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Abstract In this study, the potential of Corynebacterium
glutamicum for reductive whole-cell biotransformation is
shown. The NADPH-dependent reduction of the prochiral
methyl acetoacetate (MAA) to the chiral (R)-methyl 3-
hydroxybutyrate (MHB) by an alcohol dehydrogenase from
Lactobacillus brevis (Lbadh) was used as model reaction and
glucose served as substrate for the regeneration of NADPH.
Since NADPH is mainly formed in the oxidative branch of the
pentose phosphate pathway (PPP), C. glutamicum was engi-
neered to redirect carbon flux towards the PPP. Mutants lack-
ing the genes for 6-phosphofructokinase (pfkA) or
glyceraldehyde 3-phosphate dehydrogenase (gapA) were con-
structed and analyzed with respect to growth, enzyme activi-
ties, and biotransformation performance. Both mutants
showed strong growth defects in glucose minimal medium.
For biotransformation of MAA to MHB using glucose as
reductant, strains were transformed with an Lbadh expression
plasmid. The wild type showed a specific MHB production
rate of 3.1 mmolMHB h−1 gcdw

−1 and a yield of 2.7 molMHB

molglucose
−1. The ΔpfkA mutant showed a similar MHB pro-

duction rate, but reached a yield of 4.8 molMHB molglucose
−1,

approaching the maximal value of 6 molNADPH molglucose
−1

expected for a partially cyclized PPP. The specific biotrans-
formation rate of the ΔgapA mutant was decreased by 62 %

compared to the other strains, but the yield was increased to
7.9 molMHB molglucose

−1, which to our knowledge is the high-
est one reported so far for this mode of NADPH regeneration.
As one fourth of the glucose was converted to glycerol, the
experimental yield was close to the theoretically maximal
yield of 9 molNADPH molglucose

−1.
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Introduction

Whole-cell biotransformation has become an important
method in chemoenzymatic synthesis, e.g., for the produc-
tion of amino acids and chiral alcohols (Ishige et al. 2005).
Corynebacterium glutamicum is a Gram-positive, non-
pathogenic soil bacterium which is predominantly used for
the large-scale industrial production of the flavor enhancer

L-glutamate and the food additive L-lysine (Pfefferle et al.
2003; Kimura 2003; Hermann 2003). Recent metabolic
engineering studies have shown that C. glutamicum is also
capable of producing a variety of other commercially inter-
esting compounds, e.g., other L-amino acids (Wendisch et
al. 2006), D-amino acids (Stäbler et al. 2011), organic acids
such as succinate (Okino et al. 2008; Litsanov et al. 2012a,
b), diamines such as cadaverine (Mimitsuka et al. 2007) or
putrescine (Schneider and Wendisch 2010), biofuels such as
ethanol or isobutanol (Inui et al. 2004; Smith et al. 2010;
Blombach et al. 2011), or proteins (Meissner et al. 2007).
An overview of the product spectrum of C. glutamicum can
be found in a recent review (Becker and Wittmann 2011).
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C. glutamicum was also shown to be a suitable host for
whole-cell biotransformation with resting cells for production
of mannitol (Bäumchen and Bringer-Meyer 2007) and cyclo-
hexanone derivatives (Doo et al. 2009; Yun et al. 2012). These
reactions are often NAD(P)H dependent and cofactor recy-
cling is crucial for profitable processes. For example, formate
dehydrogenase or glucose dehydrogenase are used, but only
1 mol NAD(P)H can be generated from 1 mol formate or
1 mol glucose (Kaup et al. 2004, 2005; Ernst et al. 2005;
Eguchi et al. 1992; Tan 2006). Use of metabolically active
cells gives the opportunity to regenerate reduced cofactors via
sugar metabolism and to gain a higher reduced cofactor to
glucose ratio (Chin and Cirino 2011).

In Escherichia coli, several attempts were made for engi-
neering cellular metabolism towards a higher NADPH per
glucose yield (Fasan et al. 2011; Akinterinwa and Cirino
2011). NADPH is mainly generated in the oxidative branch
of the pentose phosphate pathway (PPP), where glucose
6-phosphate dehydrogenase catalyzes the oxidation of
glucose 6-phosphate to 6-phopshoglucono-δ-lactone and
6-phosphogluconate dehydrogenase, which catalyzes the
oxidative decarboxylation of 6-phosphogluconate to ribulose
5-phosphate, yielding 2 mol NADPH (Fig. 1). Therefore, em-
ployment of the PPP is an interesting option for NADPH-
dependent processes (Chin and Cirino 2011; Chemler et al.
2010). In a recent study with E. coli, we analyzed the NADPH-
dependent reduction of the prochiral β-ketoester methyl ace-
toacetate (MAA) to the chiral hydroxy ester (R)-methyl
3-hydroxybutyrate (MHB) using glucose as substrate for the

generation of NADPH (Siedler et al. 2011, 2012). The reduc-
tion was catalyzed by an R-specific alcohol dehydrogenase
(ADH) from Lactobacillus brevis. MHB serves as a building
block of statins (Panke and Wubbolts 2005). Deletion of pfkA
and pfkB encoding phosphofructokinase I and II, respectively,
resulted in a partial cyclization of the PPP and a yield of 5.4
molMHB molglucose

−1, which was near the theoretically maximal
yield of 6 (Kruger and von Schaewen 2003).

