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Abstract. Extreme responses of a droplet ensemble during an entrainment and
mixing process as present at the edge of a cloud are investigated by means
of three-dimensional direct numerical simulations in the Euler–Lagrangian
framework. We find that the Damköhler number Da, a dimensionless parameter
which relates the fluid time scale to the typical evaporation time scale, can
capture all aspects of the initial mixing process within the range of parameters
accessible in this study. The mixing process is characterized by the limits
of strongly homogeneous (Da � 1) and strongly inhomogeneous (Da � 1)
regimes. We explore these two extreme regimes and study the response of
the droplet size distribution to the corresponding parameter settings through
an enhancement and reduction of the response constant K in the droplet
growth equation. Thus, Da is varied while Reynolds and Schmidt numbers
are held fixed, and initial microphysical properties are held constant. In the
homogeneous limit minimal broadening of the size distribution is observed
as the new steady state is reached, whereas in the inhomogeneous limit the
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size distribution develops strong negative skewness, with the appearance of a
pronounced exponential tail. The analysis in the Lagrangian framework allows
us to relate the pronounced negative tail of the supersaturation distribution to that
of the size distribution.
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1. Introduction

One signature of turbulent flow is its efficiency in stirring and mixing [1], with the simplest
scenario being the advection and diffusion of a continuous, passive scalar [2, 3]. In this work
we consider advection–diffusion with a discrete scalar constituent, particles in a turbulent flow,
which in turn are coupled to a continuous ‘vapor’ field. Active feedback to the turbulence itself
is not considered, so that we may concentrate solely on the influence of turbulent mixing
on the particle–continuous scalar coupling. The problem is of general interest as discrete
advection–diffusion, but has direct relevance to a variety of applications; we cast the problem
in terms of the mixing of cloudy air and clear air in the atmosphere.

Even the simplest models of cloudy convection depend sensitively on the extent and nature
of entrainment of ambient, non-cloudy air, with implications for cloud depth, cloud optical
properties, precipitation time scales and cloud lifetime [4]. These cloud properties play an
important role in climate dynamics. The entrainment of clear air and its subsequent mixing
with cloudy air occurs during the entire life of a cloud and introduces strong inhomogeneities at
spatial scales ranging from 102 m down to 1 mm and at time scales from hours to seconds [5].
The entrainment and mixing process changes the water droplet size distribution through dilution,
evaporation and perhaps enhanced collision. This distribution is of direct consequence to rain
formation and cloud radiative properties and will eventually determine the cloud lifetime
itself [6].

The mixing of cloudy and clear air is a complex process, not only because of the inherent
role of turbulence with its broad range of coupled scales, but also because the scalar fields (e.g.
droplet number density, water vapor concentration and temperature) are no longer ‘passive’:
latent heating effects couple the energy and condensed phase equations, mass conservation
couples the condensed and vapor phases and the condensed phase itself can respond through
various pathways even for a single bulk thermodynamic outcome. In this work we neglect
the first aspect, the active thermal feedback, in order to isolate the influence of the mixing
process on the evolution of the droplet population. For example, upon mixing of cloudy air
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and clear air, droplets will evaporate until the mixture becomes saturated (assuming the initial
presence of sufficient condensed water), but this could occur by all droplets evaporating by
the same amount, or by a subset of droplets evaporating completely, leaving the remaining
droplets unchanged. It has been argued that the microphysical response to mixing can be
characterized by the Damköhler number, the ratio of a fluid time scale to a characteristic
thermodynamic time scale associated with the evaporation process (phase relaxation time), i.e.
Da =

τfluid
τphase

. The two limits, Da � 1 and Da � 1, describe homogeneous and inhomogeneous
mixing, respectively [7–9]. Homogeneous mixing occurs when the condensational growth or
evaporation of cloud water droplets is slow compared to the mixing and therefore takes place
in a well-mixed environment. Inhomogeneous mixing occurs when the evaporation proceeds
much faster than the flow structures evolve, with the result that droplets near the clear air–cloud
interface experience evaporation while others do not. Both processes can coexist in a turbulent
cloud because of the broad spectrum of fluid time scales that are present, with inhomogeneous
mixing dominating at large scales, and homogeneous mixing occurring at fine scales [10].
Concomitantly, Damköhler numbers can be defined using the large-eddy time (DaL) and the
dissipation time (Daη), and the length scale at which the transition from inhomogeneous to
homogeneous mixing is expected to occur can be estimated as lc = Da−3/2

η η [10, 11], where η

is the Kolmogorov dissipation length scale.
We pose two questions for this work: firstly, does the Damköhler number capture all aspects

of the mixing or, said another way, is there Damköhler number similarity? Secondly, how does
the droplet size distribution respond differently under conditions of strongly homogeneous and
inhomogeneous mixing? These two questions are directly motivated by recent work in which we
investigated the response of the cloud droplet size distribution to mixing using direct numerical
simulation (DNS) of turbulence containing a population of cloud droplets [11]. The approach,
which we now extend to the questions posed here, was a combined Eulerian representation
of the fluid turbulence and water vapor concentration fields and Lagrangian representation
of the discrete droplets. Previous attempts at these questions which extend classical ideas of
inhomogeneous mixing [9] were conducted by Krueger et al in a one-dimensional (1D) explicit
mixing parcel model [12] and by Jeffery in an idealized eddy-diffusivity model [13].

