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GENERAL PLASMA PROPERTIES AND CARBONIZATION

The TEXTOR research programme /1/ focusses on the systematic analysis of plasma wall inter-
action, the development of a suitable wall system and the production of quasi-stationary
long-pulse high-temperature plasmas with tolerable impurity concentrations, with well-defined
boundary layer and with relevant particle and power fluxes through the boundary.

First, the present paper describes the method of wall carbonization developed im Jiilich /2-5/
and some characteristic features of the TEXTOR plasma /6/ obtained with this method for both,
metal limiters and graphite limiters. Moreover, the effect of ICRE heating (2MW, | sec) /7,8/
on plasma parameters and on the boundary layer /9,10/ is discussed, together with the appli-
cation of the single head pump limiter ALT-I /11-13/ and of the localized set of magnetic
perturbation coils for boundary "ergodization" /14-16/.

Originally, TEXTOR had been operated with an inconel liner and with a system of stainless
steel limiters /17/. Under these conditions, the plasma discharges were characterized by
concentrations of metallic impurities -~ depending on ng - of up to several 107® and of a
disruption limited tolerable ICRH power limit of only 100 to 200 kW /18/. The plasma-chemi-
cal deposition of carbon on the first wall has been developed for TEXTOR in order to sup-
press the production of metallic impurities and to achieve a satisfactory susceptibility of
the plasma to powerful long-pulse ICRH heating. It may be recalled that until recently the
method of impurity control - in limiter Tokamaks - generally consisted cf the use of (i)
graphite limiters (and protection plates), (ii) metal walls and (iii) Ti- or Cr-gettering

in particular in order to reduce the oxygen concentration. This procedure had the disadvantage
that in the course of Tokamak operation the graphite limiters became increasingly contaminated
by the redeposition of metallic wall material which also led to a steady increase of the
metal impurity concentration in the plasmz core.

Carbonization suppresses this mechanism. Carbonization is the plasma~chemical coating of the
whole wall system with a sufficiently thick (i.e. several hundred monolayers) amorphous car-
bon layer of a relative hydrogen (deuterium) content of about 0.4.

This layer can be applied by a specific radio-frequency assisted glow discharge in an adjust-
able mixture of e.g. Dp/CD;. Any desired ratio between the H and D composition of the plasma
can be obtained. The method is well-defined and reproducible. By means of appropriate glow-
discharge cleaning the coating can also be completely removed.

First, carbonization has been applied upon the above mentioned all metal wall system. The
success of this method led to a reduction of the metal concentration in the plasma core
towards the 107 regime and to the possibility of coupling ICRH power (with the same anten-
na system) in the MW-tegime. Erosion of the carbonization layer on the exposed parts of the
limiters, however, led to the need for some recarbonization after about 100 discharges.
Moreover, stainless steel as the bulk material of the limiters is not considered suitable
to accept high power fluxes, e.g. on the leading edges.

Therefore, the material of the limiter system, i.e. of the movable main limiters, of the
antenna protection limiters and of the inboard limiter (mainly for protection against dis-
ruptions), has been changed over from stainless steel to graphite during the last summer
break. Initially, this led to a pronounced prolongation of the operational period until re-
carbonization is required. However, as compared to the carbonized metal system, there is now
an even more appareat source-sink behaviour of the limiter system with respect to the hydro-
gen balance, and the C and/or O concentration is roughly twice that as obtained before: the
latter depends strongly on the application of intense baking after which a significant re-
duction of the C and/or O content can be achieved. A comparison between these cases is given
in Table ! which, among others, shows Zggr from soft X-ray measurements (under the assump-
tion of equal C and O concentration). Since in the course of TEXTOR operation some metal
erosion has occurred e.g. from diagnostic probes, we observed also some metallic contamina-
tion of the graphite limiters: this led to recarbonization requirements which are comparable
to the situation with carbonized metal limiters.

