for the ground state. Hence, the ground state is
degenerate.

2.2 From the tight-binding approximation to the

Hubbard model

In the single-particle Hamiltonian h0 we have studied the electron-electron repulsion
was neglected. In the full Hamiltonian for a single particle, the electron-electron
interaction spoils the separability. The Hamiltonian reads,

H =

Ne∑

i

h0 (∇i,xi) +
1

2

Ne∑

i6=j

vel−el(ri, rj) , (2.25)

where ri is the position of the ith electron. Much of the electron-electron interaction
can be incorporated into the single-particle part of the Hamiltonian, leading to an
effective (nuclear) potential.

This effective Hamiltonian looks like [13],

H̃0 =

Ne∑

i=1

(
h0(∇i,xi) + veff(xi, ρ)

)
, (2.26)

where veff is a functional of the ground-state density ρ0. In order to calculate ρ0 we
need the solution of equation (2.26), which in turn needs ρ0. Hence this (Kohn-Sham)
system needs to be solved self-consistently.

As result we obtain the band energies ǫkν and the corresponding Bloch waves,
which via Fourier transformation yield the on-site energies εi, the hopping matrix
elements tijν and the Wannier states. With the localized Wannier states we treat the
residual interaction

ṽij = vel−el(ri, rj) −
veff(xi, ρ) + veff(xj , ρ)

Ne

, (2.27)

which was neglected in equation (2.26). It regards the Coulomb interaction as, what
it really is in reality, a pair interaction. This might lead to an understanding of far-
reaching ordering phenomena like antiferromagnetism, superconductivity or Mott
insulation. The full electron Hamiltonian thus reads,

H = H̃0 + Ṽ el−el , (2.28)

where H̃0 is given by equation (2.26) and Ṽ el−el by

Ṽ el−el =
∑

W αβγδ
ijkl c

†
αiσc

†
βjσ′cγkσ′cδlσ , (2.29)
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where the matrix W αβγδ
ijkl is,

W αβγδ
ijkl =

∫

d3x

∫

d3x′ ṽ(x, x′)φ∗
αi(x)φ∗

βj(x
′)φγk(x′)φδl(x) . (2.30)

If we have well localized Wannier functions, we expect many terms of equation
(2.29) to be very small. The standard approximation is to neglect all contributions
of (2.29) except the local one, i.e.

∑

iss′

Wiiiic
†
iσc

†
iσ′ciσ′ciσ = U

∑

i

ni↑ni↓ , (2.31)

where U = 2Wiiii. The normal-ordered operators in (2.29) ensure that the unphys-
ical self-interaction term (σ = σ′) drops out. The local interaction parameter U is
called Hubbard-U . This harsh approximation was justified by Hubbard for the 3d-
transition metals [1]. The order of magnitude of the Hubbard-U is about U ≈ 20 eV.
The largest of the neglected terms, belonging to the nearest neighbor interaction V is
about V ≈ 6 eV, without taking screening into account. He estimated that screening
would further reduce V to V ≈ 2 − 3 eV. It thus is an order of magnitude smaller
than U and can be neglected.

The interactions neglected in (2.31) can be classified into two types: direct terms
and exchange terms. The direct terms are given by interaction matrix elements
Vij = Wijji and can be included in the standard Hubbard model by terms like

V =
∑

i6=j

Vijninj , (2.32)

where ni is given by ni = ni↑ + ni↓. We will treat those terms later, when we look
into organic conductors. The exchange terms are obtained by Wijij interaction matrix
elements and give rise to inter-site magnetic couplings (cf. [14]).

To conclude we give some equivalent representations of the Hubbard model. In
real space it is given by

H = −
∑

σ,i6=j,ν

tij,νc
†
iνσcjνσ +

∑

σ,i,ν

εic
†
iνσciνσ + U

∑

i

ni↑ni↓ , (2.33)

or rather after Fourier transforming with ckνσ =
1√
L

∑

i

cRiνσe
ik ·Ri in k-space

H =
∑

kσν

ǫkνc
†
kνσckνσ +

U

L

∑

k,k′,q,ν

c†kν↑ck−q,ν↑c
†
k′ν↓ck′+q,ν↓ . (2.34)

Sometimes it is also given in mixed Bloch and Wannier representation

H =
∑

kσν

ǫkνc
†
kνσckνσ + U

∑

i

ni↑ni↓ , (2.35)

which stresses that the kinetic energy part is diagonal in k-space, whereas the inter-
action part is diagonal in real space.
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2.2.1 Important features of the Hubbard model

The Hubbard model describes the interplay of potential and kinetic energy. De-
pending on the ratio of U/t either the Coulomb interaction or the kinetic energy
dominates.

Figure 2.8: Band vs. atomic limit: The left side shows the cosine dispersion relation
of the band-limit. If the band is not completely filled the system is
metallic. The right side shows a ground state of the atomic limit for a
half-filled system. The system is an antiferromagnetic Mott-insulator.

In case of U/t ≪ 1 and systems of dimension2 n > 1 we retain the results of the
TBA with small corrections and thus the well-known cosine band (cf. figure 2.8).
The system therefore is metallic unless the band is completely filled. Electrons are
delocalized all over the system and their wave functions can to good approximation
be written as Slater determinants.

If U/t ' 1 the movement of one electron is influenced by the locations of all other
electrons in the system since double occupation of a site is energetically expensive
and thus they try to avoid each other. Hence we cannot describe this system by an
independent-electron approximation. Wave functions for those systems are difficult
to find and generally have to be computed numerically. This regime is said to be
correlated.

If the ratio U/t ≫ 1 it is even called strongly correlated. Electrons try to dis-
tribute themselves as uniformly as possible on the sites in order to minimize the
Coulomb energy. In the case of a non-degenerate half-filled system this would lead
to exactly a single electron per site. Hopping hardly takes place and can be treated
as a perturbation. So we decompose equation (2.33) as

H = H0 +Hp

where
H0 = U

∑

i

ni↑ni↓

denotes the (unperturbed) Coulomb potential and

Hp = −
∑

〈ij〉,σ

tijc
†
i,σcj,σ

2Lieb and Wu showed [6], that in a one dimensional half-filled Hubbard chain for U > 0 the systems
become Mott insulators.
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the hopping (perturbation). H0 is diagonal in real-space. This suggests a local
picture. All sites are (almost) independent of each other. Hence this limit is called
atomic limit. The energy only depends on the number of doubly occupied sites. Let
|D, j〉 denote a basis vector of a configuration with D doubly occupied orbitals. j is
a number which indexes different configurations with energy UD, thus:

H0 |D, j〉 = UD |D, j〉 .

Atomic limit with half-filling

How is the degenerate ground state of a half-filled system in the atomic limit affected
if we turn on hopping? In first order,

E
(1)
0,kδlk = 〈0l|Hp|0k〉 ,

there is no correction to the energy, since the hopping creates one doubly occupied and
one empty site and thus connects independent subspaces with D = 0 and D = 1. The
second order correction leads to the effective Heisenberg Hamiltonian in the subspace
with d = 0:

H =
∑

〈ij〉

4t2ij
U

(

SjSi −
1

4

)

(2.36)

Since the prefactor J = 4t2ij/U is positive this system is antiferromagnetic. An
illustrative explanation for this behavior is the following: If the system was in a
ferromagnetic ground state, increasing t/U would not lead to hopping, since it would
be forbidden by the Pauli principle. In an antiferromagnetic ground state virtual
hopping occurs and gives rise to a decrease in energy. This situation is depicted in
the right sketch of figure 2.8.

Mott transition

Such a system is not only antiferromagnetic but also a Mott insulator. This means
that for small U/t it is a metal. Between both limits there certainly must be, at some
critical Uc/t, a transition between the metallic and insulating phase. This transition
is called Mott transition. Lieb and Wu [6] showed analytically, that in one dimension
a half-filled cluster always is an insulator for U > 0.

Figure 2.9 shows the spectral function for a one-dimensional chain with 12 sites
and half-filling for different values of U . For U = 0 there is spectral weight at the
Fermi level and therefore the system is a metal. For all other values of U a gap opens
at the Fermi level, giving rise to two bands called Hubbard bands. Since there is no
spectral weight at the Fermi level the system is an insulator.

Distribution of eigenenergies

Not only the ground state is of interest but also the distribution of the excitation
energies. We restrict our considerations here to a one dimensional half-filled Hubbard
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Figure 2.9: Mott insulator in one dimension for a 12 sites half-filled Hubbard chain
(U as in image) with t = 1.

chain, for U ≫ t. To study the ground state and the lowest-lying excitation energies
we resort to the antiferromagnetic Heisenberg model, which is equivalent to the
Hubbard model in this situation (cf. chapter 2.2.1 ).

In the ground state each site is singly occupied and neighboring spins have opposite
spin directions due to J being positive. This configuration is twofold degenerate since
flipping all spins yields the same energy. Flipping a single spin increases the energy
by 2J since the flipped spin has two parallel neighboring spins. Flipping more spins
increases the number of Js to be paid. The width of the lowest lying energy band
is thus proportional to J and therefore to U−1. The next band has one double
occupancy leading to an energy offset of U . In general the Dth band has the energy
offset D ·U . Moreover there are D vacant sites in the Dth band and thus hopping
becomes possible. This leads to a bandwidth proportional to t ≫ J (cf. chapter
2.1.3), which is actually wider than the one of the first band. If the bandwidth
becomes greater than U , bands may overlap.

By the use of combinatorics it is possible to calculate the number of states in each
band. Let us consider a half-filled L site system with even value of L and N↑ =
N↓ = L/2. In the lowest band each site is occupied. There are

(
L
N↑

)
=
(

L
L/2

)
ways

to distribute the identical up-spin particles. The full configuration is unambiguously
determined by this distribution, since all other sites are occupied by the identical
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Figure 2.10: Density of many-particle configuration states of an 8 site system with
half-filling for different U = {6, 8, 10, 12, 14, 16}. The perpendicular lines
in the lowest three plots show the cut-off of the calculation. Contribu-
tions above are unphysical and only stem from Lorentzian broadening.

↓-spin particles, or more formally
(

L−N↑

N↓

)
=
(

N↓

N↓

)
= 1. Thus the number of states in

the lowest band is (
L

L/2

)

.

The second band again yields
(

L
N↑

)
=
(

L
L/2

)
ways to distribute the up-electrons. One

site is doubly occupied, leading to another factor N↑. So there are L −N↑ sites left
to distribute the rest, i.e. N↓−1, of the down electrons or a single hole. Thus leading
to the number of states in the second band

(
L

N↑

)

N↑

(
L−N↑

N↓ − 1

)

=

(
L

N↑

)

N↑N↓ =

(
L

L/2

)

L2/4 .

For illustration purposes let us consider an 8 site system. The lowest lying band has
70 and the next one 1120 states. The density of states is plotted in figure 2.10 for
U/t = {6, 8, 10, 12, 14, 16}. The bandwidth of the first band becomes narrower with
increasing U due to J = 4t2/U . Figure 2.11 shows the expected proportionality.

The second lowest band is broader since it is proportional to t and hardly changes
with varying U . One also observes the linear energy offset in U , which, shifts the
center of weight of the Dth band by D ·U .
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Figure 2.11: Bandwidth of lowest band in a half-filled system. It has a 1/U depen-
dence.

The lowest three plots in figure 2.10 also show, that the third band superimposes
with the second one. This is a result of the bandwidth of those two bands being
larger than the shift of their center of gravity.

These calculations were carried out using ARPACK3. The first 2000 eigenvalues
are calculated and in order to plot their peaks, they are broadened by a Lorentzian
function. The energy of the 2000th eigenvalue is denoted by a perpendicular line
in the lower three plots. The weight above this line is a consequence of the finite
broadening and yields no real states.

2.2.2 Gutzwiller wave function

Because of the Pauli principle there are four different states a lattice site can have.
The site is either empty | · 〉, occupied by a single electron with either up |↑〉 or
down |↓〉 spin, or by two electrons with opposite spins |↑, ↓〉. Thus the Fock space of
a system with L lattice sites has the dimension 4L. Even for few sites, this Hilbert
space becomes “galactic” (cf. table 3.1). Since the Hamiltonian conserves the number
of particles and their spin, we can restrict our calculations to a Hilbert space with a

3A FORTRAN linear algebra software packages, which contains subroutines for diagonalizing large
matrices. See http://www.caam.rice.edu/software/ARPACK/

http://www.ncsa.uiuc.edu/demoweb/url-primer.html
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Figure 2.12: Variation of Gutzwiller wave function for various values of Gutzwiller
parameter g in a system comprising 10 sites and 3 electrons of either spin
for t = 1 and U/t = 5. The graphs show the g-dependent expectation
values of the Coulomb potential 〈V 〉g (dotted line), the total energy
〈H〉g (solid line) and the kinetic energy 〈T 〉g (dashed line). For g = 0
there are no double occupancies and thus 〈V 〉0 = 0. For g = 1 〈T 〉1 is
minimized. In between is the optimal value of g = gopt which minimizes
the total energy 〈E〉gopt

.

fixed number of particles of either spin-type Ne = N↑ +N↓.

In the absence of electron-electron interaction the ground-state wave function is a
Slater determinant, hence there are no correlations. One might argue, however, that
even the Pauli principle is a correlation effect: for spin-like particles it indeed impedes
double occupancies and thus particles somehow feel each other. It is astonishing that
Slater determinants efficiently remedy this problem. Hilbert space is a huge place and
Slater determinants only comprise N2

e = Ne ·#O degrees of freedom, where #O = Ne

is the number of occupied spin orbitals. Moreover for spin-like particles this effect
also solves the local Hubbard interaction term! But as soon as a second spin type
or next-neighbor repulsion enter the scene, no such easy solutions are known and we
have to take more degrees of freedom into account.

A practical way to obtain an approximation to the ground-state wave function is



26 Hubbard model

-8

-7.5

-7

-6.5

-6

-5.5

 0  0.2  0.4  0.6  0.8  1

G
ut

zw
ill

er
 e

ne
rg

y 
E

gu
tz

Gutzwiller parameter g

Figure 2.13: Energy variation of Gutzwiller wave function for various values of pa-
rameter g in a system comprising 10 sites and 3 electrons of either spin
for t = 1 and U/t = 5. The Gutzwiller wave function approximates
the actual ground state quite well (dashed line is actual ground-state
energy).

the use of the variational principle. It states that

〈Ψg|H|Ψg〉
〈Ψg|Ψg〉

= Eg ≥ E0 , (2.37)

where E0 is the ground-state energy of H and g a set of variational parameters for the
trial wave functions |Ψg〉. By minimizing this expression and possibly enlarging the
space spanned by |Ψg〉 we can systematically approach the ground state ming(Eg) ≈
E0. A good ansatz for the |Ψg〉 requires physical intuition. As an example we will
briefly discuss the Gutzwiller wave function [4] for the Hubbard model (2.33).

In case of U = 0, i.e. no correlations, the probability of finding a σ electron at
a site i is nσ = Nσ/L. Hence the probability for this site to be empty or doubly
occupied is (1 − n↑)(1 − n↓) or n↑n↓ respectively. For a half-filled system, all four
configurations have the same weight. When we slowly increase the value of U double
occupancies become increasingly expensive and hence their weight is suppressed. For
Ne ≤ L in the limit of U → ∞ the weight of doubly occupied sites goes to zero.
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Gutzwiller therefore proposed the following ansatz,

|Ψη〉 =
1

Γ

L∏

i

(1 − ηni↑ni↓) |Φ0〉 , (2.38)

where |Φ0〉 is the Slater determinant of the uncorrelated electrons, Γ a normalization
factor and η ∈ [0 : 1] the variational parameter.

As one can directly verify equation (2.38) can equivalently be written as

|Ψg〉 =
1

Γ
g

P

i ni↑ni↓ |Φ0〉 , (2.39)

where g = 1 − η.
For g = 1 (or equivalently η = 0) we obviously retain the ground state of the

system for U = 0, whereas for g = 0 (η = 1) all double occupancies are suppressed.
Thus g regulates the interplay between kinetic and Coulomb energy. This can be
seen from figure 2.12. For g = 1 〈T 〉1 is minimized. 〈V 〉1, however, is quite large.
For g = 0 the roles are exchanged. In-between there must be a minimum of the total
energy at a gopt.

In figure 2.13 the expectation value 〈H〉g is plotted in comparison to the actual
ground-state energy. We see, that Gutzwiller’s wave function is quite a good ap-
proximation as far as the ground-state energy is concerned. Studies by Millis and
Coppersmith [15] point out, that Gutzwiller states are always metallic. However, we
know from Lieb and Wu [6] that in one dimension for U > 0 the system always is an
insulator.

Gutzwiller also introduced an approximation to calculate 〈Ψg|H|Ψg〉 = Eg, the
Gutzwiller approximation. In this approximation a half-filled system can go over
to an insulating state at a critical value of Uc. It is the famous Brinkman-Rice
transition [16], which is, however, an artifact of the Gutzwiller approximation. The
approximation to the variational wave functions describes the physics correctly. An
overview of the Gutzwiller approximation can be found in [17].
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3 Exact diagonalization

Eigenvalue problems for huge matrices arise in many fields of modern natural and
engineering sciences. The problems are as diverse as for instance structural analysis in
civil engineering or stability analysis of electronic networks. IBM’s HITS (”hypertext
induced topic selection”) [18] or Google’s famous PageRank algorithm [19], which are
used to rate search results, work by diagonalizing huge matrices. PageRank seems
to be the largest application of the Lanczos method.

Huge matrices are only manageable if they are sparse, i.e. have few nonzero ele-
ments. A commonly used definition for sparsity, attributed to Wilkinson, is that a
matrix is sparse “whenever it is possible to take advantage of the number and location
of its nonzero entries”. The real-space Hubbard Hamiltonian is sparse, as we will see
in the first part of this chapter. Thus only the nonzero elements and their positions
need to be stored, leading to a huge reduction in storage requirements. Moreover the
matrix-vector multiplication is an O(n) operation instead of an O(n2).

For sparse matrices iterative algorithms, which heavily rely on matrix-vector prod-
ucts, are the methods of choice. In this chapter we will discuss the power and the
more advanced Lanczos method to diagonalize such matrices. It turns out, that
the Lanczos method is not only capable of giving us the ground-state eigenpair of a
Hamiltonian, but also provides an efficient way of computing dynamical correlation
functions. We will deal with this at the end of the chapter.

3.1 Basis encoding and sparsity

Choice of basis set To diagonalize the Hamiltonian, we need a basis set. Both,
the Hubbard Hamiltonian in its real-space and k-space representation,

H = −
∑

σ,i6=j,ν

tij,νc
†
iνσcjνσ +

∑

σ,i,ν

εic
†
iνσciνσ + U

∑

i

ni↑ni↓ (3.1)

H =
∑

kσν

ǫkνc
†
kνσckνσ +

U

L

∑

k,k′,q,ν

c†kν↑ck−q,ν↑c
†
k′ν↓ck′+q,ν↓ , (3.2)

are natural candidates. In k-space the kinetic energy is diagonal, as is the Coulomb
energy in real-space. Taking a closer look at the non-diagonal parts, clearly suggests
the use of a real-space configuration basis. In the tight-binding picture we have
hopping to only near, possibly even only to nearest neighbors. Thus there are only
very few nonzero elements, i.e. the Hamiltonian is sparse. Storage requirements and
computing time only scale with O(n), where n = dim(H). In k-space representation,
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the Coulomb interaction term contains a sum over three indices, all ranging over
number of sites. This term is clearly non-sparse.

Hilbert space dimension The Hubbard Hamiltonian in its second quantized form
is independent of the actual number of particles in the system. It can be diagonalized
in Fock space. For L sites the Fock space’s dimension is 4L, since each site can either
host a single electron, two electrons or one of either spin. This Fock space, however,
grows exponentially and even for small number of sites a solution is difficult to obtain.
A single many-body wave function of a 18 sites system requires 512 GB of data to
store it in double precision. Even though the Hubbard Hamiltonian is independent
of the number of particles, it conserves charge and spin. There are no terms which
can flip a spin or effectively create/annihilate an electron. Thus, in a sub-Fock space
with fixed spin up and down electron numbers, N↑ and N↓, the Hamiltonian is block-
diagonal and we can restrict our calculations to these subspaces, the Hilbert spaces
H. Its dimension is given by,

dim(H) =

(
L

N↑

)

·
(
L

N↓

)

. (3.3)

This mitigates the problem somewhat (cf. table 3.1). A wave function’s data storage
requirements for 18 sites now depends on the number of particles in the system.
At half-filling the Hilbert space is largest, and the wave function needs 17 GB. At
third-filling only 2 GB are needed.

Basis setup Suppose the cluster in arbitrary dimensions consists of L sites and
hosts Ne = N↑ + N↓ electrons. The basis vectors in real-space-occupation-number
representation are given by,

|n1↑ . . . nL↑〉 ⊗ |n1↓ . . . nL↓〉 = |n1↑ . . . nL↑, n1↓ . . . nL↓〉 ,

where niσ is the occupation of state i with a spin-σ electron, thus either 0 or 1. As
an example consider a four sites system with two up and a single down electron. A
state of this system is, e.g.

|0101, 0100〉 ,
which in second quantization reads,

c†2,↑c
†
4,↑c

†
2,↓ |0〉 .

To represent such a state on a computer we need to store two bits per site, namely
their spin up/down occupation. Hence we can efficiently represent the complete
state with two binary arrays or equivalently two integers. The first one holds the up
electron, the second one the down electron configuration. Therefore the bit length
of the integers must be equal or greater than the number of sites. The restriction of
the calculation on Hilbert spaces with fixed N↑ and N↓ translates into integers whose
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Table 3.1: Dimension of Hilbert space dim (H) and corresponding computer memory
requirements for a single many-body wave function of Hubbard models
with L sites and N↑ +N↓ electrons. The first group of numbers gives the
dimensions for half-filling, where the Hilbert space is largest. The second
group shows how the dimension grows with the filling.