Thermodynamic and microphysical conditions in our DNS model were representative of
those existing in a cumulus cloud, but of course because of computational limitations the
turbulence Reynolds number was much lower than in a real cloud, with the implication that
the range of spatial scales was also limited. This limitation on the largest simulated scales
constrained the large-eddy Damköhler number to values of DaL ∼ 1 (see table 2 in [11]), and
therefore limited our ability to investigate the full range of Damköhler numbers, from strongly
homogeneous to strongly inhomogeneous. The inhomogeneous limit DaL � 1 is of particular
interest because of the intriguing expectation that the size distribution will maintain a nearly
constant mean diameter but with a steadily decreasing droplet number density (e.g. through
complete evaporation of a subset of the droplets, with the remaining droplets not influenced). In
this work, we reach the extremes of strongly homogeneous and inhomogeneous mixing, even
with limited computation size, by directly varying the rate coefficient that couples the discrete,
condensed phase and the continuous, vapor phase. While admittedly not a direct simulation of
atmospheric clouds, we will argue that the study captures essential aspects of the response of
the particle size distribution to mixing in the extreme Da limits.

While the mixing process has been the focus of previous computational investigations,
those studies have primarily considered the problem solely from the continuum microphysics
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perspective [9, 14, 15]. We explicitly treat the Lagrangian nature of the discrete droplet field.
Lagrangian treatment of cloud droplets has been carried out elsewhere [16, 17], with an
emphasis on the evolution of the supersaturation field and the droplet population during steady
growth, whereas this study is focused on the microphysical response to a transient mixing
event. This paper is organized as follows. Section 2 reviews the governing equations and the
simulation parameters relevant to this work. Section 3 considers the first question regarding
Damköhler similarity, and section 4 describes the results of the investigation of mixing with
extreme Damköhler numbers. The paper closes with a discussion and summary.

2. The computational mixing model

2.1. The Euler–Lagrangian equations of motion

The governing equations, simulation parameters and simulation geometry, except where noted
below, are directly taken from our previous study and are described in detail there [11].
As an overview, the simulation is initialized with an idealized slab-cloud geometry that
could be considered analogous to a cloud edge or cloud filament boundary formed through
inhomogeneous mixing at larger scales. The initial slab-like filament of supersaturated vapor
and cloud droplets fills approximately the middle one-third of the cubic simulation box, which
has periodic boundary conditions. The incompressible turbulent flow is described by the velocity
field u(x, t) and the pressure field p(x, t), and within this flow the vapor mixing ratio field
qv(x, t) is transported and diffuses. The vapor mixing ratio is defined as qv(x, t) =

ρv

ρd
, where

ρv and ρd are the mass densities of vapor and dry air, respectively. As discussed already,
the advection–diffusion equation for temperature is not considered in this study. The Eulerian
equations for the turbulent fields are

∇ · u = 0, (1)

∂tu + (u · ∇)u = −
1

ρ0
∇ p + ν∇

2u + f, (2)

∂tqv + u · ∇qv = D∇
2qv − Cd, (3)

where f(x, t) is a bulk forcing that sustains the statistically stationary turbulence and Cd is the
condensation rate. The Lagrangian evolution of the discrete scalar field, consisting of N droplets
in the volume V , is described simply as

dX(t)

dt
= V(t) = u(x, t). (4)

Here, X is the droplet position and V its velocity, and we neglect droplet inertia and gravitational
settling again, in order to isolate the essential aspects of the particle–scalar coupling during the
mixing process. In our previous study [11], we investigated the effect of inertia and gravitational
settling on the mixing process. For the parameters accessible, we concluded that particle inertia
and gravitational settling lead to a more rapid initial evaporation, but ultimately lead only to a
slight depletion of both tails of the droplet size distribution.

As droplets are advected by the fluid, they can grow or evaporate in response to the local
vapor field (recalling that in this study the temperature is constant). Direct droplet interactions
through collision are neglected in order to focus solely on the initial stage of the entrainment and
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mixing process. The condensation rate field Cd(x, t) is directly coupled to the discrete droplets,
as in [16] and [11]. In detail, the condensation rate is given by

Cd(x, t) =
1

ma

dm l(x, t)

dt
=

4πρlK

ρ0a3

4∑
β=1

S(Xβ, t)r(t), (5)

where ma is the mass of air per grid cell and the sum collects the droplets inside each of
the grid cells of size a3 that surround the (grid) point x. This relation closes the system of
Eulerian–Lagrangian equations (1)–(4). Switching between the Eulerian field values at grid
positions and the enclosed droplet position is done by trilinear interpolation. The inverse
procedure is required for the calculation of the condensation rate which is evaluated first at
the droplet position and then redistributed to the nearest eight grid vertices.

