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Abstract

Feasibility study of η-mesic nuclei production by means
of WASA-at-COSY and COSY-TOF facilities

Despite the fact that existence of η-mesic nuclei in which the η meson might
be bound with the light nucleus by means of the strong interaction was postulated
already in 1986, it is still not experimentally confirmed. Discovering of this new
kind of an exotic nuclear matter is very important as it might allow for better
understanding of η meson structure and its interaction with nucleons.
The search of the η-helium bound states is carried out at the COSY accelerator in the
Research Center Jülich in Germany, by means of the WASA detection system. The
search are conducted with high statistic and high acceptance for the free production
of the 4He-η bound states. It is also considered to search for η-tritium in quasi free
reaction which might be realised with COSY-TOF facility.
In this thesis the results of the Monte Carlo simulations of the η-helium bound
states and η-tritium bound state are presented and discussed. The acceptances of
the WASA-at-COSY and COSY-TOF detectors for the free and quasi-free η-mesic
nuclei production reactions were determined, respectively. Furthermore acceptances
were compared for three different models of nucleon momentum distribution inside
atomic nuclei and three different values of width of a considered bound states. In
case of COSY-TOF detector it was established that the most effcient measurement
of quasi-free dd→ psp(T-η)bs → pspdpπ

− reaction can be done at beam momentum
of pbeam=3.1GeV/c.
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1 Introduction

The new kind of nuclear matter consisting of nucleus bound with η mesons via strong
interaction was postulated by Haider and Liu over twenty years ago [1]. However,
till now none of experiments confirmed empirically its existence. This exotic form
of matter called η-mesic nucleus is schematically presented in Fig. 1.1.

Figure 1.1: The scheme of η-mesic bound state.

Up to this time η-mesic nuclei have been searched via production of η meson
in the vicinity of the heavy nuclei. It was considered that due to a huge number of
nucleons, attraction of η meson could be high enough that allows to form a bound
state. Nevertheless those experiments have not brought expected effect. Recent
investigations indicate that interaction between η meson and nucleus is consider-
ably stronger than it was predicted earlier. Therefore, according to the current
theoretical considerations, it is possible that the bound states might be also formed
for a light nuclei like helium, tritium [2, 3] and even deuteron [4].

The existence of η-mesic nuclei allows to investigate interaction of the η meson
and the nucleons inside a nuclear matter. Moreover it would provide information
about N∗(1535) resonance [5] and about η meson properties in nuclear matter [6],
as well as about contribution of the flavour singlet component of the quark-gluon
wave function of η meson [7, 8].

The measurement of the 4He-η bound states is carried out with a unique ac-
curance by means of WASA detector [9] installed at cooler synchrotron COSY in
the Research Center Jülich. The η-mesic nuclei is searched there via studying of
excitation function for the chosen decay channels of the 4He-η system formed in
deuteron-deuteron collision [10]. The measurement is performed for the beam mo-
mentum varying continously around the threshold. The beam ramping technique
allows to reduce the systematical uncertainities. The existence of the bound system
should manifest itself as a resonance-like structure in the excitation curve of eg.

9



10 Introduction

dd→ (4He-η)bs → 3Hepπ− reaction below the dd→ 4He-η reaction threshold which
allows to determine the binding energy and the width of such state.

Formation of the η-mesic nucleus might be also realized by means of the
quasi-free reactions. In this case the scan of the energy can be achieved from the
Fermi motion of nucleons inside the deuteron beam. Measurements of such reaction
is available for the external COSY-TOF detector [11, 12, 13] where the search of
η-mesic Tritium can be carried out by the measurement of the excitation function
of the nd → (T-η)bs → dpπ− reaction around the threshold of the nd → T-η
production [10].

The main aim of this thesis is a determination of geometrical acceptance of
WASA detector for four reactions in which η-mesic bound states might be formed
via free production:

dd→ (4He-η)bs → 3Hepπ−

dd→ (4He-η)bs → dppπ−

pd→ (3He-η)bs → dpπ0 → dpγγ
pd→ (3He-η)bs → pppπ−

and geometrical acceptance of COSY-TOF detector setup for one quasi-free reaction
of η-mesic nuclei production:

dd→ psp(T-η)bs → pspdpπ
−

In each case Monte Carlo simulations of η-mesic nucleus production and decay pro-
cess were carried out based on reaction kinematics. The simulations were realized
with assumption that the bound state has a resonance structure given by the Breit-
Wigner distribution with fixed binding energy Bs and a width Γ. Moreover, for
reconstruction of events the spectator model was applied. The efficiency of the reg-
istration of each reactions was analysed with regard to different models describing
Fermi momentum distributions of nucleons inside deuteron, helium and tritium nu-
clei. It was also compared for different values of Bs and Γ from range predicted by
theory [14].

This thesis is divided into seven chapters. The second describes indirect and
direct experimental indications for the existence of the η-mesic helium.

The Chapter 3 treats of nucleon momentum distributions inside the light nuclei
such as 3He, 4He and T. The distributions are presented and compared for different
models.

Description of the spectator model assumptions and its experimental confirma-
tions are presented in Chapter 4.

The Chapter 5 is devoted to the kinematics of the free and quasi-free reactions
in which η-mesic bound states are produced and decay.
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The WASA-at-COSY and COSY-TOF detection systems emphasising their
properties useful for the measurement of the η-mesic nuclei are presented in Chapter
6.

Simulation results of the bound states in free and quasi-free reactions are de-
scribed in Chapter 7 and in Chapter 8 a summary and conclusions are presented.



2 Indications for the existence of η-mesic helium

2.1 Indirect

According to the theoretical considerations, the formation of the η-mesic nucleus
can only take place if the real part of the η-nucleus scattering length is negative
(attractive nature of the interaction), and the magnitude of the real part is greater
than the magnitude of the imaginary part [15]:

|Re(aη−nucleus)| > |Im(aη−nucleus)|. (2.1)

A wide range of possible values of the ηN scattering lenght aηN calculated for
hadronic- and photoproduction of the η meson has not exluded the formation
of η-nucleus bound states for a light nuclei as 3,4He, T [2, 3] and even for
deuteron [4]. Those bound states have been searched in many experiments. How-
ever, none of them gave empirical confirmation of their existence. There are only a
signal which might be interpreted as an indications of the η-mesic nuclei.

Experimental observations which might suggest the possibility of the existence
of the 3He-η bound system were found by SPES-4 [16], SPES-2 [17], ANKE [18] and
COSY-11 [19] collaborations. In the experiments cross section of the dp→ 3He-η
reaction was measured. In this reaction with the real η meson in the final state, the
bound state could not be produced and therefore obtained results might be treated
as indirect indications of the η-mesic nuclei only.

Figure 2.1: Total cross section for pd→ 3He-η reaction measured for eight different proton
energies above threshold from 0.2 to 11 MeV [17]. Total cross section rises from 0.25 to
0.40 µb rapidly in the range of 2 MeV.

12
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The measurements on the SPES-4 spectrometer were realised using the deuteron
beam accelerated in SATURNE synchrotron colliding with liquid-hydrogen target,
while in case of SPES-2 the proton beam and liquid-deuterium target were used. The
total cross section measured by the SPES-2 collaboration for the eight different beam
energies are presented in Fig. 2.1. According to [2], the energy dependence of the
cross section for the dp → 3He-η reaction is dominated by the strong interaction
between η and 3He originating from the strong η-nucleon interaction leading to the
formation of the N∗(1535) resonance. The data analysis of the close to threshold
measurements of the total cross section led to the determination of the η3He scat-
tering length. The negative sign of a real part of the aη3He and its large value equal
aη3He = (−2.31 + 2.57i) fm [2] suggest a possible existence of the (3He-η)bs, although
the condition given by (2.1) is not fulfilled.

