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The insulator-to-metal transformation in the surface layer of TiO2 (110) induced by the Arþ ion

sputtering process is analyzed on the nanoscale. Local conductivity atomic force microscopy and

photoelectron spectroscopy allow the changes in the valence of the Ti ions in the surface layer to be

linked to the formation of its grain-like structure. The investigation of the cleavage plane of the crystal

allowed us to estimate the thickness of the quasi-two-dimensional conducting layer generated by ion

bombardment as 30 nm. The conducting layer is a template where the resistive switching of each

single grain can be carried out. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801437]

Resistive switching (RS) processes in TiO2 (Refs. 1–3)

are highly promising for application to redox-based resistive

random-access memory (ReRAM).4–7 However, the exact

mechanism responsible for changing the electrical conductiv-

ity in this material is still under debate.1 The optimum starting

point for a consideration of the origin of RS in TiO2 is the per-

fect material, which in this case means a single crystal.

However, the high initial resistivity of pristine rutile TiO2

should be reduced before any RS experiment. This forming

step can be achieved by the influence of either a chemical or

electrical gradient or by electron/ion irradiation. The most

common way of reducing the crystal resistivity is vacuum

annealing. However, this process is not optimal for electronic

applications because it takes place in the whole volume of the

sample. In contrast, electron and ion irradiations are a selec-

tive way of TiO2 modification. Especially Arþ ion sputtering

is an effective process which may lead to the creation of a

quasi-two-dimensional (quasi-2D) metallic layer on the surfa-

ces of insulating binary and ternary transition-metal oxide

substrates8–11 and, as previously shown for SrTiO3,12 can pre-

pare the surface for further RS. The nature of the metal-

insulator transition (MIT) induced in these materials by an ion

bombardment process has previously been investigated,

regarding the changes in oxygen stoichiometry and macro-

scopic surface conductivity.8,9,13,14 However, in the literature,

there is no description of the transformation from band insula-

tor to metallic conductor at the nanoscale, based on the results

of local conductivity atomic force microscopy (LC-AFM). In

this letter, we analyze this essential aspect of MIT in the sur-

face layer of TiO2 (110) single crystals by investigations of

nanoscale conductivity distribution in-plane of the surface

layer at various temperatures. Additionally, our out-of-plane

measurements enable us to estimate the depth of changes

introduced into the crystal by the ion sputtering process. We

show that the quasi-2D surface layer, which we prepare by ion

bombardment, can work as a template for nanoscale RS, and

the resolution and the mechanism of switching are also strictly

connected to the surface substructure that we characterized.

We use scanning probe microscopic techniques (AFM/

LC-AFM), both with X-ray and UV photoelectron spectros-

copy (XPS/UPS), to describe the complexity of transforma-

tions that occur in the electronic structure, crystal geometry,

and local conductivity.

In our study, commercially available TiO2 (110) rutile

crystals were used. After initially removing the physisorbates

from the surface by thermal treatment at 300 �C under vac-

uum conditions, the stoichiometry, electronic structure, and

crystal geometry show properties typical of a perfect TiO2

(110) surface as described in the literature.15 All Ti ions had

a 4þ oxidation state, there were no occupied electron states

in the band gap, and the low energy electron diffraction

showed a clear 1� 1 pattern. Next, such pristine TiO2 sub-

strates were repeatedly sputtered with Arþ ions of 2 keV

energy and current density close to 10 lA/cm2. The influence

of every sputtering step (1 min) on the physical properties of

the surface layer was controlled by XPS and UPS, and the

modification of surface resistivity was analyzed by

LC-AFM. The sputtering process was continued until the

steady state was reached in surface composition and resistiv-

ity, and no significant changes were achieved by extending

the treatment time.

