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Neurogranin (NRGN) is the main postsynaptic protein reg-
ulating the availability of calmodulin-Ca(21) in neurons.
NRGN is expressed exclusively in the brain, particularly
in dendritic spines and has been implicated in spatial learn-
ing and hippocampal plasticity. Genetic variation in
rs12807809 in theNRGN gene has recently been confirmed
to be associated with schizophrenia in a meta-analysis of
genome-wide association studies: the T-allele was found
to be genome-wide significantly associated with schizophre-
nia. Cognitive tests and personality questionnaires were ad-
ministered in a large sample of healthy subjects. Brain
activation was measured with functional magnetic reso-
nance imaging (fMRI) during an episodic memory encod-
ing and retrieval task in a subsample. All subjects were
genotyped for NRGN rs12807809. There was no effect
of genotype on personality or cognitive measures in the
large sample. Homozygote carriers of the T-allele showed
better performance in the retrieval task during fMRI. After
controlling for memory performance, differential brain ac-
tivation was evident in the anterior cingulate cortex for the
encoding and posterior cingulate regions during retrieval.
We could demonstrate that rs12807809 of NRGN is asso-
ciated with differential neural functioning in the anterior
and posterior cingulate. These areas are involved in epi-
sodic memory processes and have been implicated in the
pathophysiology of schizophrenia in structural and func-
tional imaging as well as postmortem studies.
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Introduction

Neurogranin (NRGN) is the main postsynaptic protein
regulating the availability of calmodulin-Ca(2þ) in neu-
rons, by binding to calmodulin in the absence of
calcium.1 NRGN is expressed exclusively in the brain.2

It is abundantly expressed in brain regions involved in
cognitive functioning and especially enriched in CA1 py-
ramidal neurons in the hippocampus3 and has been
shown to play a role in long-term potentiation,4 spatial
learning, and hippocampal plasticity.5 Furthermore,
the NRGN gene has been implicated in schizophrenia6,7

and the T-allele of the single nucleotide polymorphism
(SNP) rs12807809 (C/T) located upstream of the
NRGN has recently been shown to be genome-wide sig-
nificantly associated with schizophrenia in a meta-
analysis of genome-wide association studies.8

Although the exact etiology of schizophrenia still
remains uncertain, abnormalities in brain structure and
function along with a strong genetic component have
consistently been implicated in the disorder. Further-
more, several cognitive domains are impaired, among
which episodic memory appears to be one of the most
severely affected.9 Recent functional magnetic resonance
imaging (fMRI) studies on healthy participants docu-
ment that variation in susceptibility genes for schizophre-
nia, among others NRG1,10 G72,11 DTNBP1,12 and
ZNF804A13 modulate the neural activation patterns as-
sociated with cognitive processing.
Among the cognitive domains impaired in schizophre-

nia, episodic memory deficits show high effect sizes
(d = 0.74 inHeinrichs and Zakzanis9), while other domains
such as executive functions, working memory, and verbal
fluency also show marked levels of impairment.9,14 Epi-
sodicmemory processing has been linked to the hippocam-
pus, cingulate, and frontal and temporal cortical regions.15

Besides memory impairment in patients,9 relatives,16

and subjects at high risk,17 many studies have shown struc-
tural alterations in patients with schizophrenia in the me-
dial temporal cortex/hippocampal formation.18–20 These
alterations can also be found in subjects with an at risk
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mental state.21,22 Further functional imaging has demon-
strated dysactivation during episodic memory encoding
(eg, ref. 23–25) and retrieval26 in the hippocampal cortex
in patients. These alterations of medial temporal structures
have also been demonstrated in relatives27–29 and high-risk
subjects,30,31 which underlines the importance of these
structures in the aetiology of schizophrenia.

The cingulate cortex (especially the anterior part) has
been shown to be hyperactivated in patients with schizo-
phrenia compared with controls during both encoding
and retrieval tasks.32–34 In patients, the anterior commis-
sural line (AC) volume is decreased 35 and the posterior
cingulate cortex is smaller in both patients and their
healthy relatives compared with controls.36

In animal models, NRGN has been shown to exert
a profound influence on memory formation: It could
be demonstrated thatNRGN is involved in long-term po-
tentiation memory formation and it enhances synaptic
strength in the hippocampus.3,37–40 In addition, NRGN
null mice exhibit anxiety related behavior.41 During de-
velopment in the rat brain, the hippocampus and the AC
are among the first structures to express NRGN.42

Genetic risk variants for schizophrenia with high allele
frequencies and limited effects are also present in a large
proportion of the healthy population. It has been shown
that investigating the impact of a risk variant in healthy
individuals on objectively measurable phenotypes such as
performance in fMRI-based neuropsychological para-
digms constitutes a successful approach.13 Investigating
the influence of genetic variation in healthy subjects cir-
cumvents possible confounders such as medication status
as well as possible influence of the disorder on brain
structure and function. We therefore tested the influence
of rs12807809 on cognition and personality in healthy
subjects. Furthermore, as NRGN has been implicated
in memory processes and anxiety related traits in ani-
mals,3,41 the neural correlates of episodic memory encod-
ing and retrieval were investigated. We hypothesized that
NRGN risk genotype would be associated with impaired
cognitive functioning and—based on behavior observed
in NRGN deficient mice—higher neuroticism. Based on
prior findings on the influence ofNRGN on memory pro-
cesses in animals and functional imaging studies on epi-
sodic memory in patients with schizophrenia and their
relatives, it was hypothesized that the influence of geno-
type on the neural correlates of memory encoding and
retrieval would manifest in the cingulate cortex as well
as the hippocampal formation.

