
Jül - 4359

M
em

be
r

of
 t

he
 H

el
m

ho
ltz

 A
ss

oc
ia

tio
n

Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Performance analysis and comparison
of parallel eigensolvers on Blue Gene
architectures

Jan Felix Münchhalfen

Berichte des Forschungszentrums Jülich 4359

Performance analysis and comparison
of parallel eigensolvers on Blue Gene
 architectures

Jan Felix Münchhalfen

Berichte des Forschungszentrums Jülich; 4359
ISSN 0944-2952
Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)
Jül-4359

Vollständig frei verfügbar im Internet auf dem Jülicher Open Access Server (JUWEL)
unter http://www.fz-juelich.de/zb/juwel

Zu beziehen durch: Forschungszentrum Jülich GmbH · Zentralbibliothek, Verlag
D-52425 Jülich · Bundesrepublik Deutschland
Z 02461 61-5220 · Telefax: 02461 61-6103 · e-mail: zb-publikation@fz-juelich.de

Abstract

The solution of eigenproblems with dense, symmetric system matrices is a core
task in many fields of computational science and engineering. As the problem
complexity and thus the size of the matrices involved increases, the applicati-
on of distributed memory supercomputer architectures and parallel algorithms
becomes inevitable. Nearly all modern algorithms for eigensolving implement
a tridiagonal reduction of the eigenproblem system matrix and a subsequent
solution of the tridigonalized eigenproblem. Additionally, back transformati-
on of the eigenvectors is required if these are of interest. In the context of
this thesis, implementations of two basically different approaches to the paral-
lel solution of eigenproblems were benchmarked, reviewed and compared with
particular regard to their performance on the Blue Gene/P and Blue Gene/Q
supercomputers JUGENE and JUQUEEN at the Forschungszentrum Jülich:
ELPA, which implements an optimized version of the divide and conquer algo-
rithm and Elemental which utilizes the PMRRR implementation of the MR3

algorithm. ELPA features two fundamentally different kinds of tridiagonaliza-
tion, the standard one-stage and a two-stage approach. The comparision of the
two-stage to the direct reduction was a primary concern in the performance
analysis.

Zusammenfassung

Viele Anwendungen aus den Natur- und Ingenieurswissenschaften erfordern die
Berechnung der Eigenwerte und -vektoren symmetrischer und dichtbesetzter
Matrizen. Mit steigender Komplexität der Problemstellungen, d.h. mit steigen-
der Matrixgröße, wird der Einsatz paralleler Algorithmen auf Supercomputern
mit verteiltem Speicher unabdingbar. Nahezu alle modernen Algorithmen zur
Lösung dieser Eigenwertprobleme implementieren zunächst eine Reduktion der
Systemmatrix auf Tridiagonalgestalt und im Folgenden die Lösung des tridia-
gonalen Eigenwertproblems. Zusätzlich ist eine Rücktransformation der Eigen-
vektoren vonnöten, wenn die Anwendung diese benötigt.

In dieser Masterarbeit werden zwei neue parallele Programme zur Lösung sym-
metrischer Eigenwertprobleme aus den Bibliotheken Elemental und ELPA vor-
gestellt. In ELPA basiert die Implementierung auf dem Divide-and-Conquer
Verfahren, während in Elemental der MRRR-Algorithmus (Multiple Relatively
Robust Representations) genutzt wird. ELPA bietet zwei verschiedene Metho-
den zur Reduktion auf Tridiagonalgestalt - eine direkte und eine zweistufige.
Die zweistufige Reduktion führt zu einer aufwändigeren Rücktransformation.
Der Vergleich der direkten mit der zweistufigen Methode war ein vorrangi-
ges Anliegen der Performance-Analyse. Die Performancemessungen wurden
auf den Blue Gene/P- und Blue Gene/Q-Systemen JUGENE und JUQUEEN
durchgeführt.

Inhaltsverzeichnis

1 Introduction 3

2 Mathematical principals 5
2.1 Basic definitions . 5
2.2 Eigenvalue problem . 7

3 Algorithms 13
3.1 General approach . 13
3.2 Tridiagonalization . 14
3.3 Solution of the tridiagonal eigenvalue problem 19

3.3.1 Divide and conquer . 19
3.3.2 MRRR . 22

3.4 Back transformation . 28

4 Architectures and libraries 31
4.1 Blue Gene . 31

4.1.1 Blue Gene/P (JUGENE) 32
4.1.2 Blue Gene/Q (JUQUEEN) 34

4.2 Libraries . 36
4.2.1 ELPA . 36
4.2.2 Elemental . 39

5 Performance analysis, comparision and optimization 45
5.1 Test Matrices . 45
5.2 Correctness of results . 46
5.3 Tuning parameters . 46

5.3.1 ELPA - JUGENE . 47
5.3.2 ELPA - JUQUEEN . 48

5.4 Runtime Analysis . 50
5.4.1 JUGENE - ELPA one-stage, two-stage and Elemental . . 50
5.4.2 JUQUEEN - ELPA one-stage, two-stage and Elemental . 53
5.4.3 Runtime analysis conclusions 56

6 Scalasca instrumentation 57
6.1 Scalasca . 57
6.2 Elemental instrumentation . 58

Inhaltsverzeichnis

6.3 ELPA one-stage instrumentation 58
6.4 ELPA two-stage instrumentation 59

7 Outlook 61

1 Introduction

In many fields of computational sciences and engineering, numerical simulation
is an important tool towards the solution of a vast variety of different problems.
Examples for this range from computational problems in natural sciences as
chemistry or biology like the simulation of protein folding to the very prac-
tical field of crash test simulations in modern car manufacturing companies.
Frequently, the solution of eigenvalue problems is an important part of such
simulations.

As the reality is mapped to a mathematical problem through simplification
of a continuous problem to a discrete problem, every simulation is only an
approximation to the real world. The more coarse a mathematical model maps
the continuous problem, the more distant the solution of that model will be
from reality. A most accurate mathematical approach is therefore desirable
but also increases the complexity of the model. With increasing complexity
of the mathematical models, the matrices that arise throughout the computa-
tions increase in their dimensions and frequently reach huge dimensions that
only can be addressed by modern supercomputer architectures. The solution
of eigenproblems is a core task of many applications that require numerical
simulation. Consequently the development of efficient numerical eigensolvers
is of increasing importance.

Modern supercomputers usually have a distributed memory design and con-
sist of many thousand different and mostly homogenous individual compu-
ters to provide the needed performance and memory amount. These indivual
components are interconnected through some kind of specialized network and
cooperate in the solution of computational problems. With the advent of dis-
tributed memory architectures, the task of developing methods to divide the
mathematical problems into smaller subproblems and to solve these subpro-
blems efficiently arose.

The size of the matrices that arise during the computations often reflect the
fineness or accuracy of the mathematical approximation to the real world pro-
blem. Often these matrices are dense, symmetric and of such large dimension
that it may become impossible to store them in the memory of a single com-
putation unit. Additionaly, computations with dense matrices often involve
problems with a computational complexity of O(n3). With mathematical pro-

3

1 Introduction

blems of such complexity, both in memory usage and computational expenses,
the development of parallel algorithms on distributed memory supercomputer
architectures is required. There exist several algorithms that were specially de-
signed for the parallel solution of eigenproblems with dense system matrices of
huge dimension. Two of them are discussed in this thesis and implementations
of them are then further benchmarked and compared in the following: the di-
vide and conquer algorithm introduced by Cuppen in 1981 [10] - and the MR3

algorithm introduced by Dhillon and Parlett in 2004[13]. Both algorithms are
designed for the solution of the tridiagonal eigenproblem as tridiagonal matri-
ces have special properties that can be exploited in the process of eigenvalue
and eigenvector computation. Because the system matrices in eigenproblems
are rarely tridiagonal right from the start, tridiagonalization is an essential
part of the solution of eigenproblems and should not be neglected in its com-
plexity. The implementations of the previously named algorithms both include
tridiagonalization algorithms. The Elemental library[22] only features direct
tridiagonalization at this point(version 0.75). It utilizes the PMRRR[2] imple-
mentation of the MR3 algorithm developed by Matthias Petschow. The divide
and conquer algorithm is implemented in the ELPA library[15]. This library
is the result of a collaborative effort of several German research institutes.
It features two different kinds of tridiagonalization: A direct approach as it
is implemented in Elemental and a two-stage approach as it was introduced
by Bischof et al.[6]. Since the back transformation of the eigenvectors is of
increased computational complexity when the two-stage approach is utilized,
the crossline in runtime of the eigensolvers that feature direct and two-stage
tridiagonalization was an important aspect of this thesis.

Both libraries were benchmarked for test matrices of varying sizes and per-
centages of the eigenspectrum on two different supercomputers: The Blue Ge-
ne/P installation JUGENE, and the Blue Gene/Q installation JUQUEEN at
the Forschungszentrum Jülich. The results of these benchmarks are visualized
and discussed in chapter 5.

4

2 Mathematical principals

This chapter introduces the basic mathematical definitions and terms in con-
text to the eigenvalue problems that will be discussed in the following chapters.

2.1 Basic definitions

Matrices and vectors are commonly used terms in linear algebra. A system of
linear equations

a1,1x1 + a1,2x2 + . . . + a1,nxn = b1

a2,1x1 + a2,2x2 + . . . + a2,nxn = b2
...

...
. . .

...
...

am,1x1 + am,2x2 + . . . + am,nxn = bm

can be written as Ax = b, where A is a matrix representing the two-dimensional
grid of equation coefficients ai,j, and x and b are the vectors with elements
x1, . . . , xn and b1, . . . , bm respectively.

Depending on the elements type we either say A ∈ Rm×n, x ∈ Rn and b ∈ Rm

for real numbers or A ∈ Cn×m, x ∈ Cn and b ∈ Cm for complex numbers. Mul-
tiplication of matrices and vectors is defined as seen in the equation system
above. The multiplication of two vectors is defined by the scalar product.

Definition 2.1.1. Let u, v ∈ Cn be two complex column vectors, then

< u, v >:=
n∑
j=1

ūjvj (2.1.1)

is the scalar product of both vectors. Here, ūj is the complex conjugate
value of uj.

Remark 2.1.2. If for two vectors u, v ∈ C the scalar product condition

< u, v >= 0 (2.1.2)

is true, these vectors are called orthogonal. This relationship is denoted as
u ⊥ v.

5

2 Mathematical principals

Definition 2.1.3. Given a vector x ∈ Cn,

‖x‖2 :=
√
< x, x > =

√√√√ n∑
j=1

x̄jxj (2.1.3)

defines the euclidean norm. This norm represents the length of a vector in the
euclidean space. If not stated otherwise, ‖·‖ refers to the euclidean norm ‖·‖2.

Definition 2.1.4. A matrix B ∈ Cm×n is called the adjoint matrix of a
matrix A ∈ Cn×m if the equation

bj,i = āi,j (2.1.4)

is true for each of its elements. The adjoint matrix is written as ĀT or A∗. For
a real matrix, B is called the transposed matrix AT of A.

Definition 2.1.5. For two complex matrices A ∈ Cm×k and B ∈ Ck×n, the
product AB = C,C ∈ Cm×n is defined via the matrix-matrix multiplication:

∀
1≤i≤m
1≤j≤n

: ci,j =
k∑
l=1

ai,lbl,j (2.1.5)

Remark 2.1.6. Note that the scalar product of two complex vectors u ∈ Cn

and v ∈ Cn can be expressed via the matrix multiplication if the first vector
is conjugated and transposed as follows:

< u, v >= u∗v

Definition 2.1.7. A square matrix A ∈ Cn×n is called hermitian, if it is
self-adjoint, that means A = A∗. If A is a real matrix, it is called symme-
tric and A = AT .

Definition 2.1.8. A matrix A ∈ Cn×n is called regular, nonsingular or
invertible if there exists a matrix A−1 ∈ Cn×n so that

AA−1 = I,

where I stands for the identity matrix. The matrix A−1 is called the inverse
matrix of A.

6

2.2 Eigenvalue problem

Definition 2.1.9. Let A ∈ Cn×n be a complex square matrix. If the equation

A∗A = I, (2.1.6)

is true for A, it is called unitary. In this case, the matrix has the inverse
A−1 = A∗. Each row of the matrix is orthogonal to every other row and has
the norm 1. Together they form an orthogonal basis in Cn×n. If for a matrix
A ∈ Rn×n

A−1 = AT ,

is true, A is called an orthogonal matrix or orthonormal matrix.

Definition 2.1.10. Two matrices A, Ã ∈ Cn×n are said to be similar if they
are related by

Ã = C−1AC, (2.1.7)

where C ∈ Cn×n is an arbitrary nonsingular matrix. The transformation
through C (2.1.7), is called a similarity transformation

Remark 2.1.11. For an orthogonal similarity transformation,

Ã = Q∗AQ

with Q unitary, the similar matrix Ã of a hermitian matrix A is hermitian
again:

Ã∗ = (Q∗AQ)∗ = Q∗A∗Q∗
∗

= Q∗AQ = Ã

2.2 Eigenvalue problem

Definition 2.2.1. Let A be a complex matrix A ∈ Cn×n. The problem of
finding the solutions for the following equation

Av = λv,w.l.o.g. ‖v‖ = 1 (2.2.1)

is known as the eigenvalue problem. The scalar λ ∈ C is called the eigenva-
lue and the vector v ∈ Cn is called eigenvector. The pair of both is called
eigenpair and is denoted as follows: (λ, v).

Theorem 2.2.2. The equation (2.2.1) is equivalent to the problem

Av − λv = 0⇔ (A− λI)v = 0

7

2 Mathematical principals

and therefore is a homogeneous linear equation system.
Furthermore, if the determinant of the equation system differs from 0, then it
only has the trivial solution v = ~0.

If the determinant equals zero,

det(A− λI) = 0 (2.2.2)

there exists an infinite number of solutions for v, depending on λ. The roots
of the characteristic polynomial (2.2.2) thus are the eigenvalues of A.

In real-world applications, frequently hermitian or symmetric matrices are en-
countered. This special type of matrix has certain properties which allows to
develop efficient algorithms for eigenvalue computation. The following theo-
rems turn out to be very useful in that context.