To determine whether this metabolic engineering strategy
can be generalized, is e.g. transferable to C. glutamicum,
was one major goal of this study. It has to be kept in mind
that differences exist in the repertoires of metabolic enzymes
of E. coli and C. glutamicum. Of relevance for the present
work is the occurrence of only one gene encoding a 6-
phosphofructo1-kinase (pfkA) and the absence of genes
encoding transhydrogenases and the key enzymes of the
Entner–Doudoroff-pathway in C. glutamicum (Yokota and
Lindley 2005). To further improve the NADPH per glucose
yield, deletion of the glyceraldehyde 3-phosphate dehydro-
genase (gapA) gene would be beneficial, as it should result
in a complete cyclization of the PPP. Deletion of gapA
theoretically enables a yield of 12 mol NADPH per mole
of glucose 6-phosphate by complete recycling of fructose 6-
phosphate and triose 3-phosphate through the oxidative
PPP (Kruger and von Schaewen 2003). The gapB gene
encoding a second glyceraldehyde 3-phosphate dehydroge-
nase in C. glutamicum should not be relevant in this
context, as GapB does not function in the glycolytic direc-
tion (Omumasaba et al. 2004).

Fig. 1 Scheme of the upper
part of glycolysis and pentose
phosphate pathway of C.
glutamicum. Gene deletions
and NADPH generating
reactions are indicated. PTS
phosphotransferase system,
IolT1/IolT2 alternative glucose
import system, Glk
ATP-dependent glucokinase,
PpgK polyphosphate/ATP-
dependent glucokinase, Pgi
phosphoglucose isomerase,
PfkA phosphofructokinase,
GapA glyceraldehyde-3-
phosphate dehydrogenase,
DHAP dihydroxyacetone
phosphate, PEP
phosphoenolpyruvate
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In this study, we analyzed C. glutamicum mutants
lacking either pfkA or gapA for their behavior in reductive
whole-cell biotransformation. The results supported the
view that the PPP operates in cyclic manner, oxidizing
glucose to CO2 with concomitant reduction of NADP+ to
NADPH.

Materials and methods

Chemicals and enzymes

Chemicals were obtained from Sigma-Aldrich (Taufkirchen,
Germany), Qiagen (Hilden, Germany), Merck (Darmstadt,
Germany), and Roche Diagnostics (Mannheim, Germany).

Bacterial strains, plasmids, media, and growth conditions

Strains and plasmids used in this work are listed in Table 1.
E. coli strains were transformed by the method described by
Hanahan (1983) and cultivated in LB medium (Miller
1972). E. coli DH5α was used for cloning purposes and
C. glutamicum ATCC 13032 and derivatives for gene
expression and whole-cell biotransformation. When required,
antibiotics were added to the medium at a final concentration
of 50 μg kanamycin ml−1 (pEKEx2-LbADH) or 100 μg spec-
tinomycin ml−1 (pEKEx3 derivatives).

For growth experiments with C. glutamicum, 50-ml LB
overnight cultures were inoculated from LB plates, harvested
by centrifugation (10min, 3,220×g), washed in CgXII medium
(Eggeling and Bott 2005), and inoculated in CgXII medium
containing 100 mM glucose to a final optical density at 600 nm
(OD600) of 1. When appropriate, 1 mM isopropyl-β-D-thioga-
lactopyranosid (IPTG), 25 μg ml−1 kanamycin, and 100 μg
ml−1 spectinomycin was added. For all growth experiments,
500 ml baffled shake flasks with 50 ml CgXII medium were
used and incubated at 30 °C and 120 rpm. Growth was
followed by OD600 determination using a UV-1650 PC pho-
tometer (Shimadzu, Duisburg, Germany). The biomass con-
centration was calculated from OD600 values using an
experimentally determined correlation factor of 0.25 g (dry
weight) of cells (cdw) per liter for an OD600 of 1 (Kabus et al.
2007). For the determination of enzyme activity in cell-free
extracts, 50 ml LB medium containing 1 mM IPTG and
100 μg ml−1 spectinomycin was inoculated from LB over-
night cultures to an OD600 of 0.5. At an OD600 of 4, cells were
harvested by centrifugation (10 min, 3,220×g, 4 °C) and
stored at −20 °C until use.

Recombinant DNA work

Standard methods like polymerase chain reaction (PCR),
restriction, or ligation were carried out according to established

protocols (Sambrook and Russell 2001). E. coli cells were
transformed by the CaCl2 method (Hanahan et al. 1991).
DNA sequencing was performed by Eurofins MWG Operon
(Germany). Oligonucleotides (listed in Table 2) were synthe-
sized by Biolegio bv (Nijmegen, The Netherlands) and Euro-
fins MWG Operon (Germany).

