have been detected by Kroto et al. as molecules in interstellar
space.l' 1 The formation of cyclic perchlorinated compounds
such as 6—8 provides new and valuable clues to the forma-
tion of fullerenes. The isolation and characterization of
capture products within the C plasma, such as the hitherto
unknown 8 and components seen preferentially at low
(CN), concentrations, are the subject of further investiga-
tions.

Experimental Procedure

The fullerene reactor used was modified for the admission of (CN), or Cl, by
the addition of a gas inlet tube with a flat nozzie (Fig. 1). After it was synthe-
sized [18], cyanogen was condensed in an autoclave, the outlet of which (needie
valve) was connected to the gas inlet tube of the reactor. The following operat-
ing conditions were used: a voltage of 30 V DC, a current of 40 A, and a reactor
pressure of 140 mbar He. After ignition of the electric arc, (CN), or Cl; was fed
into the reactor. The supply was quantitatively regulated so that the pressure in
the reaction vessel remained constant. The cool surfaces of the reactor interior
became coated with a yellow film in addition to soot. After completion of the
reaction, the crude product was extracted with toluene. In each case the yield
corresponded to 6—7% of the vaporized graphite.
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Continuous Catalytic Synthesis of
N-Acetyllactosamine **

By Guido F. Herrmann, Udo Kragl, and Christian Wandrey*

Oligosaccharides are attracting much interest in immuno-
logical and pharmacological research because of their signif-
icance as fundamental structures of glycoproteins and gly-
colipids."1As well as the chemical syntheses of O-glycosides,
syntheses employing enzymes have been established for a
decade.? Access to large quantities of target compounds by
means of both methods has been very limited."*! The use of
enzymes, in homogeneous solution, for reactions in an en-
zyme membrane reactor has proved to be a valuable tool in
organic synthesis.'*) The enzyme-catalyzed synthesis of N-
acetylneuraminic acid in an enzyme membrane reactor
showed that large quantities of this compound could be pro-
duced in this way.[

We report here the enzyme-catalyzed continuous synthesis
of N-acetyllactosamine (3, LacNAc) in an enzyme mem-
brane reactor. Like N-acetylneuraminic acid, 3 is a structural
component of many biologically active oligosaccharides.[!)
Alongside the chemical syntheses of 3% and as a part of
higher oligosaccharides,!”! several authors used a galactosyl-
transferase (E.C. 2.4.1.38)!8! for the synthesis of 3. The hith-
erto limited availability of this enzyme, its high price,'®! and
its instability hampered its use. An alternative biocatalyst is
a B-galactosidase (E.C. 3.2.1.23),11% in particular the use of
the f-galactosidase from Bacillus circulans resulted in high
regioisomeric purity of the synthesized 3.11%%

Figure 1 shows the reaction scheme of the continuous syn-
thesis described here. Starting with lactose 1, transgalactosy-
lation results in the transfer of the galactose moiety of 1 to
N-acetylglucosamine 2 to afford 3 (Fig. 1a).

OH OH
a H
H H H S\.-on
H
2 NHAc 4
OH + HAc
Hi
OH H
3

1 OH oH H_OH OH
H H
H H+ H H|[H H+ H

OH OH OH \HAc

H

0570-0833/93/0909-1342 8 10.00+ .25/0

Fig. 1. Enzyme-catalyzed synthesis of N-acetyllactosamine 3; the enzyme E is
f-galactosidase a) Transgalactosylation, b) hydrolysis of 1 (side reaction),
¢) hydrolysis of the product (secondary hydrolysis).

The galactosyl donor 1 is hydrolyzed to galactose and
glucose in a side reaction (Fig. 1b). The desired product 3 is
also a substrate for the f-galactosidase and is hydrolyzed
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again in a subsequent reaction by the enzyme (secondary
hydrolysis. Fig. 1¢).

Experiments to investigate the stability of the enzyme
showed that the f-galactosidase is a very stable enzyme,* !
and because of its low price and availability, it is a useful
enzyme for synthesis.!* 2 The ratio of transgalactosylation to
hydrolysis of 1, that is, the selectivity!'?) of the enzymatic
reaction, could be optimized for the continuous process by
changing the concentration ratio of 1 and 2.

By selecting a suitable residence time 7 for the reaction
mixture in the reactor, the secondary hydrolysis of com-
pound 3 could be minimized. Figure 2 shows the concentra-
tion -time curve for this continuous enzyme-catalyzed syn-
thesis of 3 in an enzyme membrane reactor over 100 hours.