For the derivation of the final expression in (5), we used the equation for diffusional droplet
growth by condensation (detailed derivations are found in [4, 11]). Its derivation is based on the
assumption of steady fluxes of vapor mass to the droplet surface and of released latent heat due
to condensation away from the droplet. Energy conservation in a steady flux regime requires

Fv + L−1 FQ = 0, (6)

with L being the latent heat of vaporization. It is further assumed that the water vapor pressure
at the droplet surface is at the saturation value es(Tr) and thus ρv,r = ρvs. Saturation pressure and
density are connected via the ideal gas law es = RvρvsT , where Rv is the vapor gas constant. The
vapor flux across a sphere of radius R has to be equal to the change in liquid water mass inside
the sphere

4πR2 D
dρv

dR
=

dMl

dt
= 4πρlr

2 dr

dt
. (7)

Integration from R = r to ∞ results in combination with an expression for saturation pressure
(and thus for the vapor mass density at saturation) which follows from the Clausius–Clapeyron
equation to

r
dr

dt
'

D

ρl
(ρv,0 − ρvs(T0)). (8)

D is a modified diffusion coefficient for water vapor in air, accounting for the coupled transport
of energy and vapor [11]. Quantities ρl and ρvs(T0) denote the liquid water mass density and the
vapor mass density at saturation at reference temperature T0, respectively. With the definition of
the supersaturation

S(x, t) =
qv(x, t)

qvs(T0)
− 1, (9)

in which qvs(T0) = ρvs(T0)/ρd is the vapor mixing ratio at saturation at the reference temperature
T0, the growth equation can be written finally as

r(t)
dr(t)

dt
= KS(X, t), (10)

in which the constant K is given as [4]

K =

[
ρl

(
RvT0

Des(T0)
+

L2

k RvT 2
0

)]−1

=
ρvs(T0)

ρl
D . (11)

Parameter k denotes the thermal conductivity.
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Thermal effects are accounted for at the individual droplet scale, but are neglected in their
influence on the turbulent flow itself. Instead, the temperature is held fixed at a reference value
of T0 in the simulation domain, thus leaving the saturation vapor mixing ratio constant. This is
clearly a simplification which decouples the temperature field completely from the dynamics,
but allows us to focus on the mixing aspects in the present model. As a consequence, the
turbulence is not driven by buoyancy effects as in similar studies [14–16], but by a volume
forcing that mimics a cascade of kinetic energy from larger scales [18]. Finally, we wish to also
mention that volume considered in this study will be fairly small, such that strong temperature
variations over a time span of 1 min or less are not very probable.

2.2. Initial conditions

The initial condition of the turbulent velocity field was generated by running a separate flow
simulation with the same volume forcing as stated in equation (2). Such a forcing term f injects
a fixed amount of turbulent kinetic energy into the flow at the largest scales and ensures a
statistically stationary homogeneous isotropic turbulence. The preparation run is conducted for
a time lag of 15 s. The turbulent kinetic energy and the volume average of the kinetic energy
dissipation rate fluctuate then about their temporal means. This flow field served as an initial
state for all parameter studies reported here. In order to focus on mixing from a state possessing
a single, clearly defined initial length scale, we have chosen to begin with an idealized slab-cloud
geometry. This slab configuration can be considered as an approximation for one small filament
at the cloud edge which can be formed through a larger-scale entrainment. More precisely, the
initial condition is a slab-like filament of supersaturated vapor that fills about one third of the
cubic simulation box. The vapor mixing ratio profile across the slab is given by

qv(x, y, z, t = 0) = (qmax
v − qe

v) exp
[
−A(x − x0)

6
]

+ qe
v. (12)

Here, qmax
v is the maximum amplitude of qv, which exceeds the saturation value qvs(T0) by 2%.

The variable qe
v stands for the environmental vapor mixing ratio, representing the subsaturated

clear air outside the supersaturated cloudy air filament. Initially, droplets are seeded randomly
in the supersaturated part of the profile, which is shown in figure 1, as a monodisperse particle
ensemble. The simulation domain is a cube with a side length of L x = 25.6 cm. The Kolmogorov
dissipation length η will be resolved with one grid cell. All parameter studies started with the
same initial conditions.

The vapor mixing ratio profile is chosen such that the saturation value of qvs = 0.003 56
corresponds to the typical conditions at the reference temperature T0 = 270 K. The other
turbulence parameters have been chosen corresponding to typical quantities in cumulus clouds.
The mean energy dissipation is 〈ε〉 = 33.75 cm2 s−3. Root mean square values of the velocity
field are about 10 cm s−1. The Schmidt number Sc = ν/D = 0.7 (ν is the kinematic viscosity of
air and D the diffusivity of water vapor in air).