During the Arþ sputtering process, the selective removal

of oxygen leads to a progressive reduction of part of the Ti4þ

ions to the 3þ or 2þ oxidation state, which can be identified

as a kind of a redox reaction. As a result, a continuum of

occupied Ti3d electrons starts to appear in the band gap.16–19

This process leads to the transformation of the material from

intrinsic semiconductor to n-type semiconductor and finally

to semi-metal. The binding energies of core-level electrons

resulting from Ti3þ and Ti2þ ions differ from those obtained

from Ti4þ (approximately 1.8 eV and 3.8 eV, respectively)

and can be distinguished by XPS. Figure 1(a) shows the

composition of the surface layer with respect to the percent-

age content of Ti4þ, Ti3þ, and Ti2þ during the sputtering

process (estimated from XPS results). From the beginning,

reduction processes from Ti4þ- to Ti3þ-type structures

occurred, which are more likely than reduction to Ti2þ
a)Author to whom correspondence should be addressed. Electronic mail:
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(region #1 in Fig. 1(a)). However, when the Ti3þ content is

close to 50%, the reduction to Ti2þ becomes visible, and at

the same time the Ti4þ ion content approaches a constant

value (region #2). Moreover, we are constantly dealing with

the removal of the surface material and sputtering of the

deeper regions of the sample. Consequently, after approxi-

mately 7–8 min of sputtering, the surface and subsurface

stoichiometry, sputtering rate, and reduction processes

between each type of ion structure approach equilibrium,

and the composition-to-time dependence reaches a constant

level (region #3). This macroscopic behavior seems to corre-

spond to the theoretical model proposed by Hashimoto

et al.13,14 However, we should bear in mind that the reduc-

tion of TiO2 with only Ti4þ ions to a system of lower oxida-

tion states is not based simply on a transformation to a Ti2O3

phase and later to a TiO phase but consists in the appearance

of various structural defects and substoichiometric

(TinO2n�1) phases1 and leads to a strong modification of the

topography and conductivity of the surface. This is con-

firmed by our LC-AFM results. The topography after long-

time sputtering shows a structure composed of distinct grains

which fill all of the available surface space. The in-plane

dimensions of the grains increase significantly with the time

of sputtering (approximately 25 nm–50 nm), which is pre-

sented in the set of images (Figures 1(c1)–1(f2)). In the

in-plane conductivity (Figs. 1(c2)–1(f2)) which is essentially

inhomogeneous, we can distinguish well-conducting grains,

their boundaries (which are even more conductive), and rare,

less conductive points.

The compositional changes from the beginning of sput-

tering described above are accompanied by a gradual

decrease of surface resistivity, as shown in Figure 1(b). The

data presented are calculated on the basis of LC-AFM con-

ductivity maps collected on the TiO2 surface after each step

of sputtering and expressed in the resistivity of the square of

area of 1 lm2. It can be seen that significant changes in aver-

age conductivity occur up to the 7–9th minute of the sputter-

ing process (region #1, 2 in Fig. 1(b)) while, after this time

(when the surface composition is nearly constant with

respect to Ti4þ, Ti3þ, and Ti2þ ions), the conductivity of the

system is close to the equilibrium state (region #3). It is im-

portant to note that the process of changes in composition

and surface resistivity does not fully correspond to the pro-

cess of transformation in surface morphology. As shown in

the set of topography images (Figures 1(c1)–1(f1)) and corre-

sponding local conductivity images (Figs. 1(c2)–1(f2)), such

a process starts from distinct amorphization, and with time

the grain dimensions gradually increase up to the limit,

which is close to 50 nm in diameter. However, this limit is

reached at approximately the 16th min of sputtering, which

is long after reaching equilibrium in surface composition and

resistivity (at approximately the 8th minute of sputter-

ing––taking into account the values of energy and current

density previously given). This suggests that even after

reaching the limit of reduction of the surface layer we are

dealing with significant processes of reorganization of the

crystallographic structure of the Ti-O system, which can be

considered as a nanoscale transformation to new oxygen-

deficient (compared to TiO2) phases.20,21 Comparable trans-

formations have previously been reported for rutile irradiated

by electrons, where sufficiently large beam energies and cur-

rent densities led to the appearance of TiO crystallites on the

investigated surfaces.22,23 The observed grain-forming pro-

cess may be associated with a well-known phenomenon of

self-organization of the surface due to ion sputtering.24,25

However, in this case it is a direct consequence of the surface

reduction (preferential removal of oxygen) and correspond-

ing transformations.

