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The existence of intrinsic surface states, the position of the Fermi level, and the size of the surface

bandgap of the non-polar ZnOð11�20Þ cleavage surfaces were investigated by scanning tunneling

microscopy and spectroscopy. The comparison of spectroscopic measurements performed on

atomically flat and stepped surfaces reveals the absence of intrinsic surface states within the

fundamental bulk bandgap, but shows the occurrence of step-induced gap states. These states

lead to a pinning of the Fermi level at the surface within the bandgap and generate a significant

defect-related tunnel current, narrowing the measured apparent bandgap. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4776674]

Zinc oxide (ZnO) attracted wide attention due to its

manifold potential applications.1 However, the growth and

incorporation of impurities, dopant atoms, and defects are

still a major challenge2 and limit the fabrication of reproduc-

ible high quality devices. Among other effects, the dopant

and defect incorporation during growth3 are affected by the

structural and electronic properties of the growth surface. In

particular, the Fermi-level position and the presence of

intrinsic surface states within the fundamental bandgap crit-

ically influence the incorporation of dopant atoms.

Thus far, the polar crystal directions of wurtzite ZnO are

the preferred growth directions. However, along these direc-

tions, electric fields and spontaneous polarization are detri-

mental to optoelectronic applications. This can be avoided

using non-polar growth directions, where out-of-plane elec-

tric fields and spontaneous polarization effects are absent.

The physical properties of non-polar ZnO surfaces were

investigated theoretically4–7 and experimentally by low

energy electron diffraction (LEED),8–10 scanning tunneling

microscopy (STM) and/or spectroscopy (STS),11–13 and

other surface sensitive techniques.14–17 It is generally

accepted that non-polar ð11�20Þ and ð10�10Þ ZnO surfaces ex-

hibit a 1� 1 surface unit cell, where the surface oxygen

atom relaxes slightly outward, while the surface zinc atom

becomes more sp2 hybridized. This relaxation is combined

with a charge transfer from Zn to O, but the resulting elec-

tronic properties are strongly debated: Some calculations

predict that the intrinsic surface states are outside of the fun-

damental bulk bandgap,4,5 while a newer calculation sug-

gests intrinsic surface states within the fundamental

bandgap, at least for the ð10�10Þ surface.7 In STS spectra, the

apparent surface bandgaps range from �2.0 eV (Ref. 11)

down to 1.0 eV.12 Thus far, no STS measurement exhibits a

surface bandgap consistent with that of the bulk (�3.5 eV),

suggesting the presence of intrinsic surface states within the

bandgap. Work function measurements are inconclusive too,

as some suggest a flat band situation14 and thus the absence

of intrinsic surface states in the fundamental bandgap,

whereas others suggest a band bending at the ð10�10Þ sur-

face.16 Angular-resolved photoemission18 and electron

energy loss spectroscopy experiments17 find no surface states

within the fundamental bandgap. Over all, the electronic

properties of non-polar ZnO surfaces are unclear.

Therefore, we investigated ZnOð11�20Þ cleavage surfa-

ces by STM and STS, focusing on the determination of the

surface bandgap and the energetic position of the intrinsic

surface states. In contrast to previous STM/STS investiga-

tions, we cleaved the ZnO samples inside the UHV to obtain

clean and stoichiometric surfaces,19 while surfaces prepared

by sputtering and thermal cleaning exhibit a high defect con-

centration.11–13 Such defects may affect the electronic prop-

erties. Therefore, we compare cleavage surfaces with low

and high step densities, where the steps behave as defects.

The surface with low step density shows strong tip-induced

band bending and no indications of intrinsic surface states in

the fundamental bandgap. The highly stepped surface is

pinned and exhibits a bandgap with an energetic width in the

order of that in the bulk. Within this bandgap a defect-

induced current, related to the step-induced electronic states,

leads to an apparently reduced bandgap.