¢ [h] —>

Fig. 2. Concentration~time curve for the continuous synthesis of N-acetyllac-
tosamine 3 in an enzyme membrane reactor: starting concentrations: 120 mm
lactose 1, 300 mm N-acetylglucosamine 2, 100 mm KH,PO,, 2 mm MgCl, -
6H,0. Smu dithiothreitol; pH 6.8; 25°C; 3mgmL ™! B-galactosidase; resi-
dence time: 1 =0.25htor=05h.

During the course of the reaction there was no noticeable
deactivation of the enzyme. The residence time was varied
between T = 0.25 h and © = 0.5 h. With increasing residence
time the concentration and therefore also the yield of 3 in-
creased slightly.""*} The conversion of 1 increased from 0.37
to 0.51. The selectivity decreased with increasing conversion
from 0.26 (t = 0.25 h) to 0.22 {z = 0.5 h). The space—time
yield was 442 g 1.7 'd ~* at a residence time of ¢ = 0.25 h and
decreased to 261 gL~ 'd ™! at a residence time of 1 = 0.5 h.
After 100 h, 11.3 g of 3 was produced. The space—time yield
was increased by a factor of 130 relative to the synthesis of
3 by using galactosyltransferase by Wong et al.!®*! Since reac-
tions in a membrane reactor can be scaled up linearly,* 13
this method opens up an economic and a simple way of
producing large amounts of 3.1'%! The process described here
is the first continuous synthesis of a disaccharide that em-
ploys homogeneous catalysis. As a result of the broad spec-
trum of substrates for -galactosidase from B. ciruculans,!'
the synthesis of derivatives of 3 with this advantageous tech-
nique 1s also possible.

Experimental Procedure

The enzyme membrane reactor (volume 10 mL; Bioengineering, Wald, Switzer-
land) fitted with an ultrafiltration membrane (YM-3, Amicon, Witten) preced-
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ed by a sterile filter (0.2 um, Sartorius, Géttingen) was sterilized in an autoclave
for 0.3 h at 120°C (the experimental procedure corresponds to that described
in [4] and [5]). Subsequently, bovine serum albumin (10 mg) and f-galactosi-
dase (30 mg, 150 units) from Bacillus circulans (Daiwa Kasei K. K., Osaka,
Tapan) were fed into the reactor using buffer solution (100 mm KH,PO,, 2 mM
MgCl, - 6H,0, 5 mm dithiothreitol, pH 6.8). A sterile solution (2.6 L} of the
substrates (120 m lactose 1, 300 mm N-acetylglucosamine 2 in buffer solution)
was then pumped through the reactor with residence times between v = 0.25 h
and 0.5 h. Samples were taken regularly from the reactor outlet and analyzed
by chromatography (HPLC: column ET 250/8/4 Nucleosil 5 NH, {Macherey-
Nagel, Diiren), 250 mm x 4 mm; eluent 75/25 (v/v) acetronitrile/water; flow-
rate 1 mL min~!; RI detection; capacity factors k’: N-acetylglucosamine 0.84,
galactose 1.26, 3 2.09, lactose 3.09). To isolate the product 3. the solution
(containing 11.3 g of 3) was concentrated to 0.68 L. The product was character-
ized by chromatography of a small portion of the solution (0.02 L) on 2/1 (w/w)
activated charcoal (Darco, 20-40 mesh)/celite AFA (38 cm x 3.5 cm, eluent:
H,O with 0% —10% {v/v) ethanol, 0.5 bar). The fractions of 3 were collected
and lyophilized. Yield 0.19 g. Analysis by gas chromatography (column: OV1
{(Machery-Nagel, Diiren); 25 m x 0.25 mm; He; temperature 275 'C. silylation
according to [18] showed 4.7% N-acetylallolactosamine (Galf(1.6)GlcNAc) as
a by-product. Capacity factors k’:3 5.00/5.35, allo-3 3.65/4.24. Correct elemen-
tal analysis.

[4]% 5-c = 25.38 (¢ = 0.1 in H,0). The '"HNMR spectrum (500 MHz, D,0.
internal standard [D,]JDSS (DSS = 3-trimethylsilyl-1-propanesulfonic acid),
& = 2.04 (3H, s, NHAc, GIcNAc), 4.47 (1H.d, J, , =7.5 Hz, Hl, Gal), 5.2 (1 H,
s, H1. GIcNAc)) and the 50 MHz !3*C NMR spectrum for 3 are consistent with
published values [8a, 10d].
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