L N↑ N↓ dim of Hilbert space memory

2 1 1 4

4 2 2 36

6 3 3 400

8 4 4 4 900

10 5 5 63 504

12 6 6 853 776 6 MB

14 7 7 11 778 624 89 MB

16 8 8 165 636 900 1263 MB

18 9 9 2 363 904 400 17 GB

20 10 10 34 134 779 536 254 GB

20 1 1 400

20 2 2 36 100

20 3 3 1 299 600 9 MB

20 4 4 23 474 025 179 MB

20 5 5 240 374 016 1833 MB

20 6 6 1 502 337 600 11 GB

20 7 7 6 009 350 400 44 GB

20 8 8 15 868 440 900 118 GB

20 9 9 28 210 561 600 210 GB

20 10 10 34 134 779 536 254 GB

binary representations have exactly Nσ bits set. It is convenient to introduce integer
labels for those configuration integers. With the label of the up i↑ and the label of
the down i↓ electron configuration given, the full state is unambiguously determined.
We can denote this state i with a tuple i ≡ (i↑, i↓).

Lin developed an efficient and convenient way of establishing the one-to-one cor-
respondence between the single-spin configurations and the set of label integers. His
two-table method is described in [20]. Our own implementation uses a slightly dif-
ferent approach. For both spin types an integer array is set up, which holds all
integers, whose binary representation has exactly Nσ bits set. These arrays are set
up by looping over all integers in

[
0, 2L − 1

]
. If an integer meets the criterium it is

appended to the array. The index can now be regarded as label for the state.

Such a table for the example above of a 4 sites chain with N↑ = 2 and N↓ may
look like:
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index tuple up dn index tuple up dn

-------------------------------------------------------------

0 (0,0) 0011 0001 12 (0,2) 0011 0100

1 (1,0) 0101 0001 13 (1,2) 0101 0100

2 (2,0) 0110 0001 14 (2,2) 0110 0100

3 (3,0) 1001 0001 15 (3,2) 1001 0100

4 (4,0) 1010 0001 16 (4,2) 1010 0100

5 (5,0) 1100 0001 17 (5,2) 1100 0100

6 (0,1) 0011 0010 18 (0,3) 0011 1000

7 (1,1) 0101 0010 19 (1,3) 0101 1000

8 (2,1) 0110 0010 20 (2,3) 0110 1000

9 (3,1) 1001 0010 21 (3,3) 1001 1000

10 (4,1) 1010 0010 22 (4,3) 1010 1000

11 (5,1) 1100 0010 23 (5,3) 1100 1000

Note that the basis is set up in such a way, that for a fixed i↓, all up electron
configurations follow. Moreover, we know from the Hamiltonian that each hopping
term only affects either up or down electrons. Thus it only changes one label in
the tuple for a given state. These two observations will become important in the
implementation, see chapter 4.

Reading an element in an array at a given position i is an O(1) operation. This
important lookup (label i ≡ (i↑, i↓) → configuration) is therefore very efficient. More-
over we only need

∑

σ

(
L

Nσ

)
integer elements.

The reverse lookup is not as important. That is why we choose to use binary
searching on the configuration arrays to save memory. It would need 2L elements.
Binary searching is possible since the elements are ordered by construction. Hence,
the reverse lookup is a O(n log n) operation.

Our basis handling data structures thus need the two arrays, containing the spin
configurations, and amount to a memory consumption of

∑

σ

(
L

Nσ

)
× sizeof(int).

3.2 The power method

The matrix, we want to diagonalize, is sparse and therefore iterative approaches are
the methods of choice. A very basic iterative method is the so-called power method.
Consider an arbitrary state |ψ〉 ∈ H, which must not have vanishing overlap with
the ground-state vector. Expanding |ψ〉 in terms of the eigenbasis |i〉 of H yields

|ψ〉 =
∑

i

Ci |i〉 .

Let Ei be the eigenvalue of |i〉. Applying a power m of the matrix H to |ψ〉 yields

Hm |ψ〉 =
∑

i

CiE
m
i |i〉 . (3.4)
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For m sufficiently large the state |i〉 with the largest absolute eigenvalue |Ei| and
Ci 6= 0 dominates the sum and hence the corresponding eigenvector |i〉 is projected
out. In practice the calculated vector is normalized after each matrix-vector multi-
plication, i.e.

|ψn〉 = Hn |ψ〉 /‖Hn |ψ〉 ‖ .
The eigenvalue with the largest modulus may not be the ground state, we are

interested in. If |Emax| > |Emin| we can shift the spectrum by replacing H with
Ĥ = H − ρ1. If ρ > 0 is sufficiently large, |Emin − ρ| > |Emin − ρ| holds and the
method converges to the ground-state vector of H .

This method for obtaining the ground-state eigenvalue and its vector is in principle
exact, simple and easily implemented. However convergence is rather slow, see for
example [21] or look at the comparison in figure 3.1. Moreover, if the ground state
is not the eigenvector, whose eigenvalue has the largest modulus, we must already
have information about the spectrum of the matrix in order to find an appropriate
ρ. If ρ is chosen too large the convergence speed suffers considerably.

A more advanced way of calculating the ground-state eigenpair is the Lanczos
method. Still both methods are intimately connected to each other. The nth state

|ψn〉 = Hn |ψ〉 /‖Hn |ψ〉 ‖

is a linear combination in the space spanned by

{|ψ〉 , H |ψ〉 , H2 |ψ〉 , . . . , Hm−1 |ψ〉} .

Diagonalizing the matrix in this subspace typically yields a better linear combination,
and thus a better approximation to the ground state.

3.3 The Lanczos method

At the heart of the Lanczos method is the concept of invariant subspaces [21]. The
central idea is, that we diagonalize the matrix H in a small subspace of the Hilbert
space. If this subspace is an invariant subspace, we will see that the eigenpairs of
the smaller Hamiltonian yield a subset of the eigenpairs of H . We choose a Krylov
subspace, which ensures convergence to the extremal eigenpairs. Thus, to obtain the
ground-state eigenpair, we diagonalize the Hamiltonian in this subspace.

We start with an introduction to invariant subspaces. Let H = Cn be the Hilbert
space of our system and H ∈ Cn×n its Hamiltonian. Km denotes an m-dimensional
subspace of H. Then Km is called an invariant subspace of H if

HKm = {Hk | k ∈ Km} ⊆ Km .

m eigenvectors of H , for instance, span an m dimensional invariant subspace.
Let the columns of Q = (q1, . . . , qk) be a basis of a k-dimensional invariant subspace

Qk of H . For Hqi ∈ Qk, there must be a unique vector ti such that

Hqi = Qti, i ∈ [1, k] .
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If we define T to be T = (t1, . . . , tk), then

HQ = QT

and therefore the matrix T is the representation of H on Qk with respect to basis Q.
If x ∈ Qk it can be expanded in basis Q as x = Qz. If, moreover, Hx = λx, then

Hx = λx
= HQz = λQz
= QTz = Qλz .

(3.5)

This list of equations can be read in both directions. Hence we see, why invari-
ant subspaces are important for the Lanczos method. They establish a one-to-one
mapping between the eigenpairs of T and a subset of the eigenpairs of the matrix H .

Of course in practice the Lanczos method does not generate an exact invariant
subspace, instead we will have an approximate one which means:

HQ−QT = G .

Or equivalently (H+E)Q = QT with E = −GQ†. If ‖E‖ = ‖G‖ is sufficiently small
and H +E is well conditioned, then an eigenpair of T is a good approximation to an
eigenpair of H .

The Lanczos method generates a Krylov subspace. It is defined as the space
spanned by

Km,b = {b, Hb, H2b, . . . , Hm−1b} ,
where b denotes an arbitrary non-zero normalized starting vector1. This vector must
not be orthogonal to the ground-state vector. The sequence Km is called a Krylov
sequence, where we dropped the explicit dependence on the start vector to simplify
the notation.

Orthogonalization on Km yields an orthogonal basis in the Krylov subspace. The
matrix H in this basis turns out to be tridiagonal and can be diagonalized by stan-
dard means. The resulting eigenvalues of the tridiagonal matrix yield a very good
approximation to a fraction of the eigenvalues of the original matrix H , if the Krylov
space is large enough. It shows that even very small Krylov spaces yield very good
results. Convergence is very fast. In order to get an understanding why this is the
case, we will first discuss the so called single-step Lanczos technique.

3.3.1 The single-step Lanczos

A general way to obtain the ground state is the variational method. The basic idea
is to minimize the wave-function functional,

E [ψ] =
〈ψ|H|ψ〉
〈ψ|ψ〉 . (3.6)

1Often b is chosen randomly, especially if no a priori information about the ground state is available.
For Hubbard models, one may start from a Gutzwiller wave vector (cf. 2.2.2).
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The vector |ψ0〉, which minimizes (3.6), is the ground state of H . The Lanczos
method exploits this idea which can be seen when considering a slightly modified
Lanczos method [22], the single-step Lanczos technique. It works as follows:

We choose a random vector |φ0〉, leading to a first energy value E0 = E [φ0] with
(3.6). In analogy to the gradient descent method we look for the direction of steepest
descent in the energy functional, given by the functional derivative

δE [ψ]

δψ

∣
∣
∣
∣
φ0

=
2

〈φ0|φ0〉
(H − E [φ0]) |φ0〉 . (3.7)

To include this direction we thus consider the additional vector
∣
∣
∣φ̃0

〉

= H |φ0〉. This

way the Krylov subspace is built.
In contrast to the power method or ordinary gradient descent methods we include

the new dimension in our variational basis and thus have two degrees of variational
freedom. To simplify the calculation we orthonormalize the new vector with respect
to the starting vector, yielding

〈φ1|H|φ0〉 |φ1〉 = H |φ0〉 − 〈φ0|H|φ0〉 |φ0〉 .

If |φ1〉 turns out to be zero we started from an exact eigenstate of H which already
is an invariant subspace. A normalized linear combination in this two dimensional
subspace is in general given by,

|ψθ〉 = cos(θ) |φ0〉 + sin(θ) |φ1〉 .

Minimizing the expectation value (3.6) of this linear combination with respect to the
free parameter θ always yields a better approximation to the ground-state eigenvalue
than both E0 or E1 = 〈φ1|H|φ1〉, unless |φ0〉 was already an eigenvector. This is a
direct consequence of the variational principle. Alternatively, we can diagonalize the
matrix

T =

(
α0 β1

β1 α1

)

,

where
αi = 〈φi|H|φi〉 β1 = 〈φ1|H|φ0〉 .

The lower eigenstate of this matrix is equal to |φθ∗〉, with θ∗ chosen in such a way
that (3.6) is minimized.

This new and improved ground-state approximation (Ritz pair) can be used as
starting vector for the next single-step Lanczos pass yielding again a refined ground-
state approximation. The whole procedure can be repeated until the ground-state
vector or its energy is sufficiently well converged.

Figure 3.1 shows the convergence to the ground-state energy of this single-step
Lanczos method (dashed line) in comparison to the full Lanczos method and the
power method (dotted line). The single-step Lanczos method clearly is superior to
the power method. Moreover it shares the advantage of needing only two large vectors
and of having the latest ground-state approximation directly at hand.
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Figure 3.1: Comparison of power method (dotted line), single-step (dashed line) and
full Lanczos method (solid line): convergence to the ground-state energy
for a small half-filled Hubbard system (10 sites; dim (H) = 63504) with
U = 5t. The full Lanczos method is by far the fastest method to converge.

3.3.2 The full Lanczos method

But we need not to restrict the Lanczos iterations to a single one. It can be generalized
to larger subspaces, increasing the variational degrees of freedom. Hence, we expect
the minimization to be more efficient.

The first step is exact as in the algorithm described above: we again start from a
random vector b = |φ0〉, perform the matrix vector multiplication and normalize the
result with respect to the starting vector, i.e.

〈φ1|H|φ0〉 |φ1〉 = H |φ0〉 − 〈φ0|H|φ0〉 |φ0〉 . (3.8)

But instead of stopping the iteration and diagonalizing H in this two-dimensional
subspace we start a new iteration yielding

〈φ2|H|φ1〉 |φ2〉 = H |φ1〉 − 〈φ1|H|φ1〉 |φ1〉 − 〈φ1|H|φ0〉 |φ0〉 . (3.9)

In general the n + 1 Krylov vector can be written recursively as:

βn+1 |φn+1〉 = H |φn〉 − αn |φn〉 − βn |φn−1〉 , (3.10)

where n ∈ 2, . . . , m and

αn = 〈φn|H|φn〉 , βn+1 = 〈φn+1|H|φn〉 .
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An equivalent expression for βn+1 is βn+1 = ‖H |φn〉 − αn |φn〉 − βn |φn−1〉 ‖. It is
often used in practice since it is numerically superior (refer to [23] and [24]).

From equation (3.10) we see that

〈φm|H|φn〉 = 0 for |n−m| > 1 , (3.11)

and hence the matrix H in this subspace with the basis {|φn〉}n is a tridiagonal with
matrix elements βi and αi,

T =










α0 β1 0 0 0 . . .
β1 α1 β2 0 0 . . .
0 β2 α2 β3 0 . . .
0 0 β3 α3 β4 . . .
...

...
...

...
...










. (3.12)

This matrix T can be easily diagonalized with standard means, like for example
library routines found in LAPACK. Let (λi, zi) be an eigenpair of T . Because of
equations (3.5) the so-called Ritz pair (λi, Qzi) is an approximation to the corre-
sponding eigenpair of H .

The reason why this method is so powerful is due to the fact that relatively few
Lanczos iterations m are needed to converge reasonably well towards the ground-state
energy. Kaniel and Paige showed that this is the case under quite general conditions.
Typically m is of the order of a few dozens. Therefore only a few matrix-vector
multiplications are needed.

Obtaining eigenvalues: the first pass

If we are solely interested in the ground-state eigenvalue we need only two Lanczos
vectors, as in the single-step Lanczos method above. The first pseudo code, listing
3.1, assumes a method “mult” of the matrix data type which calculates the matrix-
vector products and returns the result. The size of the arrays α and β is m and
m− 1 respectively, where m denotes the maximum number of Lanczos iterations. b
denotes the starting vector. b as well as q are of the dimension of the Hilbert space
n. Since n increases rapidly with the system size the storage requirements for these
vectors determine how large systems we can treat.

1 q[0:n-1]= 0;
β0 = j = 1;

3 j = 0;
while (βj 6= 0):

5 if j 6= 0:
for i in (0:n−1):

7 t = bi; bi = qi/βj; qi = −βjt;
end;

9 end;
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q = q +H .mult(b);
11 j = j + 1;αj = 〈b|q〉 ; q = q − ajb; βj = ‖q‖2;

end;

Listing 3.1: Pseudo code of the Lanczos algorithm for the first pass to obtain the
ground-state energy. It is based on the Lanczos algorithm from ([25]
see algorithm 9.2.1) using a modified Gram-Schmidt method for superior
numerical stability. b contains the normalized starting vector.
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Figure 3.2: Convergence of a large Lanczos run. The plot shows the exponential-like
convergence to the ground-state energy for a 20 sites Hubbard system
with 6 electrons of either spin (U = 1.96, t = 0.18). Despite the size of
the Hilbert space (dim(H) = 1 502 337 600) only about 100 iterations are
needed for convergence.

In theory, i.e. with exact arithmetics, the algorithm terminates after i ≤ dim (H)
because of line 4. This means that an invariant subspace has been reached. In
practice this condition will never be true due to numerical inaccuracies, hinting at
the break down of orthogonality.

The loss of orthogonality which goes hand in hand with the convergence to an
eigenvalue leads to duplicate as well as spurious eigenvalues (ghosts). These effects
will be dealt with in chapter 3.3.3. Waiting until an invariant subspace is reached is
infeasible anyway, because it would most probably become too huge. We can, how-
ever, stop the iteration when the ground-state energy is sufficiently well converged.
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Therefore we check in each iteration if

‖λ0(m) − λ0(m− 1)‖/‖λ0(m)‖ < ε ,

where ε is an arbitrarily small value.

Figure 3.1 shows the exponential convergence of the Lanczos algorithm for the
ground-state energy of a small Hubbard chain (8 sites with half-filling, i.e. dim(H) =
63504) in comparison to the other discussed methods. Only about m ≈ 60 iterations
are needed, to converge to the ground-state energy with numerical accuracy. Even
for considerably larger system m remains of the same order. An example for such a
large system is shown in figure 3.2. It is a 20 sites Hubbard chain with U = 1.96,
t = 0.18 and 6 electrons of either spin. The resulting Hilbert space has a dimension
of dim(H) = 1 502 337 600 and still only about 100 iterations are needed to obtain
the ground-state energy to numerical accuracy.

Computing the ground-state vector

In the so-called second pass the Lanczos algorithm builds an eigenvector, typically
the ground-state vector. If we stored all orthogonal Krylov vectors in the first pass we
could simply calculate the Ritz vector, i.e. a good approximation to the ground-state
vector, r by

r =
m∑

j=0

y[j]Kj , (3.13)

where m is the number of iterations, y the ground-state vector of T and the Kj the
m orthonormal Krylov vectors. This is, put differently, the basis transformation of
the ground-state vector from the subspace to the full Hilbert space.

To avoid having to store all Krylov vectors in the first pass we restart the iterations
from the same start vector b. In each iteration we obtain the Krylov vector we already
had in the first first pass and can thus successively calculate the ground-state vector
by equation (3.13). Therefore a third Lanczos vector is needed. The corresponding
code is shown in listing 3.2.

1 q[0:n-1]= 0;
r[0:n-1]= 0;

3 for (j = 0,j < m, j++ ):
if j 6= 0:

5 for i in (0:n−1):
t = bi; bi = qi/βj; qi = −βjt;

7 end;
end;

9 r = r + y[j] b;
q = q +H .mult(b);

11 q = q − ajb;
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end;

Listing 3.2: Pseudo code of second pass of Lanczos algorithm. b contains the start
vector of the first pass, y the eigenvector corresponding to the lowest
eigenvalue of the tridiagonal matrix of the first pass. After termination,
r contains the ground-state Ritz vector, i.e. an approximation to the
ground-state vector of H .

In order to test whether the ground-state vector is accurate enough we calculate
the residual norm given by

r = ‖E0r −Hr‖ , (3.14)

where E0 denotes the ground-state energy. In practice residual norms r of the mag-
nitude of 10−5 − 10−7 can be achieved even for huge systems like 20 sites with 7
electrons of either spin, resulting in dim (H) = 6 009 350 400. If the accuracy is not
high enough it is possible to refine the vector by using the single-step Lanczos method
discussed in chapter 3.3.1. Figure 3.3 shows the convergence of the residual norm if
a matrix is diagonalized by the single-step technique alone.

10-5

10-4

10-3

10-2

10-1

100

101

 0  20  40  60  80  100  120  140  160  180  200

r i

iteration

Figure 3.3: Convergence of residual norm, ri with the single-step Lanczos method for
a half-filled Hubbard model (10 sites; dim (H) = 63 504) with U = 5t.

Note that when performing the Lanczos method for systems having a degenerate
ground state one vector from this eigenspace will be obtained. The actual vector
depends on the starting vector.
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3.3.3 Numerical aspects

With exact arithmetics all Lanczos vectors are mutually orthonormal, i.e.

〈φm|φn〉 = δmn .

But in real calculations the mutual orthogonality is lost due to numerical inaccuracies.
Only local orthogonality is retained, i.e. only Lanczos vectors i, j with 0 < i, j ≤ m
and |i− j| small are mutually orthonormal. For larger values of |i− j| this does not
hold; possibly not even linear independence.
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Figure 3.4: 200 Lanczos iterations for a small half-filled Hubbard system with 8 sites
(U = 10t). The light gray region in the plot shows the first band (exactly
calculated with ARPACK), consisting of 70 energy levels. The red lines
show the first ten Lanczos eigenvalues against the number of iterations.
The inset shows a magnified region of the original plot. Here the dashed
black lines denote the actual energy levels. We observe for example that
the ground state is duplicated (≈ 155 iteration). Note, however, that
convergence is already reached after 20 iterations.

This loss of mutual orthogonality can give rise to duplicate eigenvalues, see figure
3.4, and spurious eigenvalues. According to Paige [23], this happens in finite precision
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arithmetics as soon as an eigenvalue is (almost) converged.

An intuitive explanation is again given by the analogy between the method of
gradient descent and the single-step Lanczos method. If an eigenpair is almost con-
verged, the application of H yields almost the same vector. This translates into the
image of gradient descent to a saddle point where the norm of the gradient becomes
very small. In the Lanczos picture we orthogonalize two almost identical vectors, an
operation which is ill-conditioned. After normalization this new vector has the same
weight as all the others but it points in a more-or-less random direction which in
turn breaks orthogonality as well as probably linear independence. As a result, we
obtain more and more duplicate eigenvalues of T which correspond to a single Ritz
value of H . This applies to the eigenvectors as well. Several eigenvectors of T yield
the same Ritz vector. However, for the convergence to the ground state this does
not matter since due to the variational principle we can, once the ground state is
reached, neither go lower nor higher.

Lanczos already was aware of the problem of the loss of mutual orthogonality. His
simple suggestion was to orthogonalize with all preceding Lanczos vectors at each
step (full orthogonalization). This however would spoil the appealing features of this
algorithm, namely that we only have to store three Lanczos vectors. For large vectors
the method would often have to be restarted due to storage constraints. Restarting
however leads to slow convergence as observed with the single-step Lanczos technique.

Other approaches are the semi-orthogonalization methods. The main idea is to
reorthogonalize only when a loss in orthogonality is detected. The various methods
differ in the choice of the vectors, which are used in the reorthogonalization step. Se-
lective reorthogonalization for example performs the reorthogonalization with respect
to all nearly converged Ritz vectors [26].

