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1 Introduction
X-ray free-electron lasers (FELs) such as the Linac Coherent Light Source (LCLS) [1] produce
laser-like pulses of X-rays of 10 fs to 300 fs duration and up to about 1013 photons per pulse. Just
as with the introduction of the synchrotron, X-ray FELs promise to have a great impact on many
scientific disciplines by opening up the study of materials at the length scale of interatomic dis-
tances and at the corresponding time scales of atomic motion. In condensed matter science, for
example, materials properties can be drastically altered by inducing transient structures using
ultrafast light pulses [2]. Similarly, matter at extreme limits of temperature and pressure, similar
to conditions in the cores of stars and planets, can be created transiently in the laboratory using
intense optical pulses. The extremely intense and brief pulses delivered by X-ray FELs opens
up the direct imaging of processes in these systems, which previously could only be studied
by spectroscopic means. In the biological sciences, time-resolved X-ray crystallography has
elucidated the atomic motions that occur on stimulation of light-sensitive proteins [3]. This
field will experience a dramatic increase of capability with FEL sources. The extreme irradi-
ance2 of the pulses will let us shrink crystal sizes all the way down to single molecules, giving
three-dimensional movies of conformational dynamics and chemical reactions, and allowing
the imaging of macromolecules that cannot be easily crystallized.
X-ray crystallography is indeed the inspiration for the methods of imaging at X-ray FELs [4].
Crystallography can obtain atomic-resolution images of protein macromolecules without the
use of a lens, based on the interpretation of the coherent scattering pattern detected in the far
field. Since this method is lensless, there are no technological limitations to the achievable
resolution caused by the perfection of objective lenses that can be made. Instead, the image
is synthesized from the measured diffraction intensities. Each intensity sample is related to
the strength of each spatial frequency component of the synthesized image. The shift of each
spatial frequency component in real space is given by the corresponding phase of the diffracted
wavefield. Crucially, this information cannot be obtained by measurement. The correct im-
age, formed by the sum of the correctly positioned periodic components, cannot be synthesized
without this information. This so-called phase problem has been largely solved in protein crys-
tallography by constraining the phases through additional information about the structure such
its atomicity (if scattering to high enough resolution was obtained), protein sequence, or known
similar structure. Anomalous diffraction methods can be used to determine the locations of
heavy atoms, which in turn can act as holographic references to obtain the remaining image.
This general imaging strategy works even better for non-crystalline materials, since the in-
formation content of a continuous diffraction pattern of a non-periodic object is large enough
to completely constrain the phases, allowing ab initio reconstruction of both two- and three-
dimensional images [5, 6]. The phase retrieval algorithms in this case were first developed in
the context of electron microscopy [7] and optical remote sensing [8].
The generalization of crystallography tol non-periodic objects requires sufficient spatial and
temporal coherence of the illumination wavefield so that the scattered waves from extreme
points in the object interfere to create the fringe pattern on the detector that encodes their sep-
aration. The lack of crystallinity does come at a severe cost of diffraction signal, since the
integrated Bragg intensity is proportional to the number of units in the crystal [9] and the num-
ber of repeats in even small protein crystals can number in the billions. Unfortunately the lower

2Pulse irradiance is given in units of photons per unit area and time. It is often referred to as “intensity”,
although in crystallography that word commonly means “diffracted counts” which is the meaning employed in this
chapter.
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signal cannot simply be compensated by longer exposure, since biological materials can only
withstand a limited dose before they are destroyed by the very beam that is used to obtain the
image [10]. But here the ultrafast pulses of X-ray FELs come to the rescue, by diffracting from
the sample before the effects of radiation damage have set in [11]. There is strong evidence that
this concept of “diffraction before destruction” holds to atomic resolution, at doses over 100
times higher than can be tolerated by slow exposures [12]. The development of this imaging
technique is following two tracks: application to unique structures, such as cells or soot par-
ticles, that can only be imaged in a single shot; and to reproducible objects, such as viruses,
macromolecular complexes, and protein nanocrystals, and where signals can be accumulated
over many copies in a rapid series of diffraction measurements. These are extremely active
fields of research, and progress is fast despite the fact that only a single hard X-ray FEL facility
currently exists.
In this lecture, a brief description of coherent scattering and iterative phasing techniques are
described, showing how 2D and 3D images of finite-size non-periodic objects can be recovered
from diffraction data. Examples of the application of this technique are presented from exper-
iments carried out at the FLASH soft X-ray FEL in Hamburg and the LCLS, and the research
of single-particle diffractive imaging and “diffraction before destruction” is summarized, in-
cluding computational and experimental investigations of the rate of perturbation of a structure
under intense X-ray illumination.

2 Coherent Scattering from Isolated Objects
The interaction of x-rays with matter can be described by the inhomogeneous Helmholtz equa-
tion,

(∇2 + k2)ψ(x) = Φ(x)ψ(x) (1)

for an incident plane wave of wavelength λ or wavenumber k = 2π/λ. The scattering potential
of a static and non-magnetic object may be expressed as

Φ(x) = k2(1− n2(x)) = 4πreρ(x) (2)

where n is the refractive index, re the classical radius of the electron, and ρ(x) the electron
density of the object. In the Born approximation the solution to (1) is of the form

ψ(x) = eikin·x +
eikr

r
f(q) (3)

where
f(q) = −re

∫
ρ(x) exp(iq · x) dx. (4)

and q = kout − kin is the photon momentum transfer. The physical picture that explains the
form of the scattering factor f(q) is shown in Fig. 1 (a). A ray scattered in a direction kout

from a point x1 will acquire a path difference of `1 = (x1 · k̂out − x1 · k̂in) relative to a ray
scattering from the origin O, where k̂ are unit vectors. This is the difference of the lengths of
the thick lines in Fig. 1 (a). The accumulated phase will therefore be φ1 = (2π/λ)`1 = x1 · q.
The point scatterer itself may cause a modification to the wave by the complex constant f1,
giving a scattering f1 exp(iφ1) = f1 exp(ix1 ·q). Equation (4) is simply the integration over all
scatterers in the object. The object’s electron density is assumed to be continuous, although it
can certainly be atomistic and may possess translational periodicity (i.e. be a crystal).
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Fig. 1: The far-field scattering geometry and the Ewald-sphere construction.

Equation (4) states that the scattering amplitude f is given by the Fourier transform of the
electron density. That is, the strength of diffraction in the direction kout only depends on the
Fourier component ρ̃(q), where we define the Fourier transform as

g̃(q) ≡ F{g(x)} ≡
∫
g(x) exp(ix · q) dx. (5)

This component is a particular spatial frequency in the object, which may be thought of as a
volume grating of a particular wavenumber |q| and direction q̂. From Fig. 1 (b), it is seen that
the magnitude of q is given simply by

|q| = 2|k| sin θ =
4π

λ
sin θ (6)

for a scattering angle 2θ, and that due to the conservation of k (that is, elastic scattering) the
vector q lies on the surface of a sphere (called the Ewald sphere). We see from the diagram in
Fig. 1 (b) that the scattered ray appears to reflect at an angle θ from a plane normal to q. That
is, the ray reflects from the volume grating which is tilted at the angle θ relative to the incoming
wave-vector. The ray only reflects if the period of the volume grating, d = 2π/|q| satisfies
Eqn. (6), which is to say d = λ/(2 sin θ) which is well recognized as Bragg’s law. We stress
that although Bragg’s law and the Ewald sphere construction are well known concepts in crys-
tallography, there is no requirement of periodicity of the object in the derivation or application
of these concepts.
A typical coherent diffraction experiment illuminates a sample of electron density ρ(x) (or
refractive index n(x)) with a quasi-monochromatic plane wave and measures the diffraction
pattern in the far field with a planar detector (such as a bare CCD). This is a measure of the
intensity of the wavefield, given by