2.3. Numerical implementation

Finally, we note that some special efforts were required in order to achieve efficient
computational implementation with large numbers of advected particles. The underlying
Navier–Stokes equations for the Eulerian part are solved by a pseudospectral method using
fast Fourier transformations (FFT). The integration over time is performed using a second-
order predictor–corrector scheme. The coupling of the Eulerian field to the enclosed droplets
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Figure 1. Initial vapor mixing ratio profile. The cloud slab is a supersaturated
region covering one-third of the whole simulation domain.

(Lagrangian part) is done via a trilinear interpolation. The simulation code is written in
Fortran 90. For the pseudospectral method the cubic domain is decomposed in pencils (two-
dimensional domain decomposition), and the P3DFFT library of Pekurovsky [19] is employed
together with the FFTW (fastest Fourier transformation in the West) [20] for the underlying 1D
Fourier transformations.

The increasing communication overhead caused by the FFT when running simulations
with increasing numbers of message passing interface (MPI) processes leads to a limited
scalability of the code. Therefore, as a first step to improve the performance and scalability,
the previously pure MPI parallelization strategy was extended by OpenMP directives to yield
a hybrid parallelization scheme. This allows the code to be run with higher efficiency and
improved scalability. As already stated before, the computational domain is a cubic box of side
length 25.6 cm3 and is divided into 256 × 256 × 256 cells. The total number of droplets used for
the simulation is 1.1 × 106. The code has been used on up to 512 processors (Intel Xeon X5570,
2.93 GHz).

3. Damköhler number similarity

Kumar et al [11] investigated the phase relaxation process during a mixing event under a
variety of realistic microphysical conditions for a cumulus cloud. The characteristic time scale
associated with this process is the phase relaxation time, defined by

τphase ≈
1

4πndDr
. (13)

The mixing of the clear air with the cloudy air causes a decay of the initial qv profile. In
figure 2, we plot 1D cuts of the vapor mixing ratio fluctuations at a fixed position (y0, z0). They
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Figure 2. Typical time evolution of a 1D profile q ′

v(x, y0, z0, t), where q ′

v =

qv − qv. After 2 s all vapor field fluctuations have decayed completely. Positions
y0 and z0 are the same for all the curves and are fixed.

are defined by

q ′

v(x, t) = qv(x, t) − qv(t) with qv(t) =
1

V

∫
V

qv(x, t) dV . (14)

Entrainment and mixing are observable by the reduction of the minimum and maximum
amplitudes and the deformation of the curves. After about 2 s the mixing process is coming
to the end and the fluctuations have completely decayed in the simulation domain. Although
there is a source term in the advection–diffusion equation given by the condensation rate Cd,
the scalar field qv behaves practically as a conserved scalar. The fluctuations decay while the
volume mean qv(t) approaches the saturation value qvs for cases with a sufficiently large amount
of liquid water. We always found that the impact of the droplet evaporation as a source of vapor
is small within the present mixing model.

In the studies by Kumar et al [11], the Damköhler numbers describing the mixing events
changed according to the specified initial droplet number density nd, initial droplet radius r0

and Taylor microscale Reynolds number Rλ. Within the investigated range there were several
distinct combinations of microphysical and turbulence conditions that resulted in the same value
of Da, so we compare those results here in order to determine whether the Da alone is sufficient
to characterize the mixing process. We refer to this as Da-similarity.

Eight sets of simulation conditions that correspond, two each, to DaL = 0.20, 0.55, 0.81
and 1.09 are summarized in table 1. Because the Taylor microscale Reynolds number Rλ

is the same in all eight simulations, the DaL variation results solely from changes in the
phase relaxation time through microphysical initial conditions. In the pair of simulations with
DaL = 0.55, for example, the initial radius and number density are varied by a factor of 2 in
opposite directions, such that the phase relaxation time remains constant. Results are shown in
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Table 1. List of parameters for the Damköhler similarity studies. We list the
initial droplet radius r0 (in µm), the initial number densities with respect to
the slab cloud, n(c,0)

d , and the whole volume, n(g,0)

d , the global liquid water
content w(g,0) in g m−3, the single-droplet evaporation time τr = R2

0/2K , the
phase relaxation time (13) based on the global number density n(g,0)

d , the large-
scale eddy turnover time TL, the small- and large-eddy Damköhler numbers
based on the global number density and the standard deviation of the square
radius, σr2 , evaluated at 12TL (30 s). All number densities are in cm−3, all times
in s and σr2 is in units of µm2. In all DNS runs the Kolmogorov time scale is
τη = 0.067 s and the Taylor microscale Reynolds number is Rλ = 59.

r0 n(c,0)
d n(g,0)

d w(g,0) τr τ
(g,0)

phase TL Da(g,0)
η Da(g,0)