The complexity of the surface layer transformation can

also be observed based on an analysis of the electrical prop-

erties of the surface in the early stages of the sputtering pro-

cess. For a slightly sputtered surface (1 min) we collected

numerous LC-AFM maps of surface conductance at various

temperatures, and on this basis we calculated the average

surface resistances (expressed in the resistivity of 1 lm2

square), which are shown in Figure 2(a) (red circles). Below

200 �C, the slightly sputtered TiO2 surface behaves like a

semiconductor (linear dependence on the Arrhenius plot),

but above this temperature the dependence becomes nearly

flat, corresponding to the metallic properties of the material.

The observed metal-insulator transition was also previously

reported for the TiO2 surface reduced by annealing in UHV.1

Such a transition may be related to the presence of the Ti2O3

phase on the surface, which is characterized by MIT in a

similar temperature range. However, such behavior is not

observed after exposure of the surface to the oxygen

FIG. 1. Comparison of TiO2 (110) surface changes with increasing time of

sputtering. (a) The quantitative changes in the representation of different Ti

ions in the surface layer (analyzed in XPS measurement). (b) The changes in

the resistance (in X/lm2) of the surface (based on data collected using LC-

AFM). (c1)–(f1) The topography and (c2)–(f2) local conductivity images

(LC-AFM; 250� 500 nm2; sample-tip polarization 0.1 V) of the surface after

2, 3, 5, and 9 min, respectively, of sputtering.
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atmosphere (blue square dependence in Figure 2(a)). After

this process, the resistivity of the surface is about ten times

larger, and in the whole range of investigated temperatures

the material behaves like a semiconductor with slightly

larger thermal activation energy than previously. On the

other hand, the surface conductivity is not reduced com-

pletely. This confirmed that even a slight sputtering process

can lead to the appearance of more stable nonstoichiometric

Ti-O phases on the TiO2 surface, which in contrast to oxygen

vacancies cannot be removed during oxidation. It should be

noted that in the case of the surface of the single crystal, the

described electrical characterization is the most appropriate

way of studying and identifying such phases because the

preparation methods necessary to perform complementary

investigations (e.g., high-resolution transmission electron

microscopy (HRTEM)) will simultaneously lead to consider-

able modification of the sample. Moreover, it was shown

that HRTEM measurement can itself provide noticeable

changes in the structure of transition metal oxides.26,27

As already mentioned, after long sputtering processes on

the surface of oxide crystals we are dealing with a well-

conducting quasi-2D layer, which was described previously

by Reagor and Butko for SrTiO3.8 However, it is important

to estimate the real thickness of a structure generated in this

way. To do so we conducted a specific experiment in which

after 16 min of sputtering the crystal was cleft ex situ perpen-

dicular to the surface and later investigated in the plane of

cleavage with LC-AFM (Figs. 3(a)–3(c)). The thickness of

the well-conducting layer can be estimated to be about

30 nm based on the local conductivity images and their cross

sections from Figures 3(a) and 3(b). A well-conducting

quasi-2D layer can be observed there as a bright (high-

conductivity) stripe in the middle of the image. The left part

of the image, where the electrical conductivity is weaker, is

related to the primary (sputtered) surface, whose conductiv-

ity was also high, but decreased due to of physisorption and

chemisorption28 at the time of the splitting process. The crys-

tal was prepared and split ex situ, while the LC-AFM meas-

urements were conducted directly after the splitting process,

which decreased the contamination effect of the cleavage

plane. The thickness of the well-conducting layer obtained is

slightly larger than the ion penetration depth described in the

literature29,30 during the sputtering process, which should not

be larger than 10 nm. In that case, we are dealing with a

more complex transformation of a reduced (by sputtering)

surface region into new Ti-O phases. Our result is closer to

the results presented by Kan et al.,10 where they describe the

20 nm deep surface modification which is the result of Arþ

sputtering of SrTiO3. It should also be noted that in the

described grain-like structure (which forms the surface layer)

the sets of the closely packed well-conducting columns can

be identified (as can be seen in the magnification of the sur-

face layer presented in Figure 3(c)). Similar structures in the

shape of cones consisting of nonstoichiometric Ti-O phases

were observed previously by Kwon et al.7 for the TiO2 after

electroreduction.