Theorem 2.2.3. All the eigenvalues of a hermitian matrix are real.

Proof: Let λ ∈ C be an eigenvalue of the hermitian matrix A ∈ Cn×n with
corresponding eigenvector z ∈ Cn and ‖z‖ = 1. Because z has the norm 1, the
scalar product with itself < z, z >= 12 equals 1 as well. Therefore it follows

λ = z∗λz = z∗Az = z∗A∗z = (Az)∗z = (λz)∗z = z∗λ̄z = λ̄

and thus λ = λ̄. From this follows that λ ∈ R.

Theorem 2.2.4. The eigenvectors corresponding to different eigenvalues of a
hermitian matrix are linearly independent and pairwise orthogonal.

Proof: Let λ1, λ2 ∈ R, λ1 6= λ2 be some arbitrarily chosen eigenvalues of a
hermitian matrix A ∈ Cn×n. Furthermore let v1, v2 ∈ Cn×n be the correspon-
ding eigenvectors. Then the following holds:

λ2 < v1, v2 > = λ2(v∗1v2) = v∗1λ2v2 = v∗1Av2

= (A∗v1)∗v2 = (Av1)∗v2 = (λ1v1)∗v2 = v∗1λ̄1v2

= λ̄1(v∗1v2) = λ̄1 < v1, v2 >

As proven in 2.2.3, all eigenvalues of the hermitian matrix are real. From
this it follows that λ2 < v1, v2 >= λ1 < v1, v2 >, which either can be true if
λ1 = λ2 or < v1, v2 >= 0. Because λ1 6= λ2 was the initial assumption, it is
necessary for the scalar product that < v1, v2 >= 0.
Therefore the vectors are orthogonal.

�

8

2.2 Eigenvalue problem

Theorem 2.2.5. For a given matrix A ∈ Cn×n a unitary matrix Q ∈ Cn×n

can be found so that

R = Q∗AQ, (2.2.3)

where R ∈ Cn×n is an upper triangular matrix.

Proof: For the decomposition of A at least one eigenvector v1 of the matrix A
is needed. This vector can be extended to an orthonormal basis v1, y2, . . . , yn
in Cn using the Gram-Schmidt process. The generated vectors are further
combined into the columns of an unitary matrix Q1 which fulfills the equation

Q∗1AQ1 =

λ1 ∗ . . . ∗
0
... A1

0

where A1 ∈ C(n−1)×(n−1) is a modified submatrix of A.

The next step is to calculate another eigenpair of the submatrix A1 and repeat
the above process to determine another unitary matrix Q2 ∈ C(n−1)×(n−1). This
matrix Q2 is extended to a matrix Q̃2 as follows:

Q̃2 =

1 0 · · · 0
0
... Q2

0

so that the unitarity is preserved.

If both of these matrices Q1 and Q̃2 are applied to A as denoted in the follo-
wing equation

Q̃∗2Q
∗
1AQ1Q̃2 =

λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0
...

... A2

0 0

 ,

then the eigenvalues appear on the diagonal of the resulting matrix, where A2 ∈
C(n−2)×(n−2). This can be inductively repeated for matrices Qi, i = 1 . . . (n−1),
to determine a unitary matrix Q as their product:

9

2 Mathematical principals

Q = Q1Q̃2 . . . Q̃n−1

In fact, the matrix Q is the very matrix that fulfills (2.2.3).

�

Definition 2.2.6. The decomposition in equation (2.2.3) is known as the
Schur decomposition of a given matrix A ∈ Cn×n.

It is an orthogonal similarity transformation as introduced in definition 2.1.10.
For hermitian matrices A ∈ Cn×n, the matrix R ∈ Cn×n is hermitian, too be-
cause of remark 2.1.11. Therefore R is a diagonal matrix with the eigenvalues of
A on its main diagonal. If A is hermitian, the matrix R ∈ Rn×n is denoted as Λ.

The decomposition

Λ = Q∗AQ

is called the spectral decomposition of the hermitian matrix A.

Concerning eigenvalue computations, similarity transformations have some
special properties that numerical algorithms can benefit from. The followi-
ng two theorems prove to be extremely useful in this context.

Theorem 2.2.7. Consider a similarity transformation Ã = C−1AC of A ∈
Cn×n with the transformation matrix C. If (λi, vi) are the eigenpairs of A, the
eigenpairs of Ã can be expressed as

(λi, C
−1vi), i = 1 . . . n

While the eigenvectors change, the eigenvalues are invariant to the similarity
transformation.

Proof:

Let (λ, v) be an eigenpair of an arbitrary matrix A ∈ Cn×n and C ∈ Cn×n

a transformation matrix. The following equation has to be proven:

Ã(C−1v) = λ(C−1v) (2.2.4)

Substituting Ã it follows that

10

2.2 Eigenvalue problem

(C−1AC)(C−1v) = λ(C−1v)
⇔ C−1(Av) = C−1(λv)
⇔ Av = λv

While (λ, v) is an eigenpair of the matrix A, the last equation is always true.
Because all transformations in the proof were equivalent transformations, equa-
tion (2.2.4) is true, too. Therefore theorem 2.2.7 is proven.

�

Remark 2.2.8. The spectral decomposition of A as introducuded in definition
2.2.6 is equivalent to AQ = QΛ, which is the matrix representation of the
eigenvalue problem with Λ containing the eigenvalues of A on its main diagonal
and the columns of Q representing the eigenvectors of A.

Theorem 2.2.9. The eigenvectors of an arbitrary matrix A ∈ Cn×n are inva-
riant to shifts. For a matrix (A+ µI) with shift µ ∈ C the eigenpairs conform
to

(λi + µ, vi),

if (λi, vi) is an eigenpair of A.

Proof:
Let (λ, v) be an eigenpair of an arbitrary matrix A. For A it is true that:

Av = λv
⇔ Av + µv = λv + µv
⇔ (A+ µI)v = (λ+ µ)v

And therefore, as the last equation equals the definition of the eigenproblem
itself (2.2.1), (λ+ µ, v) is an eigenpair of (A+ µI).

�

11

3 Algorithms

This chapter will describe the general approach towards the numerical solution
of eigenvalue problems. All following approaches expect a matrix A ∈ Rn×n,
which is symmetric and dense. At first the general approach for symmetric,
dense matrices will be explained. In the following, the numerical approaches
towards the solution of the eigenvalue problem will be discussed in full detail.

3.1 General approach

The general approach for the numerical solution of an eigenvalue problem with
a symmetric dense system matrix A ∈ Rn×n consists of 3 steps.

1. The dense, symmetric matrix A ∈ Rn×n is reduced to a matrix T ∈ Rn×n

of tridiagonal, symmetric form. The reduction is accomplished using only
orthogonal similarity transformations as introduced in remark 2.1.11. A
very common approach utilizes Householder transformation matrices and
will be subsequently discussed (another well-known class of orthogonal
similarity transformations are the Givens rotations).

2. In the next step the tridiagonal eigenproblem

Tz = λz, z ∈ Rn (3.1.1)

has to be solved. Several algorithms exist for the solution of this problem,
two of them will be discussed in more detail in the context of this thesis.
Because only similarity transformations were used to reduce the matrix
A to T , the eigenvalues of both are identical as proven in theorem 2.2.7.

3. In contrast to the eigenvalues, the eigenvectors of A and T are not the
same. As proven in theorem 2.2.7, if w is an eigenvector of T , then the
corresponding eigenvector v of A can be calculated as v = Q−1w, where
Q was the orthogonal similarity transformation matrix that reduced A to
T . This back transformation will be discussed in detail later on. Because
the eigenvalues of T and A are the same, the last step is only necessary
if the eigenvectors are of interest.

13

3 Algorithms

3.2 Tridiagonalization

As shown in definition 2.2.6, for a symmetric matrix A ∈ Rn×n, an orthogonal
matrix Q ∈ Rn×n can be found so that

QTAQ = T, (3.2.1)

T is a symmetric tridiagonal matrix. The construction of the orthogonal matrix
can be achieved using either Housholder or Givens transformations. Speaking
of either one the process is called Householder reduction, or Givens re-
duction. Givens transformations are linear transformations which represent a
rotation in the euclidean space. The matrix Q is constructed via the product of
several of Givens rotations. One matrix has to be calculated for each element
that is not on the main diagonal or the first minor diagonal and differs from ze-
ro. The Householder transformation on the other hand, represents a reflection
in the euclidean space. If the vector that identifies the reflection hyperplane is
chosen optimal, the matrix Q can be constructed via the product of much less
Householder matrices than Givens matrices would be needed in the equivalent
reduction method. Because the complexity of the Householder reduction is, in
most cases, much lower than the complexity of the Givens reduction, the latter
will not be discussed any further.

A Householder transformation matrix H ∈ Rn×n for the vectors x, z ∈ Rn

with ‖x‖ = ‖z‖ is defined as

H = I − 2yyT , y =
x− z
‖x− z‖

The matrix H then is a symmetric orthogonal matrix and suffices

z = Hx

For each k ∈ {1, . . . , n − 2} vectors can be chosen so that the constructed
Householder matrices Hk fulfill:

Hkx = Hk

x1
...
xk
xk+1

xk+2
...
xn

=

x1
...
xk
∗
0
...
0

14

3.2 Tridiagonalization

If now yk is chosen as

ãk =

0
...
0

ak,k+1

ak,k+2
...

ak,n

and yk =

ãk − ‖ãk‖ek+1

‖ãk − ‖ãk‖ek+1‖
,

the corresponding Householder matrix Hk = I − 2yky
T
k exists and fulfills

Hkak = Hk

ak,1
...
ak,k
ak,k+1

ak,k+2
...

ak,n

=

ak,1
...
ak,k
∗
0
...
0

In the following, the k-dimensional submatrix of A, with the first (n− k) co-
lumns and rows truncated, will be denoted as A(k).

Applying the first orthogonal similarity transformation via multiplication of
the Householder matrix H1 onto the matrix A results in:

HT
1 AH1 =

1 0 · · · 0
0
... H

(n−1)
1

0

a1,1 a1,2 · · · a1,n

a2,1
... A(n−1)

an,1

1 0 · · · 0
0
... H

(n−1)
1

0

=

a1,1 β2 0 · · · 0
β2

0
Ã

(n−1)
1...

0

 = Ã1

As can be seen in the above equation, the multiplication of HT
1 = H1 from the

left side eliminates elements below the first minor diagonal of the first column,

15

3 Algorithms

while the multiplication of H1 from the right side eliminates elements next to
the the right of the first minor diagonal of the first row of A. In the next step,
the newly constructed Householder matrix H2 will be applied in the same way
to the matrix Ã1 to achieve the same effect for the second column and row:

HT
2 Ã1H2 =

a1,1 β2 0 0 · · · 0
β2 α2 β3 0 · · · 0
0 β3

0 0
Ã

(n−2)
2...

...
0 0

= Ã2

Using these similarity transformations, the matrix A is subsequently reduced
to a tridiagonal matrix T that is similiar to A in (n− 2) steps. The complete
reduction can be expressed as a product of Householder matrices:

Q = H1 . . . Hn−2

QT = Hn−2 . . . H1

and

QTAQ =

α1 β2

β2 α2 β3

.

βn−1 αn− 1 βn
βn αn

As the product of symmetric matrices is not necessarily symmetric, QT is not
equal to Q while this is true for the individual Householder matrices Hi. The
product of the orthonormal matrices is itself orthonormal and in fact the very
matrix that satisfies (3.2.1).

16

3.2 Tridiagonalization

For numerical benefits, the Householder transformation can be split up into

HTAH = (I − 2yyT)A(I − 2yyT)

= (A− 2yyTA)(I − 2yyT)

= A− 2yyTA− 2AyyT + 4yyTAyyT

= A− 2yyTA+ 2yyTAyyT − 2AyyT + 2yyTAyyT

= A− y (2yTA− 2yTAyyT)︸ ︷︷ ︸− (2Ay − 2yyTAy)︸ ︷︷ ︸ yT
:=vT :=v

As vT is the transposed of the vector v, the numerical benefit is that the
Householder transformation can now be expressed via:

HTAH = A− yvT − vyT

v = 2Ay − 2yyTAy

which, with y, v ∈ Rn, is a rank 1-update and therefore a level-2 BLAS opera-
tion.

Input : A
1 for (k = 1, . . . , (n− 2)) do

2 µ = ‖ãk‖
3 y = ãk−µek+1

‖ãk−µek+1‖
4 v = 2Ay − 2yyTAy
5 Ak+1,k = µ
6 Ak,k+1 = µ

7 Ak+2:n,k = ~0

8 Ak,k+2:n = ~0T

9 Ak+1:n,k+1:n = Ak+1:n,k+1:n − (yvT)k+1:n,k+1:n − (vyT)k+1:n,k+1:n

10 end

11 return A

Algorithm 3.2.1: Householder reduction of symmetric matrix A ∈ Rn×n. The matrix A is
overridden by the tridiagonalization.

Reducing a symmetric matrix via the Householder reduction requires approxi-
mately 4n3

3
Flops[21]. Most operations involved are Level-2 BLAS(i.e. matrix-

vector operations1). If the eigenvectors of A are of interest, the matrix Q is
needed for the back transformation step. While algorithm 3.2.1 does not pro-
vide the similarity transformation matrix Q, the computational costs in this

1in this case rank-1 updates

17

3 Algorithms

case increase to 8n3

3
Flops[18]. As will be seen later in the discussion of the back

transformation step, Q itself will never be accumulated, but the Householder
matrices will again be applied subsequently.

Because Level-3 BLAS(i.e. matrix-matrix operations) are far more efficient
than Level-2 BLAS[21], Bischof and Van Loan[7] developed theWY -representation
for a sequence of Householder matrix products whichs allows to exploit the
computational benefits of Level-3-BLAS routines.

Let Qk be the product of k Householder matrices, then the following applies:

Qk = H1 . . . Hk = I −WkY
T
k where Wk, Yk ∈ Rn×k

The construction of the matrices Wk and Yk can be shown inductively.
Beginning with k = 1,

Q1 = H1 = I − 2y1y
T
1 = I −W1Y

T
1

applies.