Construction of deletion mutants and plasmids

C. glutamicum deletion mutants were constructed using
pK19mobsacB (Schäfer et al. 1994) using the procedure de-
scribed by Niebisch and Bott (2001). Upstream and down-
stream flanking regions of pfkA (cg1409), and gapA (cg1791)
were amplified by PCR using the oligonucleotide pairs pfkA-
Del-A/pfkA-Del-B and pfkA-Del-C/pfkA-Del-D for deletion
of pfkA, and gapA-Del-A/gapA-Del-B and gapA-Del-C/gapA-
Del-D for deletion of gapA (see Table 2 for primer sequences).
The upstream and downstream flanking regions of each gene
were fused by overlap extension PCR, resulting in a DNA
fragment of about 1 kb. The resulting PCR products were
cloned into SmaI-restricted vector pK19mobsacB resulting in
pK19mobsacBΔpfkA, and pK19mobsacBΔgapA. The correct-
ness of the cloned PCR fragments was confirmed by DNA
sequencing. Transformation of C. glutamicum wild type with
these plasmids and selection for the first and second homolo-
gous recombination was performed as described (Niebisch and
Bott 2001; Rittmann et al. 2003). Kanamycin-sensitive and
sucrose-resistant clones were analyzed by PCR using oligonu-
cleotide pairs pfkA-Del-Ver-fw/pfkA-Del-Ver-rv or gapA-Del-
Ver-fw/gapA-Del-Ver-rv.

For the complementation of deletion mutants, the genes
pfkA (cg1409), and gapA (cg1791) from C. glutamicum and
the genes pfkA (b3916) and pfkB (b3916) from E. coli were
amplified via PCR from genomic DNA of C. glutamicum
WT, which was prepared as described previously (Eikmanns
et al. 1995), and E. coliMG1655 genomic DNA, which was
prepared by using the DNA isolation kit (Roche, Mannheim,
Germany). PCR was performed using the following oligo-
nucleotide pairs: pfkA-cgl-fw/pfkA-cgl-rv, gapA-cgl-fw/
gapA-cgl-rv, pfkA-eco-fw/pfkA-eco-rv, and pfkB-eco-fw/
pfkB-eco-rv (see Table 2). To allow IPTG-inducible expres-
sion of pfkA, and gapA from C. glutamicum and pfkA, and
pfkB from E. coli the corresponding PCR products were
ligated into the SmaI-restricted vector pEKEx3 resulting in
pEKEx3-pfkACgl, pEKEx3-gapACgl, pEKEx3-pfkAEco, and
pEKEx3-pfkBEco.

For the construction of the expression plasmid pEKEx2-
Lbadh, the adh gene of L. brevis was amplified together
with a 9-bp linker and an artificial ribosome binding site
(AAGGAG) using the oligonucleotides Lbadh_for and
Lbadh_rev and the plasmid pBtacLbadh as template (Ernst
et al. 2005). The PCR product was digested with BamHI and
EcoRI and cloned into the vector pEKEx2. The correctness
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of the cloned PCR fragments in the plasmids was confirmed
by DNA sequencing.

Enzyme activity assays

For the determination of alcohol dehydrogenase activity,
cells were harvested by centrifugation (10,000×g, 4 °C,
5 min) 30 min after start of biotransformation and stored at
−20 °C until use. The cells were resuspended in 100 mM
potassium phosphate buffer, pH 6.5, with 1 mM dithiothrei-
tol and 1 mM MgCl2. Cells were disrupted at 4 °C by 3×
15 s bead-beating with 0.1-mm-diameter glass beads using a
Silamat S5 (Ivoclar Vivadent GmbH, Germany) and crude
extracts were centrifuged at 16,000×g (4 °C, 20 min) to

remove intact cells and cell debris. The supernatants were
used as cell-free extracts. Alcohol dehydrogenase activity
was determined photometrically at 340 nm using a mixture
of 10 mM methyl acetoacetate, 250 μMNADPH, and 1 mM
MgCl2 in 100 mM potassium phosphate buffer, pH 6.5. The
reactions were started by adding different dilutions of the
cell-free extract. For rate calculation, an extinction coeffi-
cient for NADPH at 340 nm of 6.22 mM−1 cm−1 was used.
One unit of enzyme activity corresponds to 1 μmol NADPH
consumed per minute.

For the determination of the specific activity of phospho-
fructokinase and glyceraldehyde 3-phosphate dehydrogenase,
cells were harvested by centrifugation (3,220×g, 4 °C,
10 min) and washed in the appropriate buffer (see below)

Table 1 Strains and plasmids used in this work

Strains and plasmids Relevant characteristics Reference

Strains

E. coli DH5α F− ø80ΔlacZΔM15 Δ(lacZYA-argF) U169 deoR recA1 endA1
hsdR17 (rk−, mk+) phoA supE44 λ− thi-1 gyrA96 relA1

(Hanahan 1983),
Invitrogen

C. glutamicum ATCC13032 Wild type, biotin auxotrophic (Abe et al. 1967)

ΔpfkA C. glutamicum ATCC13032 ΔpfkA (cg1409) This study

ΔgapA C. glutamicum ATCC13032 ΔgapA (cg1791) This study

WT/pEKEx3 C. glutamicum ATCC13032 with pEKEx3 This study

WT/pEKEx3-pfkACgl C. glutamicum ATCC13032 with pEKEx3-pfkACgl This study

WT/pEKEx3-pfkAEco C. glutamicum ATCC13032 with pEKEx3-pfkAEco This study

WT/pEKEx3-pfkBEco C. glutamicum ATCC13032 with pEKEx3-pfkBEco This study

WT/pEKEx3-gapACgl C. glutamicum ATCC13032 with pEKEx3-gapACgl This study

WT/pEKEx2-Lbadh C. glutamicum ATCC13032 with pEKEx2-Lbadh This study

ΔpfkA/pEKEx3 C. glutamicum ATCC13032 ΔpfkA with pEKEx3 This study

ΔpfkA/pEKEx3-pfkACgl C. glutamicum ATCC13032 ΔpfkA with pEKEx3-pfkACgl This study