From a systematic study of parametric dependences, a further comparison is comprised by the
"Hugill-Diagramme" for these three cases which essentially shows that both, the gq-limit and
the density limit could be significantly shifted after carbonization had been applied: this
holds for both limiter materials, stainless steel and graphite. The present density limit
with OH-discharres at 2.0 T lies at @i, = 5.3x1013ce™3 (with ICRH it could be shifted to
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5.7%1013em™3) . The corresponding Murakami parameter which has now been achieved under OH-

conditions is R

M= 0 i% = 4.9x1019 [&"1 m'zj'

The above mentioned parameter scans permitted to establish - for @i, between 1xi013 and
5x1013 ca™3 and for I, between 340 kA and 500 kA - a scaling of Rpoy:

IP[A], nefém'3J,

fopol = 4.8 x 1079 5/1, with

which is shown in Fig. 2. The overall pulse duration of the discharges in this density range
could be extended to 3.8 sec; for By = 2.0 T the value of Ip could be increased to 540 kA
and Tg reached 100 ms. Upgrading of the TEXTOR machine permits now to extend By up to 2.6 T
or even slightly beyond.

At higher densities, a broadening of the boundary layer, accompanied by increased luminosity,
could be visually observed by use of a {tangentially viewing) TV-camera. Detailed measure-
ments in the boundary have shown that, for fig 2 3%1013em™3, the plasma starts to become de-
tached from the limiter resulting in reduced fluxes, density and heat loads there /10/ as

can be seen in Fig. 3.

without with carbonization
inconel liner inconel liner inconel liner
steel limiters steel limiters graphite limiters
a) b) c)
Zo££(0) 3.2 1.6(1.2) 2.0
g 4.2x1013¢n™3 4.6x1013ca™3 ) 5.3xi0!3ca™3
Oxygen 3 x 1072 6x1073(2x10~3) I x 1072
Carbon 6x1073(2x1073) I x 1072
Iron 5 x 1074 2x1073( £1073) 2x 1079
TABLE 1, Typical composition of a deuterium plasma for various wall conditions.

Best values ever achieved for b) in brackets.

Impurity figures are relative concentratious on the axis.

The carbon and oxygen values in b) and c¢) are evaluated under the
assumption of equal concentration.

CURRENT DENSITY PROFILES

The poloidal magnetic field distribution in TEXTOR has been determined by probing the plasma
with an array of HCN laser beams measuring the Faraday rotation of their planes of polariza-
tion and the phase shifts caused by the electron density /19/. The data analysis is based on
the assumption of eccentric circular flux surfaces in accordance with numerical equilibrium
calculations. The total error of the resulting current density profile is estimated to be
about +5 7 to +10 7 at half the plasma radius. For the central current density an accuracy
of 15 % to +20 % is achieved by slowly moving the plasma across the probe beams and thereby
virtually multiplying the number of chords /20/. The agreement between the positions of the
g=| surface as determined by the Faraday rotation measurements and by temperature and density
sawteeth confirms the absence of systematic errors. Temporal evolutions of the current den-
sity profiles have been determined for discharges with various magnitude and time dependen-
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ces of plasma current and toroidal field, and these have been compared with linear tearing
mode stability theory using a cylindrical delta prime programme (kindly provided by
K. Lackner, Garching).

In all cases marginally stable profiles could be generated for all modes with m=1 which co-
incide with the measured profiles within the experimental accuracy. The m=1 case is predicted
unstable for all conditions with g on axis less than |. It is thus surprising to observe that
(as seen in Fig. 4) the current distribution develops in time with q(0) going from 1.4 at

200 msec down to 0.64 at 1000 msec without leading (necessarily) to a large m=1 internal kink
instability, which would depress the current density profile by reconnection to q(0)=1.
Sawtooth activity is nevertheles observed inm such cases (Fig. 5) flattening the temperature
and density profiles, but apparently not the current density profile.

For this situation we conclude that the sawtooth activity, especially under the persistent
condition of q(0) significantly less than !, cannot be the result of a complete reconnection
process involving the m=1 internal kink mode, because of the impossibility of recovery of
low q on axis between sawtooth relaxations /21/.

However, the generally predicted rapid growth of the m=I internal kink for the case of q{(0)
about 0.6 has also been observed (Fig. 6). After more than 0.5 sec during which the current
distribution has shown a fairly stationary behaviour with only small density sawteeth (Fig.7),
a large m=! mode develops, and the observed negative voltage spike indicates a large poloidal
flux change. Eventually, this leads to 2 termination of the discharge. These phenomena would
be difficult to understand with the assumption of q(0) near I.

Conditions under which the resistive m=| mode may be marginally stable are not known theore-
tically for q on axis significantly less than ! and are now being investigated /22/.