Let (A|b) be a matrix that consists of A concatenated with b as the last column
vector. In the step from k to k + 1 the matrices Wk and Yk are known and it
applies that:

Qk+1 = H1 . . . HkHk+1 = (I −WkY
T
k)(I − 2yk+1y

T
k+1)

= I −WkY
T
k −Qk2yk+1y

T
k+1

= I − (Wk|Qk2yk+1)︸ ︷︷ ︸ (Yk|yk+1)T︸ ︷︷ ︸
Wk+1 Y T

k+1

This representation is used in blocked Householder transformation algorithms.
The matrix A can not be directly reduced to tridiagonal form implying this
representation and is first reduced to a band matrix of bandwidth k and then,
in a second step, further reduced to tridiagonal form using single orthogonal
transformations[7]. The WY-representation allows to use the more efficient
level-3 BLAS as

QT
kAQk = A− 2WkY

T
k − 2Y T

k Wk (3.2.2)

with W,Y ∈ Rn×k, is a rank k-update and therefore can be implemented uti-
lizing level-3 BLAS.

If the resulting band matrix is sparse, Givens transformations can be com-
putationally more efficient than the Householder approach.

The WY -representation comes to use in the ELPA two-stage solver.

18

3.3 Solution of the tridiagonal eigenvalue problem

3.3 Solution of the tridiagonal eigenvalue problem

This section will introduce two different algorithms for the solution of the
tridiagonal eigenvalue problem (3.1.1) as they are used in the libraries that
will be compared in the context of this thesis.

3.3.1 Divide and conquer

The divide and conquer algorithm was introduced by Cuppen in 1981 [10]. It is
an algorithm which calculates the spectral decomposition of a given symmetric
tridiagonal matrix T .
The matrix T is decomposed into two submatrices, for each of which the spec-
tral decomposition is calculated independently. These individual spectral de-
compositions are then merged into the spectral decomposition of T . The algo-
rithm is recursive, because the spectral decompositon of the two submatrices
is again accomplished using the divide and conquer approach.

If the matrix T has no 0-elements on the off-diagonal it can be decompo-
sed to:

T =

α1 β2

β2 α2 β3

.

βn−1 αn−1 βn
βn αn

 =

T1

βm+1

βm+1

T2

 (3.3.1)

=

T̂1

T̂2

+

βm+1 βm+1

βm+1 βm+1

 (3.3.2)

So for m < n, T can be decomposed into two symmetric tridiagonal sub-
matrices T̂1 ∈ Rm×m, T̂2 ∈ R(n−m)×(n−m) and a one-rank correction matrix
Km+1 which is defined as

Km+1 = βm+1vv
T = βm+1

(
em
e1

)(
eTm eT1

)

19

3 Algorithms

Suppose the spectral decompositions of the matrices T̂1 and T̂2 are given by

T̂1 = Q1Λ1Q
T
1

T̂2 = Q2Λ2Q
T
2

where Q1, Q2 are orthonormal matrices and Λ1,Λ2 are diagonal, the spectral
decomposition of T can be calculated out of these two smaller decompositions
as follows:

T =

(
Q1Λ1Q

T
1

Q2Λ2Q
T
2

)
+Km+1

=

(
Q1

Q2

)(
Λ1

Λ2

)(
QT

1

QT
2

)
+ βm+1vv

T

=

(
Q1

Q2

)
︸ ︷︷ ︸

(Λ1

Λ2

)
︸ ︷︷ ︸+βm+1v̂v̂

T

(QT
1

QT
2

)
Q1,2 Λ1,2

with

v̂ =

(
QT

1 0
0 QT

2

)
v =

(
QT

1 em
QT

2 e1

)

In the following process the spectral decomposition of Λ1,2 + βm+1v̂v̂
T

Λ1,2 + βm+1v̂v̂
T = ZΛZT (3.3.3)

has to be calculated, so that the spectral decompositions of the submatrices
can be further reduced into the spectral decomposition of T , as shown in the
following equation:

T = Q1,2(Λ1,2 + βm+1v̂v̂
T)QT

1,2 = Q1,2(ZΛZT)QT
1,2 = (Q1,2Z)Λ(Q1,2Z)T

The last part of this equation is the full spectral decomposition of T , redu-
ced out of the partial spectral decompositions of T̂1 and T̂2. Here the diagonal
matrix Λ ∈ Rn×n contains the eigenvalues of T while the columns of Q1,2Z
represent the eigenvectors.

The decomposition in equation (3.3.3) can be achieved using a theorem that
restates the results of Golub[17] as well as Bunch, Nielsen and Sorensen[9] who
added the explicit formula for the calculation of the eigenvectors.

20

3.3 Solution of the tridiagonal eigenvalue problem

Theorem 3.3.1. [10] If D is a diagonal matrix D=diag(d1, . . . , dn), n ≥ 2,
with d1 < d2 < · · · < dn, z ∈ Rn is a vector with zi 6= 0 for i ∈ {1, . . . , n} and
ρ > 0 a scalar, then the eigenvalues of the matrix D+ ρzzT are equal to the n
roots λ1 < · · · < λn of the rational function

w(λ) = 1 + ρzT (D − λI)−1z (3.3.4)

= 1 + ρ

n∑
j=1

z2
j

dj − λ

The corresponding eigenvectors p1, . . . , pn of D + ρzzT are given by

pi = (D − λiI)−1z/‖(D − λiI)−1z‖2 (3.3.5)

and the di strictly seperate the eigenvalues as follows:

d1 < λ1 < d2 < λ2 < · · · < dn < λn < dn + ρzT z (3.3.6)

Proof: An eigenpair (λ, p) of D + ρzzT satifies

(D + ρzzT)p = λp

or with little transformation

(D − λI)p = −ρzTpz

We now show that D − λI is nonsingular. Assuming D − λI is singular, we
have λ = di for some i which results in ((D − λI)p)i = 0 = −ρzTpzi.
Because zi 6= 0 by initial assumption, we have zTp = 0 which again results in
(D − λI)p = −ρzTpz = 0 and therefore (dj − λ)pj = 0 for all j. This again
means that pj = 0 for j 6= i. So 0 = zTp = zipi must be fulfilled which, as p is
an eigenvector and has at least one element differing from 0, contradicts the
initial assumption z 6= 0 . Therefore D − λI is nonsingular and we have:

p = −ρzTp(D − λI)−1z

which consequently satifies equation (3.3.5) and further yields that

p = −ρzTp(D − λI)−1z
⇔ zTp = −ρzT zTp(D − λI)−1z
⇔ zTp = −ρzT (D − λI)−1zzTp
⇔ 0 = zTp+ ρzT (D − λI)−1zzTp
⇔ 0 = (1 + ρzT (D − λI)−1z)zTp

Because zTp 6= 0 as proven above, the last equation requires that

1 + ρzT (D − λI)−1z = 0

which proves that λ is a root of equation (3.3.4).
(3.3.6) easily follows from the behavior of w(λ).

21

3 Algorithms

�

Remark 3.3.2. If D contains mutually equal elements and/or some com-
ponents of z are zero, deflation is possible and the eigenproblem can be reduced
to two problems of smaller size. Without loss of generality it can be assumed
that zi 6= 0 ∀i ∈ {1 . . . n} and di 6= dj ∀i 6= j[10].

The matrices T̂1 and T̂2 are consecutively split using the divide and conquer
method until the partial eigenproblems reach the dimension 1, in which case
the solution is trivial, or the individual problems of smaller dimensions are
solved using different algorithms. The pseudocode for the divide and conquer
method is given below.

Input : T
1 if (T ∈ R1×1) then

2 Λ = T
3 Q = 1
4 else

5 [T̂1, T̂2, βm+1, v] = divide(T)

6 [Λ1, Q1] = divide_conquer(T̂1)

7 [Λ2, Q2] = divide_conquer(T̂2)

8 v̂ = QT1,2v

9 [Λ, Z] = solve_secular(βm+1,Λ1,2, v̂)
10 Q = Q1,2Z
11 end

12 return [Λ, Q]

Algorithm 3.3.1: The recursive function divide conquer. It is initially called with a tridiago-
nal matrix T as the argument. In the further process it splits the matrix
into smaller sub-matrices until they reach the dimension 1. Then it reduces
the individual results of the sub-problems into the spectral decompositi-
on of the original matrices the sub-problems were split from. The method
divide accomplishes a decomposition as described in (3.3.1) and (3.3.2).
The method solve secular calculates the solution to the secular spectral
decomposition as introduced in (3.3.3)

The efficiency of the divide and conquer algorithm depends on the relative
placement of the eigenvalues. As the roots of the secular equation (3.3.3) are
mostly calculated using iterative methods, the average computational effort
amounts to O(n2.3) and varies between O(n2) in best case and O(n3) in worst
case scenarios.[11] With this algorithm all eigenvalues and eigenvectors are
calculated.

3.3.2 MRRR

The Algorithm of Multiple Relatively Robust Representations, shortly denoted
as MRRR or MR3, was introduced by Dhillon and Parlett in 2004[13]. It is an

22

3.3 Solution of the tridiagonal eigenvalue problem

algorithm that can either calculate the full spectrum of eigenvalues, or only
parts of it. It uses relatively robust representations as introduced by Dhillon in
his Ph.D. Thesis in 1997[12]. The relatively robust representation of a matrix
A is a representation that aims to produce minimal errors in the eigenvalues
and eigenvectors under a certain amount of disturbance. To define a RRR,
another definition in context to the eigenvalues has to be made first.

Definition 3.3.3. The function relgap calculates the minimal relative devia-
tion of a scalar y ∈ R from a finite set of scalars X = {xi},X ⊂ R[12].

relgap(y,X) = min
x∈X

‖y − x‖
‖y‖

Definition 3.3.4. A relatively robust representation is a finite field of
real numbers X = {xi}, xi ∈ R defining a matrix A in such a way that if xi is
disturbed by εi with xi(1 + εi), the following equations apply for all 1 ≤ j ≤ n:

|δλj|
|λj|

= O

(∑
i

εi

)

|sin∠(zj, zj + δzj)| = O

∑
i

εi

relgap(λj, {λk | k 6= j})

Here λj denotes the j-th eigenvalue whereas λj + δλj represents the corre-
sponding disturbed eigenvalue. The eigenvectors are denoted as zj or zj + δzj
respectively.

A relatively robust representation of a matrix A therefore is a representati-
on that results in minimal errors in the eigenvectors and eigenvalues when
disturbed within certain boundaries. When this is only true for a part of the
eigenvectors or eigenvalues, the representation is called a partial relatively
robust representation.

The MR3 algorithm does not exactly use fields of real numbers {xi} as in-
troduced in the above definition, but shifted representations of the tridiagonal
matrix T that differs by a scalar µ ∈ R as denoted in the following:

LcDcL
T
c = T − µI

The decomposition LcDcL
T
c is a lower triangular decomposition, such as the

Cholesky decomposition. In the special case of tridiagonal matrices T , the
decomposition results in a bidiagonal L ∈ Rn×n with lii = 1, i = 1 . . . n and a
diagonal D ∈ Rn×n.

23

3 Algorithms

As it is not always possible to calculate a full RRR, the MR3 algorithm con-
centractes on partial RRR’s near individual clusters of eigenvalues and tries to
find such representations using a trial and error approach. If T −µI is positive
definite,

xT (T − µI)x > 0 : ∀
x∈Rn\{0}

the decomposition LcDcL
T
c is always a RRR for all of its eigenvalues[14]. The

crucial part of the algorithm is to distinguish the individual clusters of eigen-
values. Therefore the algorithm, in a first step, calculates all of the requested
eigenvalues using bisection. Let L̂ = {λ̂i} be the set of calculated eigenvalues
of the RRR. A single eigenvalue λ̂k is considered isolated if,

∀
1≤i≤n

: relgap(λ̂k, L̂\{λ̂k}) > tol (3.3.7)

is satified. Here tol is a certain predefined tolerance (e.g. 10−3 [13]) that has to
be exceeded in order for the getvec routine[13] utilized by the MR3 algorithm
to calculate numerically orthogonal eigenvectors without using an explicit ap-
proach such as the Gram-Schmidt orthogonalization. This method implements
QD-transformations and the twisted factorization to calculate a relatively high-
ly accurate eigenvector corresponding to a certain eigenvalue λ̂k. If equation
(3.3.7) is not fulfilled for the eigenvalues of LcDcL

T
c , they are called clustered

and the getvec routine can not calculate numerically orthogonal eigenvectors
for LcDcL

T
c . It is not able to calculate numerically orthogonal eigenvectors for

eigenvalues of LcDcL
T
c meaning equation (3.3.7) is not satisfied on them.

The algorithm constructs clusters of eigenvalue Γc: The resulting clusters are
denoted as m ≤ n finite sets. Isolated eigenvalues build up their own cluster,
whereas eigenvalues that lie close to each other and do not satisfy equation
3.3.7 are merged into clusters with more than one eigenvalue Γc. Then the
MR3-algoritm processes each of these clusters independently. If a cluster iden-
tifies an isolated eigenvalue, which means that

‖Γc‖ = 1

holds, then the getvec routine is called directly to calculate the corresponding
eigenvector. If the cluster consists of more than one eigenvalue, the current
RRR can not be used to calculate their eigenvectors using the getvec routine
and a new RRR has to be calculated. The MR3-algorithm therefore picks a
τc ∈ R near one of the eigenvalues in the cluster and computes

LcDcL
T
c = LDLT − τcI

It then checks if LcDcL
T
c meets the requirements that were made in definition

3.3.4 of a RRR and if not, repeats the step until an adequate RRR is found.