ΔpfkA/pEKEx3-pfkAEco C. glutamicum ATCC13032 ΔpfkA with pEKEx3-pfkAEco This study

ΔpfkA/pEKEx3-pfkBEco C. glutamicum ATCC13032 ΔpfkA with pEKEx3-pfkBEco This study

ΔpfkA/pEKEx2-Lbadh C. glutamicum ATCC13032 ΔpfkA with pEKEx2-Lbadh This study

ΔgapA/pEKEx3 C. glutamicum ATCC13032 ΔgapA with pEKEx3 This study

ΔgapA/pEKEx3-gapACgl C. glutamicum ATCC13032 ΔgapA with pEKEx3-gapACgl This study

ΔgapA/pEKEx2-Lbadh C. glutamicum ATCC13032 ΔgapA with pEKEx2-Lbadh This study

Plasmids

pEKEx2 Kanr; E. coli–C. glutamicum shuttle vector for regulated gene
expression (Ptac lacI

q pBL1 oriVC.g. pUC18 oriVE.c.)
(Eikmanns et al. 1991)

pEKEx2-Lbadh Kanr; pEKEx2 derivative with adh gene from Lactobacillus brevis This study

pEKEx3 Specr; C. glutamicum/E. coli shuttle vector (Ptac, lacI
q; pBL1, oriVC.g., oriVE.c.) (Stansen et al. 2005)

pEKEx3-pfkACgl Specr; derivative of pEKEx3 for regulated expression of pfkA (cg1409) of C. glutamicum This study

pEKEx3-gapACgl Specr; derivative of pEKEx3 for regulated expression of gapA (cg1791) of C. glutamicum This study

pEKEx3-pfkAEco Specr; derivative of pEKEx3 for regulated expression of pfkA (b3916) of E. coli This study

pEKEx3-pfkBEco Specr; derivative of pEKEx3 for regulated expression of pfkB (b1723) of E. coli This study

pK19mobsacB Kanr; mobilizable E. coli vector used for the construction of C. glutamicum
insertion and deletion mutants (RP4 mob; sacBB.sub.; lacZα; oriVE.c.)

(Schäfer et al. 1994)

pK19mobsacBΔpfkA Kanr; pK19mobsacB derivative containing a PCR product which covers the
flanking regions of the C. glutamicum pfkA (cg1409) gene

This study

pK19mobsacBΔgapA Kanr; pK19mobsacB derivative containing a PCR product which covers the
flanking regions of the C. glutamicum gapA (cg1791) gene

This study
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and stored at −20 °C until use. Cells were resuspended in 1 ml
of the buffer and cell-free extracts were prepared by sonifica-
tion as described previously (Stansen et al. 2005). All enzyme
activity measurements were carried out at 30 °C. Protein
concentrations were determined with bovine serum albu-
min as standard using Bradford reagents (Sigma, Tauf-
kirchen, Germany).

6-Phosphofructokinase activity was measured spectrophoto-
metrically at 340 nm according to Babul (1978) by a coupled
enzymatic assay with pyruvate kinase and lactate dehydroge-
nase. ADP formed in kinase reaction was used to convert
phosphoenolpyruvate to pyruvate, which was subsequently

reduced to lactate with concomitant oxidation of NADH to
NAD+. The assay solution contained 100 mM Tris–HCl pH
7.5, 0.2 mM NADH, 1 mM ATP, 10 mMMgCl2, and 0.2 mM
phosphoenolpyruvate. One unit of enzyme activity corresponds
to 1 μmol NADH oxidized per minute.

Glyceraldehyde 3-phosphate dehydrogenase activity was
measured according to Omumasaba et al. (2004). The assay
contained 1 mM NAD+, 50 mM Na2HPO4, 0.2 mM EDTA,
and 0.5 mM glyceraldehyde 3-phosphate in 50 mM trietha-
nolamine hydrochloride (TEA) buffer pH 8.5. One unit of
enzyme activity corresponds to 1 μmol NADH formed per
minute.

Table 2 Sequences of oligonucleotide primers

Name Sequence (5′–3′) Function and relevant
characteristics

pfkA-cgl-fw GGATCCGAAAGGAGGCCCTTCAGATGGAAGACATGCGAATTGCTAC OE of Cgl pfkA;
start; BamHi; RBS

pfkA-cgl-rv GGATCCCTATCCAAACATTGCCTGGGC OE of Cgl pfkA;
stop; BamHi

gapA-cgl-fw AAGGAGATATAGATATGACCATTCGTGTTGGTATTAAC OE of Cgl gapA;
start; RBS

gapA-cgl-rv TTAGAGCTTGGAAGCTACGAGCTC OE of Cgl gapA; stop

pfkA-eco-fw CCGGATCCGAAAGGAGGCCCTTCAGATGATTAAGAAAATCGGTGTGTTGAC OE of Eco pfkA;
start; BamHI; RBS