Methods

Participants

All subjects were recruited from the University of
Aachen, Germany. Five hundred and twenty-one
subjects underwent neuropsychological and personality
assessment and genotyping. Inclusion criteria were age

(18–55 years), right-handedness (as assessed by the Edin-
burgh Inventory43), no psychiatric disorders according to
ICD-10, and Western or Middle European descent. A
subsample of 94 subjects (66 men) was included in the
present study for fMRI scanning procedures. After
a complete description of the procedure, subjects pro-
vided written informed consent to participating in the
study. The protocol was approved by the local ethics
committee according to the declaration of Helsinki.
The subjects’ characteristics are given in table 1. Geno-
typing (see below) took place after behavioral testing
and fMRI scanning, thus subjects and investigators
were blinded with regard to genotype status.
Because of the scarcity of homozygous C-allele carriers

(n = 9 in the main sample), heterozygous carriers were
groupedwith homozygousC-allele carriers. All subsequent
analyses were therefore performed with 2-sample t tests.

Cognitive Tests and Personality Questionnaires

The following tests were administered in all subjects: A
brief verbal IQ assessment,44 the d2 test for attention,45

the letter-number span,46 spatial span,47 the TMT-B,48

and semantic verbal fluency.49 In addition, all subjects
completed the NEO-FFI50 and the brief version of the
schizotypal personality questionnaire (SPQ-B)51 with
the scales cognitive perceptional deficits, interpersonal
deficits and disorganization.

Genotyping

Genomic DNA was extracted from ethylenediaminete-
traacedic acid anticoagulated venous blood according
to standard procedures.52 The SNP rs12807809 was gen-
otyped on an Applied Biosystems 7900HT Fast Real-
Time PCR System, using a TaqMan 5# nuclease assay
(TaqMan SNP Genotyping Assay ID C_32029000_20
Applied Biosystems). Genotyping accuracy was assessed
by running 15% of the sample in duplicates. Reproduc-
ibility was 100%.

Encoding and Retrieval fMRI Paradigm

The paradigm consisted of an encoding and a retrieval
task performed in different sessions. Both sessions
were divided by a break of approximately 3 minute. Dur-
ing this time, subjects stayed in the scanner.

Encoding Task. During the encoding phase, either sin-
gle pictures of neutral faces (encoding condition) or the
symbol ‘‘#’’ (baseline condition) were presented on
a black background for 4000 ms in a pseudorandomized
order using Presentation software package (Neurobeha-
vioral Systems Inc, San Francisco, CA). Following this,
stimuli were replaced by a blank screen for another
1000 ms completing one trial. During face encoding, par-
ticipants were instructed to actively memorize each face
for later recognition. In order to ensure continuous
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attention to the task, participants had to indicate the sex
of the displayed person via button press (LUMI-
touchTM; Lightwave Technologies, Richmond, BC,
Canada). During low-level baseline, participants were
enforced to press a button with the left index finger every
time the symbol # appeared. There were 5 blocks of each
condition with 6 responses in each block resulting in 30
faces (half male and half female) to be encoded. Similarly,
during baseline, 30 button presses had to be accom-
plished. Each block lasted for 30 seconds. This task
has been applied successfully in different samples previ-
ously by our group.25,53–55

Retrieval Session. After the encoding phase, a recogni-
tion phase of equal length and structure was administered.
During the retrieval condition, 2 pictures of faces were pre-
sented simultaneously side by side, each trial comprising
a previously presented face and a new face, randomly po-
sitioned at the left or right side. Subjects were requested to
select the previously presented face and forced to make
a choice by pressing the corresponding button with the

left or right index finger. The baseline condition was the
same as in the encoding phase.

MRI Data Acquisition

All MRI data were acquired on a 3-Tesla Tim Trio MR
scanner (SiemensMedical Systems) at theResearchCenter
Jülich. Functional images were collected with a T2*
weighted echo planar imaging sequence sensitive to
BOLD contrast (64 3 64 matrix, FOV 200 mm, in plane
resolution 3.13 mm, 36 slices, slice thickness 3 mm, TR =
2.25 s, TE = 30 ms, flip angle 90�). Slices covered the whole
brain and were positioned transaxially parallel to the an-
terior-posterior commissural line. One hundred and thirty-
seven functional images were collected, and the initial 3
images excluded from further analysis in order to remove
the influence of T1 stabilization effects.

FMRI Data Analyses

Analysis ofBehavioralData. Behavioral data (ie, the num-
ber of correctly remembered faces in the retrieval session)

Table 1. Subjects’ Characteristics: Sex, Age, Education, Cognitive, and Personality Assessment and Performance During the fMRI
RecognitionTask.Differences inGenderDistribution andMemoryPerformancewereAccounted for in the StatisticalModel (SeeMethod
Section)

NRGN Status T/T T/C þ C/C t Value P

Whole sample
Number of subjects 359 162
Sex ratio (men/women) 190/169 78/84 v2 = 1.02 .31
Age (y) 24.7 6 5.8 24.8 6 6.0 0.14 .88
Education (y) 15.7 6 2.6 15.4 6 2.8 1.2 .25
IQ 110.2 6 12.4 109.5 6 11.7 0.53 .59

Cognitive measures
Attention 195.1 6 36.8 191.9 6 39.7 0.88 .38
Verbal working memory 16.5 6 2.6 16.4 6 2.5 0.46 .65
Spatial working memory 19.2 6 3.0 18.8 6 2.8 1.2 .23
Executive functioning 61.3 6 19.1 64.0 6 20.3 1.5 .14
Semantic verbal fluency 31.8 6 9.2 30.1 6 9.1 2.0 .046

