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Precise calculation of the two-step process for K
−
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The reaction K−d → πΣN is investigated taking into account single scattering and the two-step
process due to K̄N → πΣ rescattering. The influence of some common approximations are examined.
It is found that the treatment of the kinematics in the Green’s function that appears in the loop
integral of the rescattering process has a rather strong impact on the resulting lineshape of the πΣ
invariant mass spectrum. Specifically, a calculation with correct kinematics where the three-body
unitarity cut due to the nK−p threshold occurs at the physical value yields a pronounced peak in the
invariant mass spectrum at this threshold and, at the same time, suppresses the signal in the region
of the Λ(1405) resonance. On the other hand, an approximation applied in past calculations shifts
that threshold down and, consequently, leads to an accidental and therefore erroneous enhancement
of the signal of the Λ(1405) in the πΣ invariant mass spectrum.
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I. INTRODUCTION

The Λ(1405), a baryon resonance with I(JP ) = 0(1
2

−

),
has intrigued theorists already for several decades. The
proximity of its nominal mass [1] to the K̄N threshold (at
around 1435 MeV) has led to speculations that this res-
onance is, in fact, a K̄N (quasi) bound state rather than
a genuine 3-quark state as soon as it was experimentally
identified in the early 1960s. A further and even more pe-
culiar facet was added to this when it was suggested that
the Λ(1405) could be actually a superposition of two res-
onance states [2, 3]. This conjecture emerged from model
calculations performed within the so-called chiral unitary
approach based on coupled channels (K̄N , πΣ, ...).
Subsequent investigations conducted within variants

of that approach, utilizing the leading-order chiral La-
grangian (Weinberg-Tomozawa term) as interaction po-
tential but also higher-order contributions, supported the
existence of two poles in the energy region of the Λ(1405)
resonance [4–8]. Thereby it was found that typically one
of the poles lies very close to the K̄N threshold, i.e.
around 1420-1430 MeV, and couples strongly to the K̄N
system [3]. The other pole exhibits a much larger varia-
tion from model to model, i.e. is usually located around
1340–1400 MeV (though even values around 1470 MeV
are reported [8]) and has usually a much larger width.
Furthermore, it couples more strongly to the πΣ system.
Naturally, the prospect of finding two Λ(1405) reso-

nances has trigged also an increased interest in perform-
ing corresponding experiments. These experiments are
guided by the idea that reactions that are dominated by
either the K̄N or the πΣ transition channels should then
also provide evidence for the presence of either the one or
the other corresponding pole. Specifically, K− induced
reactions should then be dominated by the pole around
1420 MeV and, accordingly, show an enhancement in the

distribution at the corresponding invariant mass [3].

In the present work we consider the reaction K−d →
πΣN where the Λ(1405) can be excited. Our study is
motivated by a corresponding proposal submitted to the
J-PARC 50-GeV proton synchrotron. This proposal aims
at a spectroscopic study of hyperon resonances below the
K̄N threshold via the (K−, n) reaction on a deuteron tar-
get [9]. The primary goal of the experiment is to study
the position and width of the Λ(1405) resonance pro-
duced in the K̄N → πΣ channel. For this reaction the-
oretical investigations were presented by Jido et al. in
[10] and, with emphasis on the kinematical conditions of
the DAFNE facility at Frascati, in [11]. Their calculation
is performed in impulse approximation and considers for
the reaction mechanism single (K̄N → πΣ) scattering
but also the two-step process where the kaon first scatters
off one of the nucleons and then undergoes the transition
K̄N → πΣ on the other nucleon. The required elemen-
tary K̄N → K̄N and K̄N → πΣ amplitudes are taken
from the Oset-Ramos model [12, 13] that utilizes the
Weinberg-Tomozawa term as interaction potential. The
model calculation of [10] yields results that are roughly
in line with an old measurement of the π+Σ− invariant
mass spectrum for the reaction in question from 1977
[14]. Indeed the data exhibit a peak around MπΣ ≈ 1425
MeV, i.e. at roughly the energy where all modern K̄N
interactions cited above predict a pole so that everything
seemed to match perfectly. However, because some ap-
proximations are applied in the study of [10] this appar-
ent success has to be taken with a grain of salt.

Our investigation intends to scrutinize the results of
Ref. [10] in two aspects. First and most importantly, we
want to avoid some of the approximations introduced in
Ref. [10]. For example, we do not use factorization, i.e.
we do not pull out the (K̄N → K̄N and K̄N → πΣ)
amplitudes from the loop integral that occurs in the cal-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/34988823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1202.4272v1


2

culation of the two-step process. Also, and more impor-
tantly, we treat the kinematics in the Green’s function
that appears in the loop integral properly. Specifically
we make sure that the three-body unitarity cut for the
intermediate K̄NN system occurs at the correct (physi-
cal) threshold. As we will see this has a decisive influence
on the achieved results.

