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1 Introduction 

Given the magnitude of transportation fuels to be provided by renewable energies in the 
future, a sustainability framework that goes beyond greenhouse gas emissions is essential in 
order to avoid backlashes in other environmental categories. Major environmental issues 
include greenhouse gas emissions, air pollutants, biodiversity and protection of natural 
habitats. Water consumption already goes beyond environmental concerns touching human 
and geopolitical issues alike. Social and local economic sustainability are further topics that 
are already vividly discussed in the context of biofuels production (see the ‘food vs. fuel’ 
debate).  
As a result, the European Union target of 10% renewable energies in transport by 2020 is 
conditioned by a comprehensive set of sustainability criteria. This is currently under strong 
political debate as e.g. the assessment of potentially disastrous indirect land use changes 
clearly falls short when addressing individual bioenergy projects only. 
This paper presents the sustainability criteria and approach of the European Union as laid 
out in the EU Renewables Directive. Furthermore, aspects going beyond the EU Directive 
are discussed and typical values for selected criteria are presented. 
Focus is put on the comparative assessment of primary energy potentials, greenhouse gas 
emissions, land-use and water intensity of different fuel and power train options including 
biofuels, electricity and hydrogen. 

2 EU Renewable Energy Directive 

On 23 April 2009, the European Union has voted on the EU Renewable Energy Directives 
(EU-RED [1]). The RED includes a comprehensive set of sustainability criteria to apply for 
EU Member States’ mandatory share of 10% of renewable energies in transport fuel by 
2020. The Directive will have to be implemented in EU Member States’ law by end of 2010. 
Article 17 stipulates “go/no-go” criteria for greenhouse gas emission reductions, land with 
high biodiversity and land with high carbon stock. Article 18 stipulates reporting obligations 
(to be further defined) on soil, water, and air protection; social issues; availability of 
foodstuffs; land rights; etc. The sustainability criteria apply to geographic origins both from 
within the EU as well as import from third countries. For the time being, the focus is set on 
sustainability issues related to the cultivation of biomass for bioenergy. However, paragraph 
4 of article 3 states that “all forms of energy” is included to make up for the 10% target. 
Hydrogen is explicitly mentioned in the 1st paragraph of article 5 to be considered for the 
calculation of the Member States’ share of renewable energies.  
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It is expected that certified transport fuels will gain a premium in Europe. For the time being, 
hydrogen energy stakeholders are largely unaware of this novel policy framework. 
Opportunities for renewable hydrogen in transport have yet to be explored. 

3 Energy Potentials 

The potentials for producing electric power from renewable energies in Europe noticeably 
exceeds current consumption (see Figure 1). Distinguishing between direct power production 
and biomass-based power generation, Figure 1 clearly shows that bioenergy is strongly 
limited in potential: direct power generation (left) exceeds current consumption by more than 
a factor of two, while the biomass power generation potential (right) is around 10% of 
consumption. A similar relationship holds true for transport fuels. 
 

(1) IEA Statistics, 2008
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Figure 1: Energy potentials for direct renewable electricity production (left) and bio-based 
electricity production (right) in Europe. 

4 Greenhouse Gas Emissions 

Greenhouse gas emission (GHG) reductions of biofuels, hydrogen and electricity compared 
to conventional transport fuels have large bandwidths. A 100% reduction is feasible if 
renewable power or suitable biomass pathways are used. Unfavourable biomass pathways 
provide only insignificant greenhouse gas emission reductions compared to mineral oil-based 
fuels (see Figure 2 based on analyses by the authors [2]). Including land-use changes can 
drive up GHG emissions to levels significantly above conventional fuels, e.g. palm oil 
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emissions are up to 25 times the emissions of fossil-based diesel if land use changes are 
accounted for.  
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Figure 2: Greenhouse gas emissions “well-to-wheel” (without land use change). 

Note that battery electric vehicles do not fulfill all performance requirements, notably cruising 
range, which gives them a bias towards better GHG emissions. 