L σr2

10 328 131 0.5 9.1 4.6 2.5 0.014 0.55 6.0
15 82 33 0.5 20.5 12.4 2.5 0.0054 0.20 6.3
15 328 131 1.9 20.5 3.1 2.5 0.022 0.81 5.7
15 438 175 2.5 20.5 2.3 2.5 0.029 1.09 5.4
20 62 25 0.8 36.4 12.4 2.5 0.0054 0.20 6.3
20 164 66 2.2 36.4 4.6 2.5 0.014 0.55 5.9
20 242 97 3.3 36.4 3.1 2.5 0.022 0.81 5.7
20 328 131 4.4 36.4 2.3 2.5 0.029 1.09 5.4

figure 3, where we plot the size pdfs in terms of the fluctuation of the square radius

δr 2
=

r 2
− r 2

σr2
, (15)

where σr2 is the standard deviation of the square radius. In this way, the comparison accounts
properly for the droplet-diameter-dependent growth or evaporation rates. Specifically, for a
given supersaturation the single-droplet growth law equation (10) suggests that dr 2/dt ∝ K ,
i.e. a constant, so when a size distribution is plotted in r 2 coordinates the shape is preserved
under simple condensation and evaporation. By removing the distribution mean and scaling by
the distribution width, we emphasize the comparison of the dispersion of the r 2 distribution.
The distributions are plotted at t = 30 s, which is large compared to the mixing time scales
so that the mixing can be taken as fully relaxed. As seen in the figure, the microphysical
responses are essentially identical when DaL is held fixed, albeit over a limited range of
investigation. Nevertheless, this supports the concept that the Damköhler number captures the
essential physics of the evolution of the droplet size distribution. This Damköhler similarity
suggests, in turn, that we can investigate the microphysical response to mixing just by varying
Da, regardless of the specific microphysical or turbulence conditions.

4. Extreme mixing scenarios: homogeneous versus inhomogeneous mixing

Ideally, extremes of mixing would be studied directly by going to extremely large computational
domains, i.e. very large Rλ, but this is greatly limited with current computational resources.
In the simulations reported here, for example, the simulation domain is 25.6 cm in spatial
extent. Large-eddy simulation (LES) allows larger scales, for which inhomogeneous mixing
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Figure 3. Probability density function (pdf) of δr 2
= (r 2

− r 2)/σr2 , for the eight
simulation runs summarized in table 1. The distributions are found to collapse
for the four values of DaL = 0.20, 0.55, 0.81 and 1.09. Data are taken at t = 30 s.
The upper panel shows the distribution in a log–linear plot while the lower one
is a linear–linear replot of the same data.

likely dominates, to be resolved, but then the discrete, Lagrangian approach to resolving the
microphysics is no longer possible. It is therefore impossible to fully resolve the mixing process
over a range of spatial scales that allows the transition from strongly inhomogeneous mixing
(large scales) to homogeneous mixing (at the smallest scales) to be observed. As pointed out in
the introduction, in our previous work [11] we achieved large-eddy Damköhler numbers of order
DaL ∼ 1. Even if the transition from inhomogeneous to homogeneous mixing is challenging to
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Table 2. Relevant parameters for the study of Damköhler number, including the
modified diffusion coefficient D in m2 s−1, the single-droplet growth constant K
in µm2 s−1, the single-droplet evaporation time τr = R2

0/2K , the phase relaxation
times (13) based on the number densities n(c,0)

d and n(g,0)

d and the large-scale
eddy turnover time TL. Four possible Damköhler numbers, based on dissipation
and large-eddy time scales and on local and global phase relaxation times, are
also listed. All times are given in seconds. The Kolmogorov time scale in the
three DNS runs is τη = 0.067 s and the Taylor microscale Reynolds number is
Rλ = 59.

D K τr τ
(c,0)
phase τ

(g,0)

phase TL Da(c,0)
η Da(c,0)

L Da(g,0)
η Da(g,0)

L

1.31 × 10−6 5.07 364 19 46 2.5 0.0036 0.14 0.0014 0.055
1.31 × 10−5 50.7 36.4 1.9 4.6 2.5 0.036 1.4 0.014 0.55
1.31 × 10−4 507 3.64 0.19 0.46 2.5 0.36 14 0.14 5.5

simulate with current computational abilities, can extremely homogeneous or inhomogeneous
scenarios be achieved without going to greatly unrealistic microphysical conditions?

Here we investigate further extremes in DaL within our spatial constraints by varying the
transport coefficient that couples the continuous and discrete scalar fields, i.e. the thermally
modified vapor diffusion coefficient D [11, 22] or, equivalently, the single-droplet growth
constant K (see equations (10) and (11)). This directly influences DaL through the phase
relaxation time. The Damköhler number DaL = TL/τphase is therefore directly proportional to D
or K . DaL can also be varied by suitably changing nd or r0 in the simulation, as in the approach
taken by Kumar et al [11], but we have chosen instead to maintain constant initial liquid
water content and microphysical properties between the simulations to isolate the Damköhler
effect alone. Lastly, it is important to point out that in spite of changing D and the associated
microphysical response between the simulations, we hold the water-vapor Schmidt number
(Sc = ν/D) to be constant. Thus, the fine-scale properties of mixing, including both viscous
and scalar dissipation, are fixed throughout the simulations, except insofar as they are modified
through direct coupling to the discrete droplet field.