pfkA-eco-rv CCGGATCCTTAATACAGTTTTTTCGCGCAGTC OE of Eco pfkA;
stop; BamHI

pfkB-eco-fw GACTGCAGGAAAGGAGGCCCTTCAGATGGTACGTATCTATACGTTGACAC OE of Eco pfkB;
start; PstI; RBS

pfkB-eco-rv GGCTGCAGTTAGCGGGAAAGGTAAGCGTAA OE of Eco pfkB;
stop; PstI

pfkA-Del-A CCGGAATATCTCGACGCCACAGAACGC Del of pfkA

pfkA-Del-B CCCATCCACTAAACTTAAACAAATTCGCATGTCTTCCATATTAAACCCATCACAACACCCGC Del of pfkA; linker
sequence

pfkA-Del-C TGTTTAAGTTTAGTGGATGGGGAACGCTGGGTTACTGCCCAGGCAATGTTT Del of pfkA; linker
sequence

pfkA-Del-D CCGAAGGAATAGACGAGTTAACAAAACTACGGTCTG Del of pfkA

pfkA-Del-Ver-fw GCCAAAACTCGAGTAGCCCGG Verification of pfkA Del

pfkA-Del-Ver-rv CCACAGCTTCAGTCATGCCC Verification of pfkA Del

gapA-Del-A GGCTGATCCTCAAATGACCAAG Del of gapA

gapA-Del-B CCCATCCACTAAACTTAAACAACCAACACGAATGGTCATGTTG Del of gapA; linker
sequence

gapA-Del-C TGTTTAAGTTTAGTGGATGGGCTGCGTCTGACCGAGCTCGTAG Del of gapA; linker
sequence

gapA-Del-D CACCGAAGCCGTCAGAAACGAATG Del of gapA

gapA-Del-Ver-fw CCAACTTCGACGATGCCAATC Verification of gapA Del

gapA-Del-Ver-rv CTCTGGTGATTCTGCGATCTTTTC Verification of gapA Del

lbADH_for CAGTGGATCCGAAAGGAGGCCCTTCAGATGTCTAACCGTTTGGATGG OE of Lb adh; start;
BamHI; RBS

lbADH_rev GTCTGAATTCTATTGAGCAGTGTAGCCACC OE of Lb adh; stop;
EcoRI

Restriction sites are highlighted in bold; linker sequences for crossover PCR and ribosomal binding sites are shown in italics; stop and start codons
are underlined

OE overexpression, Del deletion, RBS ribosomal binding site, Cgl C. glutamicum, Eco E. coli
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Whole-cell biotransformation

For cultivation of the different recombinant C. glutamicum
strains carrying the pEKEx2-Lbadh plasmid, a single colony
of each strain was inoculated into 10 ml BHIS medium
(37 gl−1 brain heart infusion, 91 gl−1 sorbitol) containing
the appropriate selection marker as described above and
grown overnight at 30 °C and 120 rpm. These pre-cultures
were used for inoculation of the main cultures to an optical
density at 600 nm (OD600) of 0.4. Main cultures were grown
in 100 ml BHIS medium in shake flasks in the presence of
the appropriate selection marker and 0.5 mM IPTG at 30 °C
and 120 rpm. The cells were harvested at an OD600 between
2.5 and 5 by centrifugation (4,000×g, 4 °C, 7 min) and
resuspended in a solution containing 111 mM glucose,
2 mM MgSO4, and 250 mM potassium phosphate buffer,
pH 6.5, to a cell density of 3 gcdw l−1. The biotransformation
was started by adding 50 mM MAA and conducted in shake
flasks at 30 °C and 120 rpm to prevent cell sedimentation.
Specific productivities (mmolMHB h−1 gcdw

−1) were deter-
mined by taking samples at 30–60-min time intervals over a
period of 3 h. MHB and glucose concentrations of the
samples were determined (see below). Specific productivities
were calculated by dividing the slope of graphs showing
MHB concentration vs. time by the cell dry weight, which
remained constant.

Analysis of substrates and products

Methyl acetoacetate (MAA), (R)-methyl 3-hydroxybutyrate
(MHB), glucose, and extracellular metabolites were ana-
lyzed by HPLC as described previously (Siedler et al. 2011).

Results

Growth behavior and in vitro enzyme activities
of C. glutamicum wild-type and mutant strains

In a C. glutamicum mutant lacking 6-phosphofructokinase,
glucose catabolism is forced to proceed via the pentose
phosphate pathway. Fructose 6-phosphate formed in the
PPP by transaldolase or transketolase has to re-enter the
oxidative part of the PPP again and only glyceraldehyde 3-
phosphate can be catabolized further via the lower part of
the glycolytic pathway. Thus, the initial part of glucose
catabolism in a ΔpfkA mutant can be described by the
following equation: Glucose 6-phosphate + 6 NADP+ ➔

Glyceraldehyde 3-phosphate + 3 CO2 + 6 NADPH + 6 H+.
Thus, 6 mol NADPH are formed per mole of glucose.