3.4 Computing dynamical response functions

The Lanczos method can also be used as an efficient tool for computing dynamical
response functions. We start with a short introduction to the Green’s function for-
malism and then discuss how to actually extract them and other response functions
from the Lanczos method.

3.4.1 General introduction

Green’s function in time domain The causal single-particle Green’s function
Giσjσ′(t, t′) in a many-particle system governed by a Hamiltonian H is defined in
such a way that we can interpret Giσjσ′(t, t′) as the probability amplitude of finding
an electron (t > t′) or a hole (t′ > t) of spin σ in state i at time t, when at time t′ an
electron/hole of spin σ′ has been added to the ground state of H in state j. Thus,

Giσjσ′(t, t′) = −i
〈

ψ0

∣
∣
∣T (ciσ(t)c†jσ′(t

′))
∣
∣
∣ψ0

〉

, (3.15)
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where |ψ0〉 is the ground state, σ the spin index and T denotes the time ordering
operator, that arranges the operators according to time with the operator, whose
value of t is the largest, at the left. Each permutation yields a minus sign. The
c
(†)
iσ (t) are the creation/annihilation operators in the Heisenberg picture, i.e.

c†iσ(t) = eiHtc†iσe
−iHt , (3.16)

where c†iσ is the ordinary (Schrödinger picture) creation operator. If the Hamiltonian
H is not time dependent the Green’s function only depends on the difference t− t′.
Thus we can w.l.o.g. set t′ = 0, only retaining t as argument. In this case the energy
of the system is conserved. To simplify the notation we suppress the spin index from
here on.

We now consider a finite system with N electrons. Inserting the eigenstates of
the system with a missing or additional electron

∣
∣ψN±1

n

〉
, we obtain the spectral

representation from (3.15) with (3.16),

Gij(t) =







−i
∑

n

〈

ψ0

∣
∣
∣ci

∣
∣
∣ψN+1

n

〉〈

ψN+1
n

∣
∣
∣c

†
j

∣
∣
∣ψ0

〉

ei(E0−EN+1
n )t : t > 0

i
∑

n

〈

ψ0

∣
∣
∣c

†
j

∣
∣
∣ψN−1

n

〉〈

ψN−1
n

∣
∣
∣ci

∣
∣
∣ψ0

〉

ei(EN−1
n −E0)t : t < 0

, (3.17)

where the EN±1
n are the energy eigenvalues of H to the eigenvectors

∣
∣ψN±1

n

〉
. This is

the spectral- or Lehmann representation.

Density matrix From Gij we obtain the two particle density matrix of the system
by,

ρ(i, j) = lim
t→0−

ℑ Gij(t) =
〈

ψ0

∣
∣
∣c

†
jci

∣
∣
∣ψ0

〉

, (3.18)

where 0− is an infinitesimal small negative value to ensure proper ordering of the
operators. The density matrix can be employed to compute arbitrary one-particle
observables, by evaluating the trace of the product Oρ. Thus,

〈O〉 = Tr [ρO] . (3.19)

Typical density matrices for one-dimensional half-filled Hubbard chains are shown in
figure 3.5. In a translationally invariant system the density matrix only depends on
the modulus of the difference |i− j| just like the Green’s function. According to [8]
for a one-dimensional half-filled system ρ0j can be to a good approximation written
as

ρ0i =
sin (πi/2)

πi
e−γ|i| , (3.20)

where γ denotes a decay constant, which is zero for U = 0. We indeed observe
this behavior in figure 3.5. For values of U > 0, the density matrix is damped
exponentially, leading to local physics.
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Figure 3.5: Density matrix of the σ electrons in a 14 sites half-filled Hubbard chain
with t = 1 and different values of U . ρ00 = 0.5 yields the particle density.

Green’s function in energy domain The Fourier transform from time to frequency
of (3.17) , i.e.

Gij(ω) =

∫ ∞

−∞

dt eiωtGij(t) ,

leads to the spectral representation

Gij(ω) =
∑

n

〈

ψ0

∣
∣
∣c

†
i

∣
∣
∣ψN−1

n

〉〈

ψN−1
n

∣
∣
∣cj

∣
∣
∣ψ0

〉

ω + (EN−1
n − E0) − iη

+
∑

n

〈

ψ0

∣
∣
∣ci

∣
∣
∣ψN+1

n

〉〈

ψN+1
n

∣
∣
∣c

†
j

∣
∣
∣ψ0

〉

ω − (EN+1
n −E0) + iη

.

(3.21)
The first term of this equation describes the extraction of an electron, a process
similar to photoemission. In a real experiment a photon impinges upon the target
material and ejects an electron, whose kinetic energy is measured. The second term
describes the injection of an electron into the system, similar to inverse photoemission
where a photon is emitted. Gij, however, neglects the electron-photon interaction.

More technically, for each eigenstate
∣
∣ψN±1

n

〉
in the N±1 particle system there ob-

viously is a pole in the lower/upper complex half-plane at ∓(EN±1
n −E0) with spectral

weight
〈

ψ0

∣
∣
∣ci

∣
∣
∣ψN+1

n

〉〈

ψN+1
n

∣
∣
∣c

†
j

∣
∣
∣ψ0

〉

,
〈

ψ0

∣
∣
∣c

†
i

∣
∣
∣ψN−1

n

〉〈

ψN−1
n

∣
∣
∣cj

∣
∣
∣ψ0

〉

respectively.

The poles in the lower half-plane, i.e. belonging to the inverse photoemission, start
at µN+1 = EN+1

0 − E0 and increase in energy whereas the poles in the upper half-
plane start at µN = E0 − EN−1

0 and decrease in energy. In the limit of N → ∞,
µN = µN+1 = µ and µ is called chemical potential.



3.4 Computing dynamical response functions 45

 0

 0.2

 0.4

 0.6

 0.8

 1

0 π/5 2π/5 3π/5 4π/5 π

n k

k

U=0
U=0.5

U=2
U=10

Figure 3.6: Momentum distribution of a 10 sites one-dimensional half-filled Hubbard
chain for t = 0 and various values of U . For U = 0 we retain the Fermi
distribution for T = 0.

Green’s function in k-space To obtain the Green’s function in k-space we need to
Fourier transform the particle operators. Writing the momentum operators in their
coordinate space representation yields,

ck =
∑

i

1√
V
e−ik ·Rci . (3.22)

In a translationally invariant system the Green’s function is diagonal in k-space. In
this case it is given by,

Gk(ω) =
∑

n

∣
∣
∣

〈

ψ0

∣
∣
∣c

†
k

∣
∣
∣ψN+1

n

〉∣
∣
∣

2

ω − (EN+1
n − E0) + iη

+
∑

n

∣
∣
∣

〈

ψ0

∣
∣
∣c

†
k

∣
∣
∣ψN−1

n

〉∣
∣
∣

2

ω + (EN−1
n − E0) − iη

. (3.23)

The momentum distribution is given – in analogy to the density matrix – by the
Fourier transformation of (3.23) into the time domain and evaluating the expression
at t = 0−. This yields,

〈nk〉 = ℑ Gk(0−) =
〈

ψ0

∣
∣
∣c

†
kck

∣
∣
∣ψ0

〉

. (3.24)

In the case of non-interacting particles, all single-particle states are filled up to

the Fermi wave vector kF . Thus the momentum distribution is
〈

ψ0

∣
∣
∣c

†
kck

∣
∣
∣ψ0

〉

=
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Θ(|k−kF |), where Θ is Heaviside’s step function. A typical momentum distribution
in a one-dimensional half-filled Hubbard chain for different values of U is shown in
figure 3.6. In [8] Koch and Goedecker showed, that the momentum distribution in
this system can be written as

〈nk〉 =
1

2
+

1

π
arctan

(
cos(ka)

sinh(γ)

)

(3.25)

to a good approximation, where γ is the same decay constant as in equation (3.20).

Spectral function To evaluate the spectral function defined as

Aαβ(ω) = −1

π
ℑ Gαβ(ω) , (3.26)

we use the well-known identity

1

x + iη
= P

(
1

x

)

− iπδ(x) , (3.27)

where η → 0+ and P denotes the principal part. We apply it to equation (3.21),
yielding

Aαβ(ω) =
∑

n

〈

ψ0

∣
∣
∣cα

∣
∣
∣ψN+1

n

〉〈

ψN+1
n

∣
∣
∣c

†
β

∣
∣
∣ψ0

〉

δ(ω − (EN+1
n − E0))

+
∑

n

〈

ψ0

∣
∣
∣c

†
α

∣
∣
∣ψN−1

n

〉〈

ψN−1
n

∣
∣
∣cβ

∣
∣
∣ψ0

〉

δ(ω + (EN−1
n − E0)) , (3.28)

where α and β denote either sites i, j or momenta k, k′. The diagonal elements Aαα

are positive, which can easily be seen from,

Aαα(ω) =
∑

n

∣
∣
∣
∣

〈
ψ0

∣
∣cα
∣
∣ψN+1

n

〉
∣
∣
∣
∣

2

δ(ω − (EN+1
n − E0))

+
∑

n

∣
∣
∣
∣

〈
ψ0

∣
∣c†α
∣
∣ψN−1

n

〉
∣
∣
∣
∣

2

δ(ω + (EN−1
n − E0)) . (3.29)

Sum rules The anti-commutation relation for Fermions
{

cα, c
†
β

}

= δαβ leads to a

sum rule for the spectral weights. Expanding the anti-commutator and using the
partition of unity yields

δαβ =
〈

ψ0

∣
∣
∣

{

cα, c
†
β

}∣
∣
∣ψ0

〉

=







∑

n

〈

ψ0

∣
∣
∣cα

∣
∣
∣ψN+1

n

〉〈

ψN+1
n

∣
∣
∣c

†
β

∣
∣
∣ψ0

〉

+
∑

n

〈

ψ0

∣
∣
∣c

†
β

∣
∣
∣ψN−1

n

〉〈

ψN−1
n

∣
∣
∣cβ

∣
∣
∣ψ0

〉






. (3.30)

Comparing (3.30) to (3.28) shows that for the spectral function Aαβ(ω) the following
formula holds, ∫ ∞

−∞

dω Aαβ(ω) = δαβ . (3.31)
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Note, that the photoemission spectral function
∫ µ

−∞

dω Aij =

∫ ∞

−∞

dω APE
ij (ω) =

〈

ψ0

∣
∣
∣c

†
jci

∣
∣
∣ψ0

〉

= ρij

yields the density matrix. Moreover, we can write for its diagonal elements
∫ µ

−∞

dω Aαα =

∫ ∞

−∞

dω APE
αα = nα , (3.32)

giving the occupation of state α. And similarly for the inverse photoemission spectral
function ∫ ∞

µ

dω Aαα =

∫ ∞

−∞

dω AIPE
αα = 1 − nα . (3.33)

With
∑

α

∫ µ

−∞

dω Aαα = N , (3.34)

where N is the number of particles, we have means to calculate µ.

n-particle Green’s functions To generalize the concept of single particle Green’s
functions, we introduce higher-order or n-particle Green’s functions. The n-body
real-time Green’s function is defined analogous to (3.15) as

G(n)(α1t1, . . . , αntn|α′
1t

′
1, . . . , α

′
nt

′
n) = (3.35)

(−i)n
〈

ψ0

∣
∣
∣T
[

cα1
(t1) . . . cαn

(tn)c†α′
n
(t′n) . . . c†α′

1

(t′1)
]∣
∣
∣ψ0

〉

.

Many-body expectation values and correlation functions can be expressed by choosing
the corresponding order of the Green’s function and suitable time arguments. The
density-density correlation function in real-time can for example be written as,

〈ni(t)nj(t
′)〉 =

〈

ψ0

∣
∣
∣c

†
i(t)ci (t)c

†
j(t

′)cj(t
′)
∣
∣
∣ψ0

〉

= G(2)(it, jt′|it, jt′) . (3.36)

Moments of the distribution Let O be an arbitrary operator. The correlation
function is then defined by,

IO(ω) = −1

π
ℑ
〈

ψ0

∣
∣
∣
∣
O† 1

ω − (H − µ) + iη
O
∣
∣
∣
∣
ψ0

〉

. (3.37)

If O, for example, denotes an annihilation operator ci then the already discussed
photoemission spectral function APE

ii (ω) is obtained. O might also denote a two-body
observable, for instance a density like ni = c†ici . IO(ω) would yield the imaginary
part of the diagonal elements of (3.36) in the frequency domain.

The mth moment of IO(ω) is defined by

µm =

∫ ∞

0

dω ωm IO(ω) . (3.38)
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IO(ω) is uniquely determined if all moments are given – at least in theory. The
correlation function (3.37) can be rewritten in its spectral representation yielding

IO(ω) =
∑

n

∣
∣
∣
∣

〈
ψX

n

∣
∣O
∣
∣ψ0

〉
∣
∣
∣
∣

2

δ
(
ω −

(
EX

n −E0

))
, (3.39)

where
(
EX

n ,
∣
∣ψX

n

〉)
denotes an eigenpair in the subspace of Hamiltonian H where

O |ψ0〉 belongs to. For instance if O = ci , X denotes the subspace with N − 1
particles. With equation (3.39) and the definition of the moments (3.38) we directly
obtain the moments of IO(ω)

µO
m =

∑

n

(
EX

n − E0

)m

∣
∣
∣
∣

〈
ψX

n

∣
∣O
∣
∣ψ0

〉
∣
∣
∣
∣

2

. (3.40)

Galitskii-Migdal theorem The first moments of the spectral function Ick(ω) = APE
kk

are connected to the ground-state energy. This relation is known as the Galitskii-
Migdal theorem. In this paragraph we will explicitly write out the spin-dependence,
thus we define Ick as

Ick(ω) =
1

2

(
Ick↑(ω) + Ick↓(ω)

)
.

We define the spin dependent first moment as

µk,σ
1 =

∫

dω ω Ick,σ
(ω) =

∑

n

(
EN−1

n − E0

)
∣
∣
∣
∣

〈
ψN−1

n

∣
∣ck,σ

∣
∣ψ0

〉
∣
∣
∣
∣

2

, (3.41)

which can, summing over the complete set of eigenstates, be formally written as

µk,σ
1 =

〈

ψ0

∣
∣
∣c

†
k,σ [H, ck,σ]

∣
∣
∣ψ0

〉

. (3.42)

We write the Hamiltonian H in k-space (2.34) which is given by

H =
∑

kσ

ǫkc
†
kσckσ +

U

Ne

∑

k,k′,q

c†k↑ck−q,↑c
†
k′↓ck′+q,↓ . (3.43)

Evaluating c†k,σ [T, ck,σ], where T denotes the kinetic part of the Hamiltonian, and
using,

[A,BC] = {A,B}C −B {A,C} , (3.44)

leads to
c†k,σ [T, ck,σ] =

∑

σk′

εkc
†
k,σ

[

c†k′σ′ck′σ′ , ckσ

]

= −εkc†kσckσ . (3.45)

Similarly, c†k,σ [V, ck,σ], where V denotes the Coulomb part of the Hamiltonian, yields,

c†k,σ [V, ck,σ] = − U

Ne

∑

q,k′

{

c†k↑ck−q,↑c
†
k′↓ck′+q,↓ σ =↑

c†k′↑ck′−q,↑c
†
k↓ck+q,↓ σ =↓ . (3.46)
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Summing µk
1 over all k we obtain,

∑

k

µk
1 = −

(〈T 〉0
2

+ 〈V 〉0
)

, (3.47)

where 〈T 〉0, 〈V 〉0 denote the expectation values of the kinetic, interaction energy
respectively. Equation (3.47) provides the connection between the first moments of
Ick and the ground-state energy. This is the Galitskii-Migdal theorem [27]. It is
quite a remarkable result since with the kinetic energy expectation value and these
first moments, which all can be derived from the single-particle Green’s function, the
expectation value of the two-particle observable, the Hamiltonian itself, is accessible.

3.4.2 Computing the spectral function: the third pass

We are interested in calculating dynamical correlation functions like (3.37). At first
glance this seems to be very hard. Since there is a Hamiltonian H in the denominator
its whole excitation spectrum contributes to the correlation function. Nevertheless
the Lanczos method provides easy access to correlation functions because it rapidly
finds the states which make the largest contribution. This is yet another great ad-
vantage of the method.

In order to evaluate equation (3.37) numerically it is practical to represent the
Hamiltonian in the basis obtained by the Lanczos procedure. Instead of starting the
Lanczos method with a random vector as in chapter 3.3, we now start with

|φ0〉 =
O |ψ0〉

√
〈
ψ0

∣
∣O†O

∣
∣ψ0

〉 . (3.48)

Thus the quantity (3.37) we are interested in is proportional to

〈

φ0

∣
∣
∣
∣

1

z −H

∣
∣
∣
∣
φ0

〉

, (3.49)

where z = ω + E0 + iη. Following Fulde [17], we consider the identity

∑

m

(z −H)lm(z −H)−1
mn = δln (3.50)

in the Lanczos basis given by equation (3.10).
(z −H) thus reads,

(z −H) =










z − a0 −b1 0 0 0 . . .
−b1 z − a1 −b2 0 0 . . .

0 −b2 z − a2 −b3 0 . . .
0 0 −b3 z − a3 −b4 . . .
...

...
...

...
...










(3.51)
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and the term (3.49), we are interested in, is obviously equal to (z −H)−1
00 =: x0.

Hence we can regard equation (3.50) with n = 0 as inhomogeneous system of linear
equations with an unknown vector xm := (z −H)−1

m0,

∑

m

(z −H)lmxm = δl0 .

To solve this system for x0 we use Cramer’s rule, i.e.

x0 =
detS0

det (z −H)
,

where S0 is given by

S0 =










1 −b1 0 0 0 . . .
0 z − a1 −b2 0 0 . . .
0 −b2 z − a2 −b3 0 . . .
0 0 −b3 z − a3 −b4 . . .
...

...
...

...
...










.

Using Laplace’s formula for determinants one can easily show,

x0 =
1

z − a0 − b21
det D2

det D1

,

where Di is defined similar to equation (3.51) but with the first i columns and rows
removed. det D2

det D1
can be expanded likewise, leading to:

detDi+1

detDi
=

1

z − ai − b2i+1
det Di+2

det Di+1

,

and thus

IO(ω) = −1

π
ℑ







〈
ψ0

∣
∣O†O

∣
∣ψ0

〉

z − a0 − b2
1

z−a1−
b2
2

z−a2−...







. (3.52)

To numerically evaluate this continued fraction we use the modified Lentz method
(refer to chapter C or [28]).

Alternatively, we can compute the spectral functions as follows. Consider the
spectral function (3.37) in its spectral representation

IO(ω) =
∑

n

|cn|2δ(ω − (EX
n − E0)) , (3.53)

where cn is given by cn =
〈
ψX

n

∣
∣O
∣
∣ψ0

〉
, EX

n is the eigenvalue to the eigenvector
∣
∣ψX

n

〉

of H . The eigenvalues EX
n are directly obtained from the Lanczos method as the
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Figure 3.7: Convergence of Aii(ω) = Iai
(ω) + Ia†

i
(ω) for different number of Lanczos

iterations (5, 10, 15, 25, 50, 75, 100 steps) of a 14 sites system with
half-filling and U = 5t. The number of iterations is equal to the maximal
number of peaks. The peaks which have the largest contribution are there
first.

eigenvalues of the tridiagonal matrix. The spectral weights can be easily calculated
as well. The eigenvectors of the full Hamiltonian in the Krylov subspace are given
by
∣
∣ψX

n

〉
=
∑

j Unj |φj〉 where Uij is the matrix, whose rows are the eigenvectors of
the tridiagonal matrix, and |φi〉 is the Lanczos basis with |φ0〉 being

|φ0〉 =
O |ψ0〉

√
〈
ψ0

∣
∣O†O

∣
∣ψ0

〉 .

Now it is easy to see that

|cn|2 =
∣
∣
〈
ψX

n

∣
∣O
∣
∣ψ0

〉∣
∣
2

=
〈
ψ0

∣
∣O†O

∣
∣ψ0

〉

∣
∣
∣
∣
∣

∑

j

T ∗
nj 〈φj|φ0〉

∣
∣
∣
∣
∣

2

=
〈
ψ0

∣
∣O†O

∣
∣ψ0

〉
|Tn0|2 .

(3.54)
Thus in order to calculate the dynamical response of a system we start the Lanczos
method with a random vector to obtain the ground state (first two passes). Then
we compute the start vector for the third pass with equation (3.48) and perform the
third pass, storing all eigenvalues of the tridiagonal matrix EX

n and all first elements

of the eigenvectors Un0 = cn/
√
〈
ψ0

∣
∣O†O

∣
∣ψ0

〉
. These are all ingredients needed to
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Figure 3.8: Comparison of spectral function with 200 iterations (dashed) and 100
iterations (solid) of a half-filled Hubbard model (14 sites) with U = 5t.
The inset shows one of the two high energy parts where the function after
100 iterations is not yet converged.

compute (3.53).

Having these ingredients also enables us to calculate arbitrary moments of IO(ω),
i.e. (3.38), using (3.53)

µO
m =

∑

n

(
EX

n − E0

)m |cn|2 . (3.55)

How do we judge whether the correlation functions are converged? An easy method
is to check by eye. Figure 3.7 shows how a spectral function Aii changes with different
numbers of third pass iterations for a half-filled one dimensional Hubbard model. We
see that after only 5 iteration the main features are already visible, though the total
spectral function is still coarse. This is because the number of Lanczos iterations
determines the maximal number of peaks. We however observe, that the Lanczos
method quickly finds the energies in the excitation spectrum which have the highest
weight; or put another way, the energies whose eigenvalues have the largest overlap
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Figure 3.9: Logarithmic plot of the first 10 deviations of spectral moments against
the number of iterations for a photoemission spectral function of a 10
sites Hubbard chain with 3 electrons of either spin, U = 4t, t = 1. In
each iteration two moments converge which is yet another hint at the
rapid convergence of the Lanczos method.

with the starting vector (see equation (3.48)). Figure 3.8 shows spectral functions for
100 and 200 iterations in the third Lanczos pass. We see that only the high energy
parts are not converged yet. It shows in practice that normally 200 iterations suffice
to have the spectral functions converged.