I(q) = I0 Ωp P r
2
e |ρ̃(q)|2 , (7)

for pixels of solid angle Ωp, and where P is the polarization factor. The mapping from pixel
coordinate to q is easily obtained by the geometry shown in Fig. 1 where kout points in the
direction of the pixel. Note that in a single exposure in this geometry records only information
about the object for spatial frequencies that lie on the Ewald sphere. Other frequencies are
missing in the measurement and the only way to record the full 3D information is to record
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Fig. 2: Diffraction data collected from a 3D test object, showing (a) a diffraction pattern
recorded at a single orientation, (b) 3D diffraction intensities collected at orientations from
−70◦ to +70◦, and (c) the reconstructed volume image [6].

additional diffraction patterns for different orientations of the object relative to the incident
beam. Rotating the sample rotates its Fourier spectrum such that it sweeps across the Ewald
sphere. From the point of view of the object, the measurements at different orientations can be
thought of as orienting the Ewald sphere at different rotations (about the point q = 0) so that it
samples the 3D intensities |ρ̃(q)|2. An example of 3D diffraction data collected at a synchrotron
beamline is shown in Fig. 2.
Since the sample is completely destroyed by the interaction with a single high-irradiance FEL
pulse, one object can only give rise to a single measurement (or possibly multiple simultane-
ous measurements). Full 3D information therefore requires combining many diffraction pat-
terns, each from a different orientation of an identical copy of the object. Combining data
from many patterns is also needed to increase the overall signal. A calculated single molecule
diffraction pattern is shown in Fig. 3 for an incident pulse fluence of 1012 photons focused to
a 0.3-µm diameter spot at 8 keV photon energy (106 J/cm2), corresponding to an irradiance of
3 × 1019 W/cm2 with a pulse duration of 30 fs. The pattern is noisy because of low photon
counts (most detector pixel values are zero or one photon count). Therefore, even with the ex-
tremely high irradiances from an X-ray FEL, some averaging of the signal from many particles
is required to increase the signal to noise ratio even at a single orientation. The photon count
per pixel of solid-angle Ωp per shot, averaged over shells of q, for biological material can be
estimated by

〈I(q)〉q = I0 Ωp P r
2
e

〈
|ρ̃(q)|2

〉
q

= I0 Ωp P r
2
e Natom |f |2, (8)

whereNatom are the number of atoms in the molecule, and f is an average atomic scattering fac-
tor (e.g. close to that of carbon). Full diffraction information requires sampling at the Shannon
rate ∆qS as described in Sec. 3.1 on p. 10.9. In this case we have Ωp ≈ (λ/4π)2∆q2

S = (λ/4w)2

for a particle of width w, or

〈I(q)〉q = I0 P r
2
e

Natomλ
2

16w2
|f |2 (9)

in the case where there is no sample motion during the pulse. Equations (8) and (9) assume that
the positions of atoms are completely uncorrelated, which is approximately true at resolutions
approaching the atomic scale. They give an estimate of average counts per pixel per particle for
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Fig. 3: Calculated diffraction pattern of a single cow pea mosaic virus (CPMV) particle for
1012 incident photons focused to a 0.3-µm diameter spot, at 8 keV photon energy.

a single shot. For the CPMV particle, of width w = 31 nm, we obtain 〈I(q)〉 = 0.04 photons
per Shannon pixel, indicated by the red line in the plot of Fig. 3. We see from Eqn. (9) that
there is a large incentive to perform measurements at as long a wavelength as possible that
can support the desired resolution, and that the scattering signal is not strongly dependent on
the size of the object, since Natom ∝ w3. With this model we find that biological particles
of around 10 nm diameter require a pulse fluence of 1013 photons/(0.1µm)2 for an average of
0.1 photon per Shannon pixel at a resolution of 3 Å and a photon energy of 8 keV. For a pulse
duration of 30 fs this requires the exceptionally high irradiance of 4 × 1021 W/cm2, the effect
of which is examined in Sec. 4. At 3 keV photon energy, the required irradiance is reduced to
2 × 1020 W/cm2, although the increased photoabsorption cross section at this photon energy
leads to faster destruction of the object. The signal level of 0.1 photon per Shannon pixel is
higher than required by the averaging and assembly procedures discussed in Sec. 5.

3 Image Reconstruction

3.1 The Phase Problem
The reconstruction of a 2D or 3D image of the electron density ρ(x) requires the inversion of
Eqn. (7). While the modulus of the Fourier amplitudes can be obtained from

√
I(q), the phases

are missing. That is, we know the strength |ρ̃| of each volume grating (of a specified period and
direction given by q) in the image, but not how these gratings are shifted with respect to each
other. If the phases are known then the synthesized image is a coherent sum of these properly
positioned frequency components, which is simply the inverse Fourier transform of ρ̃(q):

i(x) = F−1{ρ̃(q)} ≡
∫
ρ̃(q) exp(−iq · x) dq. (10)

In the case of reconstructing an image from a single diffraction pattern, this image synthesis is
the same as would be carried out by a perfect lens. The lens of course avoids the need to retrieve
phases, since it acts upon the far-field wavefield incident on its pupil, and in a microscope the
image intensity is directly measured, not the far-field pattern. The resolution of the lens-based
image is equivalent to that retrieved from the diffraction pattern if the acceptance of the lens is
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the same as the angular extent of the recorded diffraction pattern. For example, a diffraction
pattern that extends to a scattering angle of 2θ will resolve spatial periods in the object as small
as d = λ/(2 sin θ). Similarly the lens-based image (of a coherently illuminated object) has
a resolution commonly expressed as d = λ/NA = λ/ sin(2θ), where NA is the numerical
aperture of the lens.
Note that just having a detector of large angular extent does not necessarily guarantee a high-
resolution image. The high-angle diffraction data of course must be detected above noise. The
same is indeed true for a lens-based microscope, where the resolution of the image might not
fulfill that expected by the numerical aperture of the lens. An estimation of the resolution in
an X-ray or electron microscope is obtained by examining the Fourier spectrum of the recorded
image. For our “lensless” imaging method we can look directly at the recorded diffraction
pattern, although the resolution of the image will depend upon the reliability of the phases
obtained. Methods of estimating this from the reproducibility of retrieved phases have been
developed [13], but this does not necessarily mean the phases are the correct ones. Perhaps
the most satisfactory way of estimating resolution is based on comparing images (or diffraction
phases) retrieved in separate measurements, as is common in crystallography and single-particle
electron microscopy.
The coherent X-ray diffraction data in Fig. 2 contains 512× 512× 512 pixels, or measurements
of Fourier amplitudes,

√
I(q). Inversion to an image in this case requires the recovery of over

108 phases. The retrieval of these phases depends upon the observation that the number of
independent measurements may exceed the number of degrees of freedom describing the image.
A much simpler example is the diffraction pattern of a pair of point scatterers, separated by a
distance w, and measured to a resolution qmax = 2π/d. In one dimension there are only four
values to describe this object: the distance between the points, the moduli of the scattering
strengths of both points, and the relative phase between them. From Eqns. (4) and (7) the
diffraction pattern is a fringe pattern

I(q) ∝ |ρ̃(q)|2 =
∣∣a1e

iφ1 + a2e
iφ2 exp(iw · q)

∣∣2 = a2
1 + a2

2 + 2a1a2 cos(wq − φ1 + φ2), (11)

which has a period qp = 2π/w and a contrast (Imax−Imin)/(Imax+Imin) = 2a1a2/(a
2
1+a2