The investigated samples were cut from ZnO(0001)

wafers from Cermet Inc. and Tokio Denpa with an n-type

carrier concentration in the low 1017 cm�3 range. Ohmic

contacts were prepared by sputtering a gold layer, which is

intermixed with the underlying ZnO by electrical discharges

followed by a second sputtered gold layer. The samples were

cleaved in ultrahigh vacuum (p� 1� 10�8 Pa). The exposed

clean ð11�20Þ surfaces were directly investigated by STM in

the constant-current mode. The tunneling spectra were
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acquired using fixed tip-sample separations. The tip-sample

separations were adjusted by the feedback loop using set vol-

tages (Vset) and set currents (Iset).

Figure 1(a) shows a STM image of a ZnOð11�20Þ cleav-

age surface consisting of large terraces with only few single

atomic monolayer (1 ML¼ 2.815 Å) high steps. Figure 1(b)

shows the current-voltage spectrum measured on the terraces

far away from the steps. It exhibits a voltage range without

detectable current (detection limit �1 pA) labeled apparent
bandgap (Eapp). The apparent bandgap is significantly larger

than the bulk bandgap Eg,bulk � 3.5 eV. However, the region

marked Eapp cannot be taken directly as bandgap, since it

varies with the tip-induced band bending, which drags the

bands downward (upward) at negative (positive) sample vol-

tages.20 This shifts the onset voltages of tunneling into (out

of) the conduction (valence) band to larger absolute voltage

values. Hence, the voltage region without tunnel current is

enlarged as compared to an ideal flat band situation. Tip-

induced band bending can occur only if no Fermi level pin-

ning by surface states exists. Thus, the wide apparent

bandgap suggests the absence of intrinsic surface states

within the fundamental bulk bandgap.

This conclusion is apparently in contrast to all previously

published STS data of non-polar ZnO surfaces.11,12 Previous

STM/STS investigations were made on surfaces cleaned by

sputter and annealing cycles.11–13 Such surfaces exhibited

high step densities. In order to elucidate the situation, we

investigated a ZnOð11�20Þ cleavage surface, with a high den-

sity of steps, separating small ð11�20Þ terraces with a size of

2 nm� 10 nm [Fig. 2(a)]. The steps are preferentially aligned

along the [0001] direction. This step pattern is consistent with

a miscleavage toward the neighboring f10�10g plane as sup-

ported by the observed macroscopic cleavage morphology.

On such highly stepped cleavage surfaces, current-

voltage spectra were measured with different tip-sample

separations. Figure 2(b) shows the spatially averaged

current-voltage curves representing the average electronic

structure of the stepped surface. Due to the very small size of

the terraces, it is not possible to distinguish spectra near step

edges and in the center of a terrace separately as the exten-

sion of electronic step states is larger than the size of the ter-

races. Independent of the actual tip-sample separation, all

three I–V curves exhibit again a voltage range without de-

tectable current around 0 V (labeled Eapp). Eapp varies with

the tip-sample separation. This effect arises from the

decrease of the transmission coefficient for electron tunnel-

ing with tip-sample separation, leading to an broader voltage

range without detectable tunnel current.21 However, now the

apparent bandgaps are smaller than or equal to the bulk

bandgap.

In order to extract the surface bandgap, i.e., identify the

band edges, we turn to the logarithmic display of the abso-

lute current and the normalized differential conductivity (dI/
dV)/ðI=VÞ as a function of the sample voltage [symbols in

Figs. 3(a) and 3(b), respectively] for three tip-sample separa-

tions. First, we concentrate on the spectrum measured with

the largest set voltage (þ5.18 V; corresponding to the largest

tip-sample separation) [black squares in Fig. 3(a)].

The logarithmically displayed current curve exhibits one

clear onset of the tunnel current at positive voltages. This

tunnel current is dominated by electrons tunneling into the

empty conduction band states of the surface (IC). The solid

black line at positive voltages in Fig. 3(a) indicates that the

onset voltage of the conduction band current is close to

þ1.0 V. This line represents the calculated tunnel current

into the conduction band states IC calculated following Ref.