Note another heuristic hint at the fast convergence. Typically continuous fractions
converge faster than power series and the Lanczos method’s third pass provides us
with all information needed to evaluate a continuous fraction which converges to
the correlation function. Moreover we can also check how swiftly the moments con-
verge. Momenta unambiguously determine the corresponding function and when the
moments converge rapidly, so does the function. We see from figure 3.9, that the
moments indeed converge rapidly. In each iteration two additional converge.

Until now we are only able to compute diagonal elements of the correlation func-
tions. This is because we choose our start vector for the third pass as Oi |ψ0〉 and
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from this the total spectral function

IOi
(ω) = −1

π
ℑ
〈

ψ0

∣
∣
∣
∣
O†

i

1

ω − (H − µ) + iη
Oi

∣
∣
∣
∣
ψ0

〉

(3.56)

is obtained with the Lanczos method. However we often need to calculate off-diagonal
elements, as well. For example the correlation function Iαβ

Õ
of operator Õαβ for α 6= β.

We therefore start the third Lanczos pass with the initial vector (3.48), where O is
given by

Oαβ
± =

1√
2

(

Õα ± Õβ

)

. (3.57)

According to equation (3.53) and (3.54) this leads to

Iαβ
O±

=
∑

n

〈

ψ0

∣
∣
∣
∣

(

Oαβ
±

)†
∣
∣
∣
∣
ψX

n

〉〈

ψX
n

∣
∣
∣
∣

(

Oαβ
±

)
∣
∣
∣
∣
ψ0

〉

δ(ω − (EX
n − E0)) , (3.58)

which can be expanded into

Iαβ
O±

=
1

2

∑

n

{
|cαn|2 + |cβn|2 ± 2ℜ

(
(cαn)∗cβn

)}
δ(ω − (EX

n − E0)) , (3.59)

where cαn =
〈

ψX
n

∣
∣
∣Õα

∣
∣
∣ψ0

〉

. This result can be rewritten as

Iαβ
O±

=
1

2

{

Iαα
Õ

+ Iββ

Õ

}

± Iαβ

Õ
. (3.60)

Thus, we perform two third passes with each of the two starting vectors

|φ0,±〉 =
Oαβ

± |ψ0〉
√
〈

ψ0

∣
∣
∣
∣

(

Oαβ
±

)†

Oαβ
±

∣
∣
∣
∣
ψ0

〉 .

Then we can calculate the off-diagonal elements by

Iαβ

Õ
=

1

2

(

Iαβ
O+

− Iαβ
O−

)

. (3.61)

If we were only interested in a single off-diagonal element this is the way to proceed.
We only need two third Lanczos passes. But if we wanted to calculate the full matrix(

Iαβ

Õ

)

, we can choose a more efficient method. From equation (3.60) we see, that

having the diagonal elements we can calculate all off-diagonal ones with a single
additional third Lanczos pass, i.e.

Iαβ

Õ
= Iαβ

O+
− 1

2

(
IOα

+ IOβ

)
. (3.62)
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In this chapter we discuss the actual implementation of our Lanczos code. The basic
problem is the exponential growth of the Hilbert space. For a half-filled system of
14 sites we already need wave vectors of about 89 MB. This certainly is doable on
ordinary personal computers. We often need larger systems, however, for instance in
order to scale out finite-size effects or to gain a higher resolution for angular-resolved
spectral functions. Another example are physical systems away from half-filling. For
the organic metal TTF-TCNQ we will deal with in chapter 7 we need to treat systems
with a filling of 0.6. Since we need an integer amount of electrons, this efficiently
reduces the length of the chains to 10 or 20 sites. 20 sites with 6 electrons of either
spin lead to wave vectors of 22 GB for the calculation of the spectral function. This
cannot be handled on an ordinary personal computer anymore. Instead we have to
resort to supercomputers.

The main topic of this chapter is, how to efficiently implement a Lanczos code on
modern supercomputer architectures. At first an implementation on shared-memory
systems is discussed. However, shared-memory systems are restricted to a relatively
small number of processors. To treat large systems we write an implementation for
distributed-memory systems and we show that we can take advantage of the latest
massively parallel architectures like BlueGene/L supercomputers. The BlueGene/L
system in Jülich, called JUBL, is at the time of writing on rank 8 of the top500
supercomputing list.

The last part of this chapter is devoted to tests that check whether the implemen-
tation is correct.

4.1 General considerations

Before one starts to optimize or parallelize code, it is important to know where the
critical spots are, that is, in which parts of the code most of the time is spent?
Knowing these spots we can judge, whether parallelization is a feasible option and
focus our efforts. Parallelization makes sense if the ratio of the parallelizeable to the
inherently sequential code fraction is large enough in terms of run-time. Amdahl’s
law, which is introduced in chapter A, states that the maximum achievable speed up
is bounded by the inherently sequential code fraction.

What do we expect for the Lanczos method? Most of the time will certainly be
spent in functions working on the huge many-body vectors. To verify this we use a
profiler, a tool that measures the code’s behavior at run-time. It gathers information
like how often functions are called and how much time is spent in them.
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4.1.1 Example profile of a serial Lanczos run

A profile of our code for a 12 sites Hubbard chain with half-filling and U = 10t
confirms our assumption. The call to LancMult::pmassign() actually performs the
matrix-vector multiplication (line 10 in the pseudo code 3.1), which takes about 81%
of the total execution time. The scalar products and norms of the Lanczos vectors
are contained in the second item, the lanczos() function. All in all the code working
on the Lanczos vectors takes more than 95% of the program’s total execution time.
Figure (4.1) illustrates this fact.

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

81.04 990.20 990.20 452 2.19 2.19 LancMult::pmassign(...)

16.51 1191.93 201.73 4 50.43 297.55 void lanczos(...)

1.06 1204.89 12.96 10267512 0.00 0.00 FBasis::getIndex(...)

0.44 1210.24 5.35 1 5.35 11.82 void c\_k(...)

0.40 1215.15 4.91 1 4.91 11.38 void cd\_k(...)

0.18 1217.40 2.25 1 2.25 2.25 void RandomVec(...)

...

So these are obviously the two critical spots in our code on which optimization efforts
should be focused. Moreover we will investigate whether they can be parallelized.
For larger physical systems we expect the profile to become even sharper. Let Hσ

denote the σ-electron Hilbert space with dimension dim(Hσ). The setup of the corre-
sponding spin-conserving hopping Hamiltonians scales linearly with this dimension,
whereas the operations on the Lanczos vectors scale linearly with the dimension of
the full Hilbert space dim(H) = dim(H↑) · dim(H↓). Thus, for larger systems the

setup becomes more and more negligible since it scales with
√

dim(H) whereas the
numerical part scales linearly.

4.1.2 Memory access

Modern CPUs are becoming increasingly fast, especially compared to the time spent
on main memory access. To remedy this problem, caches were introduced. When
a processor needs a memory element, it loads this element and some neighboring
elements from main memory into a fast but small separate memory called cache. If
the next element that the processor needs is sufficiently close to the first element in
main memory, it is already cached and can thus be accessed rapidly. A programmer
should strive to build his data structures in such a way that memory locality is
ensured to exploit this effect (cf. chapter D1 by Goedecker in [12]).

4.1.3 Matrix-vector multiplication and cache-effects

It turns out that the matrix-vector multiplication, namely applying the Hamilto-
nian to the many-body wave function, will be the crucial problem for the efficient
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Figure 4.1: Profile of Lanczos code (serial run) for a 12 sites half-filled system. Such a
sharp profile is typical of linear algebra programs. Optimization and par-
allelization efforts should focus on LancMult::pmassign and the lanczos
function.

implementation, especially in case of distributed-memory systems.
The Hamiltonian H is a composition of two single spin-type Hamiltonians T↑ and

T↓ and the diagonal Coulomb part V . In the real-space configuration basis the
Hamiltonians are sparse. Off-diagonal elements denote the hopping of the electrons.
The full Hamiltonian H is given by

H = (T↓ ⊗ 1dim↑
) + (1dim↓

⊗ T↑) + V .

The first term denotes the hopping of the down electrons in which we see that the
up-electron configuration is fixed, while the down configuration changes; vice versa
for the second term. The third term contains the Hubbard interaction term, which
is diagonal.

From the basis construction in chapter 3.1 we know the order of the basis elements.
For a fixed down electron all up-electron configurations follow contiguous in memory.
Hence, hopping is local in memory for 1dim↓

⊗T↑ , but highly non-local for T↓⊗1dim↑
.

Therefore we expect cache effects to appear. In order to measure those effects we
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time both hopping parts separately. Table 4.1 shows the results. As one can see

Table 4.1: Cache effects on hopping performance for half-filled Hubbard chain with
different number of sites in PBC on the JUMP supercomputer (complex
code). All times given in seconds.

sites avg. up hop. avg. down hop. ratio

6 0.090 · 10−5 0.092 · 10−5 ≈ 2%
8 1.21 · 10−3 1.24 · 10−3 ≈ 2%
10 1.68 · 10−2 1.79 · 10−2 ≈ 6%
12 0.243 0.284 ≈ 14%
14 3.73 4.91 ≈ 24%
16 6.03 8.66 ≈ 30%

the up electron hopping takes less time compared to the down hopping. This is due
to memory locality. For the down-electron hopping considerably more cache misses
occur, and thus the data elements have to be fetched from main memory.

4.1.4 Is a parallelization possible?

For our code parallelization becomes feasible if we can parallelize the matrix-vector
multiplication as well as the norms and scalar products. Therefore we have to check
if the tasks can be decomposed into smaller tasks which can be carried out indepen-
dently. This is clearly possible for scalar products which also yield the norms. We
decompose the two vectors we want to multiply into n equal shares. A share can be
regarded as a smaller vector on which the scalar product can be performed on these
vectors, yielding n results. The sum of these intermediate results obviously gives the
final result.

What about the matrix-vector multiplication? In order to calculate the ith element
of the result vector we need to calculate

qi =
∑

j

Hijbj .

We decompose the resulting vector q. Since the vector elements of b and the matrix
elements H only need to be read and can be shared without locking mechanisms
the iterations are independent. Each thread can calculate its share of the vector
elements qi. However, access to the vector elements bi still is non-local, leading to
the already discussed performance degradation for the down hopping. Moreover in
case of distributed memory computing it will give rise to communication between the
threads which has to be handled efficiently.

Parallelization indeed should be possible for the most time-consuming parts of the
program.
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4.2 Parallelization

4.2.1 Shared-memory parallelization with OpenMP

OpenMP is a standard for shared-memory multiprocessing, which means that each
thread/processor has access to the full memory. It comprises a set of OpenMP
directives (#pragmas in C/C++) and a run-time library which can be adjusted by
environment variables at execution time. Often OpenMP parallelization requires only
small changes to the source code. These changes mainly are #pragma directives, which
are either interpreted by an OpenMP-capable compiler to generate parallel code or
ignored by an ordinary sequential compiler. This obviously leads to a unified code
base for parallel as well as sequential usage, which as a result bears the advantage of
good maintainability.

The programming paradigm behind OpenMP is the so-called fork-join model. It
means that only one master thread works its way through the serial code. In our
case this is the setup of the basis and the Hamiltonian. When it reaches a section
which can be parallelized, like the scalar products, it forks into multiple threads and
the work is shared equally among them. When the parallel part is processed, the
threads are joined again and the master continues with the serial code (cf. chapter
D2 by Mohr in [12]).

To get a feeling for OpenMP we discuss the parallelization of a scalar product. In
C++ the parallel scalar product may look like:

#pragma omp parallel for reduction(+:result)

for (long i = 0; i < a.size(); ++i)

result += a[i]* b[i];

Here a and b denote the vectors which are to be multiplied. The #pragma statement in
the first line actually is the OpenMP directive. It tells the compiler to parallelize the
code in the way described above. The master forks into p threads. Each thread works
on a share of dim (H)/p elements of the vector (in shared memory)1 and performs the
local scalar product, storing the result in a private variable result. Then all private
result variables, yielding the intermediate results, are reduced by the OpenMP’s
reduction(+:result) directive. Hereafter the master holds the final result in its
variable result.

The same can be done for the matrix-vector multiplication. The resulting vector
elements can be calculated independently as seen above. We thus only need to
parallelize the loop over the qi. The matrix elements and the vector b are declared
shared and thus no locking overhead is necessary. It all boils down to a single
OpenMP directive. This so-called loop-level parallelization is very easy to employ. A
shortened code fragment of our matrix-vector multiplication is shown in the following
listing.

#pragma omp parallel for private(iup,i,nhop,hop)

1This is the simplest way of distributing the data, even though OpenMP implements more.
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2 for(idn = 0; idn < dimdn; idn++)
for(iup = 0; iup < dimup; iup++)

4 {
i=idn∗dimup+iup;

6

result[i]+=vec[i]∗diag[i];
8

// up electron hopping
10 nhop = hup−>numhop[iup];

for (hop = 0; hop < nhop ; hop++)
12 result[i]+=vec[uphopto(iup,hop)+idn∗dimup]∗upt(iup,hop);

14 // dn electron hopping
nhop = hdn−>numhop[idn];

16 for (hop = 0; hop < nhop; hop++)
result[i]+=vec[iup+dnhopto(idn,hop)∗dimup] ∗ dnt(idn,hop);

18 }
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Figure 4.2: OpenMP speed up of Lanczos iterations for a half-filled 16 sites system
with U = 0. The speed up is almost linear, thus using p processors
reduces the execution time by a factor of about p.

Plot 4.2 shows the speed up of the OpenMP-parallelized Lanczos iterations on
JUMP (see chapter B). We see that it benefits immensely from parallelization. The
speed up is close to the ideal linear one. This means that there is only a negligible
parallelization overhead and hardly any serial code (Amdahl’s law). For our code
shared-memory parallelization on JUMP scales very well. We thus have a means to
efficiently calculate relatively large system like for example 20 sites systems with 0.6
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filling and even the corresponding (photoemission) spectral functions. For complex
boundary conditions and therefore complex wave vectors this amounts to a memory
requirement of about 22 GB for each Lanczos vector.

Unfortunately shared-memory systems are restricted to relatively small number of
processors. This is because all processors not only have to share the memory but also
the bandwidth to access the memory, which quickly becomes a bottleneck. Moreover
cache coherence has to be ensured. When a processor accesses a memory element it
is copied to the processor’s cache. If another processor does the same and changes
this element, the change has to be synchronized with the other cache. The logic
for maintaining this cache coherence is only feasible with relatively small processor
counts.

A single symmetric multiprocessor (SMP) node of Jülich’s IBM Regatta super-
computer JUMP comprises 32 processors and about 128 GB of RAM. This is a quite
low processor count and for calculations of large systems we would like to use more
processors and might need more RAM. In the example above of a 20 sites Hub-
bard chain calculating the angular-resolved (photoemission) spectral function for 11
k-values with complex boundary conditions takes about 20 h.

To gain a higher resolution in k-space we can employ the yet-to-be-discussed cluster
perturbation theory. This would require the calculation of the Green’s function
matrices with 210 angular-resolved spectral functions, taking about 9 days with the
real code. Moreover we would like to calculate the inverse photoemission spectral
function as well, requiring 3 · 44 GB = 132 GB of RAM. Therefore we have to resort
to another way of parallelization, the so-called distributed-memory parallelization.
As the name suggests memory on those systems is not shared and thus the memory
bandwidth in the previous sense is no issue anymore. Instead we have to handle
communication due to remote memory access explicitly. We can probably even use
thousands of processors which – if the parallelization works well – will significantly
cut the execution time.

4.2.2 Distributed-memory parallelization on BlueGene

On distributed-memory systems message passing is the prevailing paradigm for paral-
lelization. The de-facto standard is the Message Passing Interface (MPI). With MPI
we have to explicitly distribute the data and take care for the calculations performed
on each thread. Thus, we need to port the code to MPI and maintain coherence
with the sequential/OpenMP one. Keeping a unified code base is more demanding
compared to OpenMP.

In our case the data structures to be distributed are the Lanczos vectors. Each
of the p threads holds a contiguous share of dim(H)/p elements in its local memory.
This ensures load balancing, since each thread has to perform the same number of
operations on average. Due to the sparsity of the Hamiltonians, they can still be
stored locally on each thread. Porting of most mathematical operations to MPI is
straightforward to do. The scalar product on the Lanczos vectors for example is
performed on each thread with its own share of the vector. This is why the for-loop
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in the following code fragment iterates up to localdim.

for (long i = 0; i < localdim; ++i)

result += a[i]* b[i];

MPI_Allreduce(MPI_IN_PLACE,&result,1,

MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

Similar to the reduce directive in OpenMP the global reduce operation (MPI Allreduce)
gathers all local result variables, adds them up and distributes the final result back
to each thread. Thus, scalar products and norms are quite easily ported to MPI.

Whereas in the case of OpenMP shared-memory parallelization the matrix-vector
multiplication is done by a straightforward loop parallelization, it is not as easy in
the case of distributed-memory systems. The diagonal part of the multiplication can
still be performed easily and yields no problems. But as we have discussed above
the up-electron hopping is local in memory. The down-electron hopping, however,
shows a very non-local and non-regular memory access. In case of a shared-memory
computer system or a serial computer, this translates into cache misses and therefore
to a performance degradation. For distributed memory systems we have an additional
level in the memory hierarchy. A vector element can be residing in local or in a
remote memory. Thus we need means to get this element, resulting in interprocess
communication (IPC). We start with a straightforward MPI implementation similar
to OpenMP.

Direct MPI-2 one-sided communication

MPI-2 one-sided communication extends the communicational means of MPI by en-
abling remote memory access (RMA). This means that each thread can declare a
window, i.e. an area of its memory, which can be directly accessed by all other
threads for read and write operations. It is not necessary for a thread to know, who
accesses its memory. This is the reason that makes it preferable to the ordinary
MPI two-sided communication. Because the matrix elements are scattered it would
be difficult to write corresponding send and receive calls. Thus, MPI-2 one-sided
communication can be regarded as a direct generalization of the OpenMP approach
with a further hierarchy level of memory.

The algorithm then works as follows: At first all threads create a window containing
their share of the vector. Hereafter the matrix-vector operation is performed as long
as all the needed vector elements are local. Usually large parts of the up-electron
hopping part can be carried out locally. If a vector element is missing, the thread
calculates the owner’s rank and the offset in its window. With MPI Get it fetches the
element.

This operation is however quite expensive. For each MPI Get the latency, the time
to set up the connection, is paid. Each thread needs vector elements from many
other threads, leading to a huge amount of MPI Get operations. Figure 4.3 shows the
corresponding speed up. It actually does not deserve this name, since we observe a
speed down, i.e. the run-time becomes longer with increasing numbers of processors.
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Figure 4.3: Speed up of RMA implementation (MPI-2) of the Lanczos code for a 14
sites one dimensional Hubbard chain. We actually observe a speed down.
The line denotes the ideal speed up.

The implementation can be partly improved by local caching techniques, i.e. gath-
ering sequential requests to the same remote window, and therefore cutting the num-
ber of get operations. However this does not show much promise. We clearly need
better ideas.

Vector transposition operation

To obtain a more efficient code we need to find a way of restructuring the data such
that all hopping can be performed locally. A simple yet practical observation provides
us with the needed idea. We have seen in chapter 3.1 that we can unambiguously
determine a state i by a tuple of labels i ≡ (i↑, i↓), we know that the elements are
ordered in memory in such a way that for a fixed down-electron configuration all up
configurations are contiguous in memory, i.e. i = i↑+dim↑ i↓, where dim↑ denotes the
number of up-electron configurations. This is exactly how one addresses a matrix in
a one-dimensional array. Hence we can consider a Lanczos vector as a matrix.

This situation is depicted in figure 4.4. To make the down hopping local in memory
we exchange the indices (i↑, i↓) → (i↓, i↑). This corresponds just to transposing the
Lanczos vector regarded as a matrix. If we store entire rows and columns, respec-
tively, local in a thread’s memory the following implementation of the matrix-vector
product appears promising. Let q denote the result and b the vector to be multiplied
in correspondence to listing 3.1.

• Perform the diagonal part and the up-electron hopping part locally.
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Figure 4.4: Considering a Lanczos vector as matrix. In the image u = dim↑.

• Transpose vector b.

• Perform the down-electron part locally and store the result in a temporary
vector.

• Transpose the temporary vector.

• Add transposed temporary vector to q.

It all boils down to an efficient matrix transposition routine for large dense dis-
tributed matrices. Those kind of transposition operations are, for instance, also
needed for fast Fourier transforms (FFT). In such an operation, each thread has to
communicate with all the others, apparently leading to an immense communicational
effort. Thus a priori it is not clear whether this will work efficiently.

Matrix transpose routines

In the implementation we store entire columns of the matrix (vector) locally on each
thread. The actual number of columns depends on the number of down-electron
configurations and processors.

At first we will discuss the simplest case of N↑ = N↓, or put differently, we regard
Lanczos vectors which correspond to a square matrix, and dim↑ = dim↓ is divisible
by the number of threads.
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MPI Alltoall The preferred way of performing such all-to-all communication pat-
terns is the use of MPI collective communication. For massively parallel systems
like BlueGene these are said to be optimized and are recommended by IBM. For the
matrix transposition operation we us the MPI Alltoall call which is part of the MPI
collective communication operations. Its C prototype looks like:

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

This call sends sendcount elements of size(sendtype) from position
j · (sendcount · sizeof(sendtype)) of thread i to thread j’s position
i · (recvcount · sizeof(recvtype)) for all i,j. In principle this is exactly what we
need. MPI Alltoall, however, expects the data packages which will be sent to a
given thread to be stored contiguously in memory. This does not apply to our case,
since we would like to store the up-electron configurations sequentially in memory.
Thus the matrix is stored column wise.