The deletion of the pfkA gene prevented growth in CgXII
medium with 100 mM glucose (Table 3). The growth defect
of the ΔpfkA mutant was complemented to levels of the WT

control (0.32 h−1) by plasmid-based overexpression of either
the homologous pfkA gene from C. glutamicum (0.32 h−1) or
of the heterologous pfkA gene from E. coli (0.33 h−1) and
increased to 0.16 h−1 by heterologous expression of pfkB
from E. coli. The slow growth of ΔpfkA/pEKEx3-pfkBEco

was accompanied by a significantly higher biomass yield of
10.8 gl−1 compared to 8.4 gl−1 of WT/pEKEx3 or 8.6 gl−1

of strain ΔpfkA/pEKEx3-pfkACgl.
6-Phosphofructokinase activity was absent in the pfkA

deletion strain (Table 3). Plasmid-borne expression of C.
glutamicum pfkA or of E. coli pfkA or pfkB increased
phosphofructokinase activity in the WT background from
0.04 U mg−1 to 0.12, 0.11, and 0.19 U mg−1, respectively.
In the ΔpfkA background, phosphofructokinase activities of
0.10 to 0.13 U mg−1 were determined when either C.
glutamicum pfkA or E. coli pfkA or pfkB was overexpressed
(Table 3).

C. glutamicum possesses two glyceraldehyde 3-phosphate
dehydrogenases, GapA and GapB, but only GapA functions
in the glycolytic direction as a ΔgapA deletion mutant was
unable to grow in glucose minimal medium whereas a
ΔgapB mutant showed no growth defect under these con-
ditions (Omumasaba et al. 2004). A complete block of
glyceraldehyde 3-phosphate conversion to 1,3-bisphospho-
glycerate should lead to a complete oxidation of glucose in
the PPP according to the equation: Glucose + 6 H2O + 12
NADP+ ➔ 6 CO2 + 12 NADPH + 12 H+.

In agreement with previous results (Omumasaba et al.
2004), a deletion of the gapA gene in strain ATCC
13032 resulted in an inability to grow in glucose mini-
mal medium. This defect was complemented by plasmid-
based overexpression of the gapA gene. NAD+-depen-
dent glyceraldehyde-3-phosphate dehydrogenase activity
of cell-free extracts was 0.15 U mg−1 in WT/pEKEx3

Table 3 Growth rates (μ) and biomass concentrations [cell dry weight
(cdw) l−1] in glucose minimal medium with 1 mM IPTG and 100 μg
ml−1 spectinomycin, and specific phosphofructokinase (Pfk) activity in
cell extracts of the indicated C. glutamicum strains after cultivation in
LB medium with 1 mM IPTG and 100 μg ml−1 spectinomycin

C. glutamicum μ (h−1) cdw (g l−1)a Pfk activity
(μmol min−1 mg−1)

WT/pEKEx3 0.32±0.00 8.43±0.18 0.04±0.01

WT/pEKEx3-pfkACgl 0.30±0.00 8.13±0.07 0.12±0.02

WT/pEKEx3-pfkAEco 0.32±0.00 7.53±0.02 0.11±0.02

WT/pEKEx3-pfkBEco 0.32±0.00 8.48±0.03 0.19±0.02

ΔpfkA/pEKEx3 0.00±0.00 0.14±0.01b 0.00±0.00

ΔpfkA/pEKEx3-pfkACgl 0.32±0.01 8.63±0.07 0.10±0.01

ΔpfkA/pEKEx3-pfkAEco 0.33±0.00 7.93±0.33 0.10±0.02

ΔpfkA/pEKEx3-pfkBEco 0.16±0.00 10.80±0.10 0.13±0.01

a Determination of cdw at maximal biomass
b Determination of cdw after 24 h
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and absent in strain ΔgapA/pEKEx3. In strains WT/
pEKEx3-gapA and ΔgapA/pEKEx3-gapA, the glyceralde-
hyde 3-phosphate dehydrogenase activity with NAD+

was found to be 0.26 and 0.13 U mg−1, respectively
(Table 4).

Biotransformation of MAA to MHB with the reference
and the mutant strains

For biotransformation of MAA to MHB, the gene encoding
the (R)-specific alcohol dehydrogenase of L. brevis (Lbadh)
was overexpressed in C. glutamicum WT and in the deletion
strains ΔpfkA and ΔgapA using plasmid pEKEx2-Lbadh.
The specific NADPH-dependent MAA dehydrogenase ac-
tivity in cell-free extracts of these strains was similar, rang-
ing from 0.51 to 0.76 U mg−1 in independent experiments.
Assuming that the in vivo activities are comparable, they are
not limiting the biotransformation rate. The C. glutamicum
wild type showed a MAA dehydrogenase activity below
0.01 U mg−1 with either NADPH or NADH as cofactor
indicating that the biotransformation occurred only in the
presence of the recombinant ADH from L. brevis. For the
biotransformation, the strains were cultivated in BHIS me-
dium to the exponential growth phase and then harvested
and resuspended in 250 mM potassium phosphate buffer pH
6.5 containing 111 mM glucose and 2 mM MgSO4 to a cell
density of 3 gcdw l−1. The resulting cell suspensions were
incubated at 30 °C and 120 rpm and the biotransformation
was started by adding 50 mM MAA.