2). The
fringe pattern is also shifted from the origin by the phase difference φ1−φ2. The measurements
of these quantities, and the overall strength of the diffraction pattern is enough to retrieve the
amplitudes of the scatterers although there is an ambiguity in the sign of the phase difference
and in which point has amplitude a1. In this example, the number of measurements matches
the number of degrees of freedom in the image (ignoring the trivial differences just mentioned).
Consider now an object consisting of three points in a row, each separated by w. This will
give diffraction fringes spaced by 2π/w due to interference between the scattering from the
extreme points, as for the two-point case, and also at half that period, π/w, from interference of
scattering from neighboring points. In this case it is not possible to uniquely assign the strengths
and phases of the points. For example, the two objects O1 = {1, 4, 4} and O2 = {2, 5, 2} have
equal diffraction patterns, where the three values are the scattering amplitudes of the three
equally-spaced points (see Fig.4 (a)). In fact, the 3-point problem generally has two solutions,
since {1, a+b, ab} and {a, 1+ab, b} generate the same pattern. Therefore, image reconstruction
is not generally unique in one dimension. In two dimensions it has been shown that the solution
is most likely unique, except for rare and special cases [14]. This is essentially due to the fact
that for each line in a 2D image there are orthogonal line images that constrain the image values.
For example 5-point 2D objects constructed from the sequences O1 or O2 can be distinguished
from each other through the difference in strength of the diagonal fringes in the patterns as
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Fig. 4: (a) Two different 3-point objects (top) have the same 1D diffraction pattern (center) and
spectrum of diffraction intensities (or autocorrelation) (bottom). (b) This equivalence is broken
by interference between objects in different directions, introduced in two or more dimensions.
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shown in Fig. 4 (b). While it may be possible to construct two or more 5-point 2D objects with
the same pattern, these are unusual cases. Image reconstruction is even more robust in three
dimensions.
The frequencies in the intensity pattern are represented by its Fourier spectrum Ĩ(x). This real-
space function is proportional to F−1{|ρ̃(q)|2} = ρ(x) ⊗ ρ∗(−x), the autocorrelation of the
electron density (as obtained from object spatial frequencies on the Ewald sphere in the case
of a single coherent diffraction pattern). We saw in the case of the two-point object that the
diffraction pattern consists of just two frequencies: the zero frequency (a dc term) and one of
period 2π/w. Ĩ(x) gives the phase and amplitude of these frequencies, as well as the negative
frequency which adds no further information since Ĩ(x) is Hermitian, Ĩ∗(−x) = Ĩ(x). The
image retrieval problem is equivalent to finding a compact function ρ(x) from its autocorrelation
function. Each sampled Ĩ(x) is dependent on all pairs of image points whose positions differ
by the vector x.
The simple examples of the point objects illustrates some of the requirements in measuring
diffraction data and hints at how the missing phases are encoded in the diffraction pattern. An
object of maximum width w will give rise to fringes of finest period 2π/w in the diffraction pat-
tern. The diffraction pattern is therefore band-limited, and from Shannon’s sampling theorem
the complete intensity field is determined from greater than two equally-spaced samples for ev-
ery 2π/w period: ∆q > ∆qS = π/w (where we refer to ∆qS as the Shannon sampling interval).
Collecting samples at finer intervals than π/w does not provide any more information (although
in practice there are reasons to do so, discussed below). For a resolution qmax = 2π/d, there
are NS = 2qmax/∆qS = 4w/d Shannon samples (if the diffraction pattern is measured from
−qmax to +qmax). The Shannon sampling interval in real space is ∆xs = d/2, and so the mini-
mum real-space field of view that can be retrieved from adequately-sampled diffraction data is
NS ∆xs = 2w, twice the width of the compact object. The diffraction pattern from a general 1D
complex-valued object of width w will consist of NS = 4w/d independent measurements, for
a resolution of d. The number of degrees of freedom in the complex-valued image is 2w/∆xs
(a real and imaginary value per each of the w/∆xs real-space samples). This is exactly equal
to the number of Shannon samples in the pattern, which is a necessary condition to retrieve a
unique image (although, as demonstrated above, not a sufficient condition). In 2D, an object
of square support of width w gives rise to N2

S independent measurements in its diffraction pat-
tern, needed to recover 2(w/∆xs)

2 = N2
S/2 image coefficients. In 3D there are four times as

many independent measurements as unknowns. Another way of viewing this is that the region
in real space that is constrained becomes a larger fraction of the sampled space as the number
of dimensions increases: outside the support we know that the image amplitude is zero.
The ratio Ω, of the number of independent measurements to the number of independent image
coefficients, appears to be a good indicator of the ability to reconstruct the image [15]. The
shape of the object’s support can increase this overdetermination ratio, with non-convex shapes
and those without centrosymmetry leading to higher values. For example a triangle support
gives Ω = 3 in 2D, compared with Ω = 2 for a square. Objects with well-separated components
are generally easier to reconstruct. A 2D object support consisting of two squares of width w
with their center points separated by > 2w has Ω = 3 since the autocorrelation support consists
of three squares of width 2w. The ratio Ω is increased further when when one of the components
is smaller than the other, approaching the case of Fourier transform holography as one of the
components approaches a delta function (see [16]). The autocorrelation vectors of magnitude
greater than the width of either of the components must be due to pairs of image points in
separated components, which further constrains the reconstruction.
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Note that a crystal consisting of identical objects arranged in a cubic lattice of widthw gives rise
to Bragg peaks separated by ∆qB = 2π/w, which is twice the Shannon sampling rate ∆qS (the
underlying molecular transform is under sampled in each dimension by a factor of 2 relative to
the Shannon rate). In this case the number of unknowns to be retrieved is twice the number of
independent measurements in 3D, Ω = 1/2, which explains why solving the phase problem for
crystals is more difficult than for non-periodic objects. Non-crystallographic symmetry (where
two or more copies of a molecule occur in the crystal which are not related by the symmetry of
the lattice) and changing the unit cell parameters by swelling are two methods to increase the
number of independent measurements to improve phasing efforts. In many cases the molecule
does not fill the entire volume of the unit cell and the smooth solvent region reduces the number
of coefficients to recover. In large complexes this solvent volume can reach as high as 80%,
which would increase Ω from 1/2 to 1.25 (if the support of the molecule was known). In
other instances, some proportion of the molecular structure may be known (e.g. an unknown
drug fragment bound to a known target), which may significantly change the balance of known
parameters to retrieved phases.

3.2 Iterative Phase Retrieval Algorithms
Reconstructing an image from a coherent diffraction pattern of an isolated object requires re-
trieving the diffraction phases, utilizing the constraint that the real-space image ρ(x) is zero
outside its support, plus any other constraints that can be applied. Iterative algorithms suc-
cessively apply operators with the aim to converge to the image which is contained within the
support and whose Fourier spectrum matches the measurement.
The simplest iterative scheme is Fienup’s Error Reduction (ER) algorithm [8], which begins
from the square root of the measured diffraction intensities and a random guess of the phases:
ρ̃′1(q) =

√
I(q) exp{iφ(q)}. The image ρ′1(x) is then formed by an inverse Fourier transfor-

mation. This image will not be zero everywhere outside the actual support S of the object. The
estimate ρ2(x) is obtained by setting ρ′1(x) to zero outside S. This is transformed to ρ̃2(q) which
will no longer be in agreement with the measured Fourier amplitudes. An update is formed by
setting ρ̃′2(q) =

√
I(q) exp{iφ2(q)}, where φ2(q) are the phases from ρ̃2(q). This procedure is

then iterated, ideally until both sets of constraints are satisfied.
The image can be represented by a vector in an N -dimensional vector space, where N is the
number of pixels (or voxels) in the image. The complex amplitude at each pixel gives the value
of the vector along each corresponding dimension. In this representation the ER algorithm can
be written as

ρn+1(x) = PS PM ρn(x) (12)

where the projection operators are given by

PS ρ(x) =

{
ρ(x) if x ∈ S
0 otherwise.