An indirect signature of the η-mesic nuclei were also searched at the cooler syn-
chrotron COSY in Jülich by means of internal COSY-11 and COSY-ANKE detection
setups with high precision and high statistics. In the experiments the momentum
ramping technique of the deuteron beam was used that allows to reduce the system-
atic uncertainties. The beam was accelerated slowly and linearly in time, from excess
energy of Q=-5.05 MeV up to Q=11.33 MeV in case of ANKE experiment [18], while
during the COSY-11 experiment [19] the momentum was varied in the range corre-
sponding to the excess energy from Q=-10 MeV to Q=9 MeV. Both collaborations
performed the measurement of the excitation function and differential cross section
of the dp→ 3He-η reaction close to the kinematical threshold. The experimental ex-
citation function parametrized with the s-wave formula of scattering length [18, 19]
is presented in Fig. 2.2 (left panel). The fit to the COSY-11 data gave the value
of the η3He scattering length equal to aη3He = [±(2.9± 0.6) + (3.2± 0.4)i] fm [19].
Although this value is in agreement with formula (2.1), uncertainties of its real and
imaginary part are too large to confirm the possible formation of (3He-η)bs. The
real part of scattering lenght of the η3He system derived by fitting the ANKE data
for Q<4MeV equals Re(aη3He) = (11.6 ± 1.4) fm while imaginary part is equal
Im(aη3He) = (−4.1 ± 7.0) fm [18]. Those large values implies the existence of a
quasi-bound states very close to the reaction threshold, however the derived by
ANKE and COSY-11 collaborations real parts of the scattering length are not con-
sistent within the quoted errors.

The differential cross section measurement allows to calculate angular asymmetry
parameter α, defined as:

α =
d

d cos θη
ln
dσ

dΩ
. (2.2)

The momentum dependence of parameter α can be described correctly with as-
sumption that the phase is varying between S and P waves [21]. In another case the
discrepancy between the experimental data and theoretical description are signifi-
cant. The momentum dependence of α parameter is presented in Fig. 2.2 (right).



14 Indications for the existence of eta-mesic helium

Figure 2.2: (left) Total cross section for the dp → 3He-η reaction measured with the
COSY-ANKE (open circles) [18] and the COSY-11 facilities (closed circles) [19] and (tri-
angles) [20]. Scattering length fit to the COSY-ANKE and COSY-11 data is represented
with dashed and solid lines, respectively. (right) Angular asymmetry parameter α for
the experimental data from COSY-ANKE (full dots) [18] and from COSY-11 (open cir-
cles) [19]. The dashed and solid lines are fitted (assuming the phase variation between S
and P waves) to the COSY-11 and COSY-ANKE data, respectively [21]. The fit without
the phase variation is denoted as the dotted line. The figure is adapted from [10].

2.2 Direct

The first direct experimental indications of a light η-nucleus bound states were
observed in the reaction of the η photoproduction γ3He → π0pX which was
investigated with the TAPS calorimeter at the electron accelerator facility Mainz
Microtron (MAMI) [22]. Photons produced in a thin radiator foil and tagged using
a special spectrometer hit the target filled with liquid 3He. There the measurements
of the excitation functions of the π0-proton production for two ranges of the relative
angle between those particles were carried out. It appeared that a difference
between excitation curves for opening angles of 1700 − 1800 and 1500 − 1700

in the center-of-mass frame revealed an enhancement just below the threshold of
the γ3He→ 3He-η reaction which was interpreted as a possible signature of a 3He-η
bound state where η meson captured by one of nucleons inside helium forms an
intermediate S11(1535) resonance which decays into π0-p pair. A binding energy
and width for the anticipated quasibound η-mesic state in 3He were deduced from
the fit of the Breit-Wigner distribution function [22] to the experimental points
and equal (−4.4 ± 4.2) MeV and (25.6 ± 6.1) MeV, respectively. Those values are
consistent with expectations for η-mesic nuclei. Above cited excitation functions
and the difference of them with a Breit-Wigner distribution and background fitted
to the data are shown in Fig. 2.3.
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Figure 2.3: Excitation functions of the π0-proton production for relative angles of 1700 −
1800 (red triangles) and 1500 − 1700 (black circles) in the γ3He center-of-mass sytem
are shown in the left and center panels. In the right panel the difference between both
distributions with superimposed line denoting the results of the fit of the Breit-Wigner
distribution plus background are presented. The figure is adapted from [22].

However, due to the low statistics of the measurement the results might be inter-
preted not as an indication of the bound state but rather as a virtual state what
is in details described in Ref. [23]. The interpretation is still under discussion [24].
Moreover at the recent meeting it was shown that the result may be an artefact due
to the strong influence of the resonances on the shape of the excitation function [25].

Figure 2.4: Experimental results of the COSY-11 collaboration for the dp → pppπ−

reaction: (left) Transversal vs. longitudinal momentum distributions of protons. The
upper limit for the longituidal proton momenta is shown as dashed line and equals
pL=0.18GeV/c. (middle) Pion momentum distribution in the center of mass system.
(right) Relative angle between pion and proton direction in the c.m. The figure is adapted
from [27].

The analysis carried out by COSY-11 group [26, 27, 28, 29] give an indication for
the 3He-η bound state existence. The search for the η-mesic helium was carried out
using a deuteron beam and internal hydrogen target. The beam momentum was
ramped around the kinematical threshold for the η production in the dp → 3He-η
reaction and the measurement of the dp → pppπ− and dp→ 3Heπ0 reactions was
carried out. In the first case the momentum distribution of the π− (middle panel in
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Fig. 2.4) and the relative angle distribution between pion and proton momentum
vectors (right panel in Fig. 2.4) were determined after application of apropriate cuts
on the momentum of the spectator protons (left panel in Fig. 2.4) and the rejection
of the events corresponding to quasi-free π− production. Obtained results are in
agreement with theoretical expectations for particles originating from decay of the
N∗(1535) resonance which is created as a result of the absorption of the bound η
meson in the neutron inside 3He. Based on the above results the upper limit of total
cross section for the dp→ (3He-η)bs → pppπ− reaction was estimated to the value
of 270 nb. Similarly, investigation of the dp→ 3He-π0 reaction give only the value
of the total upper limit of cross section of the dp → (3He-η)bs → 3Heπ0 reaction
equal to 70 nb.



3 Nucleon momentum distributions inside d, T, 3He and
4He nuclei

Due to the Fermi motion, nucleons inside atomic nuclei are not at rest but move
with momenta which vary in a broad range. This variation influences kinematics of
nuclear reactions.

Fermi momentum distributions of proton and neutron bound inside a deuteron
derived from two different potential models, namely PARIS [30] and CD-Bonn [31]
are shown in Fig. 3.1. The normalized nucleon momentum distributions are calcu-
lated by means of the Fourier transformation of parametrized deuteron wave func-
tions obtained from space representation. Respective parametrization coefficients
found in the analitic representation of the deuteron wave function for both of above
named nucleon-nucleon interaction models are given in [30, 31, 32]. The momentum
distributions deduced from Paris and CD-Bonn potentials are peaked at about 40
MeV/c and differ no more than 5% [32].

Figure 3.1: Fermi momentum distribution of nucleons inside the deuteron for PARIS (full
line) and CD-Bonn (dashed line) potentials. The distributions were normalized to unity
in the momentum range from 0 to 300 MeV/c.

In case of three-nucleon bound states like 3He and T, Fermi momentum distri-
butions of nucleons are presented in Fig. 3.2 for three different models. Thick solid
line depicts proton momentum distribution inside 3He and neutron momentum dis-

17



18 Nucleon momentum distributions inside d, T, 3He and 4He nuclei

tribution inside T as given by analytic formula (3.1) which results from the fit to
the experimental data on p (3He, 2p) d and p (T, pn) d reactions [33]:

f(p) = p2[exp(−263p2) + 0.177exp(−69.2p2)] (3.1)

This momentum distribution is in a good agreement with the one calculated with
realistic potential in the frame of the model of the composite quark bags [34].

The distributions of protons and neutrons momentum inside 3He and T are also
estimated based on the AV18 and the CDB-2000 nucleon-nucleon interaction models
in conjunction with Urbana IX (UIX) and Tucson-Melbourne (TM) three nucleon
interactions (TNI), respectively [35, 36]. They are presented in Fig. 3.2 for protons
inside 3He (left) and neutrons inside T (right) and ticked as a dashed and dotted
lines. Similar results can be obtained for neutron inside helium and proton inside
tritium. The difference between those two distributions are small and results from
different interaction Hamiltonian forms defined for above-cited models.

Figure 3.2: Fermi momentum distribution for protons inside 3He (left) and neutrons inside
T (right) given by analytic formula (thick line) and estimated for the AV18 NN (dashed
line) and the CDB-2000 NN (dotted line). The distributions were normalized to unity in
the momentum range from 0 to 0.4 GeV/c.

Estimation based upon the formula (3.1) is consistent with the one derived from
AV18 NN and CDB-2000 NN models with an accurancy better than 9% for protons
inside 3He and 11% for neutrons inside T.

For nucleons inside 4He Fermi momentum distributions predicted by three in-
dependent models are shown in Fig. 3.3. The distribution represented by a thick
line is calculated from helium wave function derived based on Fermi three parame-
ter charge distribution of nucleus [37]. The momentum distribution is described by
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formula (3.2):

f(p) =
p2

a · b
exp

(
−p2

a · c

)
, (3.2)

where a = 0.03892719, b = 0.05511, c = 0.7352. Fermi momentum is given in units
of GeV/c.