The kinetics of MHB production and of glucose con-
sumption of the wild-type and the two mutant strains carry-
ing pEKEx2-Lbadh over a period of 180 min are shown in
Fig. 2, and the rates and yields are listed in Table 5. It is
evident from Fig. 2 that the rates of MHB production and
glucose consumption were almost constant within the time
period investigated and proportional to each other. The
strain WT/pEKEx2-Lbadh showed an MHB production rate

of 3.14 mmol h−1 gcdw
−1 and a glucose consumption rate of

1.17 mmol h−1 gcdw
−1. This resulted in a MHB yield of

2.7 mol per mole of glucose, corresponding to an NADPH
yield of 2.7 mol per mole of glucose. The strain ΔpfkA/
pEKEx2-Lbadh had an 8 % reduced MHB production rate
and a 49 % reduced glucose consumption rate, resulting in a
78 % increased MHB yield of 4.8 mol per mole of glucose.
The strain ΔgapA/pEKEx2-Lbadh showed a 62 % de-
creased MHB production rate and an 87 % reduced glucose
consumption rate, corresponding to a 193 % increase of the
MHB yield of 7.9 mol per mole of glucose. As discussed
below, the strongly reduced glucose uptake rate of the strain
ΔgapA/pEKEx2-Lbadh is most likely a consequence of the
fact that the strain does not form PEP.

By-product formation of wild-type and mutant strains

During biotransformation, by-product formation was nearly
constant and specific rates were calculated (Table 5). The
strain WT/pEKEx2-Lbadh showed an acetate formation rate
(1.19 mmol h−1 gcdw

−1) comparable to the glucose consump-
tion rate (1.17 mmol h−1 gcdw

−1). In addition, WT/pEKEx2-
Lbadh formed succinate as by-product with a rate of
0.19 mmol h−1 gcdw

−1. A low acetate production rate of
0.05 mmol h−1 gcdw

−1 was shown by the strain ΔpfkA/
pEKEx2-Lbadh, which corresponds to only 8 % of the
glucose uptake rate. Succinate was not formed by ΔpfkA/
pEKEx2-Lbadh. The strain ΔgapA/pEKEx2-Lbadh formed
neither acetate nor succinate, but glycerol with a rate of
0.08 mmol h−1 gcdw

−1, which corresponds to 53 % of the
glucose consumption rate. As glyceraldehyde 3-phosphate
cannot be catabolized to pyruvate in the ΔgapA mutant,
reduction to glycerol presents an alternative pathway to
oxidation in the cyclic PPP.

Discussion

For reductive whole-cell biotransformations requiring
NADPH, attempts were made in this work to increase the
NADPH yield per mole of glucose using C. glutamicum as
host strain and the reduction of MAA to MHB as NADPH-
requiring model reaction. Rerouting of glucose catabolism
from glycolysis to the oxidative PPP was achieved by deletion
of either the pfkA gene or the gapA gene.

C. glutamicum wild type carrying pEKEx2-Lbadh
showed a 31 % lower specific MHB production rate com-
pared to E. coli carrying pBtac-Lbadh, even when compared
to an E. coli biotransformation conducted at 30 °C (unpub-
lished data). This difference might be due to a lower glucose
uptake capacity or to a generally lower metabolic flux
capacity of C. glutamicum. Overexpression of the genes
involved in glucose uptake and catabolism via glycolysis

Table 4 Growth rates (μ) and biomass concentrations [cell dry weight
(cdw) l−1] in glucose minimal medium with 1 mM IPTG and
100 μg ml−1 spectinomycin, and specific NAD+-dependent glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH) activity in cell extracts
of the indicated C. glutamicum strains after cultivation in LB medium
with 1 mM IPTG and 100 μg ml−1 spectinomycin

C. glutamicum μ (h−1) cdw (g l−1)a GAPDH activity
(μmol min−1 mg−1)

WT/pEKEx3 0.33±0.01 7.80±0.07 0.15±0.02

WT/pEKEx3-gapACgl 0.31±0.00 8.08±0.11 0.26±0.03

ΔgapA/pEKEx3 0.00±0.01 0.00±0.00b 0.00±0.00

ΔgapA/pEKEx3-gapACgl 0.27±0.01 7.99±0.30 0.13±0.02

a Determination of cdw at maximal biomass
b Determination of cdw after 24 h
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or PPP could improve the rate of glucose catabolism, as
shown recently for oxygen-deprived conditions (Yamamoto
et al. 2012; Jojima et al. 2010). The MHB per glucose yield
found for C. glutamicumWT/pEKEx2-Lbadh (2.7 mol/mol)
was 10 % higher than the corresponding value determined
for E. coli BL21(DE3)/pBtac-Lbadh (2.44 mol/mol) (Siedler
et al. 2011), which might be due to slight differences in the
partition of glucose 6-phosphate between glycolysis and the
PPP.

Biotransformation studies with E. coli ΔpfkA and
ΔpfkAΔpfkB mutants expressing Lbadh showed yields of
4.8 and 5.4 molMHB molglucose

−1, respectively (Siedler et
al. 2011). 13C metabolic flux analysis demonstrated a neg-
ative net flux through phosphoglucose isomerase in the
ΔpfkA mutant, in compliance with the proposed partial cy-
clization of the PPP (Siedler et al. 2012). The MHB yield
per glucose of the E. coli strain ΔpfkA/pBtac-Lbadh was
comparable to that of the C. glutamicum strain ΔpfkA/
pEKEx2-Lbadh (4.8 molMHB molglucose

−1), indicating that
a partial cyclization of the PPP occurred in the latter species,
too. Furthermore, similarities were found when comparing
by-product formation in E. coli and C. glutamicum. Less
acetate and no succinate was produced in both ΔpfkA mutant
strains compared to the reference strains within the experi-
mental period, presumably as a consequence of a decreased
carbon flux through the lower part of glycolysis and the
TCA cycle in these mutants (Siedler et al. 2012).