(13)

and

P̃M ρ̃(q) =

√
I(q)

|ρ̃(q)|2
ρ̃(q) (14)

with
PM = F−1 P̃M F . (15)
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Projection operators have the property that P 2 = P . Error metrics describing how well the
modulus and support constraints are satisfied can be expressed as Euclidean distances εS =
‖PSρ− ρ‖ and εM = ‖PMρ− ρ‖, respectively, where ‖ · ‖ is defined as the sum of the square
moduli of the vector components. It is clear from these definitions that an iteration of PS PM
will always decrease the errors εS and εM , which is why Fienup called this the Error Reduction
algorithm. However, this algorithm has no method to escape from local minima, which would
require a step that increases these metrics. Numerous algorithms have been proposed to over-
come the stagnation problem inherent in the ER algorithm, of which the most popular is the
hybrid input-output (HIO) algorithm [8], which can be expressed as

ρn+1(x) = (PS PM + (I − PS)(I − βPM))ρn(x), (16)

in the case when a only a support constraint is applied in real space. Inside the support, where
(I − PS)ρ = 0, the modulus constraint is applied as in the ER algorithm. Outside the support,
instead of setting ρ to zero to exactly satisfy the support constraint, the iterate ρn+1 is formed by
subtracting βPM ρn from ρn, where β is a constant usually in the range 0 to 1. The inspiration
for this algorithm comes from control theory, with the idea to provide a negative feedback to the
operation of applying the modulus constraint. The input to PM is compensated at those points
where the support constraint is violated. This allows the algorithm to escape local minima.
Often several iterations of ER are inter-dispersed between HIO steps. Other algorithms improve
the convergence rate by taking bigger steps in image space or altering the search strategy, as
explained and reviewed by Marchesini [17].
Iterations proceed until the error metrics converge. The final iterate is not necessarily equal to
the solution, ρ̄, which is the intersection of the two sets, ρ̄ = PS ρ̄ = PM ρ̄ [18]. The solution
can be found from ρ̄(x) = PM ρn(x). Due to measurement noise a single true solution cannot
be distinguished from a family of images that satisfy all constraints to within the the errors. An
average solution can be determined by continuing the iterations and generating solutions say
every 100 iterations, or by rerunning the algorithm from random phases [19]. This average is
unique, and is perhaps the best estimate of the true image that could be obtained from the data.
The procedure also allows us to determine the reliability of the retrieved phases. Diffraction
phases that always reconstruct to the same value will add complex amplitudes constructively,
whereas the sum of amplitudes with random phases will tend to zero. By comparing the mod-
ulus of this average to the square root of the measured diffraction intensities we obtain a value
at each diffraction pixel that is < 1 and only equal to 1 when phases are exactly consistent.
This value tends to decrease with increasing resolution due to the fact that diffraction ampli-
tudes decrease with resolution and are more influenced by noise. This ratio indicates how well
the spatial frequencies of the image are represented in the phasing process and is accordingly
referred to as the phase retrieval transfer function (PRTF). The average solution can be thought
of as the true solution imaged through an optical system with a transfer function given by the
PRTF. When performing the average the constant phase term must be normalized to the same
value for each solution, otherwise the PRTF will be < 1 for the zero frequency (representing
an attenuating optical system). Other low-order aberrations including wavefront tilt (displace-
ment of the image), defocus, and Seidel aberrations such as astigmatism and coma, can also
be removed from each solution before determining 〈ρ̄〉. Since these types of aberrations only
cause blurring or shifting of the image, they are not fully constrained by a loose support, unless
a positivity constraint is applied (the out of focus image of a positive-density object will have
negative amplitudes) [20].
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it is continually updated by thresholding the intensity of a
blurred version of the current estimate of the object under
reconstruction. Thresholding traces the boundary of the ob-
ject at a given intensity contour. The blurring acts to smooth
out noise and provides a form of regularization. In turn,
through the normal behavior of the HIO algorithm, the im-
proved support constraint gives rise to yet a better estimate
of the object. We find that this method is very stable, and
converges to the correct support and object for both simu-
lated and experimental x-ray-diffraction data. The algorithm
also successfully reconstructs complex objects !those that
cause large variations in the phase of the exit wave field in
two dimensions", which hitherto have been experimentally
difficult to reconstruct.8,9,13 This opens up the possibility of
image reconstruction from microdiffraction patterns, where
the illumination is tightly focused on the object.
Details of the algorithm are as follows. We start from the

autocorrelation function of the object. This real-space map,
obtained by Fourier transforming the diffraction pattern, dis-
plays all ‘‘interatomic’’ vectors, with peaks for all vectors
between isolated objects, shifted to a common origin. It con-
tains many more peaks than the object, and, even for an
acentric object, possesses a center of inversion symmetry.
Since the object must fit within the autocorrelation function,
our first estimate of the support is a mask obtained from this
function using a contour at the 4% intensity level. Both the
correct object density and its centrosymmetric inversion fit
within this initially centric mask, however, inversion symme-
try is progressively lost as the algorithm converges. We then
apply the HIO algorithm with feedback parameter #!0.9
and the real-space support given by the calculated mask. We
obtain the part of the diffraction pattern covered by a central
beam stop from the transform of the current estimate of the
object. Low-frequency components are treated as free param-
eters. Every 20 iterations we convolve the reconstructed im-
age !the absolute value of the reconstructed wave field" with
a Gaussian of width $ !full width at half maximum of
2.3548$) to find the new support mask. The mask is then
obtained by applying a threshold at 20% of its maximum.

The width $ is set to 3 pixels in the first iteration, and re-
duced by 1% every 20 iterations down to a minimum of 1.5
pixels. Similarities of the original Gerchberg-Saxton algo-
rithm with the ‘‘solvent flattening’’ method suggest that this
method could be extended to crystallography.
We have tested the method using two-dimensional experi-

mental data as well as two- and three-dimensional sets of
simulated data. The experimental soft x-ray transmission dif-
fraction pattern from two clusters of gold balls of 50
"5 nm diameter deposited on a silicon nitride window was
recorded at the Advanced Light Source at the Lawrence Ber-
keley Laboratory, using soft x rays with a wavelength of 2.1
nm.21,22 In Fig. 1 we present the experimental diffraction
pattern and the sequence of images produced by the algo-
rithm as it converges. As shown in the first step, the algo-
rithm starts with a support mask with perfect inversion sym-
metry. After a few iterations the symmetry is broken. First,
one of the three regions of the mask disappears, and then the
support envelope shrinks progressively around the gold ball
objects. Finally, a stable solution showing excellent agree-
ment with a scanning electron microscope image of the same
object is obtained. The solution also agrees well with a pre-
vious reconstruction by a different method.21 Note that we
would not expect a perfect match between the electron and x
ray images, since image formation processes are different for
electrons and x-rays. Repeated computational trials have all
shown the same degree of convergence to the correct image
or its centrosymmetric inversion. Although after a few hun-
dred iterations the algorithm always converged to the correct
image !independent of the initial random choice of phases",
as iterations were carried further both the support and the
image show arbitrary displacements due to the translational
invariance of the solution.
To further assess the validity of the algorithm we have

tested it on several sets of simulated diffraction patterns from
gold spheres and gray-scale images. The simulations all in-
clude noise and the loss of data due to a central beam stop.
They show that the algorithm is successful to the same de-
gree as the standard HIO algorithm with tight support. As

FIG. 1. Image reconstruction from an experimental x-ray-diffraction pattern. !a" X-ray diffraction pattern of a sample of 50-nm colloidal
gold particles, recorded at a wavelength of 2 nm. !b–e" shows a sequence of images produced by the algorithm as it converges. Number of
iterations: 1 !b", 20 !c", 100 !d", and 1000 !e". The reconstruction progresses from the autocorrelation function in !b" to an image in !e" with
a steady improvement of the support boundary !shown at the bottom of each frame". For comparison, a scanning electron micrograph of the
object is shown in !f". The scale bar length is 300 nm and the resolution of our reconstructed image is about 20 nm.
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S. MARCHESINI et al. PHYSICAL REVIEW B 68, 140101!R" !2003"
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Fig. 5: Image reconstruction from the coherent diffraction pattern in (a). The process starts
from zero phases, giving the autocorrelation of the image, in (b). The first support is obtained
by a threshold of this image. As phase-retrieval iterations proceed the support is re-estimated,
as shown in (c) to (e). An SEM image of the object is in (f). From [5].