The dashed and dotted lines depict distributions obtained, similarly as in case
of three nucleon systems, from AV18 and the CDB-2000 potential models with the
inclusion of three nucleon interaction contributions [36]. Due to the fact that 4He is
symmetrical, proton and neutron momentum distributions are in good approxima-
tion equal.

Figure 3.3: Fermi momentum distribution of nucleons inside 4He given by analytic formula
(thick solid) and estimated for the AV18 NN (dashed) and the CDB-2000 NN (dotted).
The distributions were normalized to unity in the momentum range from 0 to 0.5 GeV/c.

The difference between the distributions derived from AV18 and CDB-2000
models and given by analytic formula is significant and equals up to about 40%,
and in addition the maxima of these distributions are shifted by about 45 MeV/c.
The discrepancy results from the fact that the formula (3.2) was derived from
nucleus charge distribution smeared out by the charge distribution of protons,
whereas the AV18 and the CDB-2000 models allow for the finite size of nucleus
charge distributions and are related to the momentum of the point like protons
in the alpha particle [38]. Therefore, as more realistic in further considerations
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the momentum distributions of nucleons inside 4He calculated from AV18 and the
CDB-2000 potentials will be taken into account.

The numerical data describing above cited momentum distributions are given in
Appendix A.

The presented distributions estimated based on various models will be used to
calculate the systematical uncertainty in the determination of the excitation curves
used to search for η-mesic bound states. Respective results are presented in Chap-
ter 7.



4 Spectator model

4.1 The main assumption of the spectator model

The production and decay of η-mesic bound states investigated in this thesis might
be schematically depicted as:

a) dd→ (4He-η)bs →
{

3Hesp p π
−

psp dsp p π
−

b) pd→ (3He-η)bs →
{
psp psp p π

−

dsp p π
0

c) dd→ pspnd→ psp(T-η)bs → psp dsp p π
−

The a) and b) schemes include free and c) one describes quasi-free production of
the bound states. Subscript bs denotes ’bound state’ whereas sp stands for the
’spectator’.

’Spectators’ are particles which do not take part in reactions [39, 40] but hit
the detectors with the Fermi momentum transformed into laboratory system. Fermi
momentum distributions of nucleons inside the light nuclei are presented in previous
chapter. In the framework of the spectator model due to the relatively small binding
energy of the nuclei, spectators are considered as a real particles registered in the
experiments and in the analysis it is assumed that they are on their mass-shell during
the reaction [39, 40]:

|Psp|2 = m2
sp. (4.1)

The Psp and msp are the four-momentum vector of spectator and the spectator mass,
respectively.

In the free reactions the beam and target nuclei collide and form η-mesic bound
state which decays into proton, pion and spectator/spectators which energies and
momenta are measured in experiment. One of those reactions is schematically shown
in Fig. 4.1.

In case of quasi-free reaction presented in Fig. 4.2, the deuteron from the beam
is considered as a system consisting of proton and neutron moving with the Fermi
motions. For the deuteron beam we have:

Pd = Pbn + Ppsp (4.2)

∣∣Ppsp + Pbn
∣∣2 = m2

d, (4.3)

21



22 Spectator model

Figure 4.1: Schematic picture of the dd → (4He-η)bs → 3Hepπ− reaction. Red and blue
circles represent protons and neutrons respectively, whereas π− meson is depicted as yellow
circle. The beam momentum is presented by the dashed arrow.

where md denotes the deuteron mass equal to 1875.6 MeV/c2 [41] while Ppsp and
Pbn are the four-momentum vectors of the proton spectator and the beam neutron,
respectively.

Figure 4.2: Schematic picture of the quasi-free dd→ psp(T-η)bs → pspdpπ
− reaction. Red

and blue circles represent protons and neutrons respectively, whereas η meson is depicted
as green circle. The Fermi momentum of the nucleons inside the deuteron is presented by
the dotted arrows and the beam momentum by the dashed one.

According to the spectator model, proton from the beam does not take part in the
reaction and is registered as a real particle whereas neutron being off the mass-shell
hits the target deuteron. From the conservations of momentum and energy and the
assumption that proton is on its mass-shell we obtain in the deuteron beam rest
frame:

~p∗n = − ~p∗sp, (4.4)

E∗n = md − E∗psp , (4.5)
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Based on above-mentioned relationship we can deduce the neutron four-momentum
vector from the spectator momentum which is fundamental in the analysis of reac-
tion kinematics. The close description of free and quasi-free reactions processes is
described in Chapter 5.

4.2 Experimental proofs of spectator model

The validity of spectator model assumptions was confirmed by measurements per-
formed by collaborations WASA/PROMICE [42], TRIUMF [43], COSY-TOF [44],
COSY-11 [45] and HADES [46]. The WASA/PROMICE collaboration [42] has com-
pared free and quasi-free production cross sections for the pp → ppη reaction. As
a result it was presented that within the statistical errors there is no difference be-
tween the total cross section of the free and quasi-free process. The experimental
data are shown in Fig. 4.3.

Figure 4.3: Total cross section for the pp → ppη reaction as a function of the excess
energy for free (open circles) and quasi-free proton scattering (full circles). Figure is
adapted from [47]. The data are taken from references [48, 49, 50, 51, 52, 53, 54].

Investigation of pion production at the TRIUMF [43] facility in quasi-free
pp→ dπ+ reaction extracted from the pd→ dπ+n reaction has proven that the
spectator momentum distribution determined from the experimental data agrees
with expectations based on spectator model. Moreover, it was shown that the mag-
nitude of the differential cross sections for the quasi-free and for the free reactions
are consistent on the few per cent level.

The spectator assumption was also confirmed by the COSY-TOF group [44].
The momentum distribution of the spectator as well as the shape of the angular dis-
tribution for the quasi-free np→ ppπ− and pn→ pn reactions have been measured.
The experimental data are consistent with calculations based upon the hypothesis
of spectator model with an accurancy better than 4% up to 150 MeV/c of the Fermi
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momentum and with about 25% up to a momentum of 300 MeV/c.

Figure 4.4: Proton spectator momentum distribution reconstructed in COSY-11 experi-
ment (points) in comparison with simulation taking into account Fermi momentum dis-
tribution of nucleons inside deuteron, the acceptance and the efficiency of the detector
system (solid histogram). The figure is adapted from [45].

In case of quasi-free pn → pnη′ reaction studied at COSY-11 facility [45] it
is shown that the measured proton spectator momentum distribution is in good
agreement with the theoretical assumptions of spectator model. The comparison of
the experimental data and simulation result is shown in Fig. 4.4.

Figure 4.5: Momentum distribution of proton spectator measured in HADES experiment
(red points) and calculated based upon the hypothesis of spectator model (blue points) for
Me+e− < 140MeV/c2 (left) and for Me+e− > 140MeV/c2(right). Picture courtesy of [46].

Recently, the validity of the spectator model was proven also by HADES col-
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laboration [46] during the measurement of the quasi-free np → e+e−pX reaction
realised with a deuteron beam and proton target. The angular distribution of pro-
ton spectator outgoing from deuteron beam and its momentum distribution agrees
with assumptions of spectator model up to 200-300 MeV/c. Momentum distribu-
tions in deuteron CM frame are presented in Fig. 4.5. Experimental data are ticked
as a red points, while simulations results based on the spectator model as a black
points.

The above-cited results confirmed the spectator model and thus allow to use it
in the analysis of the reactions kinematics.