5 Air Pollutant Emissions 

Air pollutants have come more into focus again in recent years with pollutant concentration 
levels in urban areas not improving, in spite of stricter emission limits for vehicles. Hence, 
stricter air quality requirements are being enacted in European. The latest move is the EU 
Directive on Ambient Air Quality and Cleaner Air for Europe [3].  
Critical for human health are high pollutant concentrations in urban areas. Figure 3 depicts 
the nitrogen oxide emissions by place of occurrence for the same fuels as Figure 2 for GHG 
emissions. As can be seen, emissions are reduced significantly by renewable hydrogen and 
renewable electricity, while biomass-based fuels do not reduce pollutant emission levels. It 
has to be noted, that the future EURO6 emission standard (best case for internal combustion 
engines) has been taken into account for Figure 3. Today, the EURO4 emission standard 
applies with significantly higher tank-to-wheel (TTW) emissions. 
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Figure 3: Nitrogen oxide emissions “well-to-wheel”, based on VW Golf with EURO6 emission 
standard (applicable from 2014). 

 

6 Land-use 

The European goal of substituting 10% of transport fuel consumption by alternative fuels by 
the year 2020 is designed to essentially be met by biofuels. Assuming all biofuel crops to be 
grown in Europe, this would require substantial land areas. Figure 4 relates these to the total 
arable land available in EU-27. Conventional biofuels would require some 25-35% of arable 
land, while second generation Biomass-to-Liquids would require 20%. Preliminary values for 
algae-based fuels indicate that around 5% would be required under very strong irradiation 
conditions, while under central European conditions this value goes up to 25%. Direct 
renewable power for hydrogen fuel cell vehicles or battery electric vehicles requires less than 
5% of arable land in the EU. It should be noted here that algae can be grown on non-arable 
lands (similar to photovoltaics) and that wind power still allows for agriculture on the land 
covered. 
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• Area occupied with PV: 33%

• Solar irradiation (PV): 1300 kWh/(m2 yr)

• Efficiency PV panels: 15%

• Performance Ratio (PR): 75%
• Efficiency CGH2 supply: 60%
• Efficiency LH2 supply: 54%
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• CSP based on Andasol 2 in Spain

• Based on conditions in EU-27, except algae (New Mexico)

Figure 4: Land-use of various transport fuels in terms of share of arable land required for 
achieving the EU of a 10% substitution of conventional fuels by 2020. 

Figure 5 maps vehicle mileage against fuel yield per hectare. A clear grouping results with 
liquid biofuels showing lowest yields as well as lowest mileage; hydrogen fuel cells showing 
medium values; and battery vehicles highest. This is a clear indicator that battery electric 
vehicles would be the best solution if they achieved the performance levels of conventional 
or hydrogen fuel cell vehicles. 
Fuel cell-electric vehicles have a head start compared to pure battery-electric vehicles in 
terms of operating performance (range, temperatures, etc.). Demonstration projects are 
required to validate whether the very high expectations set on battery technology can be 
delivered under real-world conditions. Despite economic challenges for both technologies, 
the key question should not be “Which technology’s gonna make it?”, but rather “Which 
shares between batteries and fuel cells perform best in future hybridised drive-train concepts 
for the various transport applications and mobility patterns?”. 
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Figure 5: Mapping of key performance criteria “mileage” versus “yield” for different fuels 
and drive-train options under German conditions (except for algae). 

 

7 Water Intensity 

Analyses based on average or typical values of water requirements show that biofuels 
production in general consumes several orders of magnitude more water than electrolytic 
hydrogen production, or electricity generation from solar thermal power plants (see Figure 6). 
This is aggravated if inefficient irrigation systems are used for cultivation (flood, spray, 
furrow, and drip irrigation in increasing order of efficiency). The agricultural sector is 
responsible for some 60% of world water consumption. Sea water desalination for electrolytic 
hydrogen production only requires 0.13%-0.16% of the power consumption of the electrolysis 
process itself [4], [5]. "Grey waters", i.e. water consumed in manufacturing the production 
machinery and infrastructure have not been taken into account. It is assumed that they are 
negligible, similar to "grey energies". 
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Figure 6: Water requirement for the cultivation of various crops used for biofuels, for 
electrolytic hydrogen production, and for renewable electricity generation. 

 

8 Conclusions 

It is shown that biofuels are most complex, most critical, and provide the lowest potential, but 
can be used as a ‘drop-in’ substitute not requiring new infrastructures or vehicle propulsion 
systems. Battery electric cars are most efficient, can rely on abundant renewable electricity 
potentials, but have a limited operating range (battery swapping to be validated) and require 
new recharging infrastructure build-up. Hydrogen and fuel cells provide it all – great primary 
energy potential, high environmental performance based on renewable energies, and a 
sufficient operating range – but require pro-active infrastructure build-up. Therefore, all 
solutions are needed at different scales and for different applications while avoiding 
exaggerated expectations. 
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