When imaging at hard X-ray wavelengths away from atomic resonances, or imaging binary ob-
jects at any wavelength, a positivity constraint can be applied to the real-space image values.
With soft X-rays (photon energies below about 1 keV) most interesting objects are complex val-
ued. In this case, a successful reconstruction requires a support constraint that closely matches
the actual boundary of the object, since with a loose support an out-of-focus image would be a
valid solution. However, it is unlikely that the support is known to such accuracy. Marchesini
noticed that the tighter the support constraint the better the reconstruction, leading him to pro-
pose the Shrinkwrap method [5]. As illustrated in Fig. 5 this adds a dynamic support constraint
to an iterative transform algorithm, where the support is updated occasionally based on the cur-
rent reconstruction. Image pixels below a certain threshold of a blurred version of the current
reconstruction are treated as being outside the object. Starting from the support of the image
autocorrelation, the support tends to gradually shrink to the boundary of the object, improving
the reconstruction as it does so (which then gives an improved estimate of the support). A stop-
ping criterion must be added otherwise the method tends to over shrink; when this happens the
error εS increases abruptly, allowing this transition to be determined.
In many experimental situations, especially single-shot imaging at X-ray free-electron lasers,
there are missing data at low scattering angles near the zero-order beam. Unless the sample has
been designed to be mostly absorbing (as can be achieved in imaging magnetic domains in thin
films, for example) the zero-order beam will be extremely intense, and is usually managed with
a beam stop or a hole in the detector. If this missing region is as small as a single speckle, only
the overall scattering strength of the object is lost. As this region increases more information is
lost, often causing iterative algorithms to fail. When only a support constraint is applied, there
will be particular modes that are neither constrained by the diffraction measurement nor the
support [19]. However, it is possible to reconstruct images missing these low frequencies, just
as a lens with an annular pupil will give rise to high-pass filtered images [21].

3.3 Coherence and Detector Requirements
Reconstructing images of non-periodic objects from their X-ray diffraction patterns has been
found to be more problematic than experienced in computer simulations or visible light exper-
iments. This may be due to the fact that most X-ray experiments have been carried out with
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partially-coherent beams. The van Cittert-Zernike theorem states that the mutual coherence
function of a beam propagating from an incoherent source is given by the Fourier transform of
the source intensity distribution. Application of this theorem to an object illuminated by this
partially-coherent beam shows that its far-field diffraction pattern is given by

I(q) = |ρ̃(q)|2 ⊗ p(q) (17)

where p is the spatial distribution of the source, such that its angular extent is given by p(4πθ/λ).
More generally, in the Gaussian-Schell model the source can described in terms of mutually in-
coherent modes and the diffraction pattern is then the sum of intensity patterns arising from
each mode. The image reconstruction as described in the previous section assumes full coher-
ence, with p(q) = δ(q). As can be seen from Eqn. (17) the effect of the source is to reduce the
contrast of the diffraction pattern, and in particular causing the zeroes in the intensity pattern to
have positive values. This causes problems in assigning phases to the values

√
I(q) since there

will be a discontinuity from negative to positive diffraction amplitudes.
The effect of the finite width of detector pixels is also a convolution, given by Eqn. (17), where
p(q) is now the pixel sensitivity. The decrease in fringe contrast in the diffraction pattern causes
a modulation of the autocorrelation by the function p̃(x), the modulation transfer function of
the detector or the mutual coherence function of the source. The width of this function (i.e. the
transverse coherence length) must be significantly wider than the width of the object autocor-
relation, or twice the largest diameter of the object. For example, a square-pixel detector that
is fully sensitive across its area (which is approximately the case for CCD detectors) will not
detect the finest fringes in the pattern when the pixel spacing matches the Shannon sampling
rate. That is because a pixel integrates over half a period of these finest fringes, which will be
exactly equal to the integration over the other half period in its neighboring pixel. Improved
estimates of the Shannon samples are obtained by increasing the pixel density.
Often the function p can be estimated or measured so that the diffraction pattern contrast can be
corrected. This deconvolution is carried out by dividing the autocorrelation Ĩ(q) by the MTF
p̃(q), a high-pass filtering operation. Since this deconvolution procedure can amplify noise,
following Whitehead et al. [22] we could propose to convolve the current iterate with p before
comparing with the measurement to update the modulus of ρ̃, by replacing Eqn. (14) with

P̃M ρ̃(q) =

√
I(q)

|ρ̃(q)|2 ⊗ p(q)
ρ̃(q). (18)

In this way the moduli are updated by first computing the partially-coherent diffraction pattern
that would arise from the current estimate of ρ(x), and comparing this with the measurement
I(q). Equation (18) is not a projection operator, since repeated application may continue to
change ρ. The modal method for reconstruction of images from partially-coherent diffraction
patterns derived by Whitehead et al. [22] has nevertheless been found to substantially improve
the success of image reconstructions using experimental data. When the width of p is small
enough that the highest period fringes discerned in the pattern are due to the most distant inter-
object separation, then even rough estimates of p lead to improved reconstructions.
The assumption of quasi-monochromaticity inherent in the discussion up until now requires a
bandwidth spread ∆λ/λ < 1/NS . This condition can be relaxed if the spectrum is known such
that the polychromatic diffraction pattern due to the current estimate of ρ(x) can be calculated
[23], in a similar treatment to partial spatial coherence. Additionally, the framework of partial
coherence can be applied to changes in the sample itself, either due to X-ray induced damage
[24] (and see below) or sample motion [25].
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4 Outrunning Radiation Damage

4.1 Diffraction Before Destruction and Time-Delay Holography

As mentioned in the Introduction, recording diffraction from non-crystalline material requires
a vastly greater exposure than required for crystalline material. The limitation to acquiring
high-resolution diffraction information is due to radiation damage: the very radiation used to
determine structure impairs that structure. The dose (energy per unit mass) that cryogenically
cooled biological material can withstand is about 30 MGy before changes are observed in the
molecular constituents of the sample. By using pulses shorter than the timescale of radiation
damage processes, we can literally outrun damage and increase the dose by many orders of
magnitude [11]. With short-pulse X-ray FEL radiation at high irradiance (1018 to 1021 W/cm2