ION CYCLOTRON HEATING AND RESULTING EFFECTS

Introduction

The principal features of the previous ICRH results on TEXTOR have been reported in /23/ and
/7/. The most important changes for the conditions of the ICRH cperation reported here are:
1) the use of main and antenna limiters made of graphite to replace the previous stainless
steel ones; 2) the use of identical top and bottom antennae /24/ with central conductors of
the broad type (mean width: 17 cm); 3) the use of low minority concentrations in a D-(H)
plasma (NH/ND < 1 7), instead of the previous mode conversion regime.

With these changes the general characteristics of the results remain the same as those re-
ported in /7/. Long pulse ( ~ 1s), low impurity ICRH with stationary plasma parameters has
been obtained but now with an RF power fed to the antenna Pp which has reached 2.3 MW. Given
an antenna loss of 180 KW, about 92 7 of this value contributes to Prp, the power effectively
radiated into the machine, yielding a total power coupled to the plasma Proy = PRy + P'oy of
2.5 MW, which 1s 6.3 times the remaining OH power P'gy at a plasma curreat Ip = 500 kA, which
causes also a lengthening of the current flat-top by means of the resulting Vs saving. An
adequate wall carbonization is also mandatory to bring up the power at the MW level without
plasma disruption or antenna breakdown. This consists of glow discharge in a mixture of D,
and CD,, in order to reach the low H isotopic content in the tokamak discharge, and is ~
followed by a baking of the C-limiters to avoid a large gas release during ICRH. The results
reported here ccrrespond to Ip = 0.48 - 0.50 Ma, BO = 1.9-2.07T and a main limiter radius
of 0.46 m.

Results pertaining to a typical 2 MW shot are shown in Fig. 8: a) Temporal evolution of the
total plasma energy content. E,. is measured by diamagnetism and E (dotted line curve)

is computed from an equilibrium code using the measured vertical fie?guand the current density
profile as input data. The kinetic energy content E . as computed from the electron density
and temperature profiles, the central ion temperaturé T, , and assuming the same ion tempera-
ture profile as for the electrons leads to a value ~ 28 7 lower. b) Temporal behaviour of
the total number of electrons N_ in the discharge as obtained from HCN interferometry. c) The
central electron energy density Eeo =3/2 neoTeo computed from the ECE signal from Teo and

the Abel inverted HCN data for the central density LI d)} The central ion temperature Tio’
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in a solid line, as obtained from the neutron yield. The dotted line shows for comparison
T,, s @ computed from equipartition alone (Artsimovitch law) using n__ and T as input
4327 The larger value of Tio,neutron With respect to the equipartition value in the ICRH
part of the shot is attributed to direct RF heating of the ions. e) The current profile
parameter &, /25/ obtained from the HCN polarimetric_ data using the following approximate
relation forJthe current density profile j = jo Ro/R [’(I - r2/a)%) Ew (R—Ro)/@]with
€l <o.s.

A large broadening of the density profile occurs during ICRH (see Fig. 9c), whereas no
change or, at most, a slipght flattening of the j-profile is observed.

Energy and Global Energy Confinement Time Scaling

The energv increase appearing during ICRH is always partly due to an increase in density

(as reflected by N on Fig. 8b) and changes in its profile. In order to decouple the effect
of density increasé from the effect of the total power coupled to the plasma P on the
energy content E and resulting global energy confinement time 17E = E/P , a careful selec-
tion of shots has been made with the same central chord demsity ng for various values of Py,
(power scan) or the same P and various n_ (density scan). To minimize the scatter in the
experimental points these gg@e been chosen from the same series of shots. The results are
shown in Fig. 9a for the power scan and ia Fig. 10 for the density scan. The conservative

value of E = Edi /1.2 = E . 1is taken. A4s for the mode conversion regime analysis /2/, the
results pertain fo an L-mSde type scaling which is found in agreement with either: (i) the
. —~0.26 0.42 1.25 13 -3
- i 2 ¢ = 0. -
Kaye~Goldston scaling /26/ expressed as EK_G(kJ) 0.02 £ Pcot I (1077 ez 7,

P

MW,kA) and valid for Ptot 23 P'OP; this has a vanishing value of Ty for large P*ot’