The three simulations have an initial droplet radius r0 = 20 µm, initial number density
with respect to the slab cloud n(c,0)

d = 164 cm−3, initial number density with respect to the
whole volume n(g,0)

d = 66 cm−3 and a global liquid water content w(g,0)
= 2.2 g m−3. To achieve

stronger homogeneous and inhomogeneous mixing we have arbitrarily decreased and increased
by a factor of 10 the original values of D and K that were taken for typical cumulus cloud
conditions [11]. The values are listed in table 2, along with other relevant turbulence and
cloud parameters (the middle row corresponds to the realistic cloud conditions from [11]).
Simulations with identical microphysical initial conditions (e.g. the same initial droplet radius,
droplet number density and therefore the same liquid water content) were then repeated using
the values on the first and third rows of the table. One could consider the scenario with low D
to be analogous to thermodynamically ‘sluggish’ droplets, for example due to low temperature
or low mass accommodation coefficient (e.g. coated with a thin organic film), and the scenario
with high D to be ‘highly responsive’ droplets, for example due to very high temperature or

New Journal of Physics 14 (2012) 115020 (http://www.njp.org/)

http://www.njp.org/


12

the presence of an unusually volatile substance. We once again emphasize that achieving high
and low DaL in this manner is still not the same as extending the range of spatial scales by
simulating larger computational volumes, mainly because it still does not allow for the transition
from inhomogeneous to homogeneous mixing to be observed. Nevertheless, it allows us to
investigate the influence of inhomogeneous mixing on the droplet population in a Lagrangian-
resolved simulation—beyond what is capable in LES, which generally can only resolve the
strongly inhomogeneous portion of the mixing process [21].

The temporal evolution of the droplet size distributions for the three mixing scenarios is
shown in the left columns of figure 4, with the slowest microphysical response (homogeneous
mixing) in the top left panel and fastest (inhomogeneous mixing) in the bottom left panel. The
initial size distribution of the droplets is delta-distributed at 20 µm and in all three scenarios
the same mass of condensed water evaporates until the full volume of air is brought to
saturation. The microphysical response is starkly different, however, in the two extreme mixing
scenarios, with the size distributions both rapidly achieving a distinctive shape: an extremely
narrow distribution (width of approximately 0.1 µm) with a steadily decreasing mean for the
strongly homogeneous mixing. For times up to 200 s, this distribution relaxes to a mean radius
of approximately 19.1 µm as seen in the upper left panel of figure 4. A negatively skewed
distribution for the strongly inhomogeneous mixing is found. The negative tail of the droplet
diameter pdf for DaL � 1 is approximately exponential, suggesting that it could be related to
the growth of the interface for a passive scalar in a turbulent flow [2, 23]. Because the droplet
size distribution is inherently coupled to the supersaturation field sampled along Lagrangian
droplet paths, we show the corresponding supersaturation pdfs conditioned on droplet position
in the right column of figure 4. The early development of the supersaturation pdf, e.g. at times
t . TL, is remarkably similar over the three simulations, always showing the development of an
approximately negative exponential tail. As required for phase relaxation, the supersaturation
pdf relaxes to delta-distributed at S = 0 at t � τphase for all scenarios. The intermediate behavior,
however, is quite distinct: for strongly homogeneous mixing the negative tail quickly collapses
and P(S) becomes narrow and symmetric as it steadily approaches a mean of S = 0, whereas
for strongly inhomogeneous mixing the negatively skewed distribution approaches a mean of
S = 0 through the gradual collapse of the negative tail of P(S). It is reasonable to surmise
that the distinctive, negative-exponential shape of the droplet size distribution for strongly
inhomogeneous mixing is a direct reflection of the similarly skewed supersaturation pdf, and
this idea is further explored in section 5.

The size distributions in figure 4 suggest that significant changes in the shape of the
distribution occur early in the mixing process, after which the shape becomes ‘frozen in’.
We investigate this early development by plotting the size pdfs in terms of δr 2, as shown in
figure 5, recalling that in r 2-coordinates the size distribution maintains a constant shape during
uniform condensation or evaporation. The size distributions are plotted for 0.2, 0.4, 0.6, 1.0,
2.0 and 4.0 times the large-eddy time TL (=2.5 s), and it is immediately seen that essentially
all the change in the pdf shape occurs for t 6 TL. The response of droplets during this transient
period of mixing therefore dominates the final shape of the size distribution. This provides a
relatively simple explanation for the distinctive shapes resulting from strongly homogeneous
and inhomogeneous mixing: during homogeneous mixing the negative supersaturation tail
collapses within time TL and the size distribution therefore does not have sufficient time to
respond significantly, whereas during inhomogeneous mixing the droplets respond rapidly to
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Figure 4. Comparison of the size distribution and the supersaturation pdf for
different microphysical coupling constants D or K . The rows correspond to the
three rows of table 2, i.e. strongly homogeneous mixing (top row), intermediate
mixing (middle row) and strongly inhomogeneous mixing (bottom row). The
lower left panel identifies three droplet groups corresponding to the strongly
skewed left tail, the mean and the right tail of the diameter pdf. Times in all
legends are given in seconds.
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the negatively skewed supersaturation pdf and then maintain the resulting shape as the vapor
field is thoroughly mixed.