NEO-FFI
Neuroticism 1.6 6 .62 1.6. 6 .63 0.33 .74
Extraversion 2.4 6 .46 2.4 6 .45 0.58 .57
Openness 2.7 6 .48 2.7 6 .48 0.39 .70
Agreeableness 2.6 6 .48 2.6 6 .48 0.42 .67
Conscientiousness 2.7 6 .55 2.7 6 .59 0.07 .95

SPQ-B
Cognitive perceptional deficits 1.7 6 1.5 1.8 6 1.5 0.87 .39
Interpersonal deficits 2.2 6 1.8 2.2 6 1.8 0.21 .83
Disorganization 1.5 6 1.6 1.4 6 1.4 1.1 .28

fMRI sample
Number of subjects 67 27
Sex ratio (men/women) 53/14 13/14 v2 = 8.8 .003
Age (y) 23.3 6 3.0 23.0 6 2.8 0.53 .6
Education (y) 15.7 6 2.8 15.4 6 1.8 0.59 .6
IQ 112.3 6 11.7 112.9 6 11.7 0.19 .8
% correct gender identification (fMRI
task)

98.14 6 2.3 98.8 6 1.2 1.3 .18

Correctly recognized faces (fMRI task) 24.5 6 2.9 22.9 6 3.2 2.25 .027

Note: NRGN, Neurogranin; SPQ-B, brief version of the schizotypal personality questionnaire; fMRI, functional magnetic resonance imaging.
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mental state.21,22 Further functional imaging has demon-
strated dysactivation during episodic memory encoding
(eg, ref. 23–25) and retrieval26 in the hippocampal cortex
in patients. These alterations of medial temporal structures
have also been demonstrated in relatives27–29 and high-risk
subjects,30,31 which underlines the importance of these
structures in the aetiology of schizophrenia.

The cingulate cortex (especially the anterior part) has
been shown to be hyperactivated in patients with schizo-
phrenia compared with controls during both encoding
and retrieval tasks.32–34 In patients, the anterior commis-
sural line (AC) volume is decreased 35 and the posterior
cingulate cortex is smaller in both patients and their
healthy relatives compared with controls.36

In animal models, NRGN has been shown to exert
a profound influence on memory formation: It could
be demonstrated thatNRGN is involved in long-term po-
tentiation memory formation and it enhances synaptic
strength in the hippocampus.3,37–40 In addition, NRGN
null mice exhibit anxiety related behavior.41 During de-
velopment in the rat brain, the hippocampus and the AC
are among the first structures to express NRGN.42

Genetic risk variants for schizophrenia with high allele
frequencies and limited effects are also present in a large
proportion of the healthy population. It has been shown
that investigating the impact of a risk variant in healthy
individuals on objectively measurable phenotypes such as
performance in fMRI-based neuropsychological para-
digms constitutes a successful approach.13 Investigating
the influence of genetic variation in healthy subjects cir-
cumvents possible confounders such as medication status
as well as possible influence of the disorder on brain
structure and function. We therefore tested the influence
of rs12807809 on cognition and personality in healthy
subjects. Furthermore, as NRGN has been implicated
in memory processes and anxiety related traits in ani-
mals,3,41 the neural correlates of episodic memory encod-
ing and retrieval were investigated. We hypothesized that
NRGN risk genotype would be associated with impaired
cognitive functioning and—based on behavior observed
in NRGN deficient mice—higher neuroticism. Based on
prior findings on the influence ofNRGN on memory pro-
cesses in animals and functional imaging studies on epi-
sodic memory in patients with schizophrenia and their
relatives, it was hypothesized that the influence of geno-
type on the neural correlates of memory encoding and
retrieval would manifest in the cingulate cortex as well
as the hippocampal formation.

Methods

Participants

All subjects were recruited from the University of
Aachen, Germany. Five hundred and twenty-one
subjects underwent neuropsychological and personality
assessment and genotyping. Inclusion criteria were age

(18–55 years), right-handedness (as assessed by the Edin-
burgh Inventory43), no psychiatric disorders according to
ICD-10, and Western or Middle European descent. A
subsample of 94 subjects (66 men) was included in the
present study for fMRI scanning procedures. After
a complete description of the procedure, subjects pro-
vided written informed consent to participating in the
study. The protocol was approved by the local ethics
committee according to the declaration of Helsinki.
The subjects’ characteristics are given in table 1. Geno-
typing (see below) took place after behavioral testing
and fMRI scanning, thus subjects and investigators
were blinded with regard to genotype status.
Because of the scarcity of homozygous C-allele carriers

(n = 9 in the main sample), heterozygous carriers were
groupedwith homozygousC-allele carriers. All subsequent
analyses were therefore performed with 2-sample t tests.

Cognitive Tests and Personality Questionnaires

The following tests were administered in all subjects: A
brief verbal IQ assessment,44 the d2 test for attention,45

the letter-number span,46 spatial span,47 the TMT-B,48

and semantic verbal fluency.49 In addition, all subjects
completed the NEO-FFI50 and the brief version of the
schizotypal personality questionnaire (SPQ-B)51 with
the scales cognitive perceptional deficits, interpersonal
deficits and disorganization.

Genotyping

Genomic DNA was extracted from ethylenediaminete-
traacedic acid anticoagulated venous blood according
to standard procedures.52 The SNP rs12807809 was gen-
otyped on an Applied Biosystems 7900HT Fast Real-
Time PCR System, using a TaqMan 5# nuclease assay
(TaqMan SNP Genotyping Assay ID C_32029000_20
Applied Biosystems). Genotyping accuracy was assessed
by running 15% of the sample in duplicates. Reproduc-
ibility was 100%.