5 Kinematics of the η-mesic bound states production and
decays

In this thesis four reactions of free and one of quasi-free η-mesic bound states pro-
duction are considered [55]:

1. dd→ (4He-η)bs → 3Hepπ−

2. dd→ (4He-η)bs → dppπ−

3. pd→ (3He-η)bs → dpπ0 → dpγγ

4. pd→ (3He-η)bs → pppπ−

5. nd→ (T-η)bs → dpπ−

In case of free reactions (1)-(4), 4He-η and 3He-η bound states are produced in
deuteron-deuteron and proton-deuteron fusion, respectively [56]. The mechanism of
the reactions is presented schematically in the example of the (4He-η)bs production
in Fig. 5.1. Describing the kinematics of the reaction following notations will be used:

P b
d = (E b

d , ~pb)-four-momentum vector of the beam deuteron
P t
d = (md, 0)-four-momentum vector of the target deuteron

P3He = (E3He, ~p3He)-four-momentum vector of the outgoing 3He
Pp = (Ep, ~pp)-four-momentum vector of the outgoing proton
Pπ− = (Eπ− , ~pπ−)-four-momentum vector of the outgoing pion

Figure 5.1: Reaction process of the (4He-η)bs production and decay.
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According to the scheme shown in Fig. 5.1, the deuteron from the beam hits
the deuteron in the target with a momentum of ~pb. The collision may lead to the
creation of 4He nucleus bound with the η meson via strong interaction. The mass
of a bound state is a sum of η and 4He masses reduced by binding energy (Bs):

mbs = mη +m4He −Bs. (5.1)

The η-mesic nucleus moves in laboratory frame with velocity:

~βcm =
~pb

md + E b
d

=
2 ~pbmd

sdd
, (5.2)

where sdd is the square of invariant mass of the colliding deuterons:

sdd = |P b
d + P t

d|2 = 2md

(
md +

√
m2
d + |~pb|2

)
. (5.3)

The η meson might be absorbed by one of the nucleons inside helium and may
propagate in the nucleus via consecutive excitation of nucleons to the N∗(1525)
state [57] until the resonance decays into the pion-proton pair outgoing from the
nucleus [10, 56, 58]. Before the decay, it is assumed that N∗ resonance moves with
a Fermi momentum ~p ∗F inside 4He. From the momentum conservation in the 4He
frame and the assumption of spectator model, momentum and energy of 3He may
be expressed as:

~p ∗3He = −~p ∗F (5.4)

E ∗3He =
√
m2

3He + |~p ∗F |2. (5.5)

The momentum and energy are transformed into the laboratory frame by means of
Lorentz transformation:

~p3He = ~p ∗3He + ~βcmγcm(γcm/(γcm + 1)~βcm · ~p ∗3He + E ∗3He) (5.6)

E3He = γcm(E ∗3He + ~βcm · ~p ∗3He), (5.7)

where γcm = 1/

√
1− |~βcm|2.

The angle between outgoing 3He and the beam direction is given by:

θ3He = arccos

(
~p3He · ~pb
|~p3He| · |~pb|

)
. (5.8)
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The relative angle between the outgoing nucleon-pion pair is equal to 180◦ in the
N∗ reference frame. In the following the variables in the N* reference frame will be
denoted by ’**’. Both particles move with a momentum | ~p ∗∗p,π− | which is related to
the resonance mass:

mN∗ =

(
sdd +m2

3He − 2
√
sdd

√
m2

3He + |~p ∗F |
2

) 1
2

, (5.9)

and is given by:

|~p ∗∗p,π− | =
λ(m2

N∗ ,m
2
π− ,m

2
p)

2mN∗
, (5.10)

where λ(x, y, z) = (x− y − z)2 − 4yz [59].

The pion and proton four-momentum vectors in the laboratory frame are calculated
using the Lorentz transformation, first from N∗ to the bound state frame:

~p ∗p,π− = ~p ∗∗p,π− + ~βN∗γN∗(γN∗/(γN∗ + 1)~βN∗ · ~p ∗∗p,π− + E ∗∗p,π−) (5.11)

E ∗p,π− = γN∗(E
∗∗
p,π− + ~βN∗ · ~p ∗∗p,π−), (5.12)

and further to the laboratory frame:

~pp,π− = ~p ∗p,π− + ~βcmγcm(γcm/(γcm + 1)~βcm · ~p ∗p,π− + E ∗p,π−) (5.13)

Ep,π− = γcm(E ∗p,π− + ~βcm · ~p ∗p,π−), (5.14)

where γN∗ = 1/

√
1− |~βN∗|2 is a velocity of the resonance N∗ in the bound state

frame.

The angles of outgoing proton and pion in LAB system equals:

θp,π− = arccos

(
~pp,π− · ~pb
|~pp,π−| · |~pb|

)
. (5.15)

The quasi-free reaction kinematics was partially characterized in Chapter 4 by
the way of the spectator model description. Neutron bound inside the deuteron hits
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the deuteron target forming the (T-η)bs, while proton does not take part in reaction
and is considered as a real particle:

|Ppsp |2 = m2
psp . (5.16)

The square of invariant mass of neutron-deuteron system (snd) depends on the neu-
tron Fermi momentum ~p ∗n (5.1.3) inside the beam deuteron and taking into account
that target deuteron is at rest in the laboratory snd equals:

snd = (En +md)
2 − |~pn|2, (5.17)

where ~pn and En are neutron momentum and energy in laboratory frame which
may be obtained applying the Lorentz transformation according to the following
formulas:

~pn = ~p ∗n + ~βdγd(γd/(γd + 1)~βd · ~p ∗n + E∗n) (5.18)

En = γd(E
∗
n + ~βd · ~p ∗n ), (5.19)

where ~βd denotes velocity of the beam deuteron in the laboratory frame,
and ~p ∗n denotes neutron momentum in the deuteron center of mass, and

E∗n = md −
√
m2
p + |p∗n|2.

The process of T-η bound state decay is analogous like in case of the free reaction
which kinematics was described before. The deuteron spectator escapes with the
Fermi momentum and energy, which in the frame of the bound state is equal to:

~p ∗d = −~p ∗F (5.20)

E ∗d =
√
m2
d + |~p ∗F |2, (5.21)

After the transformation into laboratory system we have:

~pd = ~p ∗d + ~βcm′γcm′(γcm′/(γcm′ + 1)~βcm′ · ~p ∗d + E ∗d ) (5.22)

Ed = γcm′(E
∗
d + ~βcm′ · ~p ∗d ), (5.23)

where ~βcm′=
~pn

md+En
denotes velocity of the center of mass for the quasi-free nd→ (T-

η)bs → dpπ− reaction in the laboratory frame.
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The outgoing proton-pion pair originates from the decay of the resonance created
via absorption of the η meson on a nucleon in the tritium nucleus. The four-momenta
of those particles are described in resonace frame by equations analogous to (5.11)
and (5.12), and in laboratory frame by formulas (5.13) and (5.14) while proton and
pion angles with relation to the beam direction are given by (5.15).
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6.1 WASA-at-COSY facility

The search for η-mesic helium in free production reactions with high statistic and
acceptance is carried out at the WASA facility [9], an internal detection system
installed at the cooler synchrotron COSY in the Research Center Jülich. The
WASA detector vertical cross section is schematically presented in Fig. 6.1. All
setup components and the method of measurement are described in detail in
reference [9]. Thus, in this chapter the experimental technique will be only shortly
presented.

Figure 6.1: Scheme of WASA-at-COSY detection system. Gamma quanta, electrons and
charged pions being products of mesons decays are registered in the Central Detector.
Scattered projectiles and charged recoil particles like 3He, deuterons and protons are reg-
istered in the Forward Detector. The abbreviations of the detectors names are explained
in the text.

In the COSY synchrotron protons and deuterons might be accelerated in the
momentum range between 0.3 GeV/c and 3.7 GeV/c [9]. The ring can be filled
with up to 1011 particles leading to luminosities of 1031cm−2s−1 in case of internal
cluster target [60] and 1032cm−2s−1 in case of pellet target [9]. Beams are cooled by
means of electron cooling as well as stochastic cooling at injection and high energies,
respectively.

The internal hydrogen (H2) or deuteron (D2) target of the pellet-type is installed
in the central part of the WASA-at-COSY detector and its position is marked in
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Fig. 6.1 as a dotted line. The central detector is built around the interaction point
and designed for measurements of π0 and η mesons decay products like photons,
electrons and charged pions. The charged particles momenta and reaction vertex
are determined by means of Mini Drift Chamber (MDC) which covers angles from
240 to 1590. Charged particles are here bending in the magnetic field provided by
sourrounding Superconducting Solenoid (SCS). First their trajectories are recon-
structed, and then knowing the magnetic field, the momentum vector is recon-
structed. For identification of charged particles the ∆E-p and ∆E-E methods are
used based on ∆E signals in Plastic Scintillator Barrel (PSB). The photons, elec-
trons and positrons are registered in Scintillator Electromagnetic Calorimeter (SEC)
via production of electromagnetic cascades. The calorimeter covers polar angle in
the range from 200 to 1690.