For MPI Alltoall to work properly, we would have to bring the data elements
in row-major order. This could be done by performing a local matrix transposition
operation. The involved (sub-) matrices are, however, in general rectangular, leading
to expensive local-copy and reordering operations. Fortunately this can be saved
by calling MPI Alltoall for each column separately. After calling MPI Alltoall

for each column with sendcount = recvcount = dim↓ /#p only a local (strided)
transposition has to be performed to obtain the fully transposed matrix or Lanczos
vector. These operations are depicted in scheme 4.5. The red arrows represent the
MPI Alltoall communication. They appear pairwise in parallel. The solid ones
stem from the first call, the dashed ones from the second call. After the IPC the
local transposition is performed in-place.

Figure 4.6 shows the speed up on JUMP and JUBL for a 16 sites half-filled Hub-
bard chain with periodic boundary conditions. The JUMP speed up of the code is
represented by the filled triangles. Up until about 128 threads it features a very good
speed up. 128 threads means we need as many processors and therefore 4 SMP nodes.
The communication within a node is performed over the shared memory. But even
between the nodes communication is quite efficient. JUBL has a significantly better
speed up over the total range of processors shown in this plot (filled squares). Figure
4.8 shows that this speed up continues even for a much higher number of processors.

It is also interesting to compare the absolute timings. With our serial Lanczos
version we compared the speed of a single processor of JUMP and JUBL. Execution
on a single Power 4+ processor of JUMP is about two times faster than a single
PowerPC 440 processor of JUBL. This is even better than the peak performance
ratio from JUBL’s perspective (about 40% of a single JUMP processor) suggests.
The likely reason is that the fast Power4+ processors are limited more by the rela-
tively slow memory access than the slower PowerPC. In [29] several JUBL timings of
different codes are compared to corresponding JUMP ones. Ours is quite favourable
compared to DMFT and laser-plasma calculations on JUBL, which achieved about
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Figure 4.5: Scheme of the transpose operation for square matrices with the dim↑

being divisible by the number of processors. The red arrows denote the
MPI Alltoall communication. The solid one represents the first, the
dashed the second call. Finally the black ones denote the local inplace
transpose.

33%, whereas structure optimizations with VASP about 22-43% compared to JUMP.
QCD runs are about as fast as our code with 50% of Power4+ processor performance.
For more information about the supercomputer systems refer to appendix B.

As promised by IBM, collective communication is indeed very efficient for Blue-
Gene/L supercomputers like JUBL. A single node of a BlueGene/L system com-
prises two CPUs. In one mode, called coprocessor mode, one CPU handles the data
processing while the other one takes care about communication and I/O. Thus a
node essentially can be regarded as a single processor since it holds a single thread.
The other mode is the virtual-node mode. Then each processor is indeed a single
processor. It turns out that our implementation can make use of VN mode since
MPI Alltoall hardly needs an own processor for communication. This is because
collective communication is blocking and all processors have to wait until the last
pair exchanged their data packages. There is, however, an undocumented feature
on BlueGene/L systems, the so called mixed mode. In this mode the two proces-
sors of each node are regarded as a small shared-memory system. We can then take
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Figure 4.6: Speed up for a 16 site half-filled Hubbard chain. The green squares show
the MPI Alltoall implementation on JUBL in CO mode. On JUMP the
filled triangles denote the MPI Alltoall, whereas the other triangles rep-
resent MPI Alltoallv one on JUMP. For runs with the smallest number
of threads (15) the MPI Alltoallv is about 1.17 times slower than the
corresponding MPI Alltoall implementation.

care for work distribution between them ourselves, namely performing the transpose
operation on one processor, while the other processor works on the up-hopping part.

If this implementation had not worked this well, we could have tried another option
for the matrix-vector transposition operation, namely the systolic matrix transpo-
sition described by Lippert [30]. The mechanism of a systeolic transpose is nicely
illustrated in an interactive JAVA applet at
http://www.cs.rug.nl/ petkov/SPP/TRANSPOSE/transposition.html.

MPI Alltoallv With the implementation discussed so far, the systems are restricted
to N↑ = N↓ and dim↑ must be divisible by the number of threads. These constraints
inhibit in particular the calculations of Green’s functions. Therefore we need to
generalize the matrix transposition. This can be achieved by the MPI Alltoallv

call. Its prototype looks like:

int MPI_Alltoallv(void *sendbuf, int *sendcnts, int *sdispls,

MPI_Datatype sendtype, void *recvbuf, int *recvcnts,

int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

http://www.cs.rug.nl/~petkov/SPP/TRANSPOSE/transposition.html
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Figure 4.7: General matrix transposition scheme of the communication. Refer to text
for details.

In principle this routine works in the same way as MPI Alltoall. The difference is
that the counts of elements sent and received and their displacements in the send
and receive buffer can be specified by the integer arrays *sendcnts, *sdispls and

*rdispls, *recvcnts.
In analogy to the above implementation, we call the MPI Alltoallv for each

columns on each thread. If some threads have one column less, they call the function
nevertheless, without actually sending data.

The implementation is mainly a book-keeping problem. Thus let us look at an
example of a 6 × 7 matrix, which is depicted in figure 4.7. It is decomposed and
distributed on 5 threads, where the first two threads contain the two extra columns.
Transposing leads to a 7 × 6 matrix, where an extra column resided in the memory
of the first thread. Let coli denote the number of columns on thread i after the
transposition. We split all local columns in packages in such a way that the jth

package of thread i contains the data to be sent to thread j. More precisely the
actual position on thread j is given by the ith element of thread j’s rdispls array.
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Figure 4.8: Speed up of Lanczos code on JUBL for a 18 sites half-filled Hubbard
chain. The green squares denote the MPI Alltoall implementation run
in CO mode, the cyan circles the same implementation in VN mode.
The MPI Alltoallv implementation in VN mode is represented by yellow
circles. The circles are actually pairs of circles. The second one denotes a
system with a single-processor more, to gauge effects of load-imbalance.

The size of the package is colj elements. This decomposition in packages is denoted
in the scheme as the red boxes. The first thread will hold two columns after the
transposition and thus all first packages comprise two elements.

On the receiving thread the displacement array for the incoming packages is set
up in such a way, that there is enough room to store all the data of a thread i (over
all calls of MPI Alltoallv) contiguously in memory. In the figure this is denoted
by the green boxes in the second matrix. After calling MPI Alltoallv for the first
column, the contents of the green boxes are undefined. The second call fills these
boxes. Hence all data which originated from a thread i is stored contiguously.

After finishing all MPI Alltoallv calls, it can be observed that the matrix elements
are stored in row-major order in the columns. In our example this means we have a
2×7 matrix. Thus we need a local transposition operation of this rectangular matrix.
As a result we obtain the globally transposed matrix we are interested in. The yellow
circles in figure 4.8 show the speed up of this MPI Alltoallv implementation.

We see that both transposition operations are very efficient and as a consequence
this also applies to the matrix-vector multiplication. Thus the overall performance of
the Lanczos implementation scales very well, even on massively parallel computers
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with thousands of processors. Comparing MPI Alltoall with MPI Alltoallv we
find that the more complicated MPI Alltoallv code scales better; it takes, however,
slightly more time to execute. We briefly analyze why.

Alltoall vs. Alltoallv

When comparing the time of all Lanczos iterations for matrix-vector products im-
plemented by MPI Alltoall and MPI Alltoallv, we can see from table 4.2 that
the latter code is about a factor of 1.14 slower for 1938 processors. This is due to
two effects. First the call of MPI Alltoallv takes longer to complete. This effect
increases considerably when scaling to more processors. On the other hand we use
an out-of-place matrix transpose which is more expensive than the strided in-place
transpose used in the MPI Alltoall implementation. This effect decreases with in-
creasing number of processors for a fixed system, because the amount of data per
thread becomes smaller.

How large are those two effects for the example system of 20 sites with 7 electrons
of either spin? The timing difference per iteration for both implementations is about
0.7 − 0.8 s on 1938 processors, where 5.9 and 6.7 are the absolute timing values for
the MPI Alltoall and MPI Alltoallv implementation respectively.

0.2 s of this time is due to both MPI Alltoallv calls. The setup of the book
keeping, i.e. send, receive counts and displacements arrays, is negligible. Thus the
rest of the time is spent in both out-of-place transposes.

Table 4.2: Run-time difference of Lanczos iterations for MPI Alltoall and
MPI Alltoallv for a 20 sites system with 7 up and down electrons and
1938 threads. The more general code for rectangular matrices is slower by
a factor of 1.14.

Implementation using run-time in s

Alltoall 293
Alltoallv 333

ratio 1.14

What is the run-time impact of handling systems with N↓ 6= N↑? These systems
are particularly important for the calculation of Green’s functions.

Table 4.3 shows the timings per Lanczos iteration for a 18 sites system with 9
electrons of either spin and a system with one up electron less. Since the run-time of
the Lanczos iterations scales roughly linearly with the dimension of the Hilbert space
we need to scale the time of the calculation for the large system in order to compare.
The scaling factor is given by dim(H8,9)/ dim(H9,9) = 0.9. The table shows that
there is no performance degradation for non-square matrices if the MPI Alltoallv

implementation is used. One might have expected an impact of load imbalance. But
for 374 threads the system is not in a load imbalanced state. The dimension of
both Hilbert spaces dim↑ and dim↓ can be divided by the number of threads without
remainder. For 715 threads this is, however, not true. 20% of the threads have to
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Table 4.3: Run-time difference of Lanczos iterations of MPI Alltoallv implementa-
tion for a state vector which can be decomposed into a square and into a
rectangular matrix. The Hilbert space of the 9 up and 8 down electron
system is a factor of 0.9 smaller than the other one. With the assumption
that the Lanczos code scales linearly with the dimension of the Hilbert
space, the effective ratio is defined by 0.9 ·T9,9/T9,8.

System with 18 sites and #threads run-time per iteration effective ratio

9 up, down electrons 374 s 10.28 s
9 up, 8 down electrons 374 s 9.23 s

1.00

9 up, down electrons 715 s 6.02 s
9 up, 8 down electrons 715 s 5.44 s

1.00

work with one column extra. Since each thread has a minimum of 61 columns, the
work for this extra column is negligible. Hence there is no problem of load imbalance
as long as there are sufficiently many columns on each thread.

4.3 Checking the results

Checking is crucial when developing a complex code. We have to ensure that the
results obtained by the complicated numerical calculations are correct. This can be
done by comparing the results to analytically derived or otherwise known results.

4.3.1 Energy check

Band-limit check

In the band-limit case we consider the Hubbard model for U = 0 for which the
solution is given by a Slater determinant. The Hamiltonian is diagonal in k-space and
we obtain the well-known cosine band. The code uses the real-space configuration
basis, clearly an unfavorable choice in this case. The computer performs complex
calculations whose results we can obtain. It is however a good check for the setup
of the hopping matrices, especially in order to spot errors in the handling of the
Fermi-signs.

Table 4.4 shows the band-limit ground-state energies for half-filled one-dimensional
Hubbard chains for reference purposes.

Lieb-Wu check

We thus have means to check the kinetic energy. To test whether the Coulomb in-
teraction part works we can compare the numerical results to the analytical solution
of Lieb and Wu [6] in one dimension.
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Table 4.4: Band-limit ground-state energies for half-filled one-dimensional Hubbard
chains with PBC

sites energy in t sites energy in t
2 -4.0 4 -4.0
6 -8.0 8 -9.65685424949
10 -12.9442719100 12 -14.9282032303
14 -17.9758368297 16 -20.1093579685
18 -23.0350819326 20 -25.2550060587
22 -28.1066967333 24 -30.3830164509

They showed that such a system always is a Mott insulator except for U = 0 (refer
to chapter 2.2.1). With the Bethe ansatz they calculated the ground-state energy
per particle E0/L as a function of U in an infinite half-filled system.

E0(U)

L
= −4

∫ ∞

0

dω

ω

J0(ω)J1(ω)

1 + exp 1
2
ωU

, (4.1)

where Ji(x) denote Bessel functions. Starting with this equation the following asymp-
totic forms can be derived (see [17]). For the band limit case,

Eband(U)

L
≈ −4|t|

π
+
U

4
− 0.017

U2

|t| , (4.2)

and in the atomic limit,
Eatm(U)

L
≈ −4t2

U
ln 2 . (4.3)

With these result we can check our implementation. Figure 4.9 shows the Lieb-
Wu solution for an infinite system and the numerically obtained result for a 12 sites
system with half-filling. For increasing values of U physics becomes more and more
local and thus finite-size effects decrease. The results of the calculation for 12 sites
quickly approach the analytical one for the infinite chain.

4.3.2 Green’s function checks

How do we check whether the Green’s function implementation yields the right result?
We will discuss some techniques in this section.

Sum rules and momenta

A test which occurs directly is to check the sum rules, introduced in chapter 3.4. We
can either integrate the spectral function yielding

∫ ∞

−∞

dω Aαβ(ω) = δαβ
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Figure 4.9: Comparison of the exact ground-state energy for an infinite half-filled
system (squares) to Lanczos calculation for a 12 sites half-filled cluster
with PBC. The approximation becomes better the larger U .

or equivalently sum up all spectral weights, since
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This is, however, not a proper check. The spectral weights are directly obtained
from the diagonalization of a tridiagonal matrix. We discussed in chapter 3.4.2 that
these weights are proportional to the first elements of its eigenvectors. So checking
the zeroth moment merely checks the LAPACK routine used for the diagonalizing of
the matrix.

Another try is to check, whether the Galitskii-Migdal theorem holds. As discussed
in chapter 3.4.1 it connects the sum over the first moments of a spectral function to
the ground-state energy

∑

k

µk
1 = −

(〈T 〉0
2

+ 〈V 〉0
)

.

But we know, that the Lanczos method converges rapidly to the spectral func-
tion, which is especially reflected in the rapid convergence of the momenta. The
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Figure 4.10: Band-limit check for a 10 sites Hubbard chain with half-filling and t = 1.
The peaks are at the excitation energies of the corresponding single-
particle system, denoted by vertical lines.

Galitzkii-Migdal test is passed after the first iteration. It therefore only gives a hint
if the implementation works correctly. For judging whether the spectral function is
converged it cannot be employed.

Band-limit check

The Galitzkii-Migdal check and the test of the sum rules do not thoroughly check the
code for the discussed reasons. But we can again resort to the band-limit case. Here
we know all results exactly and can test the computational results for the ground-state
energy (see above) as well as the Green’s functions. The angular-resolved Green’s
function is calculated for all possible values of k. We expect peaks with weight one
to be at the excitation energies of a single-particle system. From the tight-binding
approximation we know that these peaks for a one-dimensional system with L sites
and periodic boundary conditions are at

ǫi = −2t cos

(
2π

L
i

)

, (4.4)

where i is an integer. Figure 4.10 shows the results for a 10 sites system. The vertical
lines show the 5 energy eigenvalues for k > 0 calculated with equation (4.4). The
numerically obtained spectral functions have their peaks at exactly these energies.
Hence we see that the implementation is correct.
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Atomic-limit check

In the atomic limit (t = 0), we can easily check the interaction part. Hubbard showed
[1] that the angular integrated Green’s function in this limit can be written as2

Gii(ω) =

{
1 − 1

2
n

ω
+

1
2
n

ω + U

}

,

where n is the particle density per site.
Intuitively it is clear where the poles come from. Let us consider the case of a half-

filled chain, i.e. n = 1. Each site is occupied with exactly one single electron. Thus,
removing one electron does not change the energy of the system, leading to a peak at
zero. The inverse process, i.e. adding an electron, leads to a double occupancy and
thus to an energy increase of U . Hence we have a means to check the interaction part
of the Hamiltonian. An example is shown in figure 4.11. We calculate the angular-
integrated spectral function with the Lanczos method for U = 8 and obtain exactly
the expected results.

-2  0  2  4  6  8  10

A
ii(

ω
)

ω

Figure 4.11: Atomic limit check for a 12 sites Hubbard chain with half-filling and U =
8. The photoemission peak is at ω = 0 and the inverse photoemission
peak at ω = U .

2We will actually derive a slightly more general formula in chapter (5.2).
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5 Angular-resolved spectral functions
and CPT

In this chapter we discuss how to calculate angular-resolved spectral functions. Nor-
mally exact diagonalization enables us to efficiently calculate angular-resolved spec-
tral functions, but only at a very low resolution in k-space. To improve the resolution
we introduce complex boundary conditions. In principle we can then obtain a spec-
tral function for each k value. In the case of non interacting particles this would
yield the correct result. For interacting particles, however, we face severe finite-size
effects.

Cluster perturbation theory (CPT) remedies this problem. The idea is to solve a
finite cluster with open boundary conditions exactly and then treat hopping between
those clusters perturbatively. This method gives a means to study the spectral func-
tion for each k value without treating different systems and quickly converges to the
infinite-size limit.

5.1 Complex boundary conditions

In chapter 3.4.2 we have discussed how to efficiently calculate spectral functions
with the Lanczos method. In the case of periodic boundary conditions, however,
there are only ⌊L/2⌋ + 1 independent angular-resolved spectral functions due to in-
version symmetry. For an 8 sites system, for example, we only get a k-resolution
of 5 spectral functions as shown in the left plot of figure 5.1. This resolution
is much too poor to study details of spectra like for instance spin-charge separa-
tion. Hence, we need an improved technique. In chapter 2.1.3 we have already
discussed, how to substitute a Hamiltonian of infinite dimension by finite dimen-
sional but k-dependent replacement Hamiltonian. This was achieved by introducing
complex boundary conditions. We proceed similarly in this case. Instead of peri-
odic boundary conditions, i.e. ψ(r1, . . . , ri, . . . , rN) = ψ(r1, . . . , ri +L, . . . , rN) where
i denotes the site index we can also introduce general complex boundary conditions,
i.e. ψ(r1, . . . , ri, . . . , rN) = eiφLψ(r1, . . . , ri + L, . . . , rN) ∀i. This requires us to use
complex wave functions and to generalize the Lanczos code to Hermitian matrices, a
task straightforward to do. If the development language supports templates (gener-
ics) like for instance C++ only minimal changes to the code are necessary. We can
therewith maintain a unified code base.

Utilizing the complex phase shift φ we can sample the entire k-space. This is
shown in the right plot of figure 5.1. However, we also observe that this method
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Figure 5.1: Angular-resolved spectral function for a 8 sites half-filled Hubbard chain
with various periodic boundary conditions (U/t = 4). Left panel: pe-
riodic boundary conditions (PBC). Right: The dashed lines show the
results from the left panel. The dotted lines represent the results for
anti-PBC (φ = π) and the solid ones for φ = π/2.

does not seem to work well. There is a significant difference between the spectral
function for φ = 0 and other values of φ. This is due to the small size of the system. In
chapter 2.1.3 the transformation to a k-dependent Hamiltonian was exact because we
regarded the particles as independent. In chapter 2.1.4 we argued, why this does not
hold anymore in the presence of correlations. Thus, for different boundary conditions
we study essentially a different system which in particular can lead to shifts in the
chemical potential. In chapter 6.2 we see that such a system is equivalent to a ring
whose center is threaded by a magnetic flux. And thus it contains different physics.
Figure 5.2 shows the mentioned shifts in the chemical potential. It can be observed,
that some photoemission peaks are right of the Fermi level of the system with PBC,
which clearly is an artifact, since electrons cannot be expelled from orbitals, which
are not occupied.

Since we need reliable results as well as a high resolution we clearly need a more
advanced method.

5.2 Cluster Perturbation Theory

5.2.1 Introduction

Cluster perturbation theory (CPT) is based on the strong coupling perturbation
theory by Pairault, Sénéchal and Tremblay [31]. Using CPT we can calculate angular-
resolved single-particle Green’s functions with arbitrarily high resolution. Short-
range correlation effects on the length scale of a cluster are treated exactly, whereas
longer-range correlations are neglected. CPT works as follows:

1. Split the original infinite lattice into disconnected finite clusters as shown in
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Figure 5.2: Photoemission spectral function APE
k (ω) of a 20 sites Hubbard chain with

6 electrons of either spin (U/t = 10) calculated with ED and complex
boundary conditions.

figure 5.3

2. Calculate the full Green’s matrix Gc
ij(ω) on such a cluster exactly (including

full intra-cluster hopping)

3. Treat inter-cluster hopping perturbatively by strong-coupling perturbation the-
ory to obtain the full system’s Green’s function

Let from now on γ denote the original lattice and Γ the superlattice of clusters.
Formally a cluster is then given by γ/Γ.

Figure 5.3: Splitting the original infinite lattice (a) into identical finite clusters (b)
(here with four sites). The dotted line denotes intra-cluster hopping,
which is treated exactly in CPT. Inter-cluster hopping is treated pertur-
batively as sketched by arced arrows.

This method is applicable in any dimension, though we will only consider one
dimensional systems here. In the first step we have the freedom to choose how many
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sites a cluster consists of. Of course we expect finite-size effects to decrease with
increasing number of sites. Experience shows, however, that even relatively small
systems – as small as 8 sites for instance – yield good results. Especially for half-
filled systems (with finite U) convergence is very rapid. This is because those systems
are Mott insulators and their density matrix ρij = ρ0,|i−j| decreases exponentially for
|i − j| → ∞ [8], leading to the so-called near-sightedness, i.e. local physics, which
significantly reduces finite-size effects (cf. figure 5.4).
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Figure 5.4: CPT spectral functions for (in row-wise order) 2, 4, 6, 8, 10, 12 sites at
half-filling and U = 4t.