24

3.3 Solution of the tridiagonal eigenvalue problem

{L0, D0},Γ0 = {1, 2, 3, 4, 5}

L0, D0: initial RRR with eigenvalues λ1, . . . , λ5

λ̂1, . . . , λ̂5 are calculated

{λ̂1, ẑ1},Γ1 = {1}

getvec(L0, D0, λ̂1)

{L2, D2},Γ2 = {2, 3, 4}

L2, D2: partial RRR, eigenvalues: λ1 − τ2, . . . , λ5 − τ2

λ̂2, . . . , λ̂4 are calculated

{λ̂2, ẑ2},Γ2,1 = {2}

getvec(L2, D2, λ̂2)

{L2,2, D2,2},Γ2,2 = {3, 4}

L2,2, D2,2: part. RRR, EV: λ1 − τ2 − τ2,2, . . . , λ5 − τ2 − τ2,2

λ̂3, . . . , λ̂4 are calculated

{λ̂3, ẑ3},Γ1 = {3}

getvec(L2,2, D2,2, λ̂3)

{λ̂4, ẑ4},Γ1 = {4}

getvec(L2,2, D2,2, λ̂4)

shift τ2,2

shift τ2

{λ̂5, ẑ5},Γ3 = {5}

getvec(L0, D0, λ̂5)

Abbildung 3.1: Example of a representation tree: the tridiagonal matrix T ∈ R5×5 has 3
eigenvalues in a cluster in the initial representation. After step 1 of the
algorithm, λ3 and λ4 still are clustered.

Once a RRR for the cluster has been found, it repeats the clustering process
for the new RRR, whose eigenvalues are now shifted by τc, (see theorem 2.2.9),
and show different relative gaps than in the precedent RRR. Therefore some of
the eigenvalues that were clustered in a previous step of the algorithm, possib-
ly exceed the condition in equation (3.3.7), and thus being considered isolated
permit the calculation of their corresponding eigenvectors utilizing the getvec
routine now. As also proven in theorem 2.2.9, the eigenvectors are invariant to
shifts like those that were used to calculate LcDcL

T
c , and resemble the eigen-

vectors of the initial representation of T under the aspects of floating point
accuracy.

The clustering process in the MR3-algorithm can be visualized using a re-
presentation tree as can be seen in figure 3.1. In the representation tree, Γc
contains the indices of the eigenvalues that are to be calculated during a spe-
cific recursion step of the algorithm. A matrix for the example shown in figure

25

3 Algorithms

3.1 could have the following eigenvalues with a tolerance limit of 10−3.

λ1 = 0

λ2 = 2

λ3 = 2 + 10−10

λ4 = 2 + 10−14

λ5 = 3

With the chosen tolerance, λ2, λ3 and λ4 would form a cluster in the first al-
gorithm step while λ1 and λ5 would be considered isolated. Therefore λ1, λ5

would be calculated using the getvec routine, while the algorithm would search
a new partial RRR for λ2, . . . , λ4. After a shift with e.g. τ1 = 2, the eigenvalues
of the partial RRR now resemble λ̂i = λi − τ1 and show larger relative gaps
than in the previous representation. In the clustering process, λ̂3 and λ̂4 form
a new cluster Γ2,2 while λ̂2 shows a relative gap above the chosen tolerance
limit and is considered isolated.

The following pseudocode describes the MR3-algorithm:

Input : T,Γ, tol
1 Choose µ such that T − µI is a RRR that determines the

desired eigenvalues and eigenvectors to high relative

accuracy. Chosing T − µI as positive definite is a safe

choice.

2 L,D = Cholesky(T − µI)

3 Calculate the eigenvalues λ̂i, i ∈ Γ of LDLT using bisection or

the dqds -algorithm and add them to L̂
4 [Λ, Z] = MRRR_recursion(L,D,Γ, L̂, tol)

5 Λ = Λ + µI
6 return [Λ, Z]

Algorithm 3.3.2: MR3-algorithm: It starts with a tridiagonal matrix T ∈ Rn×n, a set of indi-
ces of desired eigenvalues Γ and a tolerance limit tol. The algorithm calcu-
lates the desired eigenvalues and eigenvectors utilizing a recursive routine
MRRR recursion. The algorithm returns Λ ∈ Rk×n with the eigenvalues
on the main diagonal and Z ∈ Rn×k with the eigenvectors on the columns.

The MR3-algorithm takes O(nk) FLOPS for the calculation of k eigenpairs
of a tridiagonal matrix T ∈ Rn×n. For a full spectrum calculation it would
therefore need O(n2) FLOPS just as the divide and conquer algorithm in the
best case. Unlike the divide and conquer algorithm, the worst-case scenario
takes O(nk) FLOPS, too, so the computational effort stays the same indepen-
dent of the type of matrix.[14] The MR3-algorithms delivers eigenvectors that
are guaranteed to be orthogonal. In the contrary - other algorithms do not
necessarily ensure the orthogonality of eigenvectors.

26

3.3 Solution of the tridiagonal eigenvalue problem

Input : L,D,Γ, L̂, tol
1 Group the eigenvalues λ̂x, . . . , λ̂x+‖L̂‖−1 ∈ L̂ in m clusters. Fill Γc

with the indices of the eigenvalues in the c-th cluster.

2 for (c = 1, . . . ,m) do

3 if (‖Γc‖ = 1) then

4 j = element in Γc

5 zj = getvec(L,D, λ̂j)

6 else

7 Chose τc near the eigenvalues in the cluster.

8 [Lc, Dc] = dstqds(LDLT − τcI)

9 Recalculate the eigenvalues λ̂i of the new RRR LcDcL
T
c for

all i ∈ Γc and add them to L̂c.
10 [Λ̂c, Zc] = MRRR_recursion(Lc, Dc,Γc, L̂c, tol)

11 λ̂i = λ̂i + τc for all i ∈ Γc
12 end

13 end

14 return [Λ̂, Z]

Algorithm 3.3.3: MRRR recursion: The function calculates the eigenvectors to all eigenva-
lues in the set L̂. It first distinguishes between isolated and clustered eigen-
values. The eigenvectors of isolated eigenvalues can be determined directly,
using the getvec routine. Clustered eigenvalues are grouped, then a new
partial RRR is calculated and the recursion starts again. The return values
contain the eigenvalues and eigenvectors calculated in the substeps of this
function.

27

3 Algorithms

3.4 Back transformation

After the eigenvalues and eigenvectors of the matrix T ∈ Rn×n are calculated
the eigenvectors need to be transformed back to those of the matrix A ∈ Rn×n

from which it originated.

The orthogonality transformation used to accomplish the reduction to tridia-
gonal form was introduced in (3.2.1):

QTAQ = T

As proven in theorem (2.2.7), the eigenvalues of a matrix are invariant to si-
milarity transformations and therefore do not need back transformation. The
eigenvectors however are affected by both shifts and similarity transformations
and require further processing to match the eigenvectors of A.

The back transformation of a eigenvector is accomplished using the trans-
formation

v = Qz

which basically follows from theorem (2.2.7). It can also be done for all eigen-
vectors simultaniously using matrix-matrix multiplication.

Υ = QZ

where Z ∈ Rn×n contains the eigenvectors of T on its columns, Υ ∈ Rn×n con-
tains the eigenvectors of A on its columns and Q is the transformation matrix
that was used to reduce A to T . In real world applications, the matrix Q is
not explicitly formed but the individual Householder matrices are applied in
reverse order to the eigenvectors.

Input : Z,H1, . . . , Hn−2

1 for (i = (n− 2), . . . , 1) do

2 Z = HiZ
3 end

4 return Z

Algorithm 3.4.1: Back transformation of the eigenvectors: The matrix Z is multiplicated in
the reverse order by the Householder matrices that were used to reduce A
to T

Transforming the eigenvectors back so that they correspond to the original ma-
trix A has a computational effort of aboutO(2n2m) FLOPS when transforming
m eigenvectors. The back transformation can be realized very efficiently using
almost only Level-3-BLAS.

As the ELPA library includes a two-stage tridiagonalization approach that

28

3.4 Back transformation

uses specialized algorithms for the banded to tridiagonal transformation and
only utilizes Householder matrices for the full to banded reduction, the costs
of back transformation increase by 2kn2 FLOPS compared to this direct tri-
diagonalization approach. While the efficiency of the reduction may achieve
a benefit in runtime for the tridiagonalization itself, the back transformation
step strikes back with this increased computational expenses. The intensity of
this - and whether the two-stage approach is better than the direct approach
or not - primarily depends on k, the number of eigenvectors that are to be
back transformed.

29

4 Architectures and libraries

This chapter will deal with the architectures and libraries that were used
throughout this work. Two different architectures of the Blue Gene family
were used to compare and analyze the eigensolver libraries Elemental and EL-
PA, which will be discussed in chapter 4.2. In the following the Blue Gene
family of supercomputers will be introduced, beginning with the Blue Gene/P
architecture in chapter 4.1.1, followed by Blue Gene/Q, the contemporary suc-
cessor in chapter 4.1.2.

4.1 Blue Gene

The Blue Gene project was initiated in December 1999 as a five-year effort
to build a massively parallel supercomputer for simulating phenomena such
as protein folding[3]. The project had two main goals: to advance the under-
standing of the mechanics behind protein folding and to explore novel ideas
in the field of massivly parallel computer architectures. A major effort of the
project was to identify the requirements the machine should suffice to meet the
scientific goals. The first system to emanate this project was the Blue Gene/L
that was set up in the Lawrence Livermore National Laboratory (LLNL) in
November 2004. It was a 16-rack system with 1024 compute nodes per rack
and each compute node holding two PowerPC 440 cores at a clock rate of 700
MHZ, resulting in 32.768 processor cores total. The system achieved the first
place in the TOP500 list [24] with a LINPACK performance of 70.72 TFLOPS
and held this position for 3.5 years. From 2004 to 2008 it was enlarged to a
final installation of 104 racks which corresponds to 212.992 processor cores in
total with a peak performance of 596 TFLOPS and a LINPACK performance
of 478 TFLOPS. While this first Blue Gene/L installation was the largest, ma-
ny smaller Blue Gene/L installations followed. In November 2006 there were
27 systems in the TOP500 list using the Blue Gene/L architecture[25].

The second generation of the Blue Gene family of supercomputers that was
delivered was the Blue Gene/P architecture. A Blue Gene/P installation was
assembled at the Forschungszentrum Jülich in November 2007 under the name
JUGENE. It will be further described in section 4.1.1. The third and latest
generation of the Blue Gene family is the Blue Gene/Q architecture. One in-
stallation of the Blue Gene/Q architecture that was set up in the LLNL has

31

4 Architectures and libraries

reached a peak performance of 20 PFLOPS in 2012 and continues to expand.
In June 2012 a Blue Gene/Q installation was set up in Jülich under the na-
me JUQUEEN. The Blue Gene/Q architecture will be discussed in detail in
section 4.1.2.

4.1.1 Blue Gene/P (JUGENE)

The Blue Gene/P architecture consists of various hardware components of
which the smallest is considered to be the chip. The chip has 4 processors (and
there is one chip per compute card). Each the four PowerPC 450 cores that
reside on a compute card are clocked at 850 MHZ. There are 32 compute cards
on a node card and 32 node cards per rack (4096 processors per rack). Figure
4.1 shows the individual hardware components of the Blue Gene/P architec-
ture.

Abbildung 4.1: Step by step composition of the Blue Gene/P architecture

The JUGENE was a Blue Gene-P installation at the Jülich Supercomputing
Centre (JSC) of the Forschungszentrum Jülich. It was in service from Novem-
ber 2007 until the end of July 2012 and at the time it was introduced the
second fastest supercomputer in the world according to the TOP500 list[26].
The first installation consisted of 16 racks each hosting 1024 compute nodes
with a peak performance of 167.3 TFLOPS.[1] Two years after the inaugurati-
on of JUGENE, from May to June 2009, it was expanded to 72 racks (294.912
cores) and reached the PFLOPS mark as the first European supercomputer.
At this point it had a theoretical peak performance of 1002.70 TFLOPS. In
the LINPACK benchmarks it reached a Rmax of 825.50 TFLOPS.

32

4.1 Blue Gene

The following table explains the detailed structure of the Blue Gene/P machi-
ne JUGENE as it was in July 2012.

Basic Structure

• 72 Racks - 73.728 nodes (294.912 cores)

• 2 midplanes a 16 node cards per rack (4096 cores)

• 32 compute cards per node card (128 cores)

• 4 processor cores per compute card/per chip

Processor type

• Power PC 450, 32-bit, 850 MHz, 4-way SMP

• L3 Cache: shared, 8 MB

• 2 GB main memory, 13.6 GB/s bandwidth

• 13.6 GFLOPS Rmax

Network

• three dimensional torus for communication bet-
ween compute cards (bandwidth per link: 425
MB/s, hardware latency: 100ns - 800ns)

• global tree for collective operations (bandwidth
per link: 850 MB/s)

• barrier low latency and interrupt network

• External: 10 GigE / Functional network (for I/O)

Performance
• 1 PFLOPS peak performance

• 825.5 TFLOPS LINPACK performance

The peak performance is a purely theoretical value that represents the per-
formance under optimal cooperation of the different hardware components. It
represents the performance that could be achieved if all components of the
machine were perfectly utilized. The LINPACK performance is the actual per-
formance that was achieved during the LINPACK benchmark. The value of
825.5 TFLOPS represents an 80% effiency for this test.

With 4 cores per compute card, the Blue Gene/P has twice as many cores

33

4 Architectures and libraries

as the Blue Gene/L. The clock rate was increased from 700 MHZ to 850 MHZ
while the number of compute cards per rack remained the same.

4.1.2 Blue Gene/Q (JUQUEEN)

The Blue Gene/Q is the most recent architecture of the Blue Gene series. It
was designed to reach 20 PFLOPS until 2011. The first installation went in
production at the Lawrence Livermore National Laboratory(LLNL) in 2011
as part of the Advanced Simulation and Computing Program under the name
IBM Sequoia. The supercomputer architecture consists of compute cards, node
cards, midplanes and racks as the predecessors but features 16 cores per com-
pute card, a doubled clock rate compared to Blue Gene/P of 1.6 GHz and 16
GBytes of main memory per compute card. A node card includes 32 compute
cards and 16 node cards form a midplane. This results in a processor count of
8192 cores per midplane. A single rack contains two midplanes. As the cores
of the Blue Gene/Q implement 4-way hyperthreading, they can execute bet-
ween 1 and 4 threads simultaneously. To exploit the 4-way hyperthreading to
the limit, at least 2 threads have to be executed per core. This results in the
theoretical maximum of 32,768 threads executed in parallel per rack.