To understand further the appearance of the negative-exponential tail in the droplet size
distribution, we identify three droplet groups, as shown in the lower left panel of figure 4. The
groups are chosen from the left tail, center and right tail of a size distribution near the final
stages of mixing. There are 3000 droplets in each of the groups, taken from among the total 1.1
million droplets. The positions of these droplets are displayed in figure 6 for times t = 0 and
t = 0.2TL, with droplets in groups 1, 2 and 3 being dark blue, light blue and green, respectively.
As might have been expected, droplets from group 3 lie mostly away from the interface, within
the ‘core’ of the unmixed cloud, while droplets from groups 1 and 2 are mostly positioned near
the clear air–cloud interface. The right panel of figure 6 clearly shows that droplets in group 1,
those that experience the most extreme evaporation, tend to lie at the very edge of eddies that
are ejected from the initial slab cloud into the clear air during early stages of the mixing process.
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Figure 6. Illustration of the three droplet groups (identified in the lower left panel
of figure 4) during the entrainment and mixing process. The left panel shows the
positions of all 9000 droplets at the beginning of the mixing process and the
right panel illustrates the positions after 0.2TL. Droplets in groups 1, 2 and 3 are
shown in dark blue, light blue and light green, respectively.

The Lagrangian behavior of individual droplets from each group is illustrated in figures 7
and 8. Five droplets are selected from each group defined in figure 4 and this is further extended
to the other two simulations (droplets similarly sampled from the left tail, center and right tail
of each distribution). In figure 7, each row displays radii versus time for a particular value
of D , homogeneous mixing for the top row and inhomogeneous mixing for the bottom row.
Each column corresponds to a particle group, with group 1 on the left, group 2 in the center,
and group 3 on the right. Figure 8 shows supersaturation sampled by the individual droplets
versus time, with panels similarly arranged as in figure 7. In all radius versus time plots the
phase relaxation is apparent, and as expected, the strongly inhomogeneous mixing scenario
shows the most rapid response of droplet size. In that case (bottom row), full relaxation is
reached by t ≈ TL, with a nearly linear in time decrease of the droplet radius. The final radius
is lowest for group 1 and highest for group 3, as can be understood from the corresponding
supersaturation evolution plots, which show a progressively shallower minimum from group
1 to group 3 (figure 8). The supersaturation histories for all scenarios and particle groups are
qualitatively similar, with a rapid decrease followed by a somewhat slower, asymptotic increase
towards S = 0. The main dip occurs within t ≈ 2TL and is therefore clearly associated with the
transient mixing event during the first large-eddy turnover times.

5. Discussion and summary

The most intriguing regime in this study is that corresponding to strongly inhomogeneous
mixing. As we have seen in the last sections, the droplet size distribution then exhibits a
pronounced exponential tail. In the following, we give a short explanation of how the left tail
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Figure 7. Comparison of the droplet sizes of five particles from each of the three
groups depicted in figure 4. The top row is for homogeneous mixing and the
bottom row is for inhomogeneous mixing, with groups 1, 2 and 3 in the first,
second and third columns, respectively.

of the pdf of r 2 follows as a consequence of the pdf of the supersaturation S along the droplet
tracks. Equation (5) can be rewritten as

dr 2(t)

dt
= 2 K S(t), (16)

and we then obtain the general solution

r 2(t) = r 2
0 + 2 K

∫ t

0
S(t ′) dt ′. (17)

This requires a knowledge of the full time history of the supersaturation along the droplet track
from the beginning of the mixing to time t . The solution can be simplified to

r 2(t) ≈ r 2(t) + 2 K S(t − t), (18)
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Figure 8. Comparison of supersaturation of five particles from each of the three
groups, as depicted in figure 4. The top row is for homogeneous mixing and the
bottom row is for inhomogeneous mixing, with groups 1, 2 and 3 in the first,
second and third columns, respectively.

if the supersaturation S is roughly constant with an average S along the droplet trajectories for a
certain time lag starting at t . Figure 6 (bottom row) shows that this indeed seems to be the case
for all three groups between t . 1 and approximately 2.5 s, the latter of which is TL. Thus we
take t ≈ 0.6 s. The pdfs of the radius square and supersaturation can be related by the following
expression:

p(r̃ 2, t) =

∫
P(S) δ(r̃ 2

− r 2(S, t)) dS, (19)