Encoding and Retrieval fMRI Paradigm

The paradigm consisted of an encoding and a retrieval
task performed in different sessions. Both sessions
were divided by a break of approximately 3 minute. Dur-
ing this time, subjects stayed in the scanner.

Encoding Task. During the encoding phase, either sin-
gle pictures of neutral faces (encoding condition) or the
symbol ‘‘#’’ (baseline condition) were presented on
a black background for 4000 ms in a pseudorandomized
order using Presentation software package (Neurobeha-
vioral Systems Inc, San Francisco, CA). Following this,
stimuli were replaced by a blank screen for another
1000 ms completing one trial. During face encoding, par-
ticipants were instructed to actively memorize each face
for later recognition. In order to ensure continuous
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attention to the task, participants had to indicate the sex
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enforced to press a button with the left index finger every
time the symbol # appeared. There were 5 blocks of each
condition with 6 responses in each block resulting in 30
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during baseline, 30 button presses had to be accom-
plished. Each block lasted for 30 seconds. This task
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select the previously presented face and forced to make
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were analyzed using an independent t test with rs12807809
status (T/T vs C/T and C/C genotype) as grouping variable.

Analysis of fMRI Data. SPM5 (www.fil.ion.ucl.ac.uk/
spm) standard routines and templates were used for anal-
ysis of fMRI data. The functional images were realigned,
normalized (resulting voxel size 2 3 2 3 2 mm3),
smoothed (8 mm isotropic Gaussian filter), and high-
pass filtered (cut off period 120 s).

Statistical analysis was performed in a 2-level mixed-
effects procedure. At the first level, the BOLD responses
for the activation (encoding and retrieval, respectively)
and the baseline condition weremodeled by a boxcar func-
tion convolved with the canonical hemodynamic response
function employed by SPM5. Parameter estimate (ß-) and
t statistic images were calculated for each subject. At the
second level, the individual ß-contrasts relating to activa-
tion differences between the activation and the baseline
condition were entered into a t test design with
rs12807809 status (T/T vs T/C andC/C status) as grouping
variable. First, we calculated group activation maps re-
lated to the activation of memory encoding/retrieval (ie,
encoding>baseline; retrieval>baseline). Activation maps
were thresholded at P < .05, corrected for multiple com-
parisons (applying the family-wise error correction
employed by SPM5). Second, we determined activation
differences between the 2 rs12807809 genotype groups.
Resulting first-level contrasts were entered in a second
level, 2-sample t test. As groups differed with regard to
gender distribution and memory performance (see results
section and table 1), these 2 parameters were entered as
covariates of no interest into the 2-sample t test.

In order to correct for multiple comparisons within
a search volume, we applied a cluster extent threshold de-
termined by Monte Carlo simulations.56 For a threshold
at the voxel level at P = .001 and spatial properties as
present in this study, 10 000 simulations resulted in an
extent threshold of 26 resampled voxels. This procedure
prevented a false positive rate above 5% due to multiple
testing. The anatomical localization of activated brain
regions was assessed both by the SPM anatomy toolbox57

and the Talairach atlas.58 Based on effect sizes from pre-
vious findings (eg, Kircher et al59), a statistical power of
1�b = .80 resulted with the sample size in the fMRI task
for a threshold of P = .001.

As NRGN is implied in memory formation, additional
region of interest (ROI) analyses were calculated for the
hippocampus proper and the adjacent parahippocampal
gyrus (WFU Pickatlas toolbox implemented in SPM5).

Results

Cognitive Functioning and Personality Measures

Homozygous carriers of the T-allele did not differ from
C-allele carrieres in either of the administered tests or

questionnaires with the sole exception of semantic verbal
fluency. Homozygous T-allele carriers produced more
words compared with the group of C-allele carriers
(31.8 6 9.2 and 30.1 6 9.1, respectively, P = .046). This
difference did not withstand correction for multiple
comparisons.
Genotype did not correlate with IQ, age, or years of

education (all P > .05). During the fMRI task, there
was an effect of NRGN genotype on the number of cor-
rectly recognized faces. Homozygous T-allele carriers
showed a significantly better performance during re-
trieval (P = .027). These differences, along with a differ-
ence in gender distribution, were accounted for in the
statistical model (see Methods section). All results are
given in table 1.

fMRI Results

During encoding, homozygous T-allele carriers exhibited
stronger activations in the left lingual gyrus (Brodmann
areas [BA] 19) and the anterior cingulate cortex (ACC,
BA 24) compared with subjects with at least one C-allele
(P < .001). There were no significant differences in the
gender identification task: homozygous T-allele carriers
correctly identified 98.14% (SD = 2.3) of the faces and
C-allele carriers correctly identified 98.80% (SD = 1.2)
of the faces.
The reversed contrast (T/C þ C/C>T/T) did not

yield any significant activations. Results are depicted
in figure 1 and table 2.
During retrieval, homozygous T-allele carriers showed

less deactivations compared to C-allele carriers in the left
precentral gyrus, right cingulate gyrus (expanding to the
right precentral gyrus), and the left insula (P < .001; see
figure 2). Homozygous T-allele carriers showed better
performance (correctly recognized faces) compared
with the other group (P = .027; this was taken into ac-
count as a covariate of no interest, see above).
For both tasks, ROI analyses neither revealed signifi-

cant activations within the hippocampus proper nor in
the parahippocampal gyrus.