(i1) a less pessimistic scaling law using an asymptotic, non-zero auxiliary heating con
im = F /P chich T ‘hen -
time ZTAUX RF / to which T : reduces when Poo ¥ P

RF
As in Ref. /7/ we take

- 1
E= Tow Plog * Caug ar (n

assuming that ZTOH is the OH confinement time taken at the (coastant) 2, Teached during RF
o
and for the given machine parameters (B_, I , R, a). For the power range and the plasza
parameters considered in Fig. 9, a gooé £iP zof the dependence of P'OH on PRF is given by
P'OH = POH - J.PRF with & = 0.1. This value of & is also roughly in agreemeat with the
expectation from Spitzer resistivity and the observed mean T increase shown in Fig. Ii.
Introducing P'., in Eq (1) one obtains the linear law E = A+ ?COE shown in Fig. Sa. The de-_]
f T : r ; B T dE/GP = (T P ' o+ T, (ap /dP,.) .
pendence of B on t:AUX s expvéssed by QP o = (T AP /dPy : Auk)(d ror’d 28
The corresponding mean value of Ty = 24 ms together with the values of Cary
A

derived from Eq. (1) for each experimental point are also indicated in Fig. 95.

F
5
5

The results pertaining to the density scan are shown in Fig. 10. The OH curve (P.oy = Poy =

0.6 MW) reflects the neo-Alcator behaviour of TEXTOR as expressed by Eq. (7) of Ref. /7/. It

appears that the increase of TTE with 5; becomes less and iess proncunced as Pp,p increases

and that the asymptotic value for PRF 3 P'gy expressed by Tsyy, computed frem Eq. (i), has

practically no longer a dependence on density. This behaviour is similar tc that cbserved with
ot I

NBI in ASDEX /27/. We also note: (1) that the change of T from the OH to

a shot depends on the cherd demsities n, achieved in OH and during ICRH; the arrows in Fig.
10 show typical trajectories during single shots starting from the OH and ending at the ICRH
representative point. The T g degradation observed during a shot is thus particularly seasi-
tive to the Hé-evclution; (ii) Fip. 10 suggests that no Ty degradation occurs at relative-
ly low densities E; = 1.5x1013ca™3, The direct confirmation of such a behaviour was not
possible due to the lack of sufficient control of the density rise during high power ICRH. As
shown in Fig. 12a and discussed below the particle confinement time T, undergces a similar
degradation to that of Tg as Py, is increased.

We may conclude that, although the total power has been extended up to 2.3 MW, i.e. 6.3xP'gy,
it is still not yet possible to rule out a Kaye-Geldston Ty scaling but, on the other hand,
the results are consistent with a non vanishing Typy. Comparing the results of Ref. /7/ with
rhese, it appears that the value of T g obtained with low minority concentration is similar
or slightly lower than observed with mode conversion. All the results are compatible with the
scaling law of Eq. (1) choosing Tyapyxlms) = (60215) I,(xa).
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Heating Results and Profile Consistency

The observed increases in central temperatures T _ (ECE) and T, (neutrons) during the power
scan experiment of Fig. 9 are shown, versus PRF’ in Fig. 11. The value of T. due only to
energy equipartition, as predicted from the above-mentioned Artsimovitch law, is also indi-
cated. When comparing these results with the corresponding mode conversion case (see Fig. 6
of Ref. /7/), it is seen that there is less electron heating and more ion heating for the
present low minority concentration experiments. A surmary of the comparison is g;ven in
Table 2. The central RF power densities coupled to the electrons PRF,e and to the ions PRF, i»
as cbtained from the central power densxty balance (see § 4.2 of Ref. /7/), has a similar
increase of pRF with respect to pRF in the present experiments, as also shown in Table 2.
From Fig. 11, it appears also that the electrons loose less power and the ions gain less by
equlpartltion in this regime. The smaller relative increase of the central electrom energy
density E_ as compared to the total energy increase (compare OH and ICRH vhases on Fig. 8a
and c¢) is attributable partly to the fact that ions are, relatively speaking, heated more than
electrons and partly to the broadening cf the demsity profile.

As shown on Figs. 8e and 9c and already stated at lower P, in Ref. /7/ there exists only a
slight tendency towards broadening of the current profile with RF power even if the total
power fed to the plasma changes by a factor 5. On the contrary, the density profile signi-
ficantly broadens when Ptot increases. This appears on Fig. 10c where the evolution of the

density profile parameter & _ is shown versus P_ . (The approximate density profile depends

n tot
on X by the relation N, = No(l-(r/a) n).