The substitution rule for the delta distribution states that

δ(r̃ 2
− r 2(S, t)) =

1

|r 2 ′(S̃)|
δ(S − S̃), (20)

where the prime denotes the derivative of r 2 with respect to S taken in (18) at the value S̃ at
which r 2(S, t) = r̃ 2. This gives 2K (t − t) and S̃ = (r̃ 2

− r 2(t))/2 K (t − t). For simplicity, we
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Figure 9. The relation between the supersaturation pdf (left) and the size
distribution (right) for the strongly inhomogeneous mixing case. The tails of the
supersaturation have been fitted to an exponential with a decay rate α for t = 1,
1.5 and 2 s. The resulting size distributions (the same series of data as in the
bottom panel of figure 3, but not rescaled) have been matched with the resulting
function on the right-hand side of equation (22).

substitute, furthermore, r 2(t) by r 2(t) that we have determined for figure 5 and thus

p(r̃ 2, t) =
1

2K (t − t)
P

(
r̃ 2

− r 2(t))

2 K (t − t)

)
. (21)

Supposing that to a good approximation an exponential tail of the supersaturation pdf is
established, then for S < 0 we can set

P(S, t) ∼ exp

(
−

|S|

α

)
⇒ p(r 2, t) ∼

1

2K (t − t)
exp

(
−

|r 2
− r 2(t)|

2Kα(t − t)

)
. (22)

The parameter α will be a function of t and K . For the strongly inhomogeneous mixing regime,
the tail of the supersaturation pdf can be matched with α = 0.02, 0.023 and 0.018 for times
t = 1, 1.5 and 2 s. Figure 9 demonstrates that the supersaturation pdf with the exponential tail
indeed results in a size distribution with a shape that can be matched reasonably well to that
prescribed by (22).

It remains to be shown why the entrainment process generates exponential tails of the
supersaturation pdf. As was seen in figure 4 (right panels), however, its appearance during the
transient mixing for t . TL is largely independent of details of the particle response. We draw
attention, however, to work done in the context of the so-called Kraichnan model, a passive
scalar advection model in a synthetic turbulent flow without time correlations [24] (see [2, 25]
for comprehensive reviews). For both spatially rough and smooth advecting flows, it can
be shown within this model that exponential tails of the passive scalar evolve. Numerical
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and experimental studies on Navier–Stokes turbulence can give rise to super-Gaussian or
exponential tails as well as to sub-Gaussian tails as discussed in [26]. This difference might
be attributed to the finite-time correlations that every real turbulent flow obeys, a point that is
still open.

The idealized numerical experiments presented here aimed at exploring extreme cases
of mixing and entrainment at the edge of a cloud within a simplified numerical model that
disentangles mixing dynamics from the strong temperature feedback via the latent heat release
as would be present during the evolution in a cloud. The regimes of strongly homogeneous
and inhomogeneous mixing were established here by a manipulation of the droplet response
to local super- or subsaturation which is established by a variation of the constant K (or D)
in growth equation (6) for the droplet radius. The strongly inhomogeneous mixing case is
characterized by pronounced exponential tails of the pdfs of supersaturation and radius which
can be quantitatively related to each other.

As we stated at the beginning of this work, our present study should be considered only as
a first step of a longer-term analysis on the complex subject of turbulent mixing in clouds.
There is no doubt that it remains to be seen which aspects will be observable when the
feedback of the temperature field is included and the numerical experiments are scaled up to
larger Reynolds numbers and box sizes which automatically lead to larger Damköhler numbers
DaL (e.g. fully resolved cloud volumes of the order of 10 m3). Studies that incorporate the
active role of temperature on the flow and the latent heat release in the mixing dynamics are
currently under way and will be reported in the near future. However, the present analysis
already provides what in our view are interesting implications for models in which groups of
105–106 individual cloud droplets are represented by one quasi-particle, commonly referred to
as a super droplet [21, 27]. In those models that are usually coupled to LES the present studies
can provide new strategies to model the fluctuations of S on the subgrid scales. Regardless
of the mode of implementation, ultimately it will be important to couple the effects of local
mixing and dilution, such as those considered here, with the fluctuations in humidity that result
from larger-scale motions within the cloud. Recent efforts to perform detailed microphysical
calculations for ensembles of Lagrangian parcel trajectories (e.g., [28, 29]) either neglect
mixing between parcels or represent the parcel-scale mixing in simple ways that do not fully
capture the Damköhler-number dependence. Similar statements could be made regarding recent
developments on stochastic condensation theory (e.g. [30, 31]). These approaches give very
important insight into the crucial role of large-scale mixing and dynamics in the evolution
of droplet size distributions, and it remains to be seen how an accurate representation of the
microphysical response to entrainment and dilution will alter the emerging picture.
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