FIG. 1. (a) Constant-current empty state STM image of a ZnOð11�20Þ cleav-

age surface with few monolayer high cleavage steps measured at a voltage

of Vset¼�5.0 V and current of Iset¼ 10 pA. (b) Current-voltage (I�V) curve

acquired on the terrace far away from the steps. Eapp indicates the voltage

range without detectable tunnel current, called apparent bandgap.

FIG. 2. (a) Constant-current empty state STM image of a stepped

ZnOð11�20Þ cleavage surface measured at a voltage of Vset¼þ3.6 V and cur-

rent of Iset¼ 30 pA. (b) Current-voltage curves (shown as symbols) acquired

at the stepped ZnOð11�20Þ cleavage surface with different tip-sample separa-

tions, adjusted using different Vset as labeled. Eapp indicates the voltage

range without detectable tunnel current.
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20 and assuming a pinning of the Fermi energy at the surface

due to the presence of the surface steps.22 The pinning has

been modeled by a defect state 1 eV below the conduction

band minimum with a concentration of 1� 1020 cm�3,

being equivalent to a surface defect concentration of

�2� 1012 cm�2. We used the ZnO bulk effective mass of

the conduction band mcb of 0.28 m0, with m0 as free electron

mass. The calculated current is fitted to the experimental

data by adjusting only the tip-sample separation

(z¼ 1.09 nm). This value is reasonable for standard tunneling

conditions, although experimentally the exact tip-sample dis-

tance is inherently not known accurately in STM.

In contrast, at negative voltages, two different tunnel

current contributions are observed. Again, the solid black

line at negative voltages illustrates the calculated tunnel cur-

rent due to electrons tunneling out of the valence band (IV).

This calculated current is fitted to the experimental data by

adjusting again the tip-sample separation (z¼ 0.93 nm). We

used the bulk effective mass of the valence band mvb of 0.59

m0. It is possible to distinguish an additional tunnel current

(dashed black line at voltages between V¼�2.5 V and

V¼�1.0 V, labeled Idefect�). At voltages V<�2.5 V, the

total current comprises both valence band and defect-related

currents, i.e., IV þ Idefect�. The current Idefect� contributes

significantly at voltages representing energies within the

bandgap of the ZnO, i.e., between the onset voltages of IV

and IC. With decreasing tip-sample separation, the tunnel

current contribution Idefect� gains intensity compared with

the tunnel current out of the valence band IV (see the increas-

ing deviation of the experimental data from the calculated

current, solid red and blue lines at negative voltages). The

solid red and blue lines were calculated with identical pa-

rameters as the solid black lines, but a tip-sample separation

reduced by 0.03 nm and 0.06 nm, respectively. At the closest

tip-sample separation, only the defect-related current contri-

bution Idefect� is discernable. Similarly, with decreasing tip-

sample separation, an additional current contribution, labeled

Idefectþ, appears between 0 V and þ1.0 V. Both effects shift

the apparent onset voltages to smaller absolute values,

reducing the apparent bandgap. The normalized differential

conductivity (dI/dV)/ðI=VÞ curves in Fig. 3(b) exhibit analo-

gous features as described above for the tunnel current in

Fig. 3(a). However, the defect induced tunnel currents within

the bandgap lead only to weak signals in the normalized dif-

ferential conductivity (dI/dV)/ðI=VÞ, in particular, for the

larger tip-sample separations.

At this stage, we focus on the physical origins of the dif-

ferent contributions to the tunnel current. Figure 4 shows

schematics of different band alignments of the metallic tip-

ZnO surface tunnel-contact system. In general, a tunnel cur-

rent only occurs if filled (empty) states at the sample surface

face empty (filled) states at the tip. Due to the high step den-

sity, the Fermi energy is pinned at the surface and the

tip-induced band bending is negligible. Hence, at positive

sample voltages, a tunnel current occurs, if the Fermi level

of the tip EF,tip is above the conduction band edge of the sur-

face (IC) [Fig. 4(b)]. Thus, the onset voltage at þ1.0 V corre-

sponds to the energetic position of the conduction band edge

at the surface EC. This indicates a Fermi level pinning of

1.0 eV below EC. Furthermore, if EF,tip is below the valence

band edge EV, filled valence band states face empty tip states

and electrons tunnel, yielding the IV contribution [Fig. 4(a)].