Discussion

This is the first report to describe the influence of a recently
discovered genome-wide significant schizophrenia vari-
ant8 in NRGN on cognition and personality traits as
well as neural correlates of episodic memory encoding
and retrieval that was investigated in a large sample of
healthy subjects. While no differences in personality
dimensions were found in our study, homozygous T-allele
carriers showed a trend toward higher performance in a se-
mantic verbal fluency task. During fMRI scanning, homo-
zygous T-allele carriers showed better performance with
respect to correctly recognized faces. When controlling
for performance and gender distribution, this group

4

A. Krug et al.

showed higher activations in the ACC and the lingual gy-
rus during encoding and less deactivation in the left insula,

left precentral gyrus, and the cingulate gyrus during re-
trieval. It could previously be demonstrated that NRGN

Fig. 1. Cortical activation during face encoding: top row (brain images) illustrates activations mapped on the standard SPM brain template.
Lower left sidedepictshigher activationofT/Tallele carriers comparedwithT/CandC/Callele carriers in the anterior cingulate (LCing) and the
lingual gyrus (LingG) (results:P< .001;Monte Carlo simulated, error bars represent standard error of themean). Colored bar (bottom right)
represents tvalues.The imagesareoriented inneurological convention (righthemisphereof thebraincorresponds to the right sideof the image).

Table 2. Correlations of rs12807809 ofNRGN Status With Neural Activations DuringMemory Encoding and Retrieval Processes. Only
Clusters of At Least 26 Voxels (See Method Section) are Depicted

Coordinates

Hemisphere BA x y z t Value Cluster Size (in voxels)

Memory encoding task
(T/T > T/C þ C/C)
R Lingual Gyrus 18 24 �94 �2 4.28 88
L Anterior Cingulate Cortex 24 �4 30 12 3.85 35

(C/C þ C/T > T/T)
No areas of differential activation
Memory retrieval task
(T/T > T/C þ C/C)
L Precentral Gyrus 4 �14 �26 64 4.22 46
R Cingulate Gyrus 24 20 �20 46 4.14 161
L Insula 13 �34 �22 24 3.99 52

(C/C þ C/T > T/T)
No areas of differential activation

Note: Coordinates are listed in MNI atlas space. BA is the Brodmann area nearest to the coordinate and should be considered
approximate. NRGN, Neurogranin.
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were analyzed using an independent t test with rs12807809
status (T/T vs C/T and C/C genotype) as grouping variable.

Analysis of fMRI Data. SPM5 (www.fil.ion.ucl.ac.uk/
spm) standard routines and templates were used for anal-
ysis of fMRI data. The functional images were realigned,
normalized (resulting voxel size 2 3 2 3 2 mm3),
smoothed (8 mm isotropic Gaussian filter), and high-
pass filtered (cut off period 120 s).

Statistical analysis was performed in a 2-level mixed-
effects procedure. At the first level, the BOLD responses
for the activation (encoding and retrieval, respectively)
and the baseline condition weremodeled by a boxcar func-
tion convolved with the canonical hemodynamic response
function employed by SPM5. Parameter estimate (ß-) and
t statistic images were calculated for each subject. At the
second level, the individual ß-contrasts relating to activa-
tion differences between the activation and the baseline
condition were entered into a t test design with
rs12807809 status (T/T vs T/C andC/C status) as grouping
variable. First, we calculated group activation maps re-
lated to the activation of memory encoding/retrieval (ie,
encoding>baseline; retrieval>baseline). Activation maps
were thresholded at P < .05, corrected for multiple com-
parisons (applying the family-wise error correction
employed by SPM5). Second, we determined activation
differences between the 2 rs12807809 genotype groups.
Resulting first-level contrasts were entered in a second
level, 2-sample t test. As groups differed with regard to
gender distribution and memory performance (see results
section and table 1), these 2 parameters were entered as
covariates of no interest into the 2-sample t test.

In order to correct for multiple comparisons within
a search volume, we applied a cluster extent threshold de-
termined by Monte Carlo simulations.56 For a threshold
at the voxel level at P = .001 and spatial properties as
present in this study, 10 000 simulations resulted in an
extent threshold of 26 resampled voxels. This procedure
prevented a false positive rate above 5% due to multiple
testing. The anatomical localization of activated brain
regions was assessed both by the SPM anatomy toolbox57

and the Talairach atlas.58 Based on effect sizes from pre-
vious findings (eg, Kircher et al59), a statistical power of
1�b = .80 resulted with the sample size in the fMRI task
for a threshold of P = .001.

As NRGN is implied in memory formation, additional
region of interest (ROI) analyses were calculated for the
hippocampus proper and the adjacent parahippocampal
gyrus (WFU Pickatlas toolbox implemented in SPM5).