The electrical properties of the grains produced in the

sputtering process can be modified by electrical stimulation

by the LC-AFM tip. With increasing the tip–grain polariza-

tion, we obtained the resistive switching effect. However,

the change of local conductivity is observed on the whole

area of the grain, regardless of the specific position of the tip

over the grain during the switching procedure. In Figure

4(a), we show a selected grain (marked by a dashed line) in

two easily distinguishable states of high (OFF) and low (ON)

resistivity. The switching between states was induced by

applying þ5 V and �5 V to the tip. The analysis of the ther-

mal dependence of grain resistivity in the OFF and ON state

(shown in Fig. 2(b)) indicates that the observed RS consists

in a transformation between the semiconducting and metallic

character of material conductivity. Therefore the observed

changes in conductivity are similar in their nature to the

oxidation-induced transformations of a briefly sputtered sur-

face (Fig. 2(a)). It should be noted that RS was already

observed on the grains at their early formation stages (after

3–4 min sputtering), when their dimensions approach 20 nm.

The optimal RS effect was achieved after exposure of

the surface to the oxygen dose (>105 L). The XPS results

(not shown) indicate that under such conditions the concen-

tration of Ti4þ ions increases at the expense of ions on the

lower oxidation states. Additionally, the maps of the local

conductivity confirm that the intergranular areas, which

before oxygen exposure are more conductive than grains and

after exposure become less conductive (compare Figs. 1(f2)

and 4(a)), are more susceptible to oxidation. This leads to the

hypothesis that during RS we are not dealing with changes in

the resistivity of the grain but with the changes in the

FIG. 2. (a) The thermal dependence of the resistance of the TiO2 crystal sur-

face after slight ion sputtering (1 min) and after further oxygen exposure

(dose¼ 106 L) (based on LC-AFM measurements). (b) The thermal depend-

ence of the resistance of the grain in the OFF and ON state.

FIG. 3. LC-AFM measurements in the cleavage plane of previousely sput-

tered TiO2; (a) local conductivity image (225� 225 nm2; sample-tip polar-

ization 3.0 V); (b) cross sections along the marked line; (c) magnification of

the region of high-conductivity surface layer (60� 180 nm2; polarization

2.0 V).
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resistivity of its connections to the other parts of the sput-

tered surface layer. The oxygen delivered to the intergranular

areas can participate in the electrically induced modification

of the resistivity of the surroundings of the grain, which

results in the RS observed for the selected grain. It should be

noted that the ease of oxidation of the intergranular areas

suggests their amorphous structure in comparison with grains

formed in a more stable nanocrystalline form.

Observed bipolar RS shows that the sputtered TiO2 sur-

face is in fact a template ready for information storage,

where the storage density is determined by the dimensions of

the grains. The investigation of the grain population indicate

that RS occurred in the range of a few V and is characterized

by the I(V) curves oscillating between the two presented in

Figure 4(b). Although bipolar switching is observed, the

individual grain voltage required for the transition between

the states and the ratio of resistances in these states can vary.

In conclusion, we show that self-organization of the

TiO2 (110) surface layer during the Arþ sputtering process is

a promising way of producing a template for high-resolution

resistive switching on the nanoscale. We concentrated on the

description of the complexity of the sputtering-induced

transformation of the crystal regarding the changes occurring

in topography (morphology), stoichiometry, electronic struc-

ture, and electric transport. We were able to analyze the

changes in conductivity both in- and out-of-plane of the crys-

tal surface layer. The presented results prove that from the

beginning of the sputtering process we are dealing with a

transformation in the morphology and heterogeneous distri-

bution of surface conductivity, which can be correlated with

the decrease in the oxygen stoichiometry and oxidation state

of Ti. However, such changes are also observed for some of

the prolonged sputtering period, when a balance of surface

stoichiometry, oxidation state of Ti and conductance is

already established. At the early stages of the process, we

find (by LC-AFM measurements at various temperatures) the

electrical signature of the presence of the Ti2O3 phase in the

sputtered layer. As a consequence of increasing time of Arþ

ion bombardment, the surface adopts a self-organized grain-

like structure with grain dimensions increasing (with sputter-

ing time) up to 50 nm. Based on the investigations of the

cleavage plane of the previously sputtered crystal, we

estimated the thickness of such a quasi-2D layer as 30 nm.