By 2012 this first installation was expanded to 96 racks(1572864 cores) and

Abbildung 4.2: Step by step composition of the Blue Gene/Q architecture

reached a Rpeak of 20.13 PFLOPS and a Linpack Rmax of 16.32 PFLOPS as
originally intended by IBM[23]. According to the TOP500 it ranked in position
1. This effectively made it the fastest supercomputer in the world as of July
2012. The LLNL installation held position 1 in the Green500 list, with a per-
formance of 2100.88 MFLOPSW, which also made it the most energy efficient

34

4.1 Blue Gene

supercomputer in the world as of June 2012[19]. Compared to the previously
fastest and now second fastest supercomputer, the K computer, which resides
at RIKEN Advanced Institute for Computational Science and has a result of
830.18 MFLOPS/W, it is more than twice as energy efficient.

In contrast to the Blue Gene/P design, the network for communcation bet-
ween the nodes was realized using not a 3- but a 5-dimensional torus with
increased bandwidth compared to the predecessor.

The following table explains the detailed structure of the Blue Gene/Q in-
stallation JUQUEEN as it was at the time of this work.

Basic Structure

• 8 racks - 8.192 nodes (131.072 cores)

• 2 midplanes a 16 node cards per rack (16384 cores)

• 32 compute cards per node card (128 cores)

• 16 processor cores per compute card

Processor type
• IBM PowerPC c©A2 1.6 GHz, 4-way SMP

• 16 GB SDRAM-DDR3 (per compute card)

Network

• five dimensional torus for communication between
compute cards (bandwidth: 5 GB/s, hardware la-
tency: 2.5 µsec worst case)

• collective network as part of the 5D torus

• global barrier/interrupt network as part of the 5D
torus

• 1 GBit control network for System Boot, Debug,
Monitoring, not part of the torus, no interference

Performance
• 1.67 PFLOPS peak performance

• 1.38 TFLOPS LINPACK performance

35

4 Architectures and libraries

4.2 Libraries

The two different libraries that were used throughout this work are developed
for the use on massively parallel distributed memory architectures. There will
be a general focus on data distribution aspects as this is one of the fundamental
differences between ELPA and Elemental.

4.2.1 ELPA

ELPA (Eigenvalue SoLvers for Petaflop Architectures) was a project initiated
with the aim to develop and implement an efficient eigenvalue solver for peta-
flop architectures. It was founded by the German Federal Ministry of Education
and Research. The task was adressed by a collaborative consortium consisting
of several German research institutes[15].

Throughout this work, ELPA Version 1.1.2 was used for all test cases.

4.2.1.1 Structure

ELPA is implemented as a set of Fortran subroutines that can be either com-
piled as a seperate library or as part of a program. The compilation process
is relatively trivial using standard compilers. The compiled modules can be
linked against any Fortran or C, C++ program respectively very easily. It is
meant as a drop-in replacement for certain ScaLAPACK calls and is not auto-
nomous in that context. In fact it relies on certain aspects of data distribution
that are specific to ScaLAPACK. The communication in ELPA itself is reali-
zed using only MPI1-calls. As ELPA is dependant on ScaLAPACK, BLACS2

is also a necessary prerequisite. It is a communication library that builds on
top of MPI to fit the communcation aspects to the needs of linear algebra. To
achieve that goal it arranges the processors in a two dimensional processor-
grid over which the matrices and vectors are distributed. As ScaLAPACK does,
ELPA makes heavy use of the BLAS3, a standardized set of routines that are
frequently used in linear algebra. There exist machine specific versions of the
BLAS, which are highly optimized and sometimes implemented using assemb-
ly language or assembly intrinsics for Fortran. On the Blue Gene/P and Blue
Gene/Q the ESSL4 was used as the BLAS implementation. The BLAS stan-
dard implements 3 Levels of linear algebra subroutines. At the lowest level,
level-1, it consists of vector-vector operations. At level-2 are the matrix-vector
operations and at level-3 the matrix-matrix operations. The higher the level of

1Message Passing Interface, a standard for message passing on distributed-memory archi-
tectures

2Basic Linear Algebra Communication Subprograms
3Basic Linear Algebra Subroutines
4Engineering and Scientific Subroutine Library

36

4.2 Libraries

the operations, the more efficient they are. This property is exploited in ELPA
in the two-stage solver.

4.2.1.2 Eigensolver

ELPA implements two different approaches for the solution of the eigenpro-
blem. They both are replacements for the ScaLAPACK call pdsyevd which
internally calls pdsytrd, pdstedc and pdormtr for tridiagonalization, solution
of the tridiagonal eigenproblem and back transformation respectively [4]. The
two routines introduced by ELPA are solve evp real and solve evp real 2stage.
Both implement a specialized version of Cuppen’s Divide and Conquer me-
thod. While the solve evp real routine implements a direct tridiagonalization,
the solve evp real 2stage routine utilizises a two-stage approach introduced by
Bischof et al. [6]. In the two-stage approach the matrix is first reduced to
banded form with a certain bandwidth b using Householder transformations
and then in a second step the banded form is transformed to tridiagonal form
using specialized algorithms [4]. The advantage of that approach is that the
vast majority of operations can be implemented using level-3 BLAS which is
highly efficient. While the costs of the banded-to-tridiagonal reduction step are
relatively cheap (6bn2 FLOPS), the back transformation step is more expensi-
ve and takes 2kn2 FLOPS more than the one-stage solver. As a consequence,
the tridiagonalization may be faster than in the one-stage approach, but the
back transformation of the eigenvectors from those of the tridiagonal matrix
to those of the banded matrix takes so much additional costs that for a large
amount of eigenvectors to be computed the two-stage solver will supersede
the one-stage solver in runtime. The two-stage solver is therefore especially
promising if only a smaller subset of k < n eigenvectors are of interest.

4.2.1.3 Data distribution

As ELPA is developed as a drop-in replacement for ScaLAPACK, it has cer-
tain requirements towards the distribution of data. The data has to be dis-
tributed before any processor issues a call to one of the eigensolver routines.
In distributed-memory systems, every compute node has its own memory that
can not be accessed by other compute nodes. There exist several libraries that
aim to ease the programming of distributed-memory architectures; especial-
liy concerning the aspects of data distribution and transfer between different
nodes. ScaLAPACK builds up on BLACS which internally make calls to MPI
routines. In a MPI setting, the arrangement of processors is considered to be
an one-dimensional array with processor indexes ranging from 0 . . . (P − 1),
where P is the number of processors involved.

37

4 Architectures and libraries

P0 . . . PN−1

Abbildung 4.3: view on the processor arrangement in MPI

As linear algebra deals with matrices which are known to be arranged in a two-
dimensional fashion, a two-dimensional arrangement of processors seems very
appropiate for these purposes. In ScaLAPACK and ELPA settings respectively,
this is done using BLACS as the communcation library. The two-dimensional
arrangement of processors, called the processor grid, can be seen in figure 4.4.

A matrix A ∈ Rn×n is distributed over the processor grid in a two-dimensional
block cyclic fashion. Therefore it is divided into blocks of size nbrow×nbcol which
are then cyclicly distributed over the processors in the grid. Two blocking fac-
tors can be specified at runtime by the user: nbrow

5 and nbcol
6.

P0,0 . . . P0,NC−1

...
. . .

...

PNR−1,0 . . . PNR−1,NC−1

Abbildung 4.4: view on the two-dimensional processor arrangement as it is used in BLACS

As ScaLAPACK mostly deals with matrices of quadratic dimension, a dis-
tinction between nbrow and nbcol is rendered unnecessary. For the eigensolvers
implemented in ScaLAPACK it it necessary that[8]

nbrow = nbcol (4.2.1)

The optimal value of this blocking factor can vary between different architec-
tures. As there is no distinction between these factors, the distribution block
size will be called nbdist in the following. In computations on the local array
(see figure 4.5) another blocking factor comes to use. This factor is commonly
named the algorithmic block size and will further be denoted nbalgo. It deter-
mines how many matrix elements are processed at once in a local algorithmic
computation, e.g. a BLAS call. The optimal value for this factor is strongly
constrained by the system’s cache size as the cache represents the fastest me-
mory and smallest memory that resides in a system and is the very bottleneck
to the speed at which the data can be processed in local computations that

5rows per block blocking-factor
6columns per block blocking-factor

38

4.2 Libraries

don’t rely on interprocess communication. If the factor nbalgo is chosen opti-
mal, the amount of load operations to the cache is reduced to a minimum and
the computation is most efficient concerning only the local node.

In ScaLAPACK the algorithmic block size is dependent on the distribution

Global view of the matrix A Local view of the matrix A

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8 a0,9

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 a1,9

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 a3,9

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 a4,9

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8 a5,9

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8 a6,9

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 a7,9

a8,0 a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 a8,9

a9,0 a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 a9,9

−→

a0,0 a0,1 a0,6 a0,7 a0,2 a0,3 a0,8 a0,9 a0,4 a0,5

a1,0 a1,1 a1,6 a1,7 a1,2 a1,3 a1,8 a1,9 a1,4 a1,5

a2,0 a2,1 a2,6 a2,7 a2,2 a2,3 a2,8 a2,9 a2,4 a2,5

a6,0 a6,1 a6,6 a6,7 a6,2 a6,3 a6,8 a6,9 a6,4 a6,5

a7,0 a7,1 a7,6 a7,7 a7,2 a7,3 a7,8 a7,9 a7,4 a7,5

a8,0 a8,1 a8,6 a8,7 a8,2 a8,3 a8,8 a8,9 a8,4 a8,5

a3,0 a3,1 a3,6 a3,7 a3,2 a3,3 a3,8 a3,9 a3,4 a3,5

a4,0 a4,1 a4,6 a4,7 a4,2 a4,3 a4,8 a4,9 a4,4 a4,5

a5,0 a5,1 a5,6 a5,7 a5,2 a5,3 a5,8 a5,9 a5,4 a5,5

a9,0 a9,1 a9,6 a9,7 a9,2 a9,3 a9,8 a9,9 a9,4 a9,5

Abbildung 4.5: view on the two-dimensional block cyclic data distribution of a matrix A ∈
R10×10 as it is implemented in ScaLAPACK. The processor grid is of size
2× 3, the blocking factors nbcol = 2 and nbrow = 3.

block size nbdist:
nbdist = nbalgo (4.2.2)

The chosen blocksize determines the size of the blocks that are processed in
evel-3 BLAS calls. As the physical and algorithmic blocksize is equal in ScaLA-
PACK, the choice also determines how much communication is needed between
the different nodes. A bigger blocksize may lead to load imbalance, as can be
seen in figure 4.5 while a smaller blocksize decreases the BLAS efficiency and
increases the expenses on communication.

4.2.2 Elemental

Elemental is a framework for distributed-memory linear algebra that provides
several routines for the parallel solution of numerical problems. It is designed
as a C++ library that makes extensive use of the C++ template feature. The
library is still undergoing development and continually improving. Throughout
this work different versions of Elemental were tested while the performance
tests and measurements were done with Elemental version 0.75.

4.2.2.1 Structure

Elemental makes heavy use of object-orientation as this is the main concept of
the C++ language. There are several different classes that describe matrices

39

4 Architectures and libraries

(or vectors as n×1 matrices), e.g. classes that represent local matrices or distri-
buted matrices. Another key concept of the C++ language are namespaces, all
classes and routines are organized in such way. The namespaces in Elemental
0.74 were labeled clearly according to their purpose while future versions of the
library will use a common namespace elem to ease overviewing and using the
many different routines and classes. The object orientated design greatly sim-
plifies the programming of distributed-memory architectures as many details of
the data distribution and logical arrangement of processors are implicitly initia-
lized with default values of Elemental if not explicitly stated otherwise. To illus-
trate the simplicity of programming with Elemental, the initialization and dis-
tribution of a distributed matrix will be further illuminated: An instatiation of
the class DistMatrix, e.g. DistMatrix <double, MC, MR>(n,m, grid)
constructs a distributed matrix A ∈ Rn×m with a column-major cyclic distri-
bution of the matrix elements as illustrated in figure 4.5, but with a fixed, not
adjustable blocksize of 1. This means that the individual matrix elements are
cyclicly distributed over the two-dimensional process arrangement grid. The
kind of distribution over the process grid is specified via [MC, MR]. Whi-
le [MC, MR] is the far most common distribution used in Elemental, there
are several others that could be used. As the eigenvalue solvers that are of
interest to this work expect the data to be distributed using the [MC, MR]
distribution, none of the others will be discussed in detail.

4.2.2.2 Eigensolver

The library provides several routines to the solution of the Hermitian eigen-
problem all of which utilize the MRRR algorithm as introduced in 3.3.2. The
different routines that come to use during the solution of the eigenproblem will
be described in the following:

internal routines:

• HermitianTridiag - Reduction from real symmetric or complex Her-
mitian to tridiagonal form

• PMRRR - Calculation of the solution to the tridiagonalized eigen-
problem TΛ = ΛQ utilizing the MR3-algorithm (3.3.2). The PMRRR
library[2] was developed by Matthias Petschow and Paolo Bientinesi from
the RWTH Aachen as a hybrid distributed-memory implementation for
the MR3-algorithm. Elemental uses it as an external library that is linked
statically.

interface routines to the solution of the eigenproblem

• HermitianEig - Computes the full set of eigenvalues and optionally ei-
genvectors. Elemental exports a few different overloaded function proto-
types to this routine. Depending on which function prototype is called,

40

4.2 Libraries

Elemental decides whether to calculate all eigenvalues, all eigenvalues
and eigenvectors, only a subset of the eigenvalues or a subset of eigenva-
lues and eigenvectors. Those function prototypes that were used in the
eigensolver benchmarks of this work are explained in the following:

– HermitianEig (UpperOrLower uplo, DistMatrix<double>&
A, DistMatrix<double,VR,STAR>& w) - calculate the full
set of eigenvalues w to the real, symmetric matrix A ∈ Rn×n.

– HermitianEig (UpperOrLower uplo, DistMatrix<double>&
A, DistMatrix<double, VR, STAR>& w,
DistMatrix<double>&Z) - calculate the full set of eigenvalues
w and eigenvectors Z to the real, symmetric matrix A ∈ Rn×n.