Results

Cognitive Functioning and Personality Measures

Homozygous carriers of the T-allele did not differ from
C-allele carrieres in either of the administered tests or

questionnaires with the sole exception of semantic verbal
fluency. Homozygous T-allele carriers produced more
words compared with the group of C-allele carriers
(31.8 6 9.2 and 30.1 6 9.1, respectively, P = .046). This
difference did not withstand correction for multiple
comparisons.
Genotype did not correlate with IQ, age, or years of

education (all P > .05). During the fMRI task, there
was an effect of NRGN genotype on the number of cor-
rectly recognized faces. Homozygous T-allele carriers
showed a significantly better performance during re-
trieval (P = .027). These differences, along with a differ-
ence in gender distribution, were accounted for in the
statistical model (see Methods section). All results are
given in table 1.

fMRI Results

During encoding, homozygous T-allele carriers exhibited
stronger activations in the left lingual gyrus (Brodmann
areas [BA] 19) and the anterior cingulate cortex (ACC,
BA 24) compared with subjects with at least one C-allele
(P < .001). There were no significant differences in the
gender identification task: homozygous T-allele carriers
correctly identified 98.14% (SD = 2.3) of the faces and
C-allele carriers correctly identified 98.80% (SD = 1.2)
of the faces.
The reversed contrast (T/C þ C/C>T/T) did not

yield any significant activations. Results are depicted
in figure 1 and table 2.
During retrieval, homozygous T-allele carriers showed

less deactivations compared to C-allele carriers in the left
precentral gyrus, right cingulate gyrus (expanding to the
right precentral gyrus), and the left insula (P < .001; see
figure 2). Homozygous T-allele carriers showed better
performance (correctly recognized faces) compared
with the other group (P = .027; this was taken into ac-
count as a covariate of no interest, see above).
For both tasks, ROI analyses neither revealed signifi-

cant activations within the hippocampus proper nor in
the parahippocampal gyrus.

Discussion

This is the first report to describe the influence of a recently
discovered genome-wide significant schizophrenia vari-
ant8 in NRGN on cognition and personality traits as
well as neural correlates of episodic memory encoding
and retrieval that was investigated in a large sample of
healthy subjects. While no differences in personality
dimensions were found in our study, homozygous T-allele
carriers showed a trend toward higher performance in a se-
mantic verbal fluency task. During fMRI scanning, homo-
zygous T-allele carriers showed better performance with
respect to correctly recognized faces. When controlling
for performance and gender distribution, this group
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showed higher activations in the ACC and the lingual gy-
rus during encoding and less deactivation in the left insula,

left precentral gyrus, and the cingulate gyrus during re-
trieval. It could previously be demonstrated that NRGN

Fig. 1. Cortical activation during face encoding: top row (brain images) illustrates activations mapped on the standard SPM brain template.
Lower left sidedepictshigher activationofT/Tallele carriers comparedwithT/CandC/Callele carriers in the anterior cingulate (LCing) and the
lingual gyrus (LingG) (results:P< .001;Monte Carlo simulated, error bars represent standard error of themean). Colored bar (bottom right)
represents tvalues.The imagesareoriented inneurological convention (righthemisphereof thebraincorresponds to the right sideof the image).

Table 2. Correlations of rs12807809 ofNRGN Status With Neural Activations DuringMemory Encoding and Retrieval Processes. Only
Clusters of At Least 26 Voxels (See Method Section) are Depicted

Coordinates

Hemisphere BA x y z t Value Cluster Size (in voxels)

Memory encoding task
(T/T > T/C þ C/C)
R Lingual Gyrus 18 24 �94 �2 4.28 88
L Anterior Cingulate Cortex 24 �4 30 12 3.85 35

(C/C þ C/T > T/T)
No areas of differential activation
Memory retrieval task
(T/T > T/C þ C/C)
L Precentral Gyrus 4 �14 �26 64 4.22 46
R Cingulate Gyrus 24 20 �20 46 4.14 161
L Insula 13 �34 �22 24 3.99 52

(C/C þ C/T > T/T)
No areas of differential activation

Note: Coordinates are listed in MNI atlas space. BA is the Brodmann area nearest to the coordinate and should be considered
approximate. NRGN, Neurogranin.
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is differentially expressed in the prefrontal cortex in
patients with schizophrenia.6 Furthermore, it is involved
in long-term potentiation.4 A modulation of its function
through genetic variation may therefore be a plausible ex-
planation of our findings at the functional level.

Cognitive Functions and Personality

In the large sample, no differences in cognitive perfor-
mance or any measures of personality could be detected
after correction for multiple testing. This is in line with
recent evidence from a study investigating a different
German sample.60 However, there was a trend in differ-
ences in semantic verbal fluency. Importantly, it has to be
noted that homozygous T-allele carriers showed a better
performance than C-allele carriers. This result is some-
what surprising with regard to findings in schizophrenia
where patients show impairments in semantic verbal flu-
ency.9 However, there are several studies that also show

these resulting patterns: in 2 studies investigating cogni-
tive domains in healthy subjects, similar results have been
demonstrated with respect to G72.11,61 In these studies,
subjects with the risk diplotype showed a higher perfor-
mance in working memory and attention than subjects
without the risk diplotype. In a related fashion, Stefanis
et al62 found that healthy carriers of the minor allele in
Dysbindin rs1018381 scored lower on the paranoid factor
of the SPQ. Since these studies demonstrated that risk al-
lele carriers also showed better results in a variety of var-
iables, the present study may point to possible further
investigations into semantic processing associated with
NRGN genotype variations.

fMRI Results

Encoding. The ACC has consistently been implied in
control and decision-making processes (eg, Kennerley
et al63) as well as episodic memory (eg, Svoboda

Fig. 2.Cortical activation during face retrieval: top row (brain images) illustrates activations (left precentral gyrus not shown)mappedon the
standardSPMbrain template.Lower left sidedepicts parameter estimates derived fromclusters of higher activation (due to less deactivation)
in T/T allele carriers as comparedwith T/C andC/C allele carriers in left insula (Insula), left precentral gyrus (PreC), and the cingulate cortex
(r_Cingulate; expanding to the right precentral gyrus) (results: P< .001; Monte Carlo simulated, error bars represent standard error of the
mean). Colored bar (bottom right) represents t values. The images are oriented in neurological convention (right hemisphere of the brain
corresponds to the right side of the image).
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et al64). Particularly, the BOLD signal increase in this re-
gion has been shown to correlate with subsequent memory
performance,65 demonstrating its importance in encoding
strategies. In schizophrenia, meta-analytical findings dem-
onstrated higher ACC activations in patients as compared
with healthy controls during episodic memory encoding.33