The electrical conductivity of the layer displays a very sharp

boundary. Our results show that on the surface of TiO2 crys-

tal the Arþ ion sputtering process produces a self-organized

template for resistive switching in which each of the grains

can be individually addressed (electrically) and switched

between the semiconducting (OFF) and metallic (ON) state.

The observed phenomenon has a unique potential for use in

a very well-located data storage concept.

The authors would like to thank Professor U. Diebold

for helpful discussions concerning the presented results. The

work was co-financed by the University of Lodz (Grant sup-

porting young scientists) and the Deutsche Forschungsge-

meinschaft (SFB 917).

1K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser,

Nanotechnology 22, 254001 (2011).
2J. R. Jameson, Y. Fukuzumi, Z. Wang, P. Griffin, K. Tsunoda, G. I.

Meijer, and Y. Nishi, Appl. Phys. Lett. 91, 112101 (2007).
3M. H. Lee, K. M. Kim, G. H. Kim, J. Y. Seok, S. J. Song, J. H. Yoon, and

C. S. Hwang, Appl. Phys. Lett. 96, 152909 (2010).
4D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature

(London) 453, 80 (2008).
5R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
6B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim,

C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl.

Phys. 98, 033715 (2005).
7D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim,

X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat.

Nanotechnol. 5, 148 (2010).
8D. W. Reagor and V. Y. Butko, Nat. Mater. 4, 593 (2005).
9B. Psiuk, J. Szade, M. Pilch, and K. Szot, Vacuum 83(Suppl. 1), S69

(2009).
10D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan,

A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, and M. Takano, Nat. Mater. 4,

816 (2005).
11J. Kubacki, A. Molak, M. Rogala, C. Rodenb€ucher, and K. Szot, Surf. Sci.

606, 1252 (2012).
12H. Gross and S. Oh, Appl. Phys. Lett. 99, 092105 (2011).
13S. Hashimoto, A. Tanaka, A. Murata, and T. Sakurada, Surf. Sci. 556, 22

(2004).
14S. Hashimoto and A. Tanaka, Surf. Interface Anal. 34, 262 (2002).
15U. Diebold, Surf. Sci. Rep. 48, 53 (2003).
16V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev. Lett. 36, 1335

(1976).
17C. M. Yim, C. L. Pang, and G. Thornton, Phys. Rev. Lett. 104, 036806

(2010).
18P. Kr€uger, J. Jupille, S. Bourgeois, B. Domenichini, A. Verdini, L.

Floreano, and A. Morgante, Phys. Rev. Lett. 108, 126803 (2012).
19K. Mitsuhara, H. Okumura, A. Visikovskiy, M. Takizawa, and Y. Kido,

J. Chem. Phys. 136, 124707 (2012).
20L. A. Bursill, B. G. Hyde, O. Terasaki, and D. Watanabe, Philos. Mag. 20,

347 (1969).
21C. R. A. Catlow, Nonstoichiometric Oxides (Academic Press, New York,

1981).
22M. McCartney and D. J. Smith, Surf. Sci. 250, 169 (1991).
23M. McCartney, P. Crozier, J. Weiss, and D. J. Smith, Vacuum 42, 301

(1991).
24S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L.

Hartnagel, Science 285, 1551 (1999).
25A. Cuenat, H. George, K.-C. Chang, J. Blakely, and M. Aziz, Adv. Mater.

17, 2845 (2005).
26D. J. Smith and L. Bursill, Ultramicroscopy 17, 387 (1985).
27D. J. Smith, M. McCartney, and L. Bursill, Ultramicroscopy 23, 299

(1987).
28F. Peter, A. Rudiger, R. Dittmann, R. Waser, K. Szot, B. Reichenberg, and

K. Prume, Appl. Phys. Lett. 87, 082901 (2005).
29M. Wolff and J. W. Schultze, Surf. Interface Anal. 12, 93 (1988).
30Low Energy Ion-Surface Interactions, edited by J. W. Rabelais (Wiley,

Chichester, 1994), Chap. 9.

FIG. 4. The resistivity switching of a single grain on the surface layer of

TiO2 after 3 min of sputtering. (a) Local conductivity images (LC-AFM;

100� 40 nm2; sample-tip polarization 20 mV) of the grain in the high (OFF)

and low (ON) resistivity state (top and bottom part). (b) I(V) switching

curves for two sample grains.
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