Moreover we have to choose boundary conditions for the finite clusters. Even
though there are no a priori reasons for choosing open boundary conditions, aside
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from seeming to be more natural, it shows that their convergence behavior is better.
As the second step we need to calculate the full Green’s function matrix on the

finite cluster. This can be pursued following the techniques introduced in chapter
3.4.2. The third step demands more explanation.

5.2.2 The CPT method

Following [32] and [33] we split the full lattice γ in an infinite number of finite clusters
with L sites each. The clusters are labeled by an integer number m, their position is
denoted by Rm = m (La) with a the lattice constant being set to unity from now on.
The sites within each cluster are labeled with the indices i, j where i, j = 0, . . . , L−1.
The position of site i within the cluster shall be denoted by ri = i. Let cm,i denote
the annihilation operator which removes an electron on site i in cluster m. Thus the
Hamiltonian of the full system can be decomposed as

H = Hc + T , (5.1)

where
Hc =

∑

m

Hc
m, T =

∑

mnij

Tmn
ij c†micnj , (5.2)

with Hc
m being, in our case, the Hubbard model for cluster m, i.e.

Hc
m = −t

∑

〈i,j〉σ

(

c†miσcmjσ + h.c.
)

+ U
∑

i

nmi↑nmi↓ . (5.3)

T denotes the nearest-neighbor hopping term between adjacent clusters with hopping
matrix,

Tmn
ij = −t (δm,n−1δi,L−1δj,0 + δm,n+1δi,0δj,L−1) , (5.4)

which will be treated as perturbation.

Single-particle Green’s function We are interested in the single-particle Green’s
function Gmn

ij (ω). By neglecting the perturbation term T in equation (5.1) the clus-
ters decouple and the Green’s function becomes diagonal in the cluster indices m, n,
i.e.

Gmn
ij (ω) = δmnG

c
ij(ω) , (5.5)

where Gc
ij(ω) is calculated by the Lanczos method as described in chapter 3.4.2.

The hopping between the clusters is treated perturbatively. Pairault, Sénéchal
and Tremblay showed in [31] and [34] that the Green’s function of the full system in
lowest order of strong-coupling perturbation theory is

(

Ĝmn
)−1

=
(

Ĝc
)−1

− T̂mn , (5.6)

with matrix notation Ĝmn =
(
Gmn

ij

)
, Ĝc = (Gij) and T̂mn =

(
Tmn

ij

)
or equivalently

Ĝmn = Ĝc
(

1 − T̂mnĜc
)−1

. (5.7)
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An alternative derivation of (5.6) via the self-energy was given already by Gros and
Valent́ı in [35] .

Translation symmetry By splitting the translationally invariant lattice into finite
clusters we obviously break the symmetry. It is, however, preserved on the superlat-
tice Γ. This allows us to express the hopping term T of adjacent clusters as well as
Ĝmn in terms of a wave vector Q, which belongs to the reduced Brillouin zone BZΓ

of the superlattice. Fourier transformation of equation (5.4) yields

Tij(Q) = −t
(
eiQLδi,L−1δj,0 + e−iQLδi,0δj,L−1

)
. (5.8)

Combining with equation (5.7) the Green’s function reads

Gij(Q,ω) =

(

Ĝc(ω)
(

1 − T̂ (Q)Ĝc(ω)
)−1
)

ij

. (5.9)

The Green’s function is in a mixed representation: real space within and reciprocal
space between the clusters. To obtain a full momentum-dependent Green’s function
we have to Fourier transform the full Green’s function. Due to the missing translation
symmetry the result will, however, depend on two momenta k, k′ ∈ BZγ of the full
Brillouin zone.

Fourier transforming the Green’s functions yields

Gkk′(ω) =
1

NL

∑

mn
ij

Gmn
ij (ω)e−ik(Rm+ri)eik′(Rn+rj)

=
1

N2L

∑

mnQ
ij

Gij(Q,ω)eiQ(Rm−Rn)e−ik(Rm+ri)eik′(Rn+rj)

=
1

L

∑

Q
ij

Gij(Q,ω)eikrie−ik′rjδ(K −Q)δ(K ′ −Q)

(5.10)

In the last step the wave vector k was uniquely decomposed as k = K + ζ, where K ∈
BZΓ and ζ belongs to the L reciprocal superlattice vectors. Thus, eiζRi = 1. There-
fore, T (K) = T (k) and consequently G(K) = G(k). Carrying out the summation
over Q leads to

Gkk′(ω) =
1

L

∑

ij

Gij(k)e−ikrieik′rjδ(K −K ′) , (5.11)

where δ(K−K ′) can be written as δ(K −K ′) =
∑L

i δ(k − k′ + ζi) with ζi being one
of the L reciprocal superlattice vectors.

Within the CPT approximation the full translational symmetry is restored by ne-
glecting the off-diagonal elements or put another way by approximating
δ(K −K ′) ≈ δ(k − k′), neglecting all ζi but ζ0 = 0.



5.2 Cluster Perturbation Theory 83

-4 -2  0  2  4
0

0.5

1

A
cp

t(k
, ω

 −
 µ

 )

k 
in

 π

ω − µ

Figure 5.5: Spectral function A(k, ω − µ) = −1/πℑ(G11) for the one dimensional
Hubbard model with a single site (U = 4t).

Thus, the CPT approximation to obtain the single-particle Green’s function is
given by

Gkk′(ω) =
1

L

∑

ij

Gij(k)e−ik(ri−rj) , (5.12)

with Gij(k) given by equation (5.9).

5.2.3 Example calculation for a single site

As an example let us calculate the spectral function of a Hubbard chain in CPT for
clusters consisting of a single site hosting a down electron. The Hilbert space is one
dimensional and comprises the |↓〉 state only. The cluster Gc therefore only contains
the photoemission part of the down electron, since |〈 · |c1↓| ↓〉|2 = 1, and the inverse

photoemission part of the up electron, since |〈↑↓ |c†1↑| ↓〉|2 = 1 . All the other matrix

elements are zero, namely |〈↑↓ |c†1↓| ↓〉|2 = |〈 · |c1↑| ↓〉|2 = 0 . Hence the spin-averaged
Green’s function is given by

Gc =
1

2

(
Gc

↑ +Gc
↓

)
,

with

Gc
↑ =

1

ω − µ− U
=

1

ω − U
2

and Gc
↓ =

1

ω − µ
=

1

ω + U
2
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and µ = −U
2

due to half-filling’s particle-hole symmetry. Thus,

Gc =
1

2

(

1

ω − U
2

+
1

ω + U
2

)

=
1

ω − U2

4ω

.

For V11(k) follows with equation (5.8),

V (k) = −t(exp (ik) + exp (−ik)) = −2t cos(k) .

and therefore with equation (5.9),

G11(k, ω) =
1

ω − U2

4ω
+ 2t cos(k) + iη

.

This coincides with the Hubbard-I approximation for half-filling [1]. The correspond-
ing spectral function is plotted in figure 5.5. Let us look at the asymptotic behavior
for U → 0 and U → ∞. In the band-limit the ordinary dispersion relation of free
particles is restored, i.e. the Green’s function looks like

G11(k, ω) =
1

ω + 2t cos(k) + iη
.

In the atomic limit the energy gap Eg goes to infinity. At finite U the poles are
situated at

ω± = −t cos(k) ± U

2

√

1 +
4t2 cos2(k)

U2
≈ −t cos(k) ± U

2
.

The Hubbard bands reside at ±U/2 and the bandwidth is reduced by a factor of 2.

5.2.4 Limits of the CPT

In the case of infinite cluster length (L → ∞) the CPT results obviously become
exact. This also applies to the case of no inter-cluster hopping at all because if
was considered as the perturbation in strong-coupling perturbation theory. With full
translational symmetry, i.e. no hopping globally this is equivalent to the atomic limit.

It may seem surprising at first that CPT is also exact in the case of U = 0, i.e.
the weak-coupling limit. This, however, becomes clear when looking at (5.6). In the
case of U = 0 this equation becomes

(

Ĝmn
)−1

=
(

Ĝc
0

)−1

− T̂mn , (5.13)

where Ĝc
0 is the Green’s function of the cluster of the non-interacting system. Then,

T̂mn with the parameter t obviously is the exact self-energy. Hence, the fact that
for U = 0 the band-limit results are restored can be used in practice to check the
implementation.
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Figure 5.6: Weak-coupling limit check: CPT calculation U = 0 for a 6 sites system
(band-limit). The tight-binding cosine band is restored.

5.2.5 Boundary conditions

We have already stated that open instead of periodic boundary conditions are used
to compute the Green’s function of the cluster. PBC would be favourable as far as
computational resources are concerned. This is because PBC systems are transla-
tionally invariant and the Green’s function only depends on |i− j|, i.e. Gij = G|i−j|.
For OBC, on the other hand, the computational demand increases by a factor of L.
Dahnken, Arrigoni and Hanke suggested [36] to use PBC anyway. In order to correct
the wrong periodic hopping it has to be subtracted in strong-coupling perturbation
theory. Therefore equation (5.8) changes to

Tij(Q) = −t
(
(eiQL − 1)δi,L−1δj,0 + (e−iQL − 1)δi,0δj,L−1

)
. (5.14)

The resulting spectral functions are inferior to the one calculated by OBC. This can
be observed in figure 5.7. Inferior means that the spectral functions with OBC show
quite strong finite size effects, whereas the PBC spectral functions are essentially
converged (cf. figure 5.4 ). According to [33] this is because subtracting the periodic
hopping leads to a long-range hopping in T for which CPT does not work well.

5.2.6 CPT vs. ordinary ED

With the ordinary symmetric Lanczos method we obtain only a very crude resolution
in k-space as seen in the previous section. With the introduction of complex boundary
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Figure 5.7: Comparison of a one-dimensional 12 sites half-filled Hubbard chain (U =
4) with PBC (left) and OBC (right). The OBC calculation yields consid-
erably better convergence behavior, i.e. finite size scaling (cf. figure 5.4
).

conditions we increase the resolution at the expense of accuracy. But finite-size
problems arise mainly because of the change in the chemical potential. CPT is
superior, as one can see in figure 5.8.
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Figure 5.8: complexBC ED (left) vs. CPT (right) for a 8 sites half-filled Hubbard
chain with U/t = 4. CPT is clearly superior.

Convergence behavior Aside from the resolution in k-space the CPT method has
in addition a better convergence behavior with respect to the cluster size. From
figure 5.4 we see that the CPT method converges very rapidly. For a six sites system
the spectral function shows already qualitatively all the import features.

In order to directly compare the two methods we calculate the spectral functions
for different numbers of sites at the Fermi wave vector. Figure 5.9 shows that indeed
CPT converges much more rapidly compared to the ordinary Lanczos method. For
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two sites the peaks with the largest weight are already at almost the correct energies.
This is not the case for the ordinary Lanczos run where the peaks shift considerably.
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Figure 5.9: Direct comparison (left) of AkF
for different number of sites (4, 8, 12)

calculated with CPT (solid line) and ED with PBC (dashed line) for
half-filled Hubbard chain (U/t = 4). The right plot shows the spectral
functions of the same method in comparison for ω − µ > 0.

5.2.7 Next-neighbor interaction V

Including next-neighbor interactions into the CPT method yields a non-trivial prob-
lem. Whereas the Hubbard term is local to each site and therefore is not affected by
the splitting of the cluster this is not the case for the next-neighbor interaction. It
is not clear how to treat this term at both ends of a cluster. Aichhorn [37] used a
mean field approach in his PhD thesis. We tested how the CPT with V behaves for
two different treatments.

At first we neglect the next-neighbor interaction at both ends of the chain, i.e. we
treat the next-neighbor interaction in open boundary conditions. The hopping stays
untouched. Figure 5.10 shows the poor results. We observe strong artifacts which
manifest themselves as many pronounced stripes.

It turns out that a better approach is to consider the next-neighbor interaction term
in PBC. Figure 5.11 shows the results for two different numbers of sites. Comparing
the results of our calculations with the result of Aichhorn (figure 5.4 in his thesis)
shows a very good agreement. Both methods, however, share, the same problem,
namely the finite-size stripes. Fortunately they are far less pronounced compared to
the calculation with V in OBC. Moreover their number increases with L and their
weight is reduced.
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Figure 5.10: 12 sites half-filled Hubbard chain in CPT with U/t = 8 and V/t = 2,
where V regarded in OBC. We see strong unphysical finite-size artifacts.
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Figure 5.11: 8 (upper), 12 (lower) sites half-filled Hubbard chain in CPT with U/t = 8
and V/t = 2, where V considered in PBC. The stripes inside the Hub-
bard bands appear to be finite size effects, since their number increases
and their weight is reduced with increasing L.



6 Metal-insulator transition

Experiments with strongly correlated materials like one-dimensional organic conduc-
tors and high-Tc materials show a strong deviation from the predictions of band
theory. A prominent example are Mott insulators which are incorrectly predicted as
metals.

In his paper “Theory of the insulating state” (1964) Kohn [38] developed a general
way of determining whether a material is an insulator or metal. This characterization
includes ordinary band insulators, predicted by band structure theory, as well as Mott
insulators. It turns out that the corresponding calculations are relatively cheap:
instead of looking at the spectrum the characterization is done by studying the
response of the ground-state energy to changes in the boundary conditions which is
a measure for the locality of the ground state.

In this chapter Kohn’s method is used to study a system undergoing a Mott-band
insulator transition. The studied system becomes a metal when the Mott to band
transition occurs. In the final part we show how self-energies at the Fermi wave
vector kF look like for Mott and band insulators as well as metals.

6.1 Classical Drude conductivity

In order to describe the response of a metal subjected to a time-dependent electric
field E(t) = E(ω)eiωt, let us look at the classical equation of motion of the electrons.
It is given by

dp

dt
= −p

τ
− eE , (6.1)

where p denotes the momentum of the electron and 1/τ is its scattering rate. Using
the Fourier representation

p(t) = p(ω)eiωt , (6.2)

and inserting into equation (6.1) yields

− iωp(ω) = −p(ω)

τ
− eE . (6.3)

With the current density j = −nep/m where m is the mass of the electron and n
their number this leads to

j(ω) = −ne
m

p(ω) = σ(ω)E(ω) . (6.4)
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Here σ(ω) is the classical dynamical Drude conductivity defined as

σ(ω) =
σ0

1 − iωτ
, (6.5)

where σ0 = ne2τ/m is the corresponding static Drude conductivity.
For 1/τ → 0 the static Drude conductivity obviously is retained. The electrons

are independent particles and free. This leads to the Drude peak

σ(ω) = σ(0)δ(ω) , (6.6)

which is a result of freely accelerating electrons. It can be observed in spectra when-
ever quasi-free particles are present. In the following part we calculate a quantity,
the so called stiffness or Drude weight, which is directly connected to σ(0) by

D =
σ(0)

2πe2
. (6.7)

6.2 Optical conductivity in the Hubbard model

How do we determine whether the ground state of a given Hamiltonian is metallic or
insulating? Or equivalently is ℜ (σ(ω → 0)) = 0? Ordinary techniques to answer this
question need the full spectrum of the Hamiltonian. This is not really satisfactory
since whether a system is insulating or not is a property of the ground state. Indeed,
Walter Kohn [38] showed in 1964 that it is possible to extract information about
σ(ω) with the help of ground-state properties only. In the following we will consider
a one-dimensional Hubbard chain which is connected to a ring with varying boundary
conditions.

Physically, changing the boundary conditions is equivalent to a magnetic flux Φ
through the center of the ring of L sites. This translates into a so called Peierls phase
factor which a particle gathers when hopping from site to site. Adjusting the hopping
matrix elements of the kinetic energy operator T = −t∑ c†σi+1cσi + h.c., results in

TΦ = −t
∑(

e−iΦ/Lc†σi+1cσi + e+iΦ/Lc†σicσi+1

)

, (6.8)

where Φ can be written in terms of a vector potential A as Φ = LAe. The equivalence
of the effects of a magnetic flux leading to a phase factor when hopping from site to
site and complex boundary conditions has already been observed and used in chapter
2.1.3, when the infinite dimensional Hamiltonian was reduced to a finite one.

Assuming that the system is an insulator the ground state wave function can be
decomposed into a sum of localized wave functions which have essentially vanishing
overlap. Changing the boundary conditions slightly we expect that the response of
the ground-state eigenvalue is very small, since it is only a surface effect. In case of
a metal the wave functions overlap and the ground-state eigenvalues will probably
change significantly.
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Expanding the exponential function in the perturbed Hamiltonian up to second
order in Φ yields

HΦ = H0 −
j

eL
Φ − 1

2

1

L2
Φ2 , (6.9)

where H0 is the Hamiltonian with periodic boundary conditions Φ = 0 and j the
paramagnetic current operator defined by

j = ite
∑(

c†σicσi+1 − c†σi+1cσi

)

. (6.10)

The ground-state energy shift is given in second-order perturbation theory as,

E0(Φ) −E0 = D
Φ2

 L
+ O(Φ4) , (6.11)

with E0 = E0(0) the ground-state energy of the unperturbed Hamiltonian and D
denotes the so called stiffness constant given by

D =
1

L

(

〈−T 〉
2

−
∑

p 6=0

|〈ψ0|j|ψp〉|2
Ep −E0

)

. (6.12)

In the ground state the expectation value of the current is zero, i.e. 〈Ψ0|j|Ψ0〉 = 0,
since otherwise it would break the symmetry of the system and favour the direction
of the current.

Being interested in the optical conductivity we specialize the vector potential A→
A0e−iωt such that it gives rise to an electric field F = −iωA, where the name F is
chosen in order to avoid confusion with the energy E. The linear-response formalism,
the Kubo equation, gives us the current conductivity σ by using equation j(ω) =
σ(ω)E(ω). The actual derivation is performed in [39]. The results specifically for
this model are presented in [40] and [17]. For small ω the real part of the conductivity
yields

σ(ω) = 2πe2

(

Dδ(ω) +
1

L

∑

p 6=0

|〈ψ0|j|ψp〉|2 · δ
(
(Ep −E0)2 − ω2

)

)

. (6.13)

The Drude weight shown here is indeed analogous to the Drude weight D introduced
in equation (6.7) in the case of non-interacting particles. The delta-function im-
plies quasi-free acceleration or put another way infinite static conductivity. This is
reasonable since there are no dissipative mechanisms in the model.

The criteria From equation (6.11) we observe that D can be calculated from E0(Φ)
by

D =
L

2

∂2E0(Φ)

∂Φ2

∣
∣
∣
∣
Φ=0

. (6.14)

Now we have means to calculate the Drude weight D and can therefore decide
whether a many-particle Hamiltonian is insulating, i.e. , D = 0, or metallic, D 6= 0
[41] by performing ground-state calculations for different boundary conditions.
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6.3 In practice

In practice only the ground-state energies for three different complex boundary con-
ditions are needed to numerically evaluate the second derivative. Thus such com-
putations are relatively cheap, in particular compared to the techniques discussed
earlier, namely computing the spectral function.
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Figure 6.1: Comparison of E(Φ) for 10 (left) and 8 (right) sites systems with half-
filling and U = 6. Whereas the 10 sites system reaches its minimum in
energy for Φ = 0 and therefore has a positive curvature the 8 sites system
has its minimum at Φ = π.

Degenerate ground state In half-filled systems where the number of sites is a
multiple of four the calculated D, being the curvature, is negative, whereas in systems
with 4n + 2 sites, where i is an arbitrary integer, D is positive. This behavior can
be found in strongly and weakly interacting systems. It is depicted in figure 6.1.
Stafford, Millis and Shastry argued in [42] where the sign comes from. We will
briefly discuss the small-U limit. In case of 4n sites and half-filling the system is an
open-shell system and the ground state is degenerate. Hence there is a level crossing
at Φ = 0. Any small perturbation lifts the degeneracy and gives rise to a negative
curvature of E(Φ) in the resulting lower band. Note that for 4n + 2 sites systems
with Φ = 0 and 4n sites systems with Φ = π level crossings are sufficiently far away
so they can be neglected. For d > 1 dimensional systems refer to [41].

This problem can be avoided by introducing anti-periodic boundary conditions for
systems having 4n sites. Then the second derivative of E(Φ) has to be evaluated at
Φ = π.

Finite-size effects Consider Kohn’s insulating ring, where the ground-state wave
function can be decomposed into localized wave functions with vanishing overlap.
The change of the boundary condition at an arbitrary place in the ring changes the
neighboring localized wave functions. This perturbation decays swiftly because of the
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vanishing overlap between the wave functions. In insulators this effect is a surface
effect (c.f. chapter 2.1.4). Treating relatively small systems the surface effects can
have an impact on the result and may lead to a misjudgement of the phase.
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Figure 6.2: Finite-size scaling for half-filled Hubbard model with U/t = 6 and ∆ = 0.
For too small system sizes the criterium misjudges the phase and tells us,
that it is a metal. The finite-size effects are of higher than linear order
and thus vanish quickly when increasing the system size.

The value of the Hubbard-U adjusts the “locality” of the system, the higher the
ratio U/t the more the system becomes local and finite-size effects disappear. If we
have a small system with relatively small ratio U/t, the perturbation does not decay
quickly enough. Hence, the system we study pretends to be a metal though it is an
insulator. An example is shown in the lower left plot of figure 6.4. With the Bethe
ansatz it has been proven [6] that a half-filled Hubbard chain with finite U > 0 is a
Mott insulator. For too small system sizes the criterium tells us that it is a metal.
Increasing the number of sites, however, directly reveals, that this misjudgement was
due to finite size effects. Figure 6.2 emphasises this fact. The finite-size effects are
suppressed more than linearly.