A similar activation pattern has also been reported for ex-
ecutive processing comparing patients with schizophrenia
to healthy controls.66 Meta-analyses additionally con-
firmed a volume reduction in the ACC in patients com-
pared with controls (see also Introduction section).67

Taken together, these findings implicate the ACC as an
important structure in memory encoding as well as the
pathophysiology of schizophrenia. Our T/T risk allele car-
riers exhibited stronger activation in the ACC during
encoding new material. This may indicate that they
must exert higher cognitive control in order to reach a sim-
ilar performance level as the nonrisk carrier group.
The lingual gyrus (BA 19) is being activated when sub-

jects process features of faces rather than the configura-
tion of a face as a whole.68 It could thus be argued that
homozygous T-allele carriers may focus more on partic-
ular single facial components while encoding novel faces.
This is a strategy that has been attributed to patients with
schizophrenia.69,70

Retrieval. The cingulate gyrus, especially the posterior
part, has been implied as a part of a ‘‘core’’ network sub-
serving episodic memory,64 especially recognition of pre-
viously encoded material.71 As such, it could be
hypothesized that homozygous T-allele carriers rely
more on this region in order to adequately performmem-
ory processes.
Activations of the left insula in patients with schizo-

phrenia during episodic memory processes are a common
finding in fMRI studies (meta-analysis eg, Ragland
et al33). In addition, left insular volume is decreased in
schizophrenia compared with healthy subjects. These
changes are already obvious in first-episode schizophre-
nia (meta-analysis in Ellison-Wright et al72).
Other studies also found higher activations in the left

precentral gyrus in patients comparedwith controls during
memory retrieval (eg, ref. 33,73,74). The differences in acti-
vation occurred while controlling for performance in the
statistical analyses. It could be argued that homozygous T-
allele carriers show less deactivation in the reported
regions and thus compensating behavioral underperform-
ance. Overrecruitment of task-related brain regions is
a phenomenon found in the ageing brain75 and schizophre-
nia76 but has also been shown to be present in risk allele
carriers of NRG1 in healthy subjects.10 Following this
logic, one could hypothesize that fine tuning of cortical
activations during memory performance is disturbed in
homozygous T-allele carriers.
In contrast to our hypotheses, we could not detect an

influence of NRGN genotype on hippocampal activation

in our ROI analyses, neither for encoding nor retrieval.
The encoding paradigmwas developed to particularly ac-
tivate the hippocampus and we could previously detect
activation differences in these areas between healthy sub-
jects and patients with schizophrenia55 and Alzheimer’s
Disease.53 It is unlikely that we missed differences in
the current study. It seems that this common variant—-
even though associated with memory functions as evi-
denced by our fMRI task—exerts an influence on
a widespread neural network that is implied in memory
formation, such as the ACC and the insula, but not the
hippocampal formation. Variations in other genes asso-
ciated with schizophrenia have been shown to impact on
hippocampal structure and functioning during memory
processes.77 As such, it is suggested that some, but not
all, risk polymorphisms involved in schizophrenia may
impact on hippocampal formation processes. Conse-
quently, different risk variants act on different neural net-
works, their prominent locus of expression depending on
their relative function during brain development. Among
other factors, this might explain the heterogeneous symp-
tomatology and course of the disorder.
In sum, when correcting for multiple comparisons, the

present findings demonstrate that rs12807809 does not
seem to influence domains of cognition or personality
dimensions in this sample of healthy subjects, which rep-
licates the results of a recent study.60 However, there was
a trend toward differences in semantic verbal fluency per-
formance and in episodic memory functions, which war-
rant further investigation. The main finding was that
rs12807809 exerts a profound influence on the cortical
activation/deactivation pattern evident during episodic
memory processes. In this study, we could show that var-
iation in rs12807809 does not necessarily influence mem-
ory processes orchestrated by the hippocampus proper
but rather impacts on cortical regions that have been im-
plicated in this function. Thus these findings suggest that
rs12807809 has a pleiotropic effect on different brain net-
works. As this is the first study onNRGN rs12807809 rep-
lications of our findings are warranted. Even though we
studied a large sample of healthy subjects, it still remains
the possibility that these are chance findings.
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is differentially expressed in the prefrontal cortex in
patients with schizophrenia.6 Furthermore, it is involved
in long-term potentiation.4 A modulation of its function
through genetic variation may therefore be a plausible ex-
planation of our findings at the functional level.

Cognitive Functions and Personality

In the large sample, no differences in cognitive perfor-
mance or any measures of personality could be detected
after correction for multiple testing. This is in line with
recent evidence from a study investigating a different
German sample.60 However, there was a trend in differ-
ences in semantic verbal fluency. Importantly, it has to be
noted that homozygous T-allele carriers showed a better
performance than C-allele carriers. This result is some-
what surprising with regard to findings in schizophrenia
where patients show impairments in semantic verbal flu-
ency.9 However, there are several studies that also show

these resulting patterns: in 2 studies investigating cogni-
tive domains in healthy subjects, similar results have been
demonstrated with respect to G72.11,61 In these studies,
subjects with the risk diplotype showed a higher perfor-
mance in working memory and attention than subjects
without the risk diplotype. In a related fashion, Stefanis
et al62 found that healthy carriers of the minor allele in
Dysbindin rs1018381 scored lower on the paranoid factor
of the SPQ. Since these studies demonstrated that risk al-
lele carriers also showed better results in a variety of var-
iables, the present study may point to possible further
investigations into semantic processing associated with
NRGN genotype variations.