This effect leads to the onset of the tunnel current close to a

voltage of �2.5 V [Fig. 3(a)], corresponding to the valence

band edge EV at the ZnOð11�20Þ surface. If no states are pres-

ent within the bandgap, no tunnel current should occur in a

voltage range corresponding to the size of the bandgap (here

�2.5 to þ1 V). However, if (i) electrons accumulate at the

ZnO surface due to a tip-induced band bending [Fig. 4(c)] or

(ii) defects are present at the surface with extrinsic electronic

states within the bandgap [Fig. 4(d)], filled (empty) semicon-

ductor states can face empty (filled) tip states and hence a

tunnel current can appear at voltages corresponding to ener-

gies within the bandgap.20,21,23

An electron accumulation at the sample surface, due to

tip-induced band bending, requires the Fermi level to be en-

ergetically located above EC. However, here EF is pinned

1 eV below EC. Thus, no charge carrier accumulation zone in

the conduction band can exist. Hence, the effect of surface

defects, such as steps, has to be considered. In general, steps

on non-polar compound semiconductor surfaces exhibit

localized charges, due to electronic states in the bandgap.24

In analogy, steps on the ZnO cleavage surfaces are expected

FIG. 3. (a) Absolute current-voltage spectra measured at different tip-

sample separations (shown as symbols) plotted in a logarithmic display. The

solid lines represent fits of the calculated tunnel current assuming only tun-

neling into the conduction band states or out of the valence band states. The

dashed and dotted lines indicate the total current due to additional defect-

related tunnel current contributions at negative (Idefect�) and positive

(Idefectþ) voltages, respectively. IV and IC denote the tunnel currents out of

the valence and into the conduction band states, respectively. (b) Normalized

differential conductivity (dI/dV)/ðI=VÞ, shown as symbols, derived from the

current-voltage spectra in (a). EV and EC mark the energetic positions of the

valence and conduction band edges, respectively.
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to introduce extrinsic defect states in the bandgap. This is

corroborated by the observed Fermi level pinning attributed

to the high step concentration visible in Fig. 2(a). Electrons

in these gap states can tunnel already at low negative vol-

tages into empty tip states. Similarly, electrons can tunnel

from the tip into the empty parts of the defect bands at low

positive voltages. As a result, the tunneling spectra exhibit

additional current contributions, within the voltage interval

corresponding to the fundamental bandgap.25

Similar defect-induced currents were previously

observed on GaNð10�10Þ and on InNð11�20Þ cleavage surfa-

ces.21,23 In these cases, the defect states could only be

observed at negative voltages. This was attributed to the fact

that at positive voltages, the electrons tunneling into the

defect-induced gap states simply fill them and cannot be

removed from there due to the lack of free holes (minority

carriers) in n-type materials. Here, the step concentration is

significantly higher as compared with cleaved GaN surfaces

shown in Ref. 23. The higher step concentration leads to per-

colated defect bands over the whole surface, improving the

carrier dynamics of electrons (or holes) injected into the

defect states. Thus, also at positive voltages defect-related

tunnel current contributions occur.

The above results point out the importance of defects,

such as steps, on the apparent shrinking of the measured

bandgap by STS. All non-polar ZnO surfaces investigated

thus far by STM/STS were prepared by ion sputtering and

annealing cycles and exhibited high step concentrations.11–13

In analogy to our measurements, the defect-induced states in

the bandgap not only pin the Fermi energy, but also give rise

to defect-state induced tunnel currents in the bandgap. This

tunnel current of extrinsic origin leads to apparently reduced

surface bandgaps, even if no intrinsic surface states are

located within the fundamental bandgap. Hence, non-polar

ZnOð11�20Þ cleavage surfaces do not have intrinsic surface

states within the bandgap.
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correspond to the energetic positions of the conduction band edge, valence

band edge, surface conduction band edge, surface valence band edge, vac-

uum energy, Fermi level of the tip and that of the sample, respectively.
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