6.4 Mott-band insulator transition

This section revisits the model studied with an effective single-particle theory in
chapter 2.1.3 including correlation effects. The system is depicted in figure 6.3.

Half-filling For ∆ = 0 the half-filled Hubbard system for finite U/t is a Mott
insulator. The electrons are distributed as uniformly as possible in the system and
the occupancy ni ∀i of the sites is equal to one without any charge fluctuation, i.e.
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Figure 6.3: Hubbard chain with next-neighbor hopping. Each second site is shifted
in energy by an energy offset of ∆.

〈n2
i 〉 − 〈ni〉2 = 0. Since the system is periodic we only need to take a unit cell with

two sites i = 0, 1 into consideration.

Increasing ∆ breaks the uniform electron distribution. As ∆ rises, the electrons
tend to doubly occupy the lower energy states since the higher states become too
costly in energy. This can be seen in the first row plots of figure 6.4. It also can be
observed that for higher values of U/t this redistribution starts at higher values of
∆/t.
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Figure 6.4: The first column shows a 10 sites system with U/t = 6 for different
values of ∆/t, whereas the second column describes a similar system with
U/t = 12. The first row shows the occupancy of the upper (lower line)
and lower energy (upper line) orbitals and the second the corresponding
Drude weights. The lower left plot shows for ∆ ≈ 0 a finite size effect
(see figure 6.2).
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In the opposite limit, i.e. ∆/t ≫ U/t the electrons prefer to doubly occupy the
low energy orbitals since an occupancy of a higher orbital is too expensive. Then the
half-filled system becomes a band insulator.

Most interesting is of course the domain where ∆/t ≈ U/t. Kohn’s criterium shows
that when the system changes its phase from a Mott to a band insulator it becomes
a metal. This can be understood heuristically. Assuming a two site system the first
electron put into the system will surely occupy the lower orbital. If U = ∆ it does not
matter for a second electron whether it occupies the higher or the lower state doubly.
Therefore it can move freely and the system is a metal. The expected occupation of
1.5 on the lower orbital and consequently an occupation of 0.5 on the higher orbital
can be seen in the leftmost plot of figure 6.4.

Because of the finite size of the systems no conclusions can be drawn about the
width of the metal phase regime as a function of U,∆. Resta and Sorella showed in
1999 [43] that the ground state at the transition point is indeed metallic. However, it
is a singular point, though with our technique we cannot directly identify it as such.
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Figure 6.5: First column: Occupancy of the two orbitals of a quarter filled 8 sites
Hubbard system with U/t = 12. Second column is a similar system
with half-filling. Because this is a 4n = 8 system, the Drude weight is
evaluated at Φ = π.
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Quarter filling In case of quarter filling finite U/t and ∆/t = 0 the system is a
metal. The criterium confirms this as shown in figure 6.5. With increasing ∆/t
the electrons distribute themselves more and more uniformly on the lower orbitals
in such a way that each lower orbital is singly occupied. Neither ∆ nor U is paid
energetically and the system becomes a Mott insulator.

6.5 Self-energy

Green’s functions of non-interacting and interacting systems can be written in a for-
mally equivalent way by using the self-energy. The non-interacting Green’s function
looks like

G0(k, ω) =
1

ω − ǫ(k)
, (6.15)

and those of interacting particles

G(k, ω) =
1

ω − ǫ(k) − Σ(k, ω)
, (6.16)

where all many-body physics is contained in the self-energy Σ(k, ω). It can be ad-
vantageous to study Σ(k, ω) directly. Once G has been obtained we can calculate
Σ(k, ω) with the help of equations (6.15) and (6.15) in the following way

Σ(k, ω) = ω − ǫ(k) − 1

G(k, ω)
=

1

G0(k, ω)
− 1

G(k, ω)
. (6.17)

Usually the self-energy Σ(k, ω) is a complex function of (k, ω).
Equation (6.15) shows that the poles of this Green’s function denote the excitation

energies of the non-interacting system. We can regard them as particles in a certain
energy eigenstate and hence they have an infinite life time. In case of interaction the
poles are at the energies for which the denominator of (6.16) is zero, i.e.

ω = ǫ(k) + Σ(k, ω) . (6.18)

Σ(k, ω) is most usually a complicated function and therefore equation (6.18) often
is evaluated numerically or graphically. There might be multiple solutions for fixed
values of k. This can be interpreted as the decay of a particle in the non-interacting
system into several excitations in the interacting system, called quasi-particles. Their
spectral weights, however, have to sum up to 1 because of particle number conser-
vation. Whereas the life time of a particle in an energy eigenstate is infinite in the
non-interacting system, the life times of the quasi-particles are inversely-proportional
to the imaginary part of the self-energy function.

Having the self-energy we can tell how the spectral function looks like. Graphically
each intersections of ω with ǫ(k) + Σ(k, ω) for a fixed value of k yields a peak in the
spectral function, whose width is proportional to the inverse imaginary part of Σ.
This can be seen in figures 6.6 and 6.7.
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Figure 6.6: Self-energy Σ(kF , ω) of a Mott insulator (left) and band insulator (right).
The divergence of ℑ Σ at the chemical potential is typical of Mott in-
sulators at kF . The plots of the third row show the spectral functions
AkF

. Calculations are done for a half-filled 10 sites Hubbard chain with
U/t = 12 and ∆/t = 0 (left), ∆/t = 20 (right). Dashed curves denote
the higher, solid the lower orbitals.

6.5.1 Mott and band insulator

Let us take a look at the self-energy of the model studied in this chapter. We are
particularly interested in the self-energy at the Fermi wave vector kF for each of the
three occurring phases.

The first column of figure 6.6 presents the self-energy of the Mott insulating phase.
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The real part of Σ shows that the single-energy state of the non-interacting system
splits into two bands. The band-width of the non-interacting system W/t = 4 is
retained in both bands. The width of the peaks is connected to the imaginary part
of Σ. The most striking feature of this imaginary part is the divergence at the Fermi
level, characteristic of Mott insulators. Furthermore the energy gap around the Fermi
level makes the system an insulator.

The self-energy of the band insulator (second column) yields hardly any features
compared to the one of the Mott insulator. There are two peaks in the spectral
function. The first one at ω = U shows the photoemission peak of the lower orbital
and the second one at ω = ∆ the inverse photoemission peak for the higher orbital.
The imaginary part of the self-energy is zero for those two peaks, hence the quasi-
particles have a long life time.

The inverse/direct photoemission peaks have no weight respectively because the
lower orbitals are already doubly occupied and the higher ones are unoccupied.

6.5.2 Metal

Figure 6.7 shows the self-energy for the Fermi wave vector kF of a metal. Note the
long living (ℑΣ(kF , ωF ) = 0) quasi-particles at the Fermi level. The solid line denotes
one which is removed by photoemission from a lower orbital yielding the energy gain
of U = 12. The dashed line represents correspondingly the inverse photoemission of
an additional quasi-particle in a higher orbital.
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7 Organics

In 1973 Alan Heeger and colleagues at the University of Pennsylvania prepared an
ionic salt consisting of two organic compounds, TTF and TCNQ. Containing only
carbon, hydrogen, sulfur and nitrogen the salt made out of those two compounds at
−220◦ C has a conductivity comparable to the one of copper at room temperature.
It is a metal that contains no metal atoms — a metal-free metal! Moreover it turns
out that electron hopping in those materials happens along stacks of like molecules
giving rise to nearly one-dimensional bands. This low dimensionality in tandem with
strong Coulomb repulsion compared to the kinetic energy leads to many-body effects
which can be observed in angular-resolved photoemission spectroscopy (ARPES)
experiments. TTF-TCNQ is one of the very few systems where exotic physics like
spin-charge separation has been clearly seen experimentally.

Figure 7.1: The figures show the highest occupied (upper left) and lowest unoccupied
(upper right) molecular orbital of TTF and TCNQ respectively. The
second row presents the corresponding molecular structures.

With new realistic Coulomb parameters obtained from density-functional theory
[44] we will study the spectral function of the molecular metal TTF-TCNQ with the
Lanczos technique. Until now only t-U models were employed to understand this
metal. Since DFT calculations of the Coulomb parameters give a value of the next-
neighbor interaction parameter V which is approximately U/2 the effects of V cannot
be neglected. We thus study its impact in terms of a t-U -V model on the spectral
function. We find that V broadens the bands similar to an enlarged effective hopping.
This effect of the next-neighbor interaction V seems to resolve a long-standing puzzle
in the theoretical interpretation of ARPES data.
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7.1 Charge-transfer salt TTF-TCNQ

Isolated TTF (tetrathiofulvalene) and TCNQ (7,7,8,8-tetracyano-p-quinodimethane)
molecules are stable. This is because they are closed shell molecules. The single-
particle energy levels are plotted in figure 7.2. We see that the highest occupied
molecular orbital (HOMO) of TTF is significantly higher in energy compared to the
lowest unoccupied molecular orbital (LUMO) of TCNQ. Both orbitals are shown in
figure 7.1. Thus, when making a crystal out of these molecules a charge transfer
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Figure 7.2: Single-particle energy levels of TTF (left) and TCNQ (right) calculated
with all-electron DFT for a single molecule.

takes place. 0.6 electrons are, on average, transferred from the TTF-HOMO to the
TCNQ-LUMO. If this were not the case the crystal would be a band-insulator since
closed shells lead to completely filled bands. The charge transfer, however, leads to
partially filled bands and thus metallic behavior.

In figure 7.3 the crystal structure of the salt is shown. The two-dimensional planar
molecules of the same type are stacked on top of each other. π-molecular orbitals on
adjacent molecules overlap and therefore give rise to the one-dimensional partially
filled band. The overlap, however, is relatively weak. It does not lead to a strong co-
valent bonding but rather to a weak van der Waals-like bonding. Thus, a description
of the hopping in terms of a tight-binding approximation seems reasonable.

ARPES experiments [45], however, do not only show ordinary tight-binding bands.
Close to the Γ-point the band splits into two branches which is a signature typical
of spin-charge separation. This suggests that effects of strong correlations become



7.2 Realistic parameters 103

Figure 7.3: Crystal structure of TTF-TCNQ from different perspectives. The
molecules are flat and like molecules are stacked on top of each other
(right picture). Perpendicular π-molecular orbitals on adjacent molecules
overlap and form a one-dimensional band.

important.

7.2 Realistic parameters

Having a kinetic energy part that can be described by the tight-binding approxima-
tion the Hubbard model suggests itself for treating the correlation effects. All we
need for our calculations are the parameters t, U and possibly some values Vl for the
near neighbor interaction. For TTF and TCNQ these were calculated in [44]. The
energy levels depicted in figure 7.2 are the results of an all-electron DFT calcula-
tion for isolated molecules. In this way also the charge densities ρ(r) for the LUMO
and the HOMO are accessible. Since these molecular orbitals (MO) do not change
considerably when two molecules come close to each other we can calculate the bare
Coulomb matrix elements

Vbare(l) =

∫ ∫

d3rd3r′
ρ0(r)ρl(r

′)

|r − r′|
between two HOMOs (LUMOs) of TTF (TCNQ) a distance l apart from each other
from these charge densities. For l = 0, V 0

bare yields the Hubbard-Ubare. This parame-
ter would have to be used if we wanted to employ a Hubbard model for all electrons
in all orbitals. Because of the exponential growth of the Hilbert space this is, how-
ever, infeasible. We only treat the “conduction” electrons explicitly in our effective
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Table 7.1: Realistic Hubbard parameters for TTF and TCNQ from [44]. U , V , V ′,
V ′′ denote on-site, nearest-neighbor, . . . interaction. All energies are in eV.

Stack U V V ′ V ′′

TTF 2.0 1.0 0.55 0.4
TNCQ 1.7 0.9 0.4 0.3

Hubbard model. The effect of the other electrons, which are not explicitly taken into
account, is a renormalization of the parameters of the model. The Coulomb param-
eters for example are decreased due to screening processes. The actual derivation of
the parameters is described in [44].

Figure 7.4: Two TTF and TCNQ molecules next to each other. With a DFT calcu-
lation for this setup, the hopping matrix element t can be derived from
the bonding-antibonding splitting of the molecular orbitals.

With DFT calculations for two molecules (cf. figure 7.4), we get the hopping
parameters t from the bonding-antibonding splitting of neighboring molecular or-
bitals. Hopping occurs along the stack of like molecules. These parameters are,
tTCNQ ≈ 0.18 eV and tTTF ≈ −0.15 eV. The realistic parameters for the Hubbard
model obtained by this method are shown in table 7.1.

7.3 TTF-TCNQ in the t-U model

Up until now the TTF-TCNQ was mainly described by the ordinary Hubbard t-U -
model [45],[46], i.e.

H = −
∑

i6=j,νσ

tij,νc
†
iνσcjνσ + U

∑

i

ni↑ni↓ ,

using parameters based on rough estimates from experiments [47] and theory [48],
[49]. Figure 7.5 shows the result of such a calculation for a TCNQ stack. It was
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obtained by the CPT technique described in chapter 5.2 for a 20 sites system with 6
electrons of either spin and the parameters U = 1.96 eV and t = 0.4 eV.

Figure 7.5: Angular-resolved spectral function obtained by CPT for a 20 sites TCNQ
system with 6 electrons of either spin (U = 1.96 eV, t = 0.4 eV). The
white line shows the chemical potential, the green cosine represents the
independent-particle band. Signatures of spin-charge separation can be
observed around the Γ-point. For a discussion refer to text.

As the main feature we observe that the tight-binding band is retained. The
dispersion is a bit narrower compared to the cosine curve describing independent-
particles. But the Coulomb interaction leads to striking changes due to correlation
effects. In the interval −kF < k < kF , with kF/π = 0.3 we observe three dispersing
features. Figure 7.6 shows a magnification of this interesting area and since A−k(ω) =
Ak(ω) we only show the spectral function for kF > 0. Close to the Fermi level which
is denoted by the white line at ω − µ = 0 there are peaks with high weight ranging
from ω ≈ −0.5t at k = 0 to ω ≈ 0t at k = kF , thus showing a rather narrow
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Figure 7.6: Magnification of Ak(ω) in interval 0 < k < kF of the TCNQ calculation
shown in figure 7.5.

dispersion. According to Luttinger liquid theory these spectral weights correspond
to the spinon branch. In figure 7.5 we see that there is only a single spinon branch,
since the partial branches for k < 0 and k > 0 join in k = 0 with the same slope. At
the Γ-point and higher binding energies, i.e. lower values of ω, there seem to start
two branches. Figure 7.5 suggests, and from the Bethe ansatz solution [50] we know,
however, that the lower so called shadow branch is the continuation of the upper
branch for k < 0. It runs from k = 0 and ω ≈ −1.5t to k = kF from ω ≈ −2.2t
and quickly loses weight with increasing |k|. The actual holon band extends from
k = 0 and ω ≈ −1.5t to ω ≈ −0t at k = kF . It seems to join the spinon branch
at kF . This is, however, because of the finite broadening for plotting since we know
from the Bethe-ansatz solution that they intersect at the Fermi level but do not join.
The holon and spinon branches have almost constant weight in this region with the
spinon branch being considerably more pronounced.
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Comparing these results to the results of a DDMRG calculation done by Benthien,
Gebhard and Jeckelmann (figure 1 of [46]) shows very good agreement. Moreover
it agrees very well to the experimental data. However, in the previous section we
calculated the parameter t = 0.18 eV. In order to fit the numerical results to the
experimental data we have to double the value of t. This has already been taken into
account in the above calculation since we used t = 0.4 eV.

This ad-hoc change is, however, unsatisfactory. How does this come about? Up
until here the next-neighbor interaction term V was neglected. But from [44] we
know that V ≈ U/2, and thus should not be neglected. We will study its effects in
the following section.

7.4 TTF-TCNQ in the t-U-V model

7.4.1 Hubbard-Wigner approach

The realistic parameters (cf. table 7.1) show that U and V are considerably larger
than the bandwidth W = 4t. As an approximation to this case Hubbard suggested in
1978 [48] to use the atomic limit – he calls it zero bandwidth limit – and additionally
regard U in a first approximation as infinitely large, since U > V . In the following
we will mainly look into the TCNQ molecules. Similar results can be obtained for
TTF when regarding holes instead of electrons (see particle-hole transformation in
chapter D).

Figure 7.7: Hubbard-Wigner crystal for TCNQ. Empty sites are denoted by an open,
singly occupied sites by a filled circle. The crystal has a periodicity of
5 sites. Occupied sites with a single occupied neighbor are named A,
occupied sites without occupied neighbor C and free sites B.

Since the electron density in the TCNQ-LUMO is ρ = 0.6 there are no double
occupancies for U → ∞. In this case the spin of the electron does not play a role
anymore and we regard sites only as occupied or unoccupied.

Then the effect of the next-neighbor interaction is that the electrons try not
to occupy neighboring sites. Hubbard showed for this case that the many-body
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Figure 7.8: Angular-integrated spectral function Aii(ω) for a 10 sites system with 3
spins of either type U = ∞, t = 0.18 and varying values of V . The dotted
lines show the branches, created by the V interaction. From left to right
the energy shifts are proportional to 0, V, 2V .

ground state can be described in terms of a generalized Wigner lattice [51]. For
the case of TCNQ [48] the electrons arrange themselves in a lattice that looks like
· · · • ◦| • • ◦ • ◦ | • • ◦ • ◦ | • • ◦ • ◦ | • • ◦ · · · , where • or ◦ denote an occupied or
unoccupied orbital, respectively. Such a lattice is called generalized Wigner lattice
with periodicity of 5 sites. The lattice is depicted in figure 7.7

Effect of hopping parameter t Of course t cannot be neglected in our system. So
what does actually change when we introduce a finite value of t but keep U → ∞
and V considerably larger than t?

To study such a system we use the Lanczos method. For U → ∞, t = 0.18 and
varying values of V we calculate the angular-integrated spectral function Aii(ω). To
actually perform the Lanczos calculation for U = ∞ we set all amplitudes which have
double occupancies to zero. What kinds of processes do we expect? In photoemission-
like processes an electron can be removed from an A-site (cf. figure 7.7), leading to a
gain in energy of about −V . Alternatively, an electron from a C-site can be expelled
with hardly any change in the energy at all. Thus, we expect photoemission peaks
to be at ω = 0 and ω ≈ V , broadened by the hopping bandwidth W = 4t. Inverse
photoemission processes add one electron to the cell. Since double occupancies are
suppressed, the electron can only occupy a B-site, resulting in an energy increase of
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about 2V .
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Figure 7.9: Angular-integrated spectral function Aii(ω) for a 10 sites system with 3
spins of either type, U = 8, t = 0.18 and varying values of V . The solid
lines show the branches, created by the V interaction.

This can be seen from figure 7.8. These processes are denoted by straight lines.
The outer left two lines represent the shift in the photoemission peaks and the third
one the shift in the inverse photoemission peaks.

Due to U → ∞ the higher Hubbard band cannot be observed. For TCNQ, however,
U is finite. Can its physics still be described in the Hubbard-Wigner image for finite
but large U? To answer this question we redid the calculation now for a finite value
of U = 8. The resulting spectral function is shown in figure 7.9. The low-energy
features essentially stay the same. The new feature is the upper Hubbard band
around U which can still be understood in the Hubbard-Wigner image. Since now
double occupancies are allowed electrons can be put into an already occupied site
leading to an energy offset of U . If an A-site gets the new electron then additionally
V has to be spent, leading to the U + V branch. If a C-site is doubly occupied only
U is paid.

Thus, we fully understand this spectrum and system. Does this Hubbard-Wigner
description still work for the real parameters that describe TCNQ?
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Figure 7.10: Angular-integrated Spectral function for TCNQ in t-U -V model of 20
sites (U = 1.7, t = 0.18) with varying values of V .

7.4.2 Realistic t-U-V model

Now we perform exactly the same calculation with the proper parameters, namely
U = 1.7 eV, t = 0.18 eV. We vary V to see how the system responds to the next-
neighbor interaction. The resulting angular-integrated spectral function can be seen
in figure 7.10. It looks qualitatively differently. Introducing V seems to simply
broaden the spectrum. This can no longer be understood in terms of the Hubbard-
Wigner description.

A key assumption in the Hubbard-Wigner approximation was that U is large
enough to completely suppress double occupancies. The question is if this assump-
tion is still valid. In an uncorrelated system the probability of double occupations is
given by d = n↑ ·n↓. Thus it is d = 0.09 in case of TCNQ filling.

For the t-U model discussed above with U = 1.7 eV and t = 0.18 eV (proper pa-
rameters except for V = 0) we find that d is still about 10% of the uncorrelated value.
Increasing V from 0 to its actual value V = 0.9 eV increases the double occupancy
d further. This is shown in figure 7.11, where the squares denote the probability
of a site being doubly occupied as a function of V . We can understand this be-
haviour intuitively. Increasing V leads to a decrease of the weight of configurations
where neighboring sites are occupied. As a result the weight of the other config-
urations increases. Since there is not enough space for the electrons to distribute
themselves such that the double occupations as well as the next-neighbor occupa-
tion are prevented the weight of configurations with double occupancies grows. For
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V = 0.9 eV the double occupancy has increased to d = 0.027. All this suggests that
the Hubbard-Wigner approximation is no longer applicable.
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Figure 7.11: Probability of double occupation d as function of V (squares) for fixed
t = 0.18 and as function of t (circles) for fixed V = 0 in a 10 sites system
with 3 electrons of either spin (U = 1.7).