– HermitianEig (UpperOrLower uplo, DistMatrix<double>&
A, DistMatrix<double, VR, STAR>& w,
DistMatrix<double>&Z, int a, int b) - calculate the set of
eigenvalues w and eigenvectors Z with indexes in the range a, a +
1, . . . , b to the real, symmetric matrix A ∈ Rn×n.

4.2.2.3 Data distribution

In contrast to ScaLAPACK, where distribution and algorithmic blocksize are
linked, Elemental is designed as a modern extension of the communication
insights of PLAPACK. [22] The simplification Elemental uses is that the dis-
tribution block size is fixed at one. The approach is not new and is justified in
[20]:

“In principle, the concepts of storage blocking and algorithmic
blocking are completely independent. But as a practical matter,
a code that completely decoupled them would be painfully com-
plex. Our code and ScaLAPACK avoid this complexity in different
ways. Both codes allow any algorithmic blocking, but ScaLAPACK
requires that the storage blocking factor be equal to the algorithmic
blocking factor. We instead restrict storage blocking to be equal to
1.”

An argument towards a distribution block size of 1 is the obvious benefit to
load balancing. Another notable quote from [20] states this:

“Block storage is not necessary for block algorithms and level-3
[BLAS] performance. Indeed, the use of block storage leads to a
significant load imbalance when the block size is large. This is not
a concern on the Paragon, but may be problematic for machines
requiring larger block sizes for optimal BLAS performance.”

41

4 Architectures and libraries

With the fixed minimal distribution size as Elemental’s basic approach, the da-
ta is then cyclicly distributed over a specified two-dimensional processor grid.
The same distribution can be achieved in ScaLAPACK if nbdist = 1.

Because in ScaLAPACK the distribution block size is always linked to the
algorithmic blocksize with the constraint nbdist = nbalgo this would lead to a
significant inefficiency when using the BLAS. In Elemental on the contrary,
the distribution blocksize is always 1 and the algorithmic blocksize is fully
independent of that value:

1 = nbdist 6= nbalgo (4.2.3)

An example for an Elemental distribution can be seen in figure 4.6.

Global view of the matrix A Local view of the matrix A

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8 a0,9

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 a1,9

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 a2,9

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 a3,9

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 a4,9

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8 a5,9

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8 a6,9

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 a7,9

a8,0 a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 a8,9

a9,0 a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 a9,9

−→

a0,0 a0,3 a0,6 a0,9 a0,1 a0,4 a0,7 a0,2 a0,5 a0,8

a2,0 a2,3 a2,6 a2,9 a2,1 a2,4 a2,7 a2,2 a2,5 a2,8

a4,0 a4,3 a4,6 a4,9 a4,1 a4,4 a4,7 a4,2 a4,5 a4,8

a6,0 a6,3 a6,6 a6,9 a6,1 a6,4 a6,7 a6,2 a6,5 a6,8

a8,0 a8,3 a8,6 a8,9 a8,1 a8,4 a8,7 a8,2 a8,5 a8,8

a1,0 a1,3 a1,6 a1,9 a1,1 a1,4 a1,7 a1,2 a1,5 a1,8

a3,0 a3,3 a3,6 a3,9 a3,1 a3,4 a3,7 a3,2 a3,5 a3,8

a5,0 a5,3 a5,6 a5,9 a5,1 a5,4 a5,7 a5,2 a5,5 a5,8

a7,0 a7,3 a7,6 a7,9 a7,1 a7,4 a7,7 a7,2 a7,5 a7,8

a9,0 a9,3 a9,6 a9,9 a9,1 a9,4 a9,7 a9,2 a9,5 a9,8

Abbildung 4.6: view on the two-dimensional cyclic data distribution of a matrix A ∈ R10×10

as it is implemented in Elemental. The processor grid is of size 2× 3.

An elemental distribution as implemented in the Elemental library results in
better load-balancing over the processor grid as each processor receives a near-
ly equal sized local matrix compared to a block cyclic distribution. Because
the loadbalancing in concerns of data is better in this case, the algorithmic
blocksize may be chosen bigger as it is usual in ScaLAPACK. In Elemental,
the algorithmic blocksize can be changed, via a call to the SetBlocksize routine.
It can be changed at any time to the current requirements of the application.

As mentioned in 4.2.2.1, the kind of data distribution is specified via templa-
te parameters to the DistMatrix class. It requires three template parameters
that determine the data type and the kind of distribution. The constructor of
the class itself is overloaded and takes up to 8 parameters. The constructor
prototype that was used during this work only takes 3: the horizontal and ver-
tical dimensions of the matrix to be constructed and the processor grid over
which it is to be distributed. If the processor grid is omitted, it defaults to the
return value of DefaultGrid routine. The most commonly used distribution is

42

4.2 Libraries

called the [MC,MR] distribution. It implements a element-wise cyclic distri-
bution where the assignment of elements is done over the processor grid in a
column-major way. To precise this, the [MC,MR] distribution of a 7×7 matrix
is illustrated below.

The processor grid that will be used to illustrate the differences between the
distributions is of the following two-dimensional arrangement:(

0 2 4
1 3 5

)
[MC,MR] distribution:
A matrix A ∈ R7×7 distributed over the processor grid using the [MC,MR]
distribution. Each element corresponds to the processor number it is owned
by.

0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0
1 3 5 1 3 5 1
0 2 4 0 2 4 0

[MR,MC] distribution:
Another possibility of data distribution over the processor grid would be the
[MR,MC] distribution. This distribution assigns the elements over the proces-
sor grid in a row-major way. In this case, the matrix would be distributed as
if it were transposed:

0 1 0 1 0 1 0
2 3 2 3 2 3 2
4 5 4 5 4 5 4
0 1 0 1 0 1 0
2 3 2 3 2 3 2
4 5 4 5 4 5 4
0 1 0 1 0 1 0

[VR,*] distribution:
When calculating eigenvalues, another type of distribution comes to use in ele-
mental. It is a one-dimensional distribution, commonly used for distributing
vectors. In elemental’s eigensolver, the vector of eigenvalues that will be cal-
culated is distributed using the [VR,*] distribution. The individual elements
of the vector are assigned in a row-major fashion over the processor grid:

43

4 Architectures and libraries

0 0 0 0 0 0 0
2 2 2 2 2 2 2
4 4 4 4 4 4 4
1 1 1 1 1 1 1
3 3 3 3 3 3 3
5 5 5 5 5 5 5
0 0 0 0 0 0 0

44

5 Performance analysis,
comparision and optimization

The first section in this chapter introduces the test matrices that were used
during the performance benchmarks of the individual eigensolvers. In the
following sections, the libraries will be compared and discussed in terms of
performance-analysis.

5.1 Test Matrices

Test applications were written for both Elemental and ELPA. Both applicati-
ons use the same set of test matrices to guarantee comparability of the results.
The test matrices are randomly chosen dense symmetric matrices A ∈ Rn×n

that are constructed with the following scheme: At first a random vector of
eigenvalues d ∈ Rn is generated. Subquently another random vector v ∈ Rn is
generated to construct a Householder matrix Q as follows

Q = I − 2

vTv
vvT (5.1.1)

The matrix Q is an orthogonal matrix with the eigenvectors that will later be
determined by the eigensolvers on its column.

Appropiate test matrices then can be calculated using an eigendecomposition
approach:

A = Q

d1

d2

. . .

dn−1

dn

QT (5.1.2)

with a square matrix containing only the random eigenvalue elements di, i ∈
{1, . . . , n} on its main diagonal. Both the calculation of eigenvectors and ei-
genvalues of these test matrices A utilize the same random number generator
in Fortran and C++. As the speedup of the ELPA one- and two-stage solver

45

5 Performance analysis, comparision and optimization

computing different amounts of eigenvalues and eigenvectors was a main con-
cern, there were no tests done in which only the eigenvalues were calculated.

5.2 Correctness of results

To verify the numerical correctness of the results, all benchmarks computed
different residual and error norms on the results.

With Torig ∈ Rn×n the input matrix, Z ∈ Rn×n the calculated eigenvector
matrix, Λorig ∈ Rn×n the matrix with the input eigenvalues on it’s main dia-
gonal and Λ ∈ Rn×n the matrix with the calculated eigenvalues on it’s main
diagonal the following residual norms were computed:

‖Λorig − Λ‖∞ (5.2.1)

‖TorigZ − ZΛ‖∞ (5.2.2)

‖ZZT − I‖∞ (5.2.3)

The first residual (5.2.1) only verifies the numerical correctness of the cal-
culated eigenvalues. The second residual (5.2.2) evaluates the spectral decom-
position property for the calculated matrix Z and eigenvalue matrix Λ and the
third norm (5.2.3) tests the matrix Z with the calculated eigenvectors on its
columns for numerical orthogonality.

5.3 Tuning parameters

The choice for an optimal algorithmic blocksize was well known for Elemental
to be the library’s default value of 128 on the Blue Gene/P and Blue Gene/Q
architectures[5]. For ELPA an optimal algorithmic blocksize was determined
over benchmarks with matrix sizes T1 ∈ R5000×5000 and T2 ∈ R10000×10000 and
varying blocksizes out of the interval {10, 12, . . . , 38, 40}.

As each invidiual processor has to compute several decompositions on its lo-
cal parts of the matrix, a blocksize where N

nbalgo max{nprow,npcol}
is integer seems

most appropiate, as this is the number of decompositions that a processor
which is working on the diagonal of the distribution grid has to compute. The
surrounding processors have to update their local parts respectively often. If
nprow × npcol = 8× 4 is the processor grid and the test matrix has dimension

46

5.3 Tuning parameters

5000×5000, then the blocksize that would meet this requirements approxima-
tely is

nbalgo |
⌊

N

max{nprow, npcol}

⌋
=

⌊
5000

8

⌋
= b625c = 625

For a parallel algorithm there is a trade-off between both load balancing and
BLAS efficiency in terms of the algorithmic blocksize. Facing this fact it is ren-
dered impossible to determine the optimal blocksize for ELPA theoretically.
The optimal values that were determined are therefore purely empirically and
may vary for a different system configuration.

Because the minimum node amount for a JUQUEEN batch system call is
fixed to 32, the blocksize benchmark results on JUQUEEN and JUGENE are
not comparable to this case, but show a tendency for each of both machines.
While a JUGENE job ran with 32 MPI processes (1 per node), a JUQUEEN
job enfolded 512 MPI processes (16 per node). The calculation for each block-
size was repeated three times. The diagrams in the following sections show the
arithmetical mean of all three timings.

The benchmarks in section 5.3.1 on JUGENE and section 5.3.2 on JUQUEEN
lead to the parameter choices for the final benchmarks. All runtime bench-
marks that will be discussed in the following were done accordingly.

5.3.1 ELPA - JUGENE

As mentioned in 4.2.1, in ScaLAPACK and ELPA the algorithmic blocksize
nbalgo has to be the same as the distribution blocksize nbdist and has a signi-
ficant effect on both local performance and data distribution effiency. In the
beginning of this section, the influence of the algorithmic blocksize on the run-
time of certain components of ELPA will be further delighted. As figure 5.1
reveals, the overall optimal blocksize on JUGENE is either 18 or 12 - in the
benchmarks 18 was used. Larger blocksizes seem to slow down the performan-
ce.

While the tridiagonalization and eigensolver step of the ELPA one-stage solver
seems relatively unaffected by changes to the blocksize, the influence on the
runtime of the back transformation step is of more fluctuating nature. There
are strong local minima to the runtimes at both values that were considered
to be optimal for the Blue Gene/P system JUGENE. With increased matrix
size and therefore increased runtimes, as can be seen in the right half of figure
5.2, the effect of the blocksize on the runtimes of tridiagonalization, solution

47

5 Performance analysis, comparision and optimization

 19.2

 19.4

 19.6

 19.8

 20

 20.2

 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

ELPA 1 stage

 375

 380

 385

 390

 395

 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

ELPA 1 stage

Abbildung 5.1: Benchmark of the ELPA one-stage solver on JUGENE using a processor grid
of 8×4 MPI processes with a fixed matrix size of T1 ∈ R5000×5000 on the left
and T2 ∈ R15000×15000 on the right. The blocksizes are plotted on the x-axis
and range from 8 to 40.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

Tridiagonalization
Eigenproblem computation

Backtransformation

 60

 80

 100

 120

 140

 160

 180

 200

 220

 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

Tridiagonalization
Eigenproblem computation

Backtransformation

Abbildung 5.2: The individual components of the ELPA one-stage solver on JUGENE using
a processor grid of 8 × 4 MPI processes with a fixed matrix size of T1 ∈
R5000×5000 on the left and T2 ∈ R15000×15000 on the right. The blocksizes are
plotted on the x-axis and range from 8 to 40.

and back transformation is apparantly intensifying.

5.3.2 ELPA - JUQUEEN

Results on JUQUEEN show a similar behaviour of runtimes compared to the
JUGENE results. The effect of the blocksize on the runtime, depicted in figure
5.4, seems limited but with local deviations at 16, 24 and 32. Similar to the
benchmarks on JUGENE, the effect of the nbalgo parameter seems to increase
with larger matrix sizes. The right half of figure 5.4 shows benchmarks with a
test matrix size of 15000.

The Blue Gene/Q architecture greatly exceeds its predecessor in both memo-

48

5.3 Tuning parameters

 3.25

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

 3.6

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

ELPA 1 stage

 35

 36

 37

 38

 39

 40

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

ELPA 1 stage

Abbildung 5.3: Benchmark of the ELPA one-stage solver on JUQUEEN using a processor
grid of 32 × 16 MPI processes with a fixed matrix size of T1 ∈ R5000×5000

on the left and T2 ∈ R15000×15000 on the right. The blocksizes are plotted on
the x-axis and range from 10 to 40.

 0.5

 1

 1.5

 2

 2.5

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

Tridiagonalization
Eigenproblem computation

Backtransformation

 5

 10

 15

 20

 25

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
(s

)

Blocksize

Tridiagonalization
Eigenproblem computation

Backtransformation

Abbildung 5.4: The individual components of the ELPA one-stage solver on JUQUEEN
using a processor grid of 32 × 16 MPI processes with a fixed matrix size
of T1 ∈ R5000×5000 on the left and T2 ∈ R15000×15000 on the right. The
blocksizes are plotted on the x-axis and range from 10 to 40.

ry bandwith and clockrate. A different result seems not unexpected. On the
contrary, previously to the blocksize benchmarks, based on private commu-
nications an optimal value of 16 was expected for the Blue Gene/Q system.
As the results greatly meet these expectations, a value for nbalgo of 16 was
consequently used for the ELPA benchmarks on JUQUEEN.