Particle Confinement Time, Impurities and Edge Parameters

Fig. 12 shows, as a function of P and at constant density LI the behaviour of the part-
icle confinement time T _, deuteriQm flux, impurities brilliancé and concentration, Ze‘F
and the edge T, and N, dfiring the power scan experiment of Fig. 9. The following observaticns
N
e

and conclusions can be made: (i) during this power scan the total number of electreas

increases from 2.45 to 2.62x10°" particles due to profile broadening (see Figs. 9c and
12g), i.e. an increase of only ~ 7 Z. As the relative increase of the deuterium fluxes at

limiter f"D L» antenna /" (Flg 12b) and at the wall f’D ,; is much larger, the particle
3 b

confinement time L =N /(/" + f; N rb w) degrades in a similar fashion te T

when P tot is increased This can be seen from Fig. 12a where Z; o8 = 75 + 35 ms. The
)

relative increases in fB L, /‘ ,A and /B w all around the machine are roughly the same. This
increase in D flux has been conflvmed by a permeation probe method /28/. The dynamic tim
evolution at the RF switch-on or -off of these fluxes is discussed in detail in Ref. /§/.
(1) The oxygen flux increases less strongly than that cof deuterium with P cot /%/. This ex-
plaines the slight decrease in the oxygen concentration C  observed from soft X-rays in
Fig. 12d (assuming that the soft X-ray enhancement is only due to oxygen). The relative in-
creases in the brilliance of OVI and CV, normalized with respect to the edge cherd density
at r = 40, are also slight and show roughly the same behavicur for C as for 0. There is thus
no low-Z impurity problem in the high power ICRH discharges with carbcnized walls and C 11
ters. (iii) The metallic impurity behaviour, shown in Fig. 12e, is scmewhat atypical
that the concentration Cuer (sum of Cr + Fe + Ni averaged at r=5 and !5 cm) Iacreases

o
e

~ O

and is also larger than in other runs or earlier e\perirents /7,23/ due to somewhat different
wall conditions. The production mechanism of these impurities is discussed in /9/. (iv) The

value of Zeff as given by the soft X-ray signal remains roughly constant as a function of
Props this is attributable to the combined effect of the increase in Cye. and decrease in

Cp and Cg. (v) The evolution of the mean chord density at r = 40 cm (HCN interferometer)
and the density and electron temperature measured by Langmuir probes at r=32 cm in the
scrape-off layer (SOL) are showm in Figs. 123, 12h and 12i. The increases in ng 4p 2nd ng 32
are ~haracteristic of the observed density prof‘Le broadening. The electron tem pera;ure in
the SOL undergoes a mild increase during ICRH. Its possible influence cn the increase of the
sheath potential and resulting rise in the flux of deuterium from the wall is discussed in

/9/.
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Fig. 15 shows the response to a given ICRH pulse (of 1.3 MW and 0.5 sec) of three different
ne(r) signals, of the deuterium fluxes from limiter, antenna and liner and of the oxygen
flux. These signals show as a particular feature the existence of pronounced sawteeth

with amplitudes - for higher power levels - of up to 50 7. Signal b) of the lowest figure
oresents the local density of iron atoms in front of a non-carbonized metallic target plate
which is exposed to the plasma at a radial positiom of r = 52.2 cm, i.e. in a position which
is more than 6 cm inside the limiter shadow. The increase of the sputtered iron denmsity there
by more than one order of magnitude suggests that sufficiently energetic ions are present in
this deep-shadow region. From this observation, together with the immediate onset of the
effect synchroniously with the onset of ICRH, two alternative conclusions may be drawn.
Either, there occurs some direct energy transfer to the ions in this region, which is not
caused by the energv losses from the heated toroidal tokamak olasma flowing into the scrape-
off layer: the energy decay length of about | cm would be too short as compared to 6 cm, the
ion temperature would be too low for the measured sputtering yield and the onset of the
sputtering signal would show a delay of the order T . Or alternatively, the observed sput-
tering may be caused by high energetic trapped ions with orbits extending into this region.