or doses up to 100 GGy at 8 keV photon energy) the high degree of ionization of every atom in
the sample will cause an isolated object to Coulomb explode, yet the inertia of atoms provides
on the order of 10 fs before atomic displacements will significantly alter the diffraction pattern
at atomic resolutions. The electron density of ions is of course lower than neutral atoms, and
this ionization will also give rise to modification to the pattern even before atomic motion oc-
curs. The random occurrence and sequence of ionization will on average cause an uncorrelated
(that is, q-independent—at least at low resolution) addition of diffuse diffraction and reduce the
overall contrast. This method of “diffraction before destruction” was first demonstrated at the
FLASH FEL at soft X-ray wavelengths [26], and has now been verified to hold at atomic res-
olution [27], and the processes of radiation damage over the timescale of the pulse is an active
area of experimental and theoretical research.
Since initial FEL experiments were limited to long wavelengths (and hence low spatial resolu-
tion), essentially no damage could be observed over the limited duration of the pulse [26]. The
effects of the X-ray pulse on the material could only be discerned by tracking the explosion at
tens of nanometre length scales taking place on picosecond timescales. This was carried out by
an interesting method dubbed time-delay holography [28]. After interacting with the sample,
the pulse is reflected by a normal-incidence multilayer mirror back onto the sample to diffract
again. The initial (prompt) diffraction is also reflected in the mirror. This and the delayed
diffraction propagate together to a diffraction camera located in a backscattering geometry (the
incident beam passes through a hole in this detector on the way to the sample). The time delay
between the pulse passing through the sample for the first and second times is given by 2`/c
where ` is the distance from sample to mirror and c the speed of light. In experiments this was
varied from 350 fs to several picoseconds. The two diffraction patterns interfere at the detector
since there is zero path difference between the light that diffracts first from the sample then
reflects and the light that reflects first from the mirror then diffracts. Unfolding the effect of the
mirror shows we are diffracting from two objects longitudinally displaced a distance 2` from
each other. Two point sources in this configuration give rise not to straight fringes, but circu-
lar fringes with a spacing that decreases with the square of scattering angle (the center of the
circles is on the line passing through both objects, i.e. normal to the mirror). Such a pattern is
convolved with each scattering point in the sample. The fringes precisely encode the time delay,
and the prompt diffraction (from the known undamaged object) acts as a holographic reference
to help retrieve an image of the exploding object. A shift of the fringes gives an interferometric
measurement of the change in refractive index of the object, which was used to determine that
the expansion of a latex microsphere test object was less than 6 nm in 350 fs. The idea for this
experiment was inspired by an exhibit of Newton’s dusty mirror at a science museum where
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circular fringes could be observed (in visible light) from spores dusting the front surface of a
back-silvered mirror. Newton first observed and described interference via this arrangement,
although Thomas Young was the first to interpret the observations correctly. Our method of
reflecting the same pulse onto the sample to examine it at a precise later time was also used to
confirm predictions that a sacrificial layer around an object (a tamper) delays the explosion of
that object [29].

4.2 Diffraction Termination

Molecular dynamics calculations can give detailed simulations of the X-ray induced explosion
that take into account the initial molecular structure of samples. These calculations are com-
putationally expensive, and so are limited to small samples such as single macromolecules. A
continuum approach applies methods developed to model dense plasmas such as in stellar in-
teriors (somewhat larger than a molecule), but makes the assumption that in small regions the
dynamics of the sample are isotropic. A code called Cretin was used to simulate the structural
changes at atomic resolution in small protein crystals of about 1µm diameter, embedded in a
water tamper [12]. The calculations make discrete time steps in which the atomic populations
and electron and photon distributions are calculated utilizing known transition rates and opac-
ities. These provide electron and ion temperatures, ionization states and ion collisions, from
which mean atomic displacements are computed, as shown in Fig. 6. The RMS displacements
are obtained from a diffusion equation where the diffusion coefficient is calculated from the ion
collision frequencies and temperatures. As seen in the figure the RMS atomic displacement σ
increases approximately as t3/2 over the time t of a constant-irradiance pulse. The explosion
occurs faster for higher pulse irradiance, with σ approximately proportional to the square root
of pulse irradiance (photons/unit area/unit time) for the range of irradiance considered here. At
8 keV photon energies, this dependence continues beyond an irradiance of 1021 W/cm2 which
corresponds to focusing 1013 photons in 10 fs to a spot of 0.4µm diameter. At this photon
energy and irradiance, an RMS displacement of 1 Å is reached in about 10 fs.
Each X-ray induced explosion of an identical object will be different due to the random se-
quence of ionization and atomic displacements. The diffraction signal obtained by averaging
over many instances of these explosions can be obtained through the derivation, found in several
text books (see e.g. [30]), for describing small random displacements in crystals due to thermal
motion. It is interesting to note that this common derivation makes no explicit assumption as
to whether the almost-identical objects are arranged and exposed together (as in a crystal) or
exposed in a serial fashion and diffraction intensities then summed. This is the case if there
is no spatial correlation to the displacements and hence no correlation of these displacements
from unit cell to unit cell (if considering a crystal), and that the RMS displacement within
a single object is the same as the RMS displacement in the whole crystal. We assume that
diffraction patterns are properly oriented prior to averaging, by the methods of Sec. 5. The
effect of isotropic displacements is to multiply the diffraction signal at a momentum transfer
q by a factor of exp(−q2σ2). Here σ is the RMS of the component of the displacement in the
direction of q, equal to the 1D component of the mean displacements for isotropic displace-
ments, as plotted in Fig. 6. In our accelerating explosion, σ increases during the exposure. The
instantaneous diffraction signal at a resolution d is reduced by 1/e when σ reaches a value of
d/(2π). Displacements of only 0.5 Å terminate the accumulation of intensities at 3 Å resolution.
The summed diffraction signal from recorded patterns is the pulse-integrated signal. Following
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Fig. 6: Plot of the RMS isotropic atomic displacement σ as a function of time t during pulses
of constant irradiance as shown in the legend, for a photon energy of 8 keV. The open circles
indicate the time required to reach a fluence of 106 J/cm2 as in the simulation of Fig. 3, showing
that higher pulse power (photons per unit time) gives less damage for a given total scattering
signal. Lower resolution can tolerate longer (and therefore less intense) pulses. From [12].

Eqn. (7) this diffraction signal for a constant irradiance pulse of duration T is given by

I(q) = I0 T Ωp P r
2
e

{
|ρ̃(q)|2 g(q;T ) +Natom|f |2(1− g(q;T ))

}
, (19)

g(q;T ) =
1

T

∫ T

0

exp{−q2σ2(t)} dt. (20)

Here we have omitted another multiplicative Wilson factor of exp(−Bq2/8π2) to describe the
structure variation inherent in the unexposed samples, and note that the total incident fluence is
given by I0 T (in units of photons per unit area).
Equation (19) consists of two terms. The first is the undamaged diffraction pattern |ρ̃(q)|2
modified by the dynamic disorder factor g(q;T ), a function that decreases monotonically with
increasing q. The second term is a slowly-varying background of scattered counts that is pro-
portional to the overall scattering strength of the sample and which increases monotonically
with increasing q. This term is 0 at q = 0. Thus, in general, the disordering takes scattered
counts out of the information-containing Shannon samples into a background that diminishes
the contrast. This occurs first at high q and works its way towards lower resolution with time.
Applying the empirical time dependence observed in Fig. 6 of σ(t) = σT · (t/T )3/2, with σT
the RMS displacement at the end of the pulse, we find

g(q;T ) =

∫ 1

0

exp(−q2σ2
T t
′3)dt′ =

Γ(4/3)

(q2σ2
T )1/3

− 1

3
E2/3(q2σ2

T ) (21)

where E2/3(x) is the exponential integral function of order 2/3, and which tends to zero as the
argument x increases, and Γ(4/3) = 0.89. That is, for high resolution g(q;T ) ≈ (q σT )−2/3.
The behavior of g can perhaps be better understood from Eqn. (20). At early times in the
pulse σ(t) is small and the instantaneous disorder factor (the integrand) is close to unity and
the diffraction pattern, proportional to |ρ̃(q)|2, continues to accumulate. When σ reaches a
value of 1/q this accumulation stops and the background then accumulates. This happens at a
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Fig. 7: (left) Average Bragg signal of Photosystem I micro crystals as a function of resolution
for different pulse durations for pulse irradiance up to 1017 W/cm2 at a photon energy of 2 keV.
(right) The ratio of the average Bragg signal to that at the shortest pulse duration, and compar-
ison to ratios of the dynamic disorder factor g(q;T ) obtained from continuum modeling of the
evolution of the RMS atomic displacements as shown in Fig. 6. From [12].