Figure 7.11 shows d (circles) as a function of the hopping parameter t in the t-
U model for the same value of U . We find that d depends almost linearly on the
hopping parameter t. This is also intuitively clear since for increasing ratio of kinetic
to Coulomb energy the electrons become more and more free particles. It is more
important, however, that d looks roughly similar as a function of t and V . To get the
same value of d = 0.027 of the t-U -V model (V = 0.9 eV) in the t-U model we need
to double t from t = 0.18 eV to about t = 0.37 eV. This is probably why t has to be
doubled in order to fit experimental results to the t-U -model calculations. The effect
of increasing V thus seems to be to encourage hopping which leads to a broadening
of the spectrum. An intuitive argument for this behaviour is as follows: consider two
electrons, which want to pass each other. At first they have to be neighbors, paying
an energy of V . When occupying the same orbital, they pay U but gain V . After
passing each other they again pay V . Thus, this process needs the energy U − V to
happen. This suggests the introduction of an effective hopping parameter teff given
by

teff =
U

U − V
t .

Figure 7.12 shows d as a function of the ordinary t and effective hopping parameter
teff . Again we observe that for our parameters of TCNQ we need an effective teff of
twice the original value and the dependence of d on V and t is quite similar.
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Figure 7.12: Probability of double occupation d as function of effective teff = tU/(U−
V ) and ordinary t hopping parameter.

Plotting the spectral function for different t shows indeed that in this regime the
effects of larger t are comparable to the effects of increased V (see figure 7.13). Thus
we understand why former calculation in the t-U model yielded good results when t
was doubled.

Perturbation theory To further study the effect of V we replot the data of figure
7.10 without centering around the Fermi level. From the resulting figure 7.14 we see
that the effect of V is to shift spectral peaks linearly in V . The further the peaks
are away from the chemical potential the stronger this shift is, leading to the already
described broadening of the spectrum. This is the case in a regime from V = 0
until about V ≈ 1.0 eV, where the chemical potential reaches the upper Hubbard
band. For larger V the spectra change qualitatively. This linear behavior can also
be observed in the next-neighbor interaction energy part of the ground state. Figure
7.15 shows how the different energy parts of the ground-state energy change when
V is increased. And again, up until V ≈ 1 eV the energy increases linearly in V .
Above, the situation changes completely and for V ≈ 1.2 eV all energy scales become
comparable.

The linearity in V suggests a perturbative treatment of the next-neighbor interac-
tion V , i.e. we consider

HV = V
∑

<ij>

ninj

as a perturbation to the t-U model.
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Figure 7.13: Spectral function Aii(ω) in the t-U model for different values of t =
{0.18, 0.3, . . . 0.40} (U = 1.7, V = 0) and 10 sites with 3 electrons of
either spin. The effects of increasing t is a broadening of the band similar
to increasing V . Compare to figure 7.9. The system seems to become
an insulator, which is not possible, however, in an t-U model away from
half-filling. Indeed, it is an effect of finite size (10 sites).

We start with the spectral function in the Lehmann representation (cf. equation
(3.29) )

Aii =
∑

j

|cj|2 δ
(
ω − (EN±1

j −E0)
)
,

where cj =
〈

ψN±1
j

∣
∣
∣ci

∣
∣
∣ψ0

〉

and
∣
∣ψN±1

j

〉
denotes the eigenvector of the Hamiltonian

with energy EN±1
j in the Hilbert space with one electron added or removed, respec-

tively. To understand how the energies EN±1
n change if an infinitesimal V is in effect

we calculate the next-neighbor occupation

vN±1
n =

〈

ψN±1
n

∣
∣
∣
∣
∣
∣

∑

〈ij〉

ninj

∣
∣
∣
∣
∣
∣

ψN±1
n

〉

.

In first order perturbation theory the energy EN±1
n is then shifted by V vN±1

n , while
the wave functions remains unchanged.

For relatively small systems (10 sites in this case) the required eigenvectors and
eigenenergies can be directly computed using ARPACK. 100 eigenpairs of the spaces
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Figure 7.14: Density plot of spectral function for TCNQ (U = 1.7, t = 0.18) as a
function of V of a 10 sites chain, with 3 electrons of either spin type.
The green curve denotes the chemical potential. The four blue lines
show the shift in the peaks with the largest spectral weight in first-order
perturbation theory.
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Figure 7.15: Kinetic, local and next-neighbor Coulomb energy for a 10 sites system
(U = 1.8, t = 0.18, V = 0.9) for various values of V.
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with N ± 1 particles are calculated to obtain vN±1
n , yielding the energy shifts in this

regime. For the largest four spectral weights |cj|2 these shifts are plotted as blue
lines in figure 7.14. The further the peaks are from the Fermi level, the more the
slope increases, leading to the broadening. This is because vN±1

n tends to increase as
a function of the energy in the low-energy regime. Up until V ≈ 1 eV the broadening
can thus be understood in first-order perturbation theory.

7.4.3 Angular-resolved spectral function with CPT and V

Figure 7.16: CPT calculation of spectral function Ak(ω) with next-neighbor interac-
tion V = 0.9 taken into account in PBC. System parameters are 10/20
sites (left/right) with t = 0.18, U = 1.7.

It would definitely be useful to have angular-resolved spectral functions of these
compounds. With CPT we have means to calculate these functions. But as we have
already seen in chapter 5.2.7 we face considerable finite-size effects for the t-U -V
model. In case of half-filling they could be effectively scaled out with increasing
system size. Here however, we consider systems away from half-filling. Figure 7.16
shows, that finite-size effects remain strong even for 20 sites.

7.4.4 TTF and particle-hole symmetry

The spectral functions of TTF and TCNQ are intimately connected. The charge-
transfer puts 0.6 electrons on average to the TCNQ LUMO, creating in turn 0.6 holes
in the TTF HOMO. Since the parameter t = −0.15, U = 2.0 and V = 1.0 are quite
similar compared to the ones of TCNQ we can obtain approximately the spectral
function of TTF having the one of TCNQ (see chapter D).

Figure 7.17 shows the actual spectral function of the TTF system in the t-U model.
The photoemission part (ω < µ) of the system looks as if it is uncorrelated, i.e. we
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Figure 7.17: Angular-resolved spectral function of TTF for 10 sites with U = 2.0 eV
and t = 0.15 eV.

observe a slightly narrowed tight-binding band. This coincides with experiments.
The correlation effects are obvious only in the inverse photoemission part of the
spectral function, which is unfortunately not accessible by inverse photoemission
spectroscopy, since the electrons impinging on the material would essentially destroy
it.

In theory, however, it can be calculated and we see that because of the larger
values of U and V as well as the smaller t, TTF is even slightly more correlated than
TCNQ.

7.5 Accuracy of the results

In this section we will briefly study the impact of finite-size effects. Figure 7.18
compares the angular-integrated spectral functions for the realistic parameters of
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TCNQ for 10 and 20 sites. We see that all major features are at the correct position
even in the 10 sites calculation. For larger values of V , however, finite size effects
become more pronounced.
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Figure 7.18: Finite size effects: Spectral function of TCNQ for U = 1.7, t = 0.18 and
various values of V = {0, 0.1, . . . , 0.9} on a 10 (dashed) and 20 (solid)
sites chain, with 3 and 6 electrons of either spin, respectively.

Figure 7.19 shows how the results depend on the choice of boundary conditions.
Periodic and anti-periodic boundary conditions are pictured. Hardly any deviations
can be noticed.
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Figure 7.19: Angular-integrated spectral function for TCNQ on a 20 sites system with
periodic (full) and anti-periodic boundary (dashed) conditions (U = 1.7,
t = 0.18) and V = {0, 0.1, . . . , 0.9} (upper to lower).



8 Summary

The field of strongly correlated electrons yields fascinating physics. This is due the
interplay between Coulomb repulsion and kinetic energy. The prototype to study
systems of strongly correlated Fermions is the Hubbard model. Though looking
formally quite simple it describes spectacular physics. In one-dimension it properly
describes Luttinger liquid effects like spin-charge separation whose signatures can
also be found in the metal-free metal TTF-TCNQ.

Traditional techniques of solid state theory cease to work in such systems since
they fail to incorporate the Coulomb interaction perturbatively as a pair interac-
tion. Therefore non-perturbative methods are needed. Among those techniques is
the Lanczos method, which solves these kind of systems exactly. This method is
fast and gives access to arbitrary many-body expectation values and dynamical re-
sponse functions. However, due to the exponential increase in the Hilbert space for
growing physical system sizes it is limited to relatively small systems. In this work
we studied extended Hubbard models. On ordinary computers – without exploiting
further symmetries except spin- and charge- conservation – half-filled systems up
to 14 sites are accessible. For many applications, however, these systems are too
small, either because of filling constraints or because of finite-size scaling. We thus
developed a C++ code from scratch which is not only as efficient as a comparable
FORTRAN shared-memory Lanczos code but also more flexible. Due to template
meta-programming techniques we have a unified code for complex and real Hamil-
tonians and wave functions in single and double precision, making systems with
complex boundary conditions treatable. Moreover this code can exploit the latest
supercomputer architectures of shared and distributed memory environments within
a unified programming interface.

Most of our calculations were performed on the massively parallel BlueGene/L
system in Jülich, called JUBL, comprising 16 384 processors. Due to the distributed
memory of such systems the matrix-vector multiplication posed the main challenge
for the efficient implementation, since it requires non-local memory access. The re-
alisation that the Lanczos vectors can be decomposed into a matrix whose indices
denote the up/down electron configurations lead to the idea of performing a matrix
transposition [52] on these vectors in order to get the needed elements local in mem-
ory. It turned out that such an approach is indeed very efficient and offers a means
to access large systems with reasonable wall-clock times. Thus, we can efficiently
compute expectation values of arbitrary observables as well as dynamical response
functions.

With this code we treated systems with two orbitals per unit cell which show
an interesting Mott-band insulator transitions. Kohn’s criterium which determines
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the phase of a system by ground-state properties alone, namely the response of the
ground-state energies to a vector potential, was employed. This vector potential can
be equivalently regarded as a change in boundary conditions, requiring complex wave
vectors. We found that half-filled systems become metallic when going over from a
band to a Mott insulating phase.

The systems that can be treated with the Lanczos method are finite. To extrapolate
to infinite system sizes and getting access to an arbitrarily high resolution in k-
space, for instance to compute angular-resolved spectral functions, we use cluster
perturbation theory (CPT). It works by diagonalizing a finite cluster exactly and
then treating the hopping between identical cluster perturbatively in strong coupling
perturbation theory. This leads to an effectively infinite chain. Due to our efficient
Lanczos implementation it is possible to calculate relatively large clusters, minimizing
finite-size effects.

With our code and the CPT technique we investigated the organic metal TTF-
TCNQ and were able to solve a long-standing problem in the interpretation of its
experimental spectra. Because it is a one-dimensional metal TTF-TCNQ has been
studied thoroughly for more than 30 years. Theoretical estimates as well as exper-
imental measurements suggest values for the parameters of the Hubbard model t
and U . With these values Hubbard model calculations show qualitatively the same
features as APRES experiments, namely the signatures of spin-charge separation at
the Γ-point. But in order to fit the experimental data to the numerical calculations
t has to be doubled, which translates into a broadening of the spectra. This ad-hoc
adjustment is not only unsatisfactory but also the temperature dependence of the
spectral function is incorrectly described. We resolved this problem [44] by properly
including nearest-neighbor Coulomb interactions.

Recent DFT calculations show that indeed the commonly used values of t and
U are correct. But Coulomb interactions between electrons on neighboring sites
are also significant and must not be neglected. Thus we studied the effect of the
next-neighbor interaction parameter V having a value of about U/2. Including V
in our Lanczos calculations for obtaining the angular-integrated spectral function
shows that its effect is to broaden the spectra, comparable to increasing the value
of t. Moreover we found that doubling t indeed mimics the effect of V ≈ U/2.
Surprisingly, the broadening of the spectrum as a result of V can be understood in
first-order Rayleigh-Schrödinger perturbation theory, as we showed with calculations
of our code.



A Speed up and Amdahl’s law

Why multiprocessing? We expect programs to run faster, i.e. have less total run
time, if several processors work in parallel on the same problem.

Näıvely one would expect that doubling the number of processors cuts the execu-
tion time by a factor of two. This is, however, usually not the case because of (a)
communication and management overhead and – more importantly – (b) inherently
sequential code. Inherently sequential code is code that cannot be parallelized. In
order to judge if an algorithm scales well on more than a single processor we define
the speed up S(p) as

S(p) =
T1

Tp

, (A.1)

where T1 denotes the execution time on a single and Tp on p processors.

A speed up of S(p) = p is called linear or ideal speed up and corresponds to the
näıve expectation.

Let us assume a code with an inherently sequential part of γ and with a parallel
part 1 − γ that can be fully parallelized. Increasing the number of processors cuts
the run-time in the parallel part but the sequential part does not profit at all. Then,
for an infinite number of processors the wall clock time of the parallel part vanishes
and only the sequential part remains. Thus, the maximum achievable speed up is
bounded by 1/γ. This is known as Amdahl’s law [53].

Formally this law can be derived in the following way. Let the total run-time (wall
clock) on p processors be T tot

p . Let T par
p and T seq denote the run-time for the parallel

and sequential part respectively. The total run-time can be decomposed as

T tot
p = T par

p + T seq =
T par

1

Spar
p

+ T seq ≥ T par
1

p
+ T seq .

With

γ =
T seq

T tot
1

∈ [0, 1]

and

T par
1 = (1 − γ)T tot

1 ,

this leads to Amdahl’s law,

Sp ≤
T tot

1

T tot
1 (1−γ

p
+ γ)

=
1

(1 − γ)/p+ γ
, (A.2)
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Figure A.1: Typical “look” of Amdahl’s law. The plot shows the function (A.2) for
γ = {0.01, 0.1, 0.25, 0.5} and processors from 1 to 32.

which is presented for some values of γ in figure A.1. In the limit of infinitely many
processors we retain

S∞ ≤ 1

γ
.

For instance a code with 1% serial code will never gain a speed up of more than
100 irrespective of the number of processors. To see, how efficiently the processors
are used, the efficiency is defined as

Ep =
Sp

p
.

Hence, using this code with 1000 processors would yield an efficiency below 0.1, which
would be waste of computational resources.

In our code the ratio of the sequential setup time to the time of the parallelizable
Lanczos calculations decreases with the system size, i.e. γ becomes smaller the larger
the system. Thus solving large systems many processors can be used efficiently.



B Supercomputers at the
Forschungszentrum Jülich

B.1 JUMP

JUMP is a general purpose system. 32 processors on each node share their memory
and can be efficiently used with OpenMP. As we have seen in chapter 4 OpenMP is
a very convenient way of parallelizing a given serial code. Computing on JUMP is,
however, relatively expensive [54]. One wall-clock hour with p processors costs

C = p · 1.90 e . (B.1)

For instance, a CPT calculation to obtain the angular-resolved spectral function
APE

k (ω) (photoemission only!!) of TCNQ (20 sites) would take almost 9 days on 32
processors and thus cost about 13 000 e.

B.1.1 Architecture

The JUMP cluster consists of 41 SMP (Symmetric MultiProcessing) nodes, called
IBM p690 frame, with 32 processors respectively (peak performance: 218 GFLOPS).
This amounts to 1312 processors in total (overall peak performance: 8.9 TFLOPS).
Each processor is a Power4+ CPU clocked at 1.7 GHz and features a L1 cache with
64 KB for instructions and 32 KB for data. The L2 cache (1.5 MB, 10-12 cycles) is
shared between two processors and the L3 cache of 512 MB (92-100 cycles) is shared
frame-wide. The total shared main memory of a frame is 128 GB and therefore the
aggregated total main memory of the whole cluster is 5.2 TB. For more information
refer to jumpdoc.fz-juelich.de. The interframe communication is managed by
IBM’s High Performance Switch (HPS). It has a MPI bandwidth of about 1.6 GB/s
per link and a latency of about 5.6µs. For more information concerning the inter-
connect refer to [55] and [56].

B.2 JUBL

JUBL is the new massively parallel supercomputer in Juelich, which belongs to the
BlueGene family. Target for the development of the BlueGene system was high
performance/price and performance/power consumption ratios. To put this into
practice IBM took a new approach in supercomputing. The main idea is to build the
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system out of a very large number of nodes, which taken for themselves have only a
relative modest clock rate and performance, leading to lower power consumption and
low cost. Therefore the nodes (2 processors) can be packed very densely. Instead of
having only 32 processors in a rack, a single BlueGene rack comprises 2048 processors.
Using relatively slow processors also implies a better balance between CPU speed
and the considerably slower memory and network access. Moreover the memory-bus
bottleneck of shared memory systems plays no role in two processor nodes.

On JUBL accounting works differently compared to JUMP. One has to reserve a
partition and is charged for the reservation time not for the actual run-time of the
program. A reserved hour of a partition comprising p processors on JUBL costs

C = p · 0.03 e . (B.2)

On JUBL the job of calculating a 20 sites TCNQ system to obtain the angular-
resolved spectral function (photoemission only) takes 16 hours and costs about 1000 Euro
which is considerably faster and cheaper than on JUMP. The calculation of the full
spectral function is feasible and takes slightly over two days.

B.2.1 Architecture

JUBL consists of 8 racks hosting each (2 x 16) x 32 compute nodes, which actu-
ally contain dual processors, thus leading to 16 384 processors. Those processors are
32-bit PowerPC 440 cores at 700 MHz, leading to an overall theoretical peak perfor-
mance of 45.8 Teraflops. Each compute node has 512 MB of RAM which is shared
between the two processors (aggregated 4.1 TB). The compute nodes can be used
in CO (coprocessor) mode, which means that only one processor performs the com-
putations, while the other one performs communication and I/O. A second mode is
the VN (virtual node) mode, meaning that both processors compute, communicate
and perform I/O operations. In this case each processor is a single virtual node. A
third mode is the so called mixed mode. It is unfortunately not yet documented. In
this mode, a single node can be regarded as a small shared memory dual-processor
system.

B.3 Run-time restriction

JUMP and JUBL, however, share the restriction that jobs cannot run longer than
24 h. Therefore one has to carefully estimate the execution time and split the jobs
accordingly. Alternatively one needs check-pointing. In our case check-pointing is
relatively simple. For the Lanczos passes we just need to dump the current Lanczos
vector. When the calculation is resumed we can restart the iterations with the
dumped vector.



C Evaluation of continued fractions

In chapter 3.4.2 we discussed how to compute spectral functions by using the Lanczos
method. The intermediate results of the third Lanczos pass, namely the tridiagonal
matrix elements ai, bi, define a continued fraction, which rapidly converges to the
spectral function. Here, we briefly discuss how to evaluate such fractions.

A continued fraction is a fraction of the form

f = b0 +
a1

b1 + a2

b2+
a3

b3+...

. (C.1)

An equivalent representation often found in print is

f = b0 +
a1

b1+

a2

b2+

a3

b3+
. . . .

Continued fractions are often superior to series, since they typically converge more
rapidly. They are, however, harder to evaluate. Computations of power series are
usually stopped, when the next contribution is sufficiently small. A naive approach
to evaluate a continued fraction is to guess a starting point, i.e. some an and bn,
and start the evaluation from there to the left. If the result is not sufficiently well
converged a new evaluation has to be started from an an and bn further right. This
apparently is not an efficient solution. In 1655 J. Wallis developed a method which
allows the evaluation from left to right. Let fn denote the approximation to f by
computing the fraction through to coefficients an and bn. We can write fn as

fn =
An

Bn

with the following recurrence relations for An and Bn and j ∈ [1, n]

A−1 = 1 (C.2)

B−1 = 0 (C.3)

Aj = bjAj−1 + ajAj−2 (C.4)

Bj = bjBj−1 + ajBj−2 , (C.5)

which can be easily proven by induction.
This method has, however, some numerical problems. It often generates very

large and very small numbers which lead to over- and/or underflows. To remedy
this problem, renormalization methods can be used. According to [28] the best
general method is the modified Lentz’s method. Listing (C.1) shows an example
implementation of the modified Lentz method is Python.
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def calc_continued_fraction(a,b):
2 if abs(b [0])==0:

f = [1e−25,]
4 else :

f = [b [0],]
6 C = [f [0],]

D = [0.,]
8 delta=[0.,]

for j in range(1,len(a)):
10 D.append(b[j]+a[j]∗D[j−1])

if abs(D[j ]) == 0:
12 D[j]=1e−25

C.append(b[j]+a[j]/C[j−1])
14 if abs(C[j ]) == 0:

C[j]=1e−25
16 D[j]=1./D[j]

delta.append(C[j]∗D[j])
18 f.append(f[j−1]∗delta[j])

return f[−1]

Listing C.1: Python implementation of the modified Lentz method to evaluate
continued fractions. It evaluates a continued fraction: b0 +
(a0/b1+)(a1/b2+) ...



D Particle - hole symmetry

Bipartite lattices, i.e. lattices that can be decomposed into two identical sub-lattices
A and B such that the nearest-neighbor always belongs to the other lattice, give
rise to an additional symmetry, namely the particle-hole symmetry or, in our, case
electron-hole symmetry. Loosely following [57], the particle-hole transformation is
given by

ci,σ =

{
+d†σ,i : i ∈ A

−d†σ,i : i ∈ B
. (D.1)

Under this transformation the Hamiltonian Hel becomes, as one can easily verify,

Hel = −
∑

〈i,j〉,σ

tijc
†
i,σcj,σ + U

∑

i

ni,↑ni,↓ + V
∑

i

nini+1 (D.2)

= Hhole + (U + 4L)(L−N) , (D.3)

where N = N↑ + N↓ is the total number of particles of either spin and L, as usual,
the number of sites. For half-filling, i.e. L = N , we find Hel = Hhole.

For identical parameter t, U , V we can thus map spectra of systems with N↑,
N↓ and Nh

↑ = L − N↑, N
h
↓ = L − N↓ onto each other. This can also be done

for the spectral functions. The energies have to be shifted according to (D.3) and
inverse photoemission part has to be exchanged with the photoemission part, because
ejecting an electron is equivalent to creating a hole and vice versa.
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I am grateful to Prof. Dr. Stefan Blügel who offered me the chance of writing my
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