Fig. 16 shows the steep increase of the density profile in the scrape-cff layer (limiter

radius at 46 cm) as a result of ICRH: this increase, however, is insufficient to explain the
above mentioned rise of the (sputtered) iron density.

Sawtooth Behaviour during ICRH

The observation made in TEXTOR concerning the sawtocth behaviour, can be summarized as
follows: 1) We observe all the varietv of sawtooth behaviour already observed oa cther
large tokamaks (e.g. /29/): single sawteeth, multiple sawteeth (up to % partial reccnnec-
tions), sawteeth with precursors or not, sawteeth with successors or not. 2) Sawteeth on
both Tg, and ngq are contributing to the strong sawteeth on the central electron energy
density Eoo (see e.g. Fig. 10 of /2/). The density sawteeth are mainly due tc a density
readjustment since the total number of particles Ng (see Fig. 8b) is oaly slightly affected
by sawtooth behaviour at the largest ICRH power levels achieved. 3) The sawtooth period can
be influenced by ICRH in different ways for roughly the same operating conditions and plasma
parameters: two examples of the evolution of the period and of the mean slope dEgs/dt are
given in Fig. 13a (same shot as Fig. 8) and Fig. 13b. At the beginning of the RF pulse the
period continues its regular increase, already started in the OF phase in Fig. !3a, wvhereas
the period decreases strongly in Fig. 13b. At the end of the ICRH pulse, as seen in Figs.
13a and 13b, another regime of oscillation with compound sawteeth is often triggered. 4) The
mean electron energy slope, during the sawtooth rise phase, decreases during the ICRH pulse.
The effect of this decrease on the sawtooth amplitude is partially compensated for by 2
simultaneous increase in the sawtooth pericd (see Figs. 8c and i3b for t up to 1.4 s
corresponding to the plasma current flat top). 5) The sawtocoth period has been compared with
the empirical scaling of McGuire and Robinson /30/. The result of this scaling is shown by
the dotted line in Fig. 13a. We take a as the characteristic length and T4 = (p'oy +
PRF,e)/(3/2 Neg Teo) as heating time, where p'oy + PR, e is the total power deansity fed to
the plasma. Apreement for the order of magnitude of the period is cbtained but not for the
detailed behaviour.

6) Large sawteeth are also observed on the neutron yield and thus on the value of Ti, de-
rived frow it. Fig. l4z shows a case where the value of T:, jumps back to the equipartition
value after each interrzl disruption. Another case sheowing only 2 slight sawtocth behavicur
is given in Fig. 14b. No general rules for the cccurreace (or not) of large sawteeth have
been deduced so far.
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Previous Results Present Results
Xy ¥ 5-10 % R, <17
AT [P 300 eV/MW 160 eV/MW
AT, /P, 180 eV/MW 250 eV/MW
%o 3,65%10 Sen > 3.95%10 Sem >
1 340 kA 480 kA
PRF,e 150-170 C;“,"W 50-60 cgfm
PRF, i 60-95 £+w 50~ 130 C;:,“’Tm—
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TABLE 2 Observed central temperature increases and
central power densities coupled to the
eléctrons and ions per MW applied ICRH in
the present experiments (with low isotope
ratio Xy = Ny/(Ny + Np) as compared with
the previous mode conversion experiments

SOME RESULTS OF THE PUMP LIMITER AND OF THE "ERGODIC LIMITER"

One of the focal points of the TEXTOR experimental programme is the characterization of pump
limiter capabilities for particle removal as an alternative to magnetic divertors. A& schema-
tic of the modular ALT-I (Advanced Limiter Test) pump limiter /1i,12,31,32/ is shown in
Fig. 17 with one of the exchangeable limiter heads, the vacuum chamber (V = 700 1) and the
pumping system (S € 1.5x10% 1/s).

Maximum particle removal rates of 6x1020 particles/s, corresponding to PxS about 10 Torr 1l/s
(P: pressure, S: pumping speed) were achieved, enough to allew an active density control. This
can be made clear by the "effective" particle confinement time T3 wvhich is the average life-
time of a particle before being either buried in the wall or pumped away. Ia TEXTOR, pump

limiter action reduces this time from typically 2-3 seconds to [-1.5 secends.
The removal efficiency PxS/Qin (Qin: particle flux at the throat entrance) is found in the
range of 0.3-1.0. Assuming T, = Tg, the estimated exhaust efficiency PxS/(Ne/ Tp) results

in values of up to 15 7. Please note, however, that the above menticned maximum values of
pump limiter performance were achieved by using a graphite limiter head covered with TiC-
coating. The performance values of graphite limiter heads without such a coating were found
to be typically a factor of 2 lower. This influence of materials on the performance may be
explained by different radiation cooling layers leading to different electron temperature
profiles in the boundary.