time toff such that 1/q = σT (toff/T )3/2, or toff = (q σT )−2/3 T . The proportion of the pulse that
contributes to the cooperative diffraction is given by toff/T , in agreement with the limiting value
of the integration of Eqn. (21). Pulses longer than toff do not contribute any more information
at resolutions of q or better, and simply accumulate background for the rest of the pulse.
Our analysis suggests that the source metric to maximize signal acquisition is not the total pulse
fluence, but the pulse irradiance (or source power, considering that the spot size is essentially
dictated by focusing optics). If we simply increase the pulse energy (number of photons) by
proportionally increasing the pulse length, then we only increase the background without im-
proving the signal. Increasing the irradiance increases the rate of signal photons arriving on the
detector but does shorten the time toff that these photons accumulate. However, given the linear
dependence of σ2

T on pulse irradiance observed in Fig. 6 we find that the total signal scales
as I0 toff ∝ I

2/3
0 . However, if irradiance is scaled higher than 1021 W/cm2 (at 8 keV photon

energy) we can expect almost every electron to be stripped from every atom in the sample. In
this case the turn-off time of diffraction will not be necessarily limited by atomic motion, but
the variability in the atomic scattering factors at undisplaced atomic positions. This has no spa-
tial correlation, and leads to a diffuse background that is independent of q and a corresponding
uniform decrease in the signal. In this case, our q-independent turn-off time will depend on the
atomic relaxation processes, which are not much longer than several femtoseconds.

4.3 Bragg termination

Among the first experiments to be carried out at the LCLS, the world’s first hard X-ray FEL
[1], was to measure the effect of pulse duration and fluence on coherent diffraction patterns.
The samples chosen for confirming “diffraction before destruction” and mapping out the be-
havior of diffraction termination were protein nanocrystals flowing in a water jet. These are
biological material and are confined in a water medium, as per the system modeled in Fig. 6.
The crystallinity gives a great advantage that the diffraction signal |ρ̃(q)|2 is confined to Bragg
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peaks, whereas the background due to the explosive disordering varies very slowly across the
detector. The presence of discernible Bragg peaks indicates that structure at a particular length
scale persisted for some fraction of the pulse. Indeed, the measurement of the Bragg intensities
as a function of pulse duration allowed us to determine this fraction, and hence quantify toff and
σT . For even small protein nanocrystals, and pulses not very much longer than toff , the disorder
background is much weaker than the Bragg peaks. Therefore, for nanocrystallography it is not
necessary to limit pulse durations to toff . The Bragg peaks terminate when the disorder reaches
a level of σ = d/(2π) for a resolution length d. The effect of the explosion is a filtering of
the Bragg values by the dynamic disorder factor g(q;T ), which can be corrected by dividing
the Bragg signal by an estimate of this function based on modeling of the explosion or from
measurements at several pulse durations. In addition, the method of nanocrystallography opens
up protein structure determination to samples that cannot be grown into crystals of sufficient
size or quality for standard synchrotron radiation measurements or are particularly sensitive to
radiation damage, making this a very attractive and important method for biological structure
determination [27].
Figure 7 shows measurements of the termination of Bragg peaks as a function of resolution for
different pulse durations, carried out at a photon energy of 2 keV (6 Å wavelength) on nano and
microcrystals of Photosystem I. This is a large membrane complex involved in photosynthesis,
and chosen for these experiments primarily because of its large unit cell and because it has
proven to be a very difficult sample for conventional synchrotron measurements which required
crystals several hundred microns large. As can be seen from Fig. 7 the diffraction efficiency is
very much lower at high resolution for longer pulses compared with the shorter pulses, simply
because only the first part of the pulse is contributing to the diffraction. Even so, the diffraction
patterns with 300-fs pulses give Bragg peaks, at 1-nm resolution, that are easily measured and
well above background. The model predictions contain no fitted parameters, and the agreement
with the experimental results gives confidence of the predictions for atomic-resolution imaging.

5 Assembly of Diffraction Data from Identical Particles
As we have seen, the intense and extremely brief pulses from X-ray FELs solve the problem of
radiation damage, but a single object only survives a single pulse. In the scattering geometries
discussed here, this limits information collected in a single pulse to a two-dimensional slice (on
the Ewald sphere) through the three-dimensional diffraction intensities |ρ̃(x)|2. The acquisition
of full three-dimensional information requires combining data from many copies of identical
objects in different orientations. Summing data from many objects also increases the signal
beyond that available in a single-shot pattern, which is limited by the number of incident pho-
tons per pulse as estimated by Eqn. 9. There are several ways in principle to acquire data from
multiple particles so that scattering information can be combined into a single 3D dataset. We
consider here methods in which the orientation of the particle to the frame of the laboratory is
not known a priori, referred to by Elser as cryptotomography [31].

5.1 Serial Nanocrystallography

The most familiar and most successful method for increasing the diffraction signal of macro-
molecules and their assemblies is by forming crystals of these samples. Every copy in the
crystal is oriented with respect to all others, and these are arranged in a 3D lattice which gives
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Fig. 8: The assembled diffraction data from 56,000 nanocrystal diffraction patterns of Photo-
system I collected at LCLS at a photon energy of 2 keV. Figure by Thomas White, CFEL DESY.

constructive addition of the scattering in the particular locations of Bragg peaks. Since the real-
space electron density of the crystal is a convolution of the repeated motif with a lattice, the
Fourier representation ρ̃(q) is the transform of the motif modulated by the Fourier transform of
the lattice. The total integrated signal in each Bragg peak is Nmol times greater than that of the
single particle, where Nmol is the total number of repeats in the crystal, and furthermore this
signal is concentrated into a Fourier-space volume much smaller than the Shannon volume. For
short X-ray FEL pulses, the crystalline diffraction (from structure that is correlated from unit
cell to unit cell) will always give much higher counts per pixel than the disordered background.
This background (which is also proportional to the total number of atoms in the crystal—see
Eqn. (19)) uniformly fills the detector area between Bragg peaks whereas the peaks themselves
are concentrated into approximately 1/N

2/3
mol of the area between peaks. That is, a 10× 10× 10

crystal will have peaks about 100 times above background when g = 1/2. The well-known
disadvantage of crystals, mentioned in Sec. 3.1, is that the Bragg-peak spacing ∆qB is twice the
Shannon spacing ∆qS for an object with the same width as the real-space lattice period, leading
to fewer independent measurements than image coefficients.
In serial crystallography [27], crystals of a few micrometer or smaller are delivered to the X-ray
beam in a jet of a water. A crystal is hit by chance and is situated in a random and unknown
orientation. The determination of this orientation can be readily made from the pattern itself
by indexing the Bragg peaks [32]. Several so-called auto-indexing programs have been de-
veloped for crystallography which search for a repeating lattice in the measured diffraction
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pattern, knowing the mapping of that pattern onto the Ewald sphere. In the simple example of
a monoclinic crystal with different unit cell spacings in each dimension, the reciprocal lattice
basis vectors can be identified quite readily from the observed reciprocal lattice spacings and
arrangement. Each Bragg peak in the pattern can thereby be indexed by its 3D Miller index h
and thereby properly accumulated in a running sum of |ρ̃(h)|2. In this way the diffraction data
are built up, averaging over all crystal shapes and sizes, just as in the case for X-ray powder
diffraction. The difference in this case is that the summation is done in three dimensions in-
stead of the single magnitude of q, giving us complete 3D information as if collecting data from
a rotating single undamaged crystal. An example of this 3D assembly is shown in Fig. 8.