The detection and identification of forward scattered projectiles and target-recoil
particles such as protons, deuterons and He nuclei and also of neutrons and charged
pions are carried out with the Forward Detector which covers the range of polar an-
gles from 30 to 170. It consists of fourteen planes of plastic scintillators forming For-
ward Window Counter (FWC), Forward Trigger Hodoscope (FTH), Forward Range
Hodoscope (FRH), Forward Range Interleaving Hodoscope (FRI) and Forward Veto
Hodoscope (FVH), respectively and proportional counter drift tubes called Forward
Proportional Chamber (FPC). Particles trajectories are reconstructed from the sig-
nals registered successively in FWC, FPC, FTH and FVH scintillator modules. Par-
ticles are identified based on measurement of energy loss in the detection layers of
FRH, FWC and FTH. The registered energy loss allows to determine their total mo-
mentum which direction is reconstucted from the measurement of particles tracks by
means of straw detectors constituting FPC. Respective components of the Forward
Detector are presented in Fig. 6.1.

The 3He-η and 4He-η bound states considered in this thesis can be searched at
WASA-at-COSY detection setup in proton-deuteron and deuteron-deuteron fusion
reaction, respectively. The measurement will be carried out for the beam momen-
tum slowly ramped around the η production threshold corresponding to the range
of excess energy Q from about -60 MeV to 20 MeV. The existence of the η-mesic nu-
cleus should be visible in the excitation function as a resonance-like structure below
the He-η production threshold. The free η-helium bound states production reactions
will be carried out in experiment based on measurement of four-momenta of the out-
going particles. WASA detector at COSY allows for simultaneous registration of all
ejectiles with large acceptance, which eg. for the detection of the dd→ (4He-η)bs →
3Hepπ− reaction equals about 60%. Spectators from the reactions will be registered
mainly in the Forward Detector, while proton-pion pair from the resonance decay
will be registered for the most part in the Central Detector. The detailed description
of the reactions kinematics is given in Chapter 5.
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6.2 COSY-TOF facility

The measurement of η-mesic tritium might be realised by means of the quasi-free
reaction with the time-of-flight spectometer COSY-TOF, a ’4π detector’ installed
at an external beamline of the COSY synchrotron. The detection setup is schemat-
ically presented in Fig. 6.2. Detailed description of each particular parts and the
measurement technique might be found in [11, 13, 44].

Figure 6.2: Scheme of COSY-TOF detection setup. Charged particles trajectories are
registered in ’Erlangen’ start detector system, while their identification is carried out with
the Barrel, Ring and Quarrel detectors. The figure is adapted from [13].

The proton or deuteron beam accelerated in COSY is extracted and hits a target
which contains liquid hydrogen or liquid deuterium [11, 12]. The target is installed
in front of the ’Erlangen’ start detector system consisting of four modular detectors
(Starttorte, Microstrip detector, Small Hodoscope and Large Hodoscope) designed
for a precision geometric charged particles tracks reconstruction. The detector covers
a polar angular range from 3.40 to 740. The time-of-flight of the charged particles
outgoing after the interaction of the beam particles with the target, is measured with
an accuracy of 0.25 ns by means of the stop detector situated in cylindric vacuum
tank. This detector consists of Barrel detector as well as of two Endcap detectors
called Quirl and Ring and covers angular range from 0.70 to 76.70. Knowing the time-
of-flight and the flight length between start and stop detectors, particles velocity
is determined. The particle momentum can be calculated from the velocity and the
mass hypothesis. Additionally, neutral particles which take part in the reactions and
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have not been detected can be analysed via momentum and energy conservation.
The search of η-tritium bound state can be carried out at COSY-TOF facility

via the measurement of the excitation function of the nd→ (T-η)bs → dpπ−

reaction. The signal from (T-η)bs is expected below the threshold of the nd→ T-η
production [10, 55]. In the experiment deuteron beam will be used and the nd reac-
tion will be analized based on the measurement of the four-momentum of spectator
proton (psp) [10] from the dd→ pspnd→ psp(T-η)bs → pspdpπ

− reaction, which was
schematically shown in Fig 4.2. The advantage of this quasi-free reaction is that
the Fermi momentum distribution of nucleons inside the deuteron beam allows for
the scan of energy around the η meson production threshold at a fixed value of
the beam momentum. Deuterons, protons and pions being products of T-η bound
states decays will be detected in a multi layer scintillator detectors by measuring
their time of flight as well as direction.



7 Simulation results

In this chapter simulation results of the free and quasi-free η-mesic bound states
production are presented. Monte-Carlo calculations were carried out by means of
computer programme written in FORTRAN’90 language.

7.1 Simulation program scheme

The main purpose of simulations was the determination of the geometrical accep-
tances of WASA-at-COSY and COSY-TOF detectors for free and quasi-free reac-
tions, respectively and comparing them for different models of nucleon momentum
distribution inside atomic nuclei and different values of a bound states width.

In case of free reactions the simulation might be schematicaly described in fol-
lowing points for example of reaction (1) which kinematics is presented in details in
Chapter 5:

1. The square of invariant mass of the whole system
√
sdd is distributed randomly

according to the Breit-Wigner distribution which is given by formula (7.1) and
shown in Fig. 7.1.

Figure 7.1: Breit-Wigner distribution of square invariant mass
√
sdd.
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N (
√
sdd) =

1

2π

Γ(√
sdd −mbs

)2
+ Γ2/4

(7.1)

where: mbs =
√
sdd

thr −Bs - a mass of η-mesic bound state,

√
sdd

thr = mη +m4He - threshold square invariant mass,

Bs - a binding energy of an η-mesic bound state,

Γ - width of an η-mesic bound state.

In the distribution shown in Fig. 7.1 it is assumed that binding energy equals
Bs=0.01 GeV and a width is equal to 40 MeV what is in agreement with
theoretical prediction [6]. In simulations a range of Γ from 7 to 40 MeV was
studied.

2. The N∗ resonance momentum is distributed isotropically in spherical coordi-
nates of η-mesic nucleus (p ∗F , θ∗, φ∗) with Fermi momentum distribution of
nucleons inside 4He which was presented for three different models in Chap-
ter 3. Next, it is transformed into Cartesian coordinates (~p ∗F=(p ∗xF , p ∗yF , p ∗zF ))
using the following equations:

p ∗xF = p ∗F · sinθ∗ · cosφ∗ (7.2)

p ∗yF = p ∗F · sinθ∗ · sinφ∗ (7.3)

p ∗zF = p ∗F · cosθ∗ (7.4)

Here the momentum value p ∗F is distributed according to the used model, and
the direction is simulated isotropically in the space.

3. The 3He four momentum vector is calculated (based on spectator model as-
sumption) in the center of mass frame and transformed using Lorentz trans-
formation into laboratory frame. The angle θ3He is also calculated.

4. Based on
√
sdd and ~p ∗F values, resonance mass mN∗ is calculated according to

equation (5.9).

5. The proton and pion momentum vectors are simulated isotropically in the
N∗ frame in spherical coordinates and transformed into Cartesian coordinates.
The absolute value of ~p ∗∗p,π− is fixed by equation (5.10).
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6. The proton and pion four momentum vectors are transformed into the center of
mass frame and next into laboratory frame by means of Lorentz transformation.
The angles of outgoing proton and pion in LAB system are calculated.

7. The histograms of outgoing particles angle distributions and invariant mass
distribution for all generated events are created.

8. Knowing angles of outgoing particles and the WASA-at-COSY detector geom-
etry it is checked whether generated event can be registered.

9. The histograms of angular distributions and invariant mass distribution of
outgoing particles for all accepted events are created.

The simulation of other three free η-helium bound states production reactions were
carried out in a similar way.

The simulation of quasi-free reaction, realised with COSY-TOF detection setup
is more complex due to the fact that neutron bound in beam deuteron takes part in
the reaction of η-mesic tritium formation. The simulation scheme might be presented
as follows:

1. The beam neutron momentum is distributed isotropically in spherical coor-
dinates with Fermi momentum distribution of nucleons inside beam deuteron
(the PARIS and CD-Bonn distributions are presented in Chapter 3) and trans-
formed into Cartesian coordinates ( ~p∗n).

2. The proton spectator four momentum vector as well as its angle with respect
to the beam direction are calculated in the beam deuteron center of mass frame
and transformed with Lorentz transformation into laboratory frame.

3. The neutron four momentum in the beam deuteron frame and in laboratory
frame is calculated using (4.4), (4.5) and (5.18), (5.19) formulas, respectively.

4. The square of bound state invariant mass
√
snd is calculated based on neutron

four momentum and next events are accepted according to the probability
described by the Breit-Wigner distribution.

5. The next points are analogous like in case of free reaction scheme. Moreover,
the calculations are carried out for ten values of the deuteron beam momentum
~pbeam in the range from 2.6 GeV/c to 3.5 GeV/c.