For the benefit of the overall efficiency, small blocksizes of about 10-40 prove
to be a good choice for ELPA to achieve a compromise between load balance
and communication minimization.

49

5 Performance analysis, comparision and optimization

5.4 Runtime Analysis

5.4.1 JUGENE - ELPA one-stage, two-stage and Elemental

The benchmarks on JUGENE were done for three different node amounts that
will be further specified in the following tables:

Partial eigenspectrum benchmarks

• 256 nodes, 1 MPI process per node, logical processor grid 16× 16

• 1024 nodes, 1 MPI process per node, logical processor grid 32× 32

• 4096 nodes, 1 MPI process per node, logical processor grid 64× 64

Each of these benchmarks incremented its test matrix sizes from 6000 . . . 50000
with step sizes of 4000. The percentage of eigenvalues that was calculated in
each of these benchmarks ranged from 5% − 45% with step sizes of 5 to in-
vestigate whether the ELPA two-stage solver is really faster than its one-stage
equivalent when only some of the eigenvectors are needed.

Benchmarks in which a full eigenspectrum was calculated were done on JU-
GENE, too. Their details in terms of MPI processes and nodes involved, are
summarized in the following listing:

Full eigenspectrum benchmarks

• 1024 nodes, 1 MPI process per node, logical processor grid 32× 32

• 4096 nodes, 1 MPI process per node, logical processor grid 64× 64

• 16384 nodes, 1 MPI process per node, logical processor grid 128× 128

Each figure in this section depicts the runtimes of the ELPA one-stage, two-
stage and the PMRRR eigensolver in Elemental at the same matrix and pro-
cessor settings.

Discussion of partial Eigenspectrum benchmarks
As figure 5.5 depicts, at a low level of eigenvalues and vectors to be calculated,
as 5% in the underlying benchmark, the ELPA 2 outspeeds both Elemental
and the ELPA one-stage solver in its runtime consequently over different ma-
trix sizes. The runtimes of Elemental and the ELPA one-stage solver in some
cases nearly match, but those of Elemental are more erratic and in most cases
exceed the ELPA one-stage solver.

As previously mentioned in 4.2.1 the increasing influence of the amount of

50

5.4 Runtime Analysis

 0

 50

 100

 150

 200

 250

 300

 350

 400

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

ti
m

e
(s

)

matrix dim.

ELPA 1 stage 0.05
ELPA 2 stage 0.05

Elemental 0.05

 0

 50

 100

 150

 200

 250

 300

 350

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

matrix dim.

ELPA 1 stage 0.25
ELPA 2 stage 0.25

Elemental 0.25

 0

 100

 200

 300

 400

 500

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

matrix dim.

ELPA 1 stage 0.45
ELPA 2 stage 0.45

Elemental 0.45

Abbildung 5.5: Benchmark of ELPA one-stage, two-stage and Elemental, 5%, 25% and 45%
of eigenvalues and vectors computed, 256 MPI processes

eigenvalues and vectors to be computed on the runtime of the back transfor-
mation step in the ELPA two-stage solver can be seen in the second and third
from left figures of 5.5. With an increasing set of eigenvalues and vectors to

 0

 50

 100

 150

 200

 250

 300

 350

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

ti
m

e
(s

)

matrix dim.

ELPA 1 stage 0.05
ELPA 2 stage 0.05

Elemental 0.05

 0

 50

 100

 150

 200

 250

 300

 350

 400

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage 0.25
ELPA 2 stage 0.25

Elemental 0.25

 0

 50

 100

 150

 200

 250

 300

 350

 400

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage 0.45
ELPA 2 stage 0.45

Elemental 0.45

Abbildung 5.6: Benchmark of ELPA one-stage, two-stage and Elemental, 5%, 25% and 45%
of eigenvalues and vectors computed, 1024 MPI processes

compute, 25% in the underlying figures 5.5, 5.6 and 5.7, the runtimes of all
three solvers increase, too, but while Elemental and the ELPA one-stage sol-
ver strongly match the profile of the 5% situation, the ELPA two-stage solver
takes significantly longer.

The increasing number of processors involved apparantly has an effect on the
relative gap between the ELPA 1 and two-stage solver. With a larger number
of nodes participating in the calculation, the ELPA two-stage solver seems to
become more and more efficient as can be seen in figure 5.7. The runtime pro-
files of the ELPA one-stage and ELPA two-stage solver do not cross anymore
as it was the case in the benchmarks with 256 and 1024 nodes involved.
If the amount of processors involved is increased, the runtimes of all three
solvers expectedly decrease. The impact of the back tranformation step in the

51

5 Performance analysis, comparision and optimization

 0

 20

 40

 60

 80

 100

 120

 140

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

ti
m

e
(s

)

matrix dim.

ELPA 1 stage 0.05
ELPA 2 stage 0.05

Elemental 0.05

 0

 20

 40

 60

 80

 100

 120

 140

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage 0.25
ELPA 2 stage 0.25

Elemental 0.25

 0

 20

 40

 60

 80

 100

 120

 140

 160

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage 0.45
ELPA 2 stage 0.45

Elemental 0.45

Abbildung 5.7: Benchmark of ELPA one-stage, two-stage and Elemental, 5%, 25% and 45%
of eigenvalues and vectors computed, 4096 MPI processes

ELPA two-stage solver however, still seems distinctive with an increasing num-
ber of eigenvalues to be computed as can be seen in the comparision of figures
5.6 and 5.7.

In the presented benchmarks with 256, 1024 and 4096 MPI processes on 256,
1024 and 4096 nodes of JUGENE, the crossline of the ELPA one- and two-
stage solver can be seen in the right third of the figures. On JUGENE they
intersect at 45% of eigenvalues and vectors to compute. At this percentage
the expensive back transformation of eigenvectors from tridiagonal to banded
form, as mentioned in 4.2.1, of the ELPA two-stage solver strikes and the one-
stage approach seems more attractive if a larger spectrum of eigenvalues and
vectors is needed.

Discussion of full eigenspectrum benchmarks
In the full eigenspectrum benchmarks, the processor count of 256 was omit-
ted because the maximum runtime for a JUGENE batch system call of this
size was 30 minutes and none of the jobs were able to complete their tasks
in this time slice. The benchmarks were done with processor counts of 1024,
4096 and 16384. Their runtime profiles are depicted below. As the intersection
of the runtime profiles of the ELPA two-stage and one-stage solvers has been
determined to be at about 45% of eigenpairs to compute, benchmarks for the
ELPA two-stage solver were not done when a full eigenspectrum was wanted.
As figure 5.8 clearly depicts, the runtime profiles of Elemental and ELPA di-
verge with an increasing number of processors involved. While the test matrix
dimensions in the above figures steadily increase, the runtimes slowly diverge
with a overall tendency of the ELPA one-stage solver to be faster than Ele-
mental. The case of 16384 MPI processes, in the rightmost third of figure 5.8
visualizes this difference in runtime very obviously.

52

5.4 Runtime Analysis

 0

 100

 200

 300

 400

 500

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

ti
m

e
(s

)

matrix dim.

ELPA 1 stage FULL
Elemental FULL

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage FULL
Elemental FULL

 0

 20

 40

 60

 80

 100

 120

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage FULL
Elemental FULL

Abbildung 5.8: Benchmark of ELPA one-stage and Elemental, full eigenspectrum computed,
1024, 4096 and 16384 MPI processes

5.4.2 JUQUEEN - ELPA one-stage, two-stage and
Elemental

Benchmarks on JUQUEEN were done for the constant node count of 32 but
with a differing partial spectrum of eigenvalues and vectors to compute. In
these benchmarks each node was executing 16 MPI processes in parallel. The
partial spectrum benchmarks that were done are denoted in the following table.
The calculations included the ELPA one-stage, two-stage and the Elemental
eigensolver.

Partial eigenspectrum benchmarks

• 32 nodes, 16 MPI processes per node, logical processor grid 32 × 16,
5%-45% of eigenvalues and vectors computed with steps of 10%

Of the partial eigenspectrum benchmarks, only the cases 5%, 25% and 45%
are presented in this work as they are representative enough to visualize the
impact of the back transformation step of the ELPA two-stage solver.

Full spectrum benchmarks were done on JUQUEEN, too, with 32 nodes but
varying amount of MPI proccesses per node. These benchmarks only inclu-
ded the ELPA one-stage and the Elemental eigensolver. The ELPA two-stage
solver disqualified for these benchmarks because of too high runtimes when
calculating the full spectrum of eigenvalues and vectors.

Full eigenspectrum benchmarks

• 32 nodes, 16 MPI processes per node, logical processor grid 32× 16

• 32 nodes, 32 MPI processes per node, logical processor grid 32× 32

• 32 nodes, 64 MPI processes per node, logical processor grid 64× 32

53

5 Performance analysis, comparision and optimization

Discussion of partial eigenspectrum benchmarks
As can be seen in figure 5.9, the Elemental eigensolver has a less erratic profile
than it was the case on JUGENE. The profile is much smoother and closely
fits the one of the ELPA one-stage solver. While the ELPA two-stage solver
is clearly faster at the level of 5% of eigenvalues and vectors to compute, the
impact of an increasing eigenspectrum to calculate seems to be more intensive
than on JUQUEEN’s predecessor. This issue is addressed by ELPA developers
and already fixed in a newer version of the library. It can be reviewed more
clearly in the runtime profiles depicted in the second and third subfigure of
figure 5.9.
With 25% of eigenvalues to compute, as figure 5.9 depicts, all three runtime

 0

 100

 200

 300

 400

 500

 600

 700

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

ti
m

e
(s

)

matrix dim.

ELPA 1 stage 0.05
ELPA 2 stage 0.05

Elemental 0.05

 0

 100

 200

 300

 400

 500

 600

 700

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage 0.25
ELPA 2 stage 0.25

Elemental 0.25

 0

 200

 400

 600

 800

 1000

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage 0.45
ELPA 2 stage 0.45

Elemental 0.45

Abbildung 5.9: Benchmark of ELPA one-stage, two-stage and Elemental, 5%, 25% and 45%
of eigenvalues and vectors computed, 512 MPI processes

profiles closely match. For a benchmark with 32 nodes and 16 MPI proccesses
per node, this seems to be the practical limit where the ELPA two-stage solver
outspeeds both the ELPA one-stage and Elementals eigensolver routines on
the JUQUEEN system. In the 25% case in figure 5.9, the runtime profile of
the ELPA two-stage eigensolver does not drastically deviate from the other
two competitors. With 45% of the eigenspectrum to compute, the runtimes of
Elemental and ELPA one-stage do not increase significantly, while the ELPA
two-stage sets apart far above the other two runtime profiles and therefore
currently does not qualify as an option for situations where more than appro-
ximately 25% of the eigenspectrum is needed.

Discussion of full eigenspectrum benchmarks
The full eigenspectrum benchmarks on JUQUEEN were done for MPI process
counts of 512, 1024 and 2048 respectively. Each of these benchmarks were done
on 32 nodes of the JUQUEEN system, which means that they executed 16,
32 and 64 threads per node in parallel. Their runtime profiles are depicted in
figure 5.10.

54

5.4 Runtime Analysis

As mentioned before, the ELPA two-stage solver can not compete with the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

ti
m

e
(s

)

matrix dim.

ELPA 1 stage FULL
Elemental FULL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage FULL
Elemental FULL

 0

 200

 400

 600

 800

 1000

 6
00

0

 1
00

00

 1
40

00

 1
80

00

 2
20

00

 2
60

00

 3
00

00

 3
40

00

 3
80

00

 4
20

00

 4
60

00

 5
00

00

matrix dim.

ELPA 1 stage FULL
Elemental FULL

Abbildung 5.10: Benchmark of ELPA one-stage and Elemental full eigenspectrum compu-
tation, 512, 1024 and 2048 MPI processes

other two solvers when a full eigenspectrum is to be computed. Its runtimes
drastically diverge from the other two solvers with an increasing test matrix
dimension as it can be reviewed in the partial eigenspectrum computations
depicted in figure 5.9. In computations where the testmatrix dimension was
above 22000, it required more than double the time that ELPA one-stage and
Elemental took to complete when a full eigenspectrum was to be computed. If
32 threads are executed in parallel on each JUQUEEN node, the runtimes of
all three solvers expectedly drop as depicted in figure 5.10 for the Elemental
and ELPA one-stage solver. This can be justified with the properties of the
Blue Gene/Q architecture as they were described in section 4.1.2. As each of
the 16 processors on a Blue Gene/Q node can execute 2 threads in parallel
(and 4 with hyperthreading, see section 4.1.2), the machine’s peak performan-
ce is practically maxed out if 1024 MPI processes are executed in parallel in a
benchmark with 32 Blue Gene/Q nodes involved.

Though the effect on ELPA one-stage and Elemental seems minimal, the EL-
PA two-stage runtime drew significantly nearer to the profiles of the other two
solvers. While the results of the ELPA two-stage solver are not depicted, the
back transformation of tridiagonal to banded eigenvectors obviously appears
to execute more effectively with an increasing number of threads involved as
the benchmark results indicate. The minimal benefit in runtime that ELPA
one-stage and Elemental experiences seems unexpected as the machine’s theo-
retical peak performance should be reached when 2 threads are executed in
parallel on each core as mentioned before in this section.

55

5 Performance analysis, comparision and optimization

5.4.3 Runtime analysis conclusions

In all benchmarks that were described in the previous two sections, three dif-
ferent solvers were reviewed for their performance over different matrix sizes
which usually varied from 6000 to 50000. The first two solvers, namely ELPA
one-stage and ELPA two-stage implement an optimized version of Cuppen’s
divide-and-conquer algorithm which is introduced in chapter 3.3.1. The third
eigensolver that is part of the Elemental library and which implements the
MR3 algorithm is described in chapter 3.3.2.

