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France 

1 Introduction 

Hydrogen is a promising energy carrier to replace fossil fuels that produce greenhouse gas 
and tend to decrease. However, it doesn’t exist in the nature, thus it must be synthesized. 
Steam methane reforming along with electrolysis to a lower extent are currently the main 
used techniques to produce hydrogen but the former results in CO2 emissions and the latter 
is limited by the energy efficiency. Thermochemical water splitting cycles are an alternative 
which use concentrated solar energy as the primary energy source. Direct water splitting 
needs a high temperature around 2500 K to allow dissociation and that’s the reason why 
catalysts (reaction intermediates) are used. Mixed metal oxides are promising candidates for 
hydrogen production by solar thermochemical cycles. Such cycle consists of a two step 
process which implies a metallic oxide catalyst and water. 

MxOy → MxOy-1 + ½ O2 (1) 
MxOy-1 + H2O → MxOy + H2 (2) 

During the first step, the oxide is thermally reduced by concentrated solar energy, which 
releases O2 (1), then in the second step, the activated metallic oxide is hydrolyzed by steam, 
which produces H2 (2). 
There are many publications about such materials for this application. The cycle based on 
ZnO/Zn redox pair is investigated [1, 2] because it can theoretically produce a large amount 
of H2/g (12,3mmol/g) during a single thermochemical cycle. But during the reduction step, the 
Zn produced is partially vaporized and partial recombination occurs during gas cooling, which 
requires a gas quench or a gas separation of Zn(g) and O2 at high temperature to avoid 
recombination. The cycles with non volatile oxides thus appear as an attractive solution. 
Fe3O4/FeO cycle was first studied by Nakamura [3] and it presents a fairly good reactivity but 
the reduction temperature (1800K) is too high for current concentrated solar technologies 
and the reduced material is fused and sintered strongly, which decreases specific surface 
area and consequently material performance. To lower this activation temperature, the 
doping of magnetite with a metallic cation (Zn, Ni, Mn…) to form a ferrite is widely studied [4, 
5, 6, 7, 8, 9]. Doped ferrites present a satisfactory theoretical production rate of H2 (nearly 4.3 
mmol/g depending on the metallic dopant) and a higher melting point than wustite induced by 
metal oxide properties. In this study, nickel ferrites were synthesized by different soft 
chemical routes such as coprecipitation of hydroxides, pechini process or hydrothermal 
treatment in view of enhanced thermal reduction yield. Then, the reactivity of the synthesized 
materials was investigated. 

Proceedings WHEC2010 301



Abanades et al. [10] demonstrated that CeO2/Ce2O3 cycle produces H2 with a good reactivity 
of the Ce(III) species during hydrolysis (2,9 mmol/g), but the activation temperature is too 
high (2000°C) and there are mass losses induced by partial sublimation of ceria, which 
implies chemical efficiency decrease during cycling. Doping ceria with a metallic cation could 
reduce this activation temperature by inducing structural defects or oxygen vacancies [11, 
12]. For the three-way catalysis application, Balducci et al. [13] showed that zirconium 
addition favors the reduction of ceria. Zirconium oxide can also contribute to avoid sintering 
thanks to the thermal properties of the oxide. In this study, the Zr-doped ceria was 
investigated targeting H2 production. Ceria-based nano-materials are currently largely 
studied for their oxygen storage capacity or catalyst activity and thus, there are many 
researches about the synthesis of controllable morphology of this nanomaterial [14, 15, 16, 
17]. Yuejuan [14] showed that using organic molecules as template agents for the 
preparation of high surface area and porous material improves catalytic activity. Yuan et al. 
[17] studied controlled synthesis to manipulate the shape, crystal plane and size of nano-
materials in view of catalytic application and they demonstrated that better performing 
catalysts could be “designed” rather than prepared. In this paper, different synthesis methods 
of Zr-doped ceria were tested in view of enhanced reduction rate and hydrolysis reactivity. To 
conclude, the performances of nickel ferrite and Zr-doped ceria were compared in terms of 
H2 production yield and cyclability. 

2 Experimental 

NiFe2O4 was synthesized by different wet chemical routes such as coprecipitation of 
hydroxides, pechini process, sol-gel or hydrothermal treatment to improve catalyst 
performance. These synthesis methods were initially chosen to obtain particular properties, 
typically powders with high surface area to favor kinetics and reduction rate during the first 
reduction step. Porous morphology with enhanced solid/gas interaction can also improve the 
hydrolysis yield. In a second part, zirconium-doped ceria (ZrxCe1-xO2) was also synthesized 
by coprecipitation and the effect of a template agent (Cetyltrimethylammonium bromide) was 
studied targeting H2 production improvement. X-ray diffraction analysis, SEM, BET and 
thermal gravimetric analysis were used to characterize the synthesized materials. Catalytic 
activity was investigated with a specific experimental device. The first step reduction was 
operated with a high temperature tubular furnace (1500°C max) which is equipped with an 
online O2 trace analyzer (Zirconium oxide sensor). The powder was placed in an alumina 
crucible swept by an argon flow controlled with a mass flow-meter (200 mL.min-1). The O2 
concentration was thus monitored continuously during the progress of the reduction reaction. 
The hydrolysis step was experimented in an other tubular furnace equipped with a 
catharometer for H2 online measurement. A peristaltic pump was used to inject water which 
was vaporized inside the furnace and was transported by the carrier gas (argon). 