Simulations were conducted for all reactions listed in introduction. Three dif-
ferent values of the bound states width: Γ = {10, 25, 40} MeV and three different
Fermi momentum distributions of nucleons inside light atomic nuclei were studied.
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7.2 Reactions products - angular distributions

The η-mesic nuclei, which are formed via deuteron-deuteron, proton-deuteron or
neutron-deuteron fussion, decay according to the mechanism which is described in
details in Chapter 5. The distribution of momentum vectors of reaction products
depend on the bound state mass distribution and on the distribution of the nucleons
momentum inside decayed nuclei. Angular distributions for the outgoing particles
being products of reaction (1) are presented in Fig. 7.2.

Figure 7.2: Simulated angular distributions of outgoing 3He (a), proton (b) and pion (c)
formed via dd→ (4He-η)bs → 3Hepπ− reaction. Figure shows results for 108 generated
events using the AV18 potential model for the Fermi momentum distribution of nucleons
inside 4He.

In fact the detectors geometry does not give a possibility to register the whole
range of outgoing particles angles. An angular ranges covered by respective com-
ponents of WASA-at-COSY detection setup are presented in Fig. 7.2 with shaded
areas.
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7.3 Acceptance

In order to determine acceptance for respective reaction, the studied excess energy

range was divided into small intervals. Next for each interval of Q (Q =
√
s−
√
s
thr

)
the number of events accepted by detector was divided by number of generated
events. An event is accepted when all outgoing particles being reaction products
can be registered in the detector. In simulations all possible combinations of particles
registration in different part of detectors were considered. They are presented for
particular reactions in Appendix B.

The acceptance for each reaction was determined for three different values of the
bound states width Γ: 10MeV, 25MeV and 40MeV and for three models of nucleons
Fermi momentum distributions inside 4He, 3He or T which are in details described
in Chapter 3.

The WASA acceptance as a function of the excess energy Q is presented for
two reactions of free 4He-η and 3He-η production: dd → (4He-η)bs→ 3Hepπ− and
pd→ (3He-η)bs→ dpπ0→ dpγγ in Fig. 7.3 and Fig. 7.4, respectively. The acceptance
is almost constant as a function of excess energy and it is independent of the value
of Γ and model of Fermi momentum distribution within a few per cent. For two
other reactions situation is analogous.

Figure 7.3: Geometrical acceptances of the WASA-at-COSY detector in case of dd →
(4He-η)bs→ 3Hepπ− reaction for the Γ1=10 MeV width and AV18 and CDB-2000 models
of nucleon Fermi momentum distribution inside 4He (left) as well as for AV18 Fermi
momentum distribution model and three different values of Γ (right) .
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Figure 7.4: Geometrical acceptances in case of pd→ (3He-η)bs→ dpπ0→ dpγγ reaction for
the Γ3=40 MeV width and three different models of nucleon Fermi momentum distribu-
tion inside 3He (left) as well as for analitic formula describing nucleon Fermi momentum
distribution and three different values of Γ (right).

The average values of WASA geometrical acceptances for registering the consid-
ered free reactions were calculated using following formula:

A =

∑
Q
Nacc(Q)
Ngen(Q)

N
(7.5)

where: Nacc(Q)- the number of accepted events in a given interval of Q,

Ngen(Q)- the number of generated events in a given interval of Q,

N - the number of all ranges of summation.

The obtained results for different gamma values and different models of nucleon
momentum distributions are presented in following tables:

[MeV/c] AV18 CDB2000

Γ1 0.5296 0.5380
Γ2 0.5301 0.5377
Γ3 0.5323 0.5402

Table 7.1: Average acceptances of WASA-at-COSY detector for the dd → (4He-η)bs→
3Hepπ− reaction for three different Γ values and AV18 and CDB-2000 models of nucleon
momentum distribution inside 4He.
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[MeV/c] AV18 CDB2000
Γ1 0.3785 0.3889
Γ2 0.3758 0.3877
Γ3 0.3749 0.3866

Table 7.2: Average acceptances of WASA-at-COSY detector for the dd → (4He-η)bs→
dppπ− reaction for three different Γ values and AV18 and CDB-2000 models of nucleon
momentum distribution inside 4He.

[MeV/c] anal. form. AV18 CDB2000
Γ1 0.6175 0.6071 0.6139
Γ2 0.6187 0.6091 0.6130
Γ3 0.6188 0.6067 0.6135

Table 7.3: Average acceptances of WASA-at-COSY detector for the pd → (3He-η)bs→
dpπ0→ dpγγ reaction for three different Γ values and three different models of nucleon
momentum distribution inside 3He.

[MeV/c] anal. form. AV18 CDB2000
Γ1 0.5054 0.5059 0.5052
Γ2 0.5083 0.5029 0.5042
Γ3 0.5054 0.5070 0.5045

Table 7.4: Average acceptances of WASA-at-COSY detector for the pd → (3He-η)bs→
pppπ− reaction for three different Γ values and three different models of nucleon momentum
distribution inside 3He.

For the quasi-free reaction dd → psp(T-η)bs→ pspdpπ
− the COSY-TOF ac-

ceptance was calculated for ten of beam momentum values for the range of
~pbeam=2.6 GeV/c to 3.5 GeV/c. The excess energy distribution for nd→ (T-η)bs re-
actions determined by the Fermi momentum distribution of neutron inside deuteron
is presented in Fig. 7.5 for pbeam equal to 2.6 GeV/c, 3.1 GeV/c and 3.5 GeV/c.

For each case, the number of nd→ (T-η)bs generated events as a function of the
excess energy Q is represented by solid line while the excess energy distribution for
accepted events is shown by dashed line. The threshold deuteron beam momentum
for the dd → psp(T-η)bs is equal 3.1 GeV/c for the case if the Fermi momentum in
the beam deuteron is equal to 0.

Similarly like in case of free reactions, the COSY-TOF acceptance function is
obtained by dividing the number of accepted events by the number of generated
events for each of excess energy intervals. Respective results for three values of
deuteron beam momentum are presented in Fig. 7.6 (a), (b) and (c).
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Figure 7.5: The number of generated (solid) and accepted nd→ (T-η)bs→ dpπ− events
(dashed) as a function of excess energy Q with respect to quasi-free nd → (T-η)bs re-
action at deuteron beam momentum pbeam=2.6 GeV/c (a), pbeam=3.1 GeV/c (b) and
pbeam=3.5 GeV/c (c).

The acceptance of ejectiles registration in the quasi-free reaction is not constant
function of excess energy. It decreases for Q values corresponding to the Fermi
momentum of neutron in the deuteron beam equal to zero and results from the fact
that proton spectator is not accepted by detector geometry if its Fermi momentum
value in deuteron frame equals p∗sp=0. For a comparison, Fig. 7.6 (d) presents that
the acceptance dependence of Q would be constant if the proton spectator was
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accepted.

Figure 7.6: Geometrical COSY-TOF acceptances in case of the dd→ psp(T-η)bs→ pspdpπ
−

reaction at pbeam=2.6 GeV/c (a), pbeam=3.1 GeV/c (b) and pbeam=3.5 GeV/c (c). For
the simulations Paris model of nucleon Fermi momentum distribution inside deuteron
and Γ1=10 MeV bound state width and analitic formula describing nucleon Fermi mo-
mentum distribution inside T were used. Panel (d) represents the reaction acceptance
for pbeam=3.1 GeV/c with assumption that the detector acceptance for proton spectator
registration equals 1.
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In order to determine the effective acceptance for registering the quasi-free
dd→ psp(T-η)bs→ pspdpπ

− reaction in the near to threshold Q range from -60 MeV
to 20 MeV when using the TOF detector the following formula is used:

Aeff = A
N(−60,20)

Ngen

(7.6)

where: A- the average acceptance given by formula (7.5),

Ngen- the number of generated events,

N(−60,20)- the number of generated events for Q∈(-60,20) MeV.

Figure 7.7: Effective acceptance for the registration of the quasi-free
dd→ psp(T-η)bs→ pspdpπ

− reaction near the η production threshold (Q∈(-60,20) MeV)
as a function of beam momentum.

The effective acceptance Aeff was calculated for ten values of the beam momen-
tum. The dependence Aeff (pbeam) is presented in Fig. 7.7.