The removal efficiency can be affected by the electron temperature in the edge, with lower
temperatures corresponding to higher removal rates. This observation is supported by Monte
Carlo simulations of the neutral gas transport in the pump limiter /33,13/ which for an elec-
tron temperature increasing from 5 to 30 eV show a steep increase in the production rate for
ion-electron pairs in the throat. In the calculations, this led to a significant attenuaticn
of those neutrals which had a velocity component perpendicular to the magnetic field lines,
and which otherwise would be carried into the pumping duct.

Three different types of pump limiter heads have been used by now. They allowed to study the
effect of different geometries concerning throat lengths and both open and closed configura-
tions /12,31,32/. From these experiments results a guiding rule for pump limiter design: the



1426 G. H. Wolf et al.

effective pumping speed at the neutralizer plate, Sgoff, has to be large compared to the con-
ductance L for backstreaming of neutral gas from that region to the main plasma.

ALT-I has also been studied together with ICR heating. The power flux onto the limiter sur-—
face facing the plasma was found (infrared thermography) to increase at least as fast as the
heating power P transferred to the plasma. This is a further result indicating that the ICRH
power is deposited, as desired, sufficiently beyond the scrape-off layer. On the other hand,
these increased power fluxes in principle have the potential to seriously affect the design
and the performance of pump limiters with respect to the required shape cf the leading edge
in view of the tolerable heat load. However, the increase of particle fluxes and of the re-
sulting pressure in the ALT-I chamber, which has been observed simultaneously, alleviates
the above mentioned difficulty. Higher fluxes and the corresponding degradation of particle
confinement time Tp are consistent with the observations made at the main limiters mentioned
earlier.

Experiments have been started to systematically evaluate the influence of the pump limiter
on ICR heating (P > 1.5 MW), especially on energy confinement and ICRH coupling. Preliminary
results indicate no improvement, but also no degradation caused by ALT-I to ICR heated
discharges; within the experimental error margins both, energy confinement time and ICRH
coupling remain unchanged.

"Ergodic limiters' have been proposed /14,15,34,35/ as an instrument to further reduce

the particle confinement in the boundary layer, in particular to achieve some cooling
effect, to enhance the fluxes into the pump limiter, and, perhaps, to obtain some impurity
shielding. In summary, this method might help to approach the favourable regime of high
local recycling in the boundary under non-divertor conditions.

For first experiments on this subject /16/, a localized multipolar perturbation coil has

been applied on TEXTOR, acceoting the disadvantage of an increased maenetic perturbation of
the plasma core region as compared to large-area helical coil systems. When perturbation
fields with a strength - averaged over the whole magnetic surface - of the order of 1074

to 1073 of the main field were applied, distinct helical structures of the boundary layer
have been observed from the D, emission there (Fig. 19). The cbservations confirm previous
results /36/ and the explanation given there. These "optical islands" persisted alsc in cases
where stronger perturbation fields have been applied (and a higher degree of "stochasticity"
could have been expected).

Applying ergodization to pump limiter experiments, under certain conditions (island location
cr reduction in QTP) the particle flux into the pump limiter throat is significantly increased,
whereas also reductions have been observed in other cases.

Net only for the boundary layer but also for the core plasma rather intriguing but yet no
clearcut results have been obtained at this early stage. Depending on discharge conditions
in a rather subtle way, both deterioration and improvement of core confinement and of MHD
node activity could be fcouad. Ia particular, in some cases a pronounced ==2 MHD mode has
been observed which could be instantaneously blocked by the onset of the external perturba-
tion fields (Fig. 20); alternatively. when the external perturbation fieid was ramped down,
the develonment of such a mode has been observed.

The first experiments on the "ergodization" effects clearly demonstrated the poteantial of
this concept to influence tokamak discharges in many respects; further investigations are
necessary to obtain & more systematic picture of the ianduced effects in order to learn
better whether or how to profit from these capabilities.
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