fMRI Results

Encoding. The ACC has consistently been implied in
control and decision-making processes (eg, Kennerley
et al63) as well as episodic memory (eg, Svoboda

Fig. 2.Cortical activation during face retrieval: top row (brain images) illustrates activations (left precentral gyrus not shown)mappedon the
standardSPMbrain template.Lower left sidedepicts parameter estimates derived fromclusters of higher activation (due to less deactivation)
in T/T allele carriers as comparedwith T/C andC/C allele carriers in left insula (Insula), left precentral gyrus (PreC), and the cingulate cortex
(r_Cingulate; expanding to the right precentral gyrus) (results: P< .001; Monte Carlo simulated, error bars represent standard error of the
mean). Colored bar (bottom right) represents t values. The images are oriented in neurological convention (right hemisphere of the brain
corresponds to the right side of the image).
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et al64). Particularly, the BOLD signal increase in this re-
gion has been shown to correlate with subsequent memory
performance,65 demonstrating its importance in encoding
strategies. In schizophrenia, meta-analytical findings dem-
onstrated higher ACC activations in patients as compared
with healthy controls during episodic memory encoding.33

A similar activation pattern has also been reported for ex-
ecutive processing comparing patients with schizophrenia
to healthy controls.66 Meta-analyses additionally con-
firmed a volume reduction in the ACC in patients com-
pared with controls (see also Introduction section).67

Taken together, these findings implicate the ACC as an
important structure in memory encoding as well as the
pathophysiology of schizophrenia. Our T/T risk allele car-
riers exhibited stronger activation in the ACC during
encoding new material. This may indicate that they
must exert higher cognitive control in order to reach a sim-
ilar performance level as the nonrisk carrier group.
The lingual gyrus (BA 19) is being activated when sub-

jects process features of faces rather than the configura-
tion of a face as a whole.68 It could thus be argued that
homozygous T-allele carriers may focus more on partic-
ular single facial components while encoding novel faces.
This is a strategy that has been attributed to patients with
schizophrenia.69,70

Retrieval. The cingulate gyrus, especially the posterior
part, has been implied as a part of a ‘‘core’’ network sub-
serving episodic memory,64 especially recognition of pre-
viously encoded material.71 As such, it could be
hypothesized that homozygous T-allele carriers rely
more on this region in order to adequately performmem-
ory processes.
Activations of the left insula in patients with schizo-

phrenia during episodic memory processes are a common
finding in fMRI studies (meta-analysis eg, Ragland
et al33). In addition, left insular volume is decreased in
schizophrenia compared with healthy subjects. These
changes are already obvious in first-episode schizophre-
nia (meta-analysis in Ellison-Wright et al72).
Other studies also found higher activations in the left

precentral gyrus in patients comparedwith controls during
memory retrieval (eg, ref. 33,73,74). The differences in acti-
vation occurred while controlling for performance in the
statistical analyses. It could be argued that homozygous T-
allele carriers show less deactivation in the reported
regions and thus compensating behavioral underperform-
ance. Overrecruitment of task-related brain regions is
a phenomenon found in the ageing brain75 and schizophre-
nia76 but has also been shown to be present in risk allele
carriers of NRG1 in healthy subjects.10 Following this
logic, one could hypothesize that fine tuning of cortical
activations during memory performance is disturbed in
homozygous T-allele carriers.
In contrast to our hypotheses, we could not detect an

influence of NRGN genotype on hippocampal activation

in our ROI analyses, neither for encoding nor retrieval.
The encoding paradigmwas developed to particularly ac-
tivate the hippocampus and we could previously detect
activation differences in these areas between healthy sub-
jects and patients with schizophrenia55 and Alzheimer’s
Disease.53 It is unlikely that we missed differences in
the current study. It seems that this common variant—-
even though associated with memory functions as evi-
denced by our fMRI task—exerts an influence on
a widespread neural network that is implied in memory
formation, such as the ACC and the insula, but not the
hippocampal formation. Variations in other genes asso-
ciated with schizophrenia have been shown to impact on
hippocampal structure and functioning during memory
processes.77 As such, it is suggested that some, but not
all, risk polymorphisms involved in schizophrenia may
impact on hippocampal formation processes. Conse-
quently, different risk variants act on different neural net-
works, their prominent locus of expression depending on
their relative function during brain development. Among
other factors, this might explain the heterogeneous symp-
tomatology and course of the disorder.
In sum, when correcting for multiple comparisons, the

present findings demonstrate that rs12807809 does not
seem to influence domains of cognition or personality
dimensions in this sample of healthy subjects, which rep-
licates the results of a recent study.60 However, there was
a trend toward differences in semantic verbal fluency per-
formance and in episodic memory functions, which war-
rant further investigation. The main finding was that
rs12807809 exerts a profound influence on the cortical
activation/deactivation pattern evident during episodic
memory processes. In this study, we could show that var-
iation in rs12807809 does not necessarily influence mem-
ory processes orchestrated by the hippocampus proper
but rather impacts on cortical regions that have been im-
plicated in this function. Thus these findings suggest that
rs12807809 has a pleiotropic effect on different brain net-
works. As this is the first study onNRGN rs12807809 rep-
lications of our findings are warranted. Even though we
studied a large sample of healthy subjects, it still remains
the possibility that these are chance findings.
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