In the simulations of the dd→ psp(T-η)bs→ pspdpπ
− reaction it is assumed that

the square of invariant mass of T-η nuclei is given by Breit-Wigner distribution.
In this case an effective acceptance for the registration of the bound state decay
products is calculated by formula:
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ABWeff = A
NBW

(−60,20)

NBW
gen

(7.7)

where: A- the average acceptance given by formula (7.5),

NBW
gen - the number of generated events accepted with probability

calculated according to the Breit-Wigner distribution of
√
snd,

NBW
(−60,20)- the number of generated events for Q∈(-60,20) MeV

accepted with probability calculated according to the Breit-Wigner
distribution of

√
snd

and is presented in Fig. 7.8 as a function of the beam deuteron momentum.

Figure 7.8: Effective acceptance for the registration of the quasi free
dd→ psp(T-η)bs→ pspdpπ

− reaction near the η production threshold (Q∈(-60,20) MeV)
as a function of beam momentum assuming a Breit-Wigner distribution of

√
snd for the

bound state width Γ=10MeV.

From the dependence shown in above figure it results that the highest probabil-
ity for the registration of considered quasi-free dd→ psp(pF = 0)(T-η)bs→ pspdpπ

−

reaction is for the beam momentum pbeam=3.1 GeV/c corresponding to the
dd→ psp(T-η)bs→ pspdpπ

− reaction threshold whereas for the beam momentum
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above and below the threshold the effective acceptance decreases. Above considera-
tions were carried out for the Paris model of nucleon Fermi momentum distribution
inside deuteron, Γ1=10 MeV bound state width and analitic formula describing nu-
cleon Fermi momentum distribution inside T. The calculations are consistent with
the one for CD-Bonn model of nucleon momentum distribution inside deuteron with
an accurancy better than 4% and are independent of models of nucleon Fermi mo-
mentum distribution inside tritium.



8 Summary and conclusions

The main aim of this thesis was to test the feasibility of the measurement of
η-helium mesic nucleus production via reactions:

dd→ (4He-η)bs → 3Hepπ−

dd→ (4He-η)bs → dppπ−

pd→ (3He-η)bs → dpπ0 → dpγγ
pd→ (3He-η)bs → pppπ−,

with WASA-at-COSY detector and test the feasibility of the η-T bound state
production via reaction:

nd→ (T-η)bs → dpπ−,

realised through dd→ psp(T-η)bs→ pspdpπ
− quasi-free reaction with COSY-TOF

detection setup.

The reaction kinematics for free and quasi-free η-mesic bound states production
as well as the spectator model assumptions were analysed and discussed. Moreover,
the nucleon momentum distribution inside 4He, 3He, T and d, was presented for
different models based on the analytic formulas and theoretical analysis for each of
nuclei. Numerical data for those distributions are presented in Appendix A. The
simulation were carried out and acceptances of WASA-at-COSY detection systems
for free processes were calculated and compared for three assumed values of bound
states width as well as for three different models of nucleon Fermi momentum dis-
tribution. In case of quasi-free reaction the effective COSY-TOF acceptance as a
function of beam momentum was determined.

The simulation results show that the acceptance as function of excess energy for
the free reactions of η-helium production is in good approximation constant near the
η production threshold and is independent of the bound state width value and model
of Fermi momentum distribution. The calculations present that the absolute value
of acceptance depends on the reaction channel. The most probable is registering of
particles outgoing from the pd→ (3He-η)bs → dpπ0 → dpγγ reaction. The average
value of WASA geometrical acceptance is then equal to A=0.61.

For the quasi-free reaction dd→ psp(T-η)bs→ pspdpπ
− of η-tritium formation the

COSY-TOF effective acceptance is dependent on the beam momentum value. It
reaches the highest value for the beam momentum of pbeam=3.1 GeV/c correspond-
ing to the dd→ psp(pF = 0)nd→ psp(pF = 0)T-η reaction threshold. Thus the mea-
surement of quasi-free reaction products is the most efficient at the η production
threshold.

In this thesis the geometrical acceptance for particular reactions was calculated.
In the future, the efficiency of registration for the outgoing particles in each of
reaction will be determined.
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Finally the experiments in which η-nuclei will be searched are interesting because
of following issues:

1. Potential of discovering of η-mesic bound states. Observation of that state
would allow to investigate interactions between the η meson and the nucleons
inside a nuclear matter.

2. η-mesic bound systems would provide the information about N∗(1535) [5] res-
onance and η meson properties in nuclear matter [6].

3. The existence of the bound states could give a possibility to study a flavour
singlet component of the quark-gluon wave function of the η meson [8, 7].

The simulations presented in this thesis show that the η-helium nuclei measure-
ment can be carried out at WASA-at-COSY detection setup, while the η-tritium
bound states might be searched at COSY-TOF detector. As a result of simulation
it is established that the most efficient measurement of dd→ psp(T-η)bs→ pspdpπ

−

reaction at COSY-TOF detector can be done at the beam momentum of 3.1 GeV/c.



A Fermi momentum distributions-numerical data

In Chapter 3 Fermi momentum distributions of nucleons inside d, T, 3He and 4He nuclei
were described and presented in Fig. 3.1, 3.2, 3.3. Numerical data for these distributions
are given in the following tables:

pF f(pF ) [c/MeV]
[MeV/c] Paris [30] CDBonn [31]

10 0.00218 0.00195
20 0.00662 0.00581
30 0.00997 0.00894
40 0.01138 0.01028
50 0.01126 0.00999
60 0.01017 0.00975
70 0.00881 0.00803
80 0.00742 0.00685
90 0.00624 0.00582
100 0.00523 0.00483
110 0.00427 0.00407
120 0.00357 0.00336
130 0.00301 0.00284
140 0.00241 0.00236
150 0.00194 0.00199
160 0.00162 0.00167
170 0.00138 0.00142
180 0.00116 0.00119
190 0.00096 0.00102
200 0.00080 0.00087
210 0.00071 0.00077
220 0.00064 0.00067
230 0.00054 0.00057
240 0.00046 0.00048
250 0.00044 0.00043
260 0.00037 0.00038
270 0.00032 0.00032
280 0.00029 0.00028
290 0.00027 0.00025
300 0.00024 0.00023
310 0.00021 0.00020
320 0.00019 0.00018
330 0.00016 0.00016
340 0.00014 0.00015
350 0.00013 0.00013
360 0.00012 0.00012
370 0.00010 0.00011
380 0.00010 0.00010
390 0.00008 0.00009
400 0.00008 0.00008

Table A.1: Fermi momentum distribution of nucleon inside deuteron according to Paris
model and CDBonn model (Chapter 3). The distributions were normalized to unity in
the momentum range from 0 to 400 MeV/c.
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pF f(pF ) [c/GeV]
[Gev/c] anal. formula [33] AV18+UrbIX [35, 36] CDB2000+TM [35, 36]

0.01 0.4788 0.4896 0.4877
0.02 1.7861 1.7752 1.7681
0.03 3.5812 3.4555 3.4418
0.04 5.4299 5.1298 5.1083
0.05 6.9442 6.4313 6.4083
0.06 7.8847 7.2795 7.2566
0.07 8.1972 7.6620 7.4559
0.08 7.9806 7.6485 7.6352
0.09 7.4157 7.3449 7.3401
0.10 6.6911 6.8532 6.8579
0.11 5.9512 6.2508 6.2654
0.12 5.2771 5.5925 5.6167
0.13 4.6944 4.9449 4.9778
0.14 4.1926 4.3187 4.3593
0.15 3.7476 3.7398 3.7862
0.16 3.3361 3.2234 3.2754
0.17 2.9434 2.7373 2.7934
0.18 2.5639 2.3459 2.4038
0.19 2.1996 1.9769 2.0363
0.20 1.8557 1.6787 1.7378
0.21 1.5384 1.4070 1.4653
0.22 1.2531 1.1897 1.2459
0.23 1.0029 0.9913 1.0451
0.24 0.7887 0.8398 0.8901
0.25 0.6096 0.6943 0.7410
0.26 0.4633 0.5935 0.6358
0.27 0.3462 0.4927 0.5306
0.28 0.2545 0.4219 0.4550
0.29 0.1840 0.3579 0.3860
0.30 0.1309 0.3036 0.3269
0.31 0.0916 0.2650 0.2833
0.32 0.0631 0.2264 0.2398
0.33 0.0428 0.2014 0.2101
0.34 0.0286 0.1794 0.1834
0.35 0.0188 0.1587 0.1581
0.36 0.0121 0.1469 0.1422
0.37 0.0078 0.1350 0.1262
0.38 0.0049 0.1249 0.1123
0.39 0.0030 0.1188 0.1028
0.40 0.0018 0.1127 0.0933