3 Results 

NiFe2O4 powders are well crystallized with cubic spinel structure and SEM images presented 
in figure 1 show three interesting morphologies. The powder synthesized by coprecipitation 
with surfactant PEG 400 (fig 1.a) is composed of spherical grains of 60 nm diameter and 
rods measuring some micrometers length and 200 nanometres width. The powder which was 
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synthesized by modified pechini process (fig 1.b) forms porous aggregates of about ten 
micrometers and non spherical grains appear relatively sintered. This porous morphology is 
explained by the fast degassing during the synthesis. The last image (fig 1.c) is representing 
NiFe2O4 synthesized by hydrothermal treatment; the material is composed of small spherical 
particles (60 nm diameter) without any sintering phenomenon. As it can be observed, the 
hydrothermal treatment avoids rod formation contrary to the synthesis without treatment. 
These three morphologies could enhance the reduction rate thanks to the porosity, the high 
surface area and good thermal properties.  
 

b)a) c)

Figure 1:  SEM images of NiFe2O4 synthesized by coprecipitation + PEG (a), modified pechini 
process (b) and with hydrothermal treatment (c). 

The reduction step was investigated by thermal gravimetric analysis by heating a sample at 
1400°C with a heating rate of 10°C/min and a dwell time of one hour. The mass loss 
associated to O2 releasing begins at a temperature of about 1000°C for all the NiFe2O4 
powders studied (fig. 2). The maximum reduction yield (Fe2+/Fe3+) of 19.2% is obtained for 
the powder synthesized by hydrothermal treatment but strong sintering of the powder 
decreases catalytic activity during the hydrolysis step. This reduction yield corresponds to 
410 µmol of O2 released per gram of material. The hydrolysis step was investigated using a 
tubular furnace and the H2/O2 ratio was calculated. Ideally, this ratio is equal to 2 but 
sintering phenomena reduce the hydrolysis yield, which implies reactivity losses during the 
cycle. 
ZrxCe1-xO2 was synthesized by coprecipitation of hydroxides with and without a template 
agent (CTABr). XRD patterns confirm that Zr-doped ceria samples are well crystallized with 
the CeO2 cubic fluorite structure. FWHM of diffraction peaks of CTABr-synthesis are larger 
than for the powder synthesized without CTABr. The average crystallite sizes are calculated 
using the Scherrer’s formula and are estimated around 7 nm and 17 nm, respectively. 
Surfactant effect thus allowed the synthesis of smaller particle size of doped-ceria. The 
reduction yield of CTABr-synthesized powder (Ce3+/Ce4+) measured by thermal gravimetric 
analysis is nearly three times higher than for the material synthesized by conventional 
coprecipitation (fig. 2). A reduction yield of 46% for CTABr-synthesized material corresponds 
to 565 µmol of O2 released per gram. 
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Figure 2:  Thermal gravimetric analysis of NiFe2O4 (left) and Zr-doped ceria (right) 
synthesized by different methods. 

After the reduction step, the CTABr-synthesized powder is strongly sintered, whereas the 
other material synthesized by coprecipitation still appears as a powder after the high 
temperature treatment. Consequently, the cycling was investigated with thermal gravimetric 
apparatus (fig. 3). First, the reduction step occurs by heating at 1400°C under argon flow, 
then the programmed temperature decreases to 1050°C and steam is introduced inside the 
furnace chamber with carrier gas (80%RH at 40°C) to react with the catalyst. This cycle was 
repeated twice to observe reactivity decrease. The Zr25% hydrolysis yield reached 83% and 
89% during the first and the second hydrolysis reaction while it reached 18% and 22% for 
Zr20%-CTABr. The yield of the first hydrolysis reaction corresponds to 335 µmol of H2 
produced per gram of 25%Zr and 213 µmol of H2 produced per gram of Zr20%-CTABr. The 
H2/O2 ratio, ideally equal to 2, which is a good indicator of materials cyclability is equal to 1.8 
for Zr25%, which means that no significant reactivity losses happened during the cycle. 
 

 
Figure 3:  Thermal gravimetric analysis of water splitting cycle with Zr0.25Ce0.75O2 synthesized 

by coprecipitation and Zr0.2Ce0.8O2 synthesized with CTABr. 
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4 Conclusion 

NiFe2O4 and Zr-doped ceria were synthesized by different soft chemical routes to improve 
thermal reduction rate. The highest reduction yield reached with a nickel ferrite was 19.2% 
(Fe2+/Fe3+) corresponding to 410 µmol O2/g, while the highest yield with Zr-doped ceria was 
46% corresponding to 565 µmol O2/g. Both materials showed strong sintering after the 
reduction step, which implies reactivity losses during cycling. The synthesis methods did not 
avoid sintering for NiFe2O4 but concerning Zr-doped ceria, coprecipitation method without 
CTABr alleviated sintering and allowed the material cycling without reactivity loss. During 
cycling, the catalyst produced about 335 µmol of H2 per gram with a H2/O2 ratio nearly 
approaching 2. This study demonstrated that Zr-doped ceria is a promising material because 
the reduction temperature is below 1500°C and no significant reactivity losses are observed 
during cycling. 
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