5.2 Single-Particle Diffraction
Single-particle X-ray diffraction aims to carry out the same acquisition and analysis steps as for
serial nanocrystallography, without the advantage of a lattice to guide us to the orientation, and
without the addition of scattering from many unit cells that is concentrated into narrow Bragg
peaks. It is the special case of the single-unit cell crystal. It is of particular interest because
it could be applied to any series of identical objects that cannot be crystallized and allows
measurement of all independent Shannon samples for the application of the phase-retrieval
methods described in Sec. 3.2. The orientation analysis must be carried out on patterns with
much lower signal than a single photon per pixel, as is the case for pulse energies that can be
generated at X-ray FELs, such as shown in Fig. 3.
One method for determining the relative orientation of patterns is by searching for common arcs
of intersection. Since every diffraction pattern samples information on an Ewald sphere that
passes through the origin of Fourier space, any two patterns will always intersect along an arc
that also passes through the origin. If ρ(x) is real valued, as it is away from atomic resonances
and for hard X-ray wavelengths, then |ρ̃(q)|2 is centrosymmetric, and there will be another
arc of intersection when forming the centrosymmetric inversion of one of the patterns. (Note
that the diffraction pattern itself will not have centrosymmetry because the Ewald sphere is not
centrosymmetric.) These two intersections allow the identification of the relative 3D orientation
of the patterns. The identification of the two arcs does work even if the object density is not
strictly real-valued, as shown in Fig. 9. Identifying the arcs of intersection requires a minimum
signal to noise level in the patterns, which could be built up by first classifying patterns into
groups of similar enough orientation that they can be summed together without knowing their
relationship to other patterns. This is the approach common in the similar method in cryo-
electron microscopy, where noisy real-space images are first classified into groups of similar
images and then the class averages are oriented. It has been found that when working directly
with diffraction amplitudes, however, that the process of correlation and orientation can be
merged into one process. Recent computational experiments [34] suggest that the correlations
between pairs of patterns can be made on arcs, from which a consistent set of orientations for
all patterns can then be found. After arbitrarily fixing the orientation of one pattern, N − 1
estimates of the orientation of each of the remaining N − 1 patterns can be obtained. This
procedure makes use of all correlations between pairs of patterns.
Other analysis methods for cryptotomography include the expansion-maximization-compression
(EMC) framework and topological mapping [31]. The EMC method seeks to build up a model
W (q) of |ρ̃(q)|2 by placing the two dimensional diffraction pattern measurements over a distri-
bution of their most likely orientations. The method is iterative, starting from unknown orienta-
tion assignments. In each iteration, the modelW is expanded into diffraction patterns that would
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c d

Fig. 9: Identification of common arcs of intersection in experimental X-ray diffraction patterns
taken from the same 3D nano object at two orientations. The object and diffraction data are
the same as in Fig. 2. (c) shows the difference of diffraction intensities, I1(q) − I2(q) and (d)
shows I1(q)− I2(−q). Figure by Gösta Huldt, Uppsala University.

arise from such an object over a finite set of predetermined uniformly distributed orientations.
The maximum likelihood step follows in which the model is changed to best agree with each of
the model tomograms. In the final compression step the model tomograms are made consistent
with a single updated model W ′(q). This method has successfully been applied to reconstruct
the relatively simple 3D diffraction data of ellipsoidal iron oxide nano-particles measured at the
FLASH FEL [33]. Elser has determined the lowest signal limits required to carry out such a
procedure and finds that objects can be recovered at counts considerably less than a single pho-
ton per pixel per pattern [31]. A method that appears conceptually different (but is related [35])
is a topographic mapping approach. Utilizing the concept described in Sec. 3.2 of a diffraction
pattern as a vector in a finite-dimensional vector space, it is noted that the diffraction patterns
(or images) obtained at different orientations must map out a continuous 3D manifold in that
higher-dimensional space. Using generative topographic mapping methods, in which this man-
ifold is mapped out from noisy measurements, Fung et al. [36] recovered the structure of a
molecule from simulated patterns with less than 0.04 counts per pixel.

6 Outlook

The LCLS, the first hard-X-ray FEL in the world, is now operational and many groups are car-
rying out new explorations into the possibilities and methodologies of imaging with brilliant
coherent X-ray pulses. There is still much development needed before single-particle struc-
ture determination can be carried out routinely, but we now have strong foundations for these
endeavors, as described here. All the steps for structure determination have been elucidated
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theoretically with experimental confirmation. The compelling idea that the extreme irradiance
of X-ray FEL pulses would allow us to obtain more information from a sample than possible
at conventional sources, by virtue of outrunning the explosion caused by that high irradiance,
has been examined in detail over a range of photon wavelengths, pulse durations, and fluences.
These measurements give confidence that “diffraction before destruction” is valid to atomic res-
olution. More studies are required to determine if the dynamics of the explosion are dependent
on the initial structure, especially in molecules with heavy atoms which could produce local
centers of high charge that could consistently repel their surrounding atoms. However, even if
there are correlated motions that occur during the explosion, the rapid destruction of coopera-
tive diffraction by an RMS displacement of d/(2π) due to motion of the majority of the atoms
(which are of roughly equal mass) means that errors at a particular resolution will be small
unless the correlated motion can be 2π times faster than the uncorrelated motion. We have
found that nanocrystal diffraction is particularly impervious to the effect of the X-ray induced
explosion since the diffraction from the periodic undamaged component of the structure is eas-
ily discriminated from the scattering of the disordered component. Our model of diffraction
termination shows that the metric to optimize sources for imaging is pulse power. Today, the
LCLS produces 50 GW X-ray pulses and designs have been proposed that could produce pulses
beyond 1 TW. [37, 38].
It is straightforward to calculate the diffraction pattern of a molecular assembly (from Eqn. (7)),
showing that signals at atomic resolution will invariably be at extremely low photon counts. The
theoretical tools have been developed to combine data from serial measurements of identical
objects to build up the three-dimensional Fourier spectrum of the average object. The exper-
imental challenges lay in being able to actually record such weak diffraction patterns without
the introduction of extraneous noise sources. Is it really possible to illuminate a macromolec-
ular object with 1013 photons and yet ensure that the single photons measured in the detector
pixels have scattered from that object, and are not due to scattering from optical elements, gas
molecules, or other means? Once the data assembly has been accomplished, the reconstruc-
tion of a three-dimensional object is ensured by the phase retrieval algorithms that have been
adequately demonstrated in many contexts. Real experimental effects such as wavelength band-
width, spatial coherence, and detector response can all be characterized and accounted for. The
phase retrieval of diffraction data sample at or beyond the Shannon rate gives an overdetermined
dataset in two and three dimensions, and ab initio image retrieval is possible. That is, the phase
problem is more easily solved than in the case of crystals, where over 50 years of insights and
breakthroughs can additionally be drawn upon or adapted. For example an extension of the
method of anomalous diffraction to extreme irradiance has been proposed [39].
These ideas and underpinnings have already given us a new route to obtain high-resolution
room-temperature structural information from protein nanocrystals that are too small to be an-
alyzed at conventional sources. The short pulse duration from X-ray FELs gives inherently
high temporal resolution, which can be exploited in pump-probe experiments where a sample
is stimulated by a short laser pulse at a precise time before the arrival of the X-ray pulse. The
femtosecond pulses are over 1000 times shorter than synchrotron pulses, giving access to a
full exploration of the motions involved in chemical reactions, molecular vibrations, and laser-
matter interactions. The serial method can be applied to measurement of irreversible reactions.
Since the sample is destroyed by the pulse anyway, there is no requirement to bring it back to the
ground state as is the case for stroboscopic measurements. These experimental techniques will
continue to evolve as the availability of X-ray FELs increases, providing a very bright future for
X-ray imaging, in more ways than one.
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