C. glutamicum possesses two glyceraldehyde 3-phosphate
dehydrogenases (GAPDH), but only GapA functions in the
glycolytic direction (Omumasaba et al. 2004). Thus, a

deletion of the corresponding gene theoretically should re-
sult in a cyclization of the PPP. The fact that the MHB per
glucose yield of the strain ΔgapA/pEKEx2-Lbadh (7.9 mol/
mol) was higher compared to the strain ΔpfkA/pEKEx2-
Lbadh and corresponded to 66 % of the maximal value of
12 mol NADPH per mole of glucose indicated a more
extended cyclic operation of the PPP in the ΔgapA mutant
compared to the ΔpfkA mutant. The maximal value for a
complete oxidation of glucose in the PPP was not reached
because 25 % of the glucose carbon was lost by reduction of
glyceraldehyde 3-phosphate to glycerol. Taking this loss into
account, only 9 molMHB molglucose

−1 could be achieved max-
imally. The experimental yield of 7.9 molMHB molglucose

−1

corresponds to 88 % of this value and is 46 % above the best
yields reported so far (Chin and Cirino 2011; Siedler et al.
2011, 2012). Future yield optimization could be achieved by
deletion of the gene encoding glycerol 3-phosphatase. Such a
deletion was recently shown to prevent glycerol formation,
which predominantly occurs in fructose-utilizing C. glutami-
cum strains (Lindner et al. 2012).

The strongly reduced biotransformation rate of the strain
ΔgapA/pEKEx2-Lbadh was probably a consequence of the
diminished capability for glucose uptake. In a ΔgapA mu-
tant, no PEP should be formed during glucose catabolism
and consequently, glucose uptake via the PTS should be
impossible. PTS-independent glucose uptake has recently
been described for C. glutamicum. It involves the inositol
transporters IolT1 and IolT2 which also function as low-
affinity glucose permeases (Lindner et al. 2011). Subsequent
phosphorylation of glucose to glucose 6-phosphate is

Table 5 Biotransformation parameters and by-product formation of C. glutamicum wild-type and deletion mutants carrying plasmid pEKEx2-
Lbadh

C. glutamicum strain Specific MHB
production rate

Specific glucose
consumption rate

Yield Specific acetate
formation rate

Specific succinate
formation rate

Specific glycerol
formation rate

(mmol h−1 gcdw
−1) (mmol h−1 gcdw

−1) (molMHB

molGlucose
−1)

(mmol h−1 gcdw
−1) (mmol h−1 gcdw

−1) (mmol h−1 gcdw
−1)

WT/pEKEx2-Lbadh 3.14±0.13 1.17±0.07 2.7±0.1 1.19±0.01 0.19±0.01 0

ΔpfkA/pEKEx2-Lbadh 2.88±0.08 0.60±0.01 4.8±0.2 0.05±0.01 0 0

ΔgapA/pEKEx2-Lbadh 1.20±0.04 0.15±0.03 7.9±0.9 0 0 0.08±0.04

∆pfkAWild type ∆gapA

Fig. 2 Kinetics of MHB production (open squares) and glucose con-
sumption (filled squares) during biotransformation of MAA to MHB
using resting cells (3 gcdw l−1) of the indicated C. glutamicum strains

carrying the plasmid pEKEx2-Lbadh. The cell suspensions were incu-
bated at 30 °C and 120 rpm. Mean values and standard deviations from
three independent experiments are shown
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catalyzed either by an ATP-dependent glucokinase encoded
by glk (Park et al. 2000) or by the polyphosphate- or ATP-
dependent glucose kinase PpgK (Lindner et al. 2010). It can
be assumed that glucose uptake during biotransformation
with the ΔgapA mutant occurs via this alternative pathway,
as the observed glucose consumption rate of 2.5 nmol min−1

mgcdw
−1 (Table 5) at glucose concentrations >10-fold above

the apparent Ks values of IolT1 and IolT2 (2.8 and 1.9 mM,
respectively) is in the range determined for PTS-independent
glucose uptake at 1 mM glucose (0.7 nmol min−1 mgcdw

−1)
(Lindner et al. 2011). Overexpression of either iolT1 or iolT2
together with ppgK was shown to allow almost wild-type
growth rates in a PTS-negative mutant (Lindner et al. 2011)
and thus would probably also allow higher biotransformation
rates of a ΔgapA mutant. Alternatively, expression of the glu-
cose facilitator gene glf from Zymomonas mobilis could help to
increase glucose uptake (Weisser et al. 1995; Parker et al. 1995).

Overall, we could demonstrate the potential of C.
glutamicum for NADPH-dependent reductive whole-cell
biotransformation and show that deletion of either pfkA
or gapA is beneficial to improve the NADPH per glucose
yield, presumably by cyclization of the PPP.
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