Each of these eigensolvers first implement a matrix transformation from dense
to tridiagonal form. While ELPA one-stage and Elemental utilize Househol-
der transformations to directly reduce the problem’s system matrix A to its
tridiagonal counterpart T , ELPA two-stage implements a new approach that
was introduced by Bischof et al.[6]. The reduction in this case is done in two
steps, first from full to banded and then from banded to tridiagonal form. The
advantages of this approach are described in section 4.2.1.

These basically different approaches to the reduction of the full eigenproblem
additionally were benchmarked for different percentages of the eigenspectrum
ranging from 5% to 45%. In each scenario both eigenvalues and eigenvectors
were computed. Each of the three solvers have to accomplish a more or less
computationally expensive back transformation of eigenvectors, depending on
how much of the eigenspectrum is needed for a specific scenario. The benefit
that ELPA two-stage experiences in the tridiagonalization process later has
an impact on the back transformation step - but this effect can be minimi-
zed if only a small amount of the spectrum is required. The intersection of
the runtime profiles of the other two solvers and this two-stage approach was
determined to lie at about 45% on the JUGENE Blue Gene/P system and at
about 25% on the JUQUEEN Blue Gene/Q system at the Forschungszentrum
Jülich. The poor performance of the two-stage approach on the newer Blue
Gene/Q system is now fixed by an optimized version of the first step of the
back transformation phase.

Concluding from these results, both the divide-and-conquer algorithm imple-
mented in the ELPA solvers and the MR3 algorithm utilized by Elemental are
adequate solvers for the solution of large scale eigenproblems on distributed
memory architectures and are closely competing in runtime. Both algorithms
do not significantly differ in their runtime on the Blue Gene/P and Blue Ge-
ne/Q architectures, over differing matrix sizes and percentages of the eigen-
spectrum to be compute. The two-stage eigensolver implemented in ELPA is
a promising candidate on the Blue Gene architectures if only a small amount
of eigenvalues and vectors is required.

56

6 Scalasca instrumentation

6.1 Scalasca

This section presents the Scalasca[16] instrumentations of the test applicati-
ons that were used throughout the benchmarks. Scalasca is an instrumentation
toolset designed for the analysis of parallel applications that use MPI, OpenMP
or hybrids of these. It can be used to instrument applications that were written
in C, C++ and Fortran and is specifically intended for HPC architectures such
as the family of Blue Gene supercomputers.

The Scalasca project is developed actively and has its origins at the Forschungs-
zentrum Jülich. Therefore, it is compatible with the most recent supercompu-
ters in the facility such as JUGENE, JUQUEEN and several others.

Before any instrumentation measurements can be done, the application needs
to be compiled with a special Scalasca preposition command:
scalasca -instrument <compiler><sourcecode>. The analysis of the in-
strumented executable then can be started using the Scalasca command sca-
lasca -analysis followed by the usual MPI initialization command such as
mpirun on JUGENE or runjob on JUQUEEN. During the analysis a subfolder
will be created in which the results of the instrumentation run are subsequent-
ly stored.

To examine the results of a complete instrumentation run, the command sca-
lasca -examine <subfolder> postprocesses the raw instrumentation results
and then displays them to the user. Depending on which level the Scalasca
instrumentation happended at compile time, either only the MPI calls are re-
corded by the instrumentation or even function calls at the lowest level. The
test applications in this thesis were fully instrumented so the individual steps
of the eigensolvers, namely tridiagonalization, solving and back transformation
can be reviewed in the examination.

The instrumentations of the test applications that will be introduced in the
following were done for a single test matrix of size 10000 × 10000 each. All
instrumentation runs were done on JUQUEEN.

57

6 Scalasca instrumentation

6.2 Elemental instrumentation

The instrumentation of the Elemental test application is depicted in figure 6.1.
Routines with a runtime percentage below 1% are filtered out, so that only
the initialization and actual eigensolving steps are depicted in the figure.

Abbildung 6.1: Scalasca instrumentation of the Elemental test application

As can be seen in the above figure, the largest parts in runtime of the routine
HermitianEig consist of the 3 steps: tridiagonalization (HermitianTridiag in
the figure), solving (PMRRR in the figure), and back transformation (App-
lyPackedReflectors in the figure).

The tridiagonalization takes a great percentage of 60.14%, while the eigen-
solver routine PMRRR only needs 3.30%. The back transformation is relative-
ly quick compared to ELPA (see figures 6.2 and 6.3) with only 8.09% of the
overall runtime. Deriving from these results, there is an obvious potential for
optimization in the tridiagonalization routine of Elemental.

Most MPI operations involved were collective (67.74%). Only 32.26% of the
MPI operations included point-to-point communication.

6.3 ELPA one-stage instrumentation

In the instrumentation of the ELPA one-stage solver the routine solve evp real
was of primary interest. As with Elemental’s eigensolver routine, ELPA in-
cludes the process of tridiagonalization, solving of the eigenproblem and back
transformation of the eigenvectors. Figure 6.2 depicts the individual percen-
tages of the overall runtime of these operations. The fractions of the overall
runtime that these three procedures hold tend to diverge less than it is the case
with Elemental (see figure 6.1). While this one-stage tridiagonalization routi-
ne (elpa NMOD tridiag real in the above figure) claims a major percentage of

58

6.4 ELPA two-stage instrumentation

Abbildung 6.2: Scalasca instrumentation of the ELPA one-stage test application

50.61% as expected, its implementation is more effective than the tridiagona-
lization routine implemented in Elemental. The eigensolver itself acquires a
percentage of 8.40% of the overall runtime. As the percentages of the eigensol-
ver and back transformation increase with a more efficient tridiagonalization
routine, this does not necessarily mean that it is faster than the MR3 algo-
rithm implemented in the PMRRR library that is utilized by Elemental. The
results of the benchmarks that were presented in chapter 5 however resemble
to a general tendency of the PMRRR library to be faster than the divide and
conquer algorithm.

The eigenvector back transformation routine holds a share of 13.41% of the
overall runtime. Compared to Elemental an even larger percentage of the MPI
operations in the process were collective (97.03%) and only a small percentage
of 2.97% included point-to-point communications.

6.4 ELPA two-stage instrumentation

While a full eigenspectrum computation with the ELPA two-stage solver is litt-
le reasonable as justified in section 5.4.2, an instrumentation run was tasked to
visualize the individual routines that are involved in the two-stage tridiagonali-
zation and back transformation process and their shares of the overall runtime.

Figure 6.3 illustrates the instrumentation of the ELPA two-stage test applica-
tion. As can be seen, the eigensolving process includes several more routines
than it was the case with the ELPA one-stage solver (see figure 6.2).
As depicted in the above figure, the tridiagonalization step includes a full to
banded and a following banded to tridiagonal reduction. The full to banded
reduction (elpa2 NMOD bandred real in the figure) has a share of 11.96% of

59

6 Scalasca instrumentation

Abbildung 6.3: Scalasca instrumentation of the ELPA two-stage test application

the overall runtime while the banded to tridiagonal reduction
(elpa2 NMOD tridiag band real in the figure) requires less time with only 5.30%.
This means that the reduction phase in the ELPA two-stage solver takes only
about 17% of the whole solver’s runtime.

ELPA’s two-stage approach utilizes the same eigensolver routine as the ELPA
one-stage solver, which in the underlying instrumentation run acquires a per-
centage of 5.25% of the overall runtime.

The performance issues that were mentioned in section 5.4.2 can be review-
ed in the figure as the tridiagonal to banded back transformation step holds a
share of 53.50% of the overall runtime. This issue is meanwhile fixed in a newer
version of the ELPA library. The banded to full back transformation requires
only 7.22% as it includes merely the muliplication of the individual Househol-
der matrices to the eigenvectors. In contrast to the ELPA one-stage solver and
Elemental, most MPI operations in this instrumentation run included point-
to-point communication (75.53%). A relatively small share of 24.47% of all
MPI operations were of collective nature.

Because the runtime of the eigensolver routine can be expected to be near-
ly equal in both the instrumentation of ELPA one-stage and ELPA two-stage,
a factor of 8.4

5.25
= 1.6 can be derived from that and applied to the percentage

of the reduction phase in ELPA two-stage. If the runtimes of both solvers were
equal, the two-stage reduction phase would then only require a percentage of
(11.96%+5.30%) · 1.6 = 27.61% compared to the direct approach with 50.61%.

60

7 Outlook

The performance analysis in chapter 5 and instrumentations of chapter 6 prove
that the ELPA two-stage approach is a promising candidate for eigenproblem
computations on large scale distributed memory supercomputer architectures
of the Blue Gene family. As the performance issues with the ELPA two-stage
solver that occured on JUQUEEN are meanwhile fixed in a newer version of
the ELPA library, benchmarks regarding the improved efficiency of the new
ELPA version are a compulsive assignment for further analysis. With the pro-
mising speedup of the new ELPA version, it is very likely that the crossline of
the ELPA one- and two-stage solvers lies at about 45% of the eigenspectrum
as it was the case on JUGENE.

An original intend was to benchmark the hybrid versions of both ELPA and
Elemental on the Blue Gene systems, too. Unfortunately the hybrid versions
of both libraries are up to now malfunctioning on JUQUEEN. A bug in the
implementation of the MPI routine Allreduce in the Blue Gene/Q MPI imple-
mentation additionally delayed the benchmarks of Elemental on JUQUEEN.
These benchmarks were conducted after this issue was resolved in July 2012.
As the compilers for the Blue Gene/Q architecture steadily improve, the ana-
lysis and comparision of the hybrid and non-hybrid versions of Elemental and
ELPA is another possible starting point for future exploration.

61

Literaturverzeichnis

[1] FZJ-JSC System Configuration - IBM Blue Gene/P. http://www2.fz-
juelich.de/jsc/service/sco ibmBGP, September 2012.

[2] PMRRR - Parallel Multiple Relatively Robust Representations.
http://code.google.com/p/pmrrr/, September 2012.

[3] F. Allen and G. Almasi et al. Bluegene: A vision for protein science using
a petaflop supercomputer. IBM Systems Journal, 40:310–328, 2001.

[4] T. Auckenthaler and V. Blum et al. Parallel solution of partial symme-
tric eigenvalue problems from electronic structure calculations. Parallel
Computing, 37:783–794, 1997.

[5] Tommy Berg. Performance-Analyse und -Optimierung paralleler Eigen-
wertlöser auf Bluegene Architekturen. Master’s thesis, Fachhochschule
Aachen Abt. Jülich, 2011.

[6] C. Bischof, B. Lang, and X. Sun. Parallel tridiagonalization through two-
step band reduction. Proc. Scalable High-Performance Computing Conf.,
IEEE Computer Society Press, Los Alamitos, CA, pages 23–27, 1994.

[7] C. Bischof and C. Van Loan. The wy representation for products of
householder matrices. SIAM, 8:2–13, 1987.

[8] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK user’s guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1997.

[9] J.R. Bunch, C.P. Nielsen, and D.C. Sorensen. Rank one modification of
the symmetric eigenproblem. Numer. Math., 31:31–48, 1978.

[10] J.J.M. Cuppen. A Divide and Conquer Method for the Symmetric Tridia-
gonal Eigenproblem. PhD thesis, Universiteit of Amsterdam, 1981.

[11] J.W. Demmel. Applied numerical linear algebra, pages 5, 12. SIAM, 1997.

[12] I.S. Dhillon. New O(n2) Algorithm for the Symmetric Tridiagonal Eigen-
value Eigenvector Problem. PhD thesis, University of California, 1997.
3.3.1, 3.3.4.

63

Literaturverzeichnis

[13] I.S. Dhillon and B.N. Parlett. Multiple representations to compute ortho-
gonal eigenvectors of symmetric tridiagonal matrices. Linear algebra and
its applications, 387:1–28, 2004.

[14] I.S. Dhillon, B.N. Parlett, and C. Vömel. The design and implementation
of the mrrr algorithm. ACM Transactions on Mathematical Software,
pages 533 – 560, 2006. 4.2.1.2.

[15] ELPA Authors. Eigenvalue SoLvers for Petaflop Architectures Website.
http://elpa.rzg.mpg.de/, August 2012.

[16] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel
Becker, and Bernd Mohr. The Scalasca performance toolset architecture.
Concurrency and Computation: Practice and Experience, 22(6):702–719,
April 2010.

[17] G.H. Golub. Some modified matrix eigenvalue problems. SIAM, 15:318–
334, 1973.

[18] G.H. Golub and C.F. Van Loan. Matrix computations, pages 2–5. Johns
Hopkins, 1996. 3.2,3.3.4.

[19] Green500 Supercomputing Sites. June 2012 Green500 List.
http://www.green500.org/lists/green201206, June 2012.

[20] B. Hendrikson, E. Jessup, and C. Smith. Toward an efficient parallel
eigensolver for dense symmetric matrices. SIAM J. Sci. Comput., 20:1132–
1154, 1999.

[21] B. Lang. Direct solvers for symmetric eigenvalue problems. In J. Gro-
tendorst, editor, Modern Methods and Algorithms of Quantum Chemistry,
number 2, pages 231, 259. NIC Series, 2000.

[22] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond,
and Nichols A. Romero. Elemental: A new framework for distributed
memory dense matrix computations. ACM Transactions on Mathematical
Software, 39(2).

[23] TOP500 Supercomputing Sites. June 2012 Top500 List.
http://www.top500.org/list/2012/06/100, August 2012.

[24] TOP500 Supercomputing Sites. November 2004 Top500 List.
http://www.top500.org/list/2004/11/100, November 2004.

[25] TOP500 Supercomputing Sites. November 2006 Top500 List.
http://www.top500.org/list/2006/11/100, November 2006.

64

Literaturverzeichnis

[26] TOP500 Supercomputing Sites. November 2007 Top500 List.
http://www.top500.org/list/2007/11/100, November 2007.

65

Jül-4359
Januar 2013
ISSN 0944-2952

Jül - 4359

Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Performance analysis and comparison
of parallel eigensolvers on Blue Gene
architectures

Jan Felix Münchhalfen

M
em

be
r

of
 t

he
 H

el
m

ho
ltz

 A
ss

oc
ia

tio
n