Table A.2: Fermi momentum distribution of proton inside 3He according to three different
models: analytic formula (equation 3.1) (left), AV18 NN model+UrbanaIX three nucleon
interaction (middle) and CDB2000 NN model+Tucson-Melbourne three nucleon interac-
tion (right). The distributions were normalized to unity in the momentum range from 0
to 0.4 GeV/c.
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pF f(pF ) [c/GeV]
[Gev/c] anal. formula [33] AV18+UrbIX [35, 36] CDB2000+TM [35, 36]

0.01 0.4788 0.5316 0.4392
0.02 1.7861 1.9188 1.6039
0.03 3.5812 3.7094 3.1551
0.04 5.4299 5.4606 4.7375
0.05 6.9442 6.7807 6.0219
0.06 7.8847 7.5975 6.9043
0.07 8.1972 7.9148 7.3554
0.08 7.9806 7.8206 7.4244
0.09 7.4157 7.4358 7.2021
0.10 6.6911 6.8712 6.7825
0.11 5.9512 6.2074 6.2400
0.12 5.2771 5.5055 5.6248
0.13 4.6944 4.8276 5.0082
0.14 4.1926 4.1805 4.4049
0.15 3.7476 3.5912 3.8388
0.16 3.3361 3.0738 3.3299
0.17 2.9434 2.5893 2.8478
0.18 2.5639 2.2059 2.4546
0.19 2.1996 1.8456 2.0831
0.20 1.8557 1.5583 1.7797
0.21 1.5384 1.2975 1.5023
0.22 1.2531 1.0913 1.2781
0.23 1.0029 0.9036 1.1073
0.24 0.7886 0.7620 0.9136
0.25 0.6096 0.6261 0.7606
0.26 0.4633 0.5332 0.6523
0.27 0.3462 0.4403 0.5440
0.28 0.2545 0.3758 0.4662
0.29 0.1840 0.3176 0.3951
0.30 0.1309 0.2684 0.3341
0.31 0.0916 0.2338 0.2892
0.32 0.0631 0.1991 0.2443
0.33 0.0428 0.1769 0.2137
0.34 0.0286 0.1574 0.1862
0.35 0.0188 0.1391 0.1601
0.36 0.0122 0.1287 0.1438
0.37 0.0078 0.1183 0.1274
0.38 0.0049 0.1095 0.1131
0.39 0.0030 0.1042 0.1034
0.40 0.0018 0.0989 0.0937

Table A.3: Fermi momentum distribution of neutron inside T according to three different
models: analytic formula (equation 3.1) (left), AV18 NN model+UrbanaIX three nucleon
interaction (middle) and CDB2000 NN model+Tucson-Melbourne three nucleon interac-
tion (right). The distributions were normalized to unity in the momentum range from 0
to 0.4 GeV/c.
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pF f(pF ) [c/GeV]
[Gev/c] anal. formula [37] AV18+UrbIX [36] CDB2000+TM [36]
0.01 0.0465 0.1456 0.1429
0.02 0.1839 0.5488 0.5345
0.03 0.4065 1.1655 1.1395
0.04 0.7053 1.9169 1.8881
0.05 1.0679 2.7746 2.7056
0.06 1.4798 3.5499 3.5139
0.07 1.9247 4.2831 4.2348
0.08 2.3855 4.9130 4.8657
0.09 2.8450 5.3469 5.3272
0.10 3.2868 5.6795 5.6216
0.11 3.6956 5.7905 5.7969
0.12 4.0585 5.7862 5.7750
0.13 4.3646 5.6802 5.6728
0.14 4.6062 5.4062 5.4463
0.15 4.7782 5.1322 5.1420
0.16 4.8784 4.7547 4.8117
0.17 4.9075 4.3501 4.4151
0.18 4.8685 3.9455 4.0184
0.19 4.7666 3.5502 3.6288
0.20 4.6087 3.1561 3.2422
0.21 4.4029 2.7620 2.8557
0.22 4.1581 2.4289 2.5326
0.23 3.8835 2.1320 2.2222
0.24 3.5881 1.8356 1.9110
0.25 3.2807 1.5385 1.6683
0.26 2.9692 1.3591 1.4551
0.27 2.6607 1.1797 1.2418
0.28 2.3611 1.0003 1.0518
0.29 2.0754 0.8093 0.9250
0.30 1.8073 0.7337 0.7983
0.31 1.5593 0.6469 0.6716
0.32 1.3332 0.5602 0.5779
0.33 1.1298 0.4734 0.5121
0.34 0.9490 0.4194 0.4463
0.35 0.7902 0.3868 0.3805
0.36 0.6523 0.3542 0.3332
0.37 0.5339 0.3216 0.3026
0.38 0.4333 0.2889 0.2720
0.39 0.3488 0.2759 0.2415
0.40 0.2784 0.2665 0.2149
0.41 0.2204 0.2570 0.2012
0.42 0.1730 0.2475 0.1875
0.43 0.1348 0.2380 0.1737
0.44 0.1041 0.2331 0.1601
0.45 0.0798 0.2295 0.1510
0.46 0.0607 0.2260 0.1439
0.47 0.0458 0.2224 0.1368
0.48 0.0343 0.2189 0.1297
0.49 0.0254 0.2153 0.1226
0.50 0.0187 0.2133 0.1177

Table A.4: Fermi momentum distribution of neutron inside 4He according to three dif-
ferent models: analytic formula (equation 3.2) (left), AV18 NN model+UrbanaIX three
nucleon interaction (middle) and CDB2000 NN model+Tucson-Melbourne three nucleon
interaction (right). The distributions were normalized to unity in the momentum range
from 0 to 0.5 GeV/c.



B Acceptance-supplement

The following tables show all possible combinations of particle registration for each of
considered reactions. Abbreviations ’FD’, ’CD-MDC’ and ’CD-EC’ denote Forward De-
tector, Mini Drift Chamber and Electromagnetic Calorimeter of WASA-at-COSY detector,
respectively.

particle case 1 case 2 case 3 case 4
3He FD FD FD FD

proton FD CD-MDC FD CD-MDC
π− FD CD-MDC CD-MDC FD

Table B.1: Possibilities of particles registration in the dd→ (4He-η)bs→ 3Hepπ− reaction.

particle case 1 case 2 case 3 case 4 case 5

deuteron FD CD-MDC FD FD FD
proton1 FD CD-MDC CD-MDC CD-MDC CD-MDC
proton2 FD CD-MDC CD-MDC FD CD-MDC
π− FD CD-MDC CD-MDC FD FD

case 6 case 7 case 8 case 9 case 10 case 11

FD FD FD FD CD-MDC CD-MDC
CD-MDC FD FD FD CD-MDC FD

FD CD-MDC FD CD-MDC CD-MDC CD-MDC
CD-MDC CD-MDC CD-MDC FD FD CD-MDC

case 12 case 13 case 14 case 15 case 16

CD-MDC CD-MDC CD-MDC CD-MDC CD-MDC
CD-MDC FD FD FD CD-MDC

FD FD CD-MDC FD FD
CD-MDC CD-MDC FD FD FD

Table B.2: Possibilities of particles registration in the dd→ (4He-η)bs→ dppπ− reaction.
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particle case 1 case 2

deuteron FD FD
proton CD-MDC FD

gamma1 CD-EC CD-EC
gamma2 CD-EC CD-EC

Table B.3: Possibilities of particles registration in the pd→ (3He-η)bs→ dpγγ reaction.

particle case 1 case 2 case 3 case 4 case 5

proton1 FD CD-MDC FD FD FD
proton2 FD CD-MDC CD-MDC CD-MDC CD-MDC
proton3 FD CD-MDC CD-MDC FD CD-MDC
π− FD CD-MDC CD-MDC FD FD

case 6 case 7 case 8 case 9 case 10 case 11

FD FD FD FD CD-MDC CD-MDC
CD-MDC FD FD FD CD-MDC FD

FD CD-MDC FD CD-MDC CD-MDC CD-MDC
CD-MDC CD-MDC CD-MDC FD FD CD-MDC

case 12 case 13 case 14 case 15 case 16

CD-MDC CD-MDC CD-MDC CD-MDC CD-MDC
CD-MDC FD FD FD CD-MDC

FD FD CD-MDC FD FD
CD-MDC CD-MDC FD FD FD

Table B.4: Possibilities of particles registration in the pd→ (3He-η)bs→ pppπ− reaction.

particle case 1

protonsp START and STOP DETECTORS
deuteron START and STOP DETECTORS
proton START and STOP DETECTORS
π− START and STOP DETECTORS

Table B.5: Possibilities of particles registration in the dd→ psp(T-η)bs→ pspdpπ
− reaction.
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