In addition, we also consider different models for the
elementary K̄N -πΣ interaction. Practically all the inter-
actions in the literature are fitted to the near-threshold
cross sections for K̄N elastic and charge-exchange scat-
tering and for the K̄N → πΛ and K̄N → πΣ transitions.
As a consequence, the properties of these interactions in
the K̄N threshold region are very similar, even down to
the position of the (nominal) Λ(1405) resonance. How-
ever, for energies further away from the threshold there
is a significant model dependence. This is reflected, for
example, in the large variation of the position of the
lower pole, already mentioned above, see also [15]. Indeed
there are phenomenological models that describe the data
around the K̄N threshold with comparable quality, but
do not even have a second pole [16]. It is interesting to
see whether and how these model differences are reflected
in the results for K−d → πΣN . After all, the πΣ invari-
ant mass spectrum samples the properties of the K̄N -πΣ
interaction down to the πΣ threshold.

In the present study we utilize the Oset-Ramos inter-
action [12, 13] so that we can compare our results directly
with other ones that can be already found in the litera-
ture [10]. The pole positions produced by this interaction
in the isospin I=0 channel, which are associated with the
Λ(1405), are 1426 + i16 MeV and 1390 + i66 MeV [3],
respectively. In addition we use a potential model that
differs not only in the position of the lower pole from
the Oset-Ramos interaction [12] but also conceptually.
In particular, we resort to a meson-exchange potential
of the K̄N -πΣ systems that was published by the Jülich
group more than 20 years ago [17], i.e. long before the
chiral unitary approach became popular. As can be seen
in the original paper [17], the Jülich model describes the
K̄N scattering data in the near-threshold region quite
satisfactorily. Other threshold quantities are fairly well
reproduced too, as shown in a recent paper [18]. Of im-
portance for the present study is also that the Jülich
model generates likewise two poles in the region of the
Λ(1405) resonance. One pole, the K̄N “bound state”,
is located fairly close to the K̄N threshold and to the
physical real axis (1436 + i26 MeV) while the other one
is close to the πΣ threshold and has a significantly larger
imaginary part (1334 + i62 MeV). In fact, this pole lies
at the lower end of the ”lower pole spectrum” mentioned
above.

The paper is structured as follows: In the subsequent
section we summarize shortly the salient features of the
K̄N interaction of the Jülich group. In Sect. III we de-
scribe in detail the formalism that is employed in our
calculation of the reaction K−d → πΣN . The results of
our calculation for the Oset-Ramos and the Jülich K̄N
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FIG. 1: Meson-exchange contributions included in the K̄N

interaction.

interactions are presented in Sect. IV. In particular, we
discuss approximations applied in previous investigations
and study their impact on the shape of the ΣN invariant
mass spectrum. The manuscript closes with a summary.

II. THE JÜLICH K̄N MODEL

The Jülich meson-exchange model of the KN and K̄N
interactions has been described in detail in the literature
[21–24] and we refer the reader to those works. The inter-
action model was constructed along the lines of the (full)
Bonn NN model [19] and its extension to the hyperon-
nucleon (Y N) system [20] (Y = Λ, Σ). Specifically, this
means that one has used the same scheme (time-ordered
perturbation theory), the same type of processes, and
vertex parameters (coupling constants, cut-off masses of
the vertex form-factors) fixed already by the study of
these other reactions.
The diagrams considered for the K̄N interaction are

shown in Fig. 1. Obviously the Jülich model contains
not only single-meson exchanges, but also higher-order
box diagrams involving NK̄∗, ∆K̄ and ∆K̄∗ intermedi-
ate states. Most vertex parameters involving the nucleon
and the ∆(1232) isobar are taken over from the (full)
Bonn NN potential. The coupling constants at vertices
involving strange baryons are fixed from the Y N model
(model B of Ref. [20]). Those quantities (gNΛK , gNΣK ,
gNY ∗K) have been related to the empiricalNNπ coupling
by the assumption of SU(6) symmetry, cf. Ref. [21, 22].
For the vertices involving mesons only, most coupling

constants have been fixed by SU(3) relating them to the
empirical ρ → 2π decay. An exception is the coupling
constant gKKσ, which has been adjusted to the KN
data [21], for the following reason: The σ meson (with
a mass of about 600 MeV) is not considered as a gen-
uine particle but as a simple parametrization of corre-
lated 2π-exchange processes in the scalar-isoscalar chan-
nel. Therefore, its coupling strength cannot be taken
from symmetry relations. Concerning the ω-exchange the
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FIG. 2: Meson-exchange contributions included in the K̄N →

πΛ, πΣ transition potentials and in the πΛ, πΣ → πΛ, πΣ
interactions.

coupling strengths for both gNNω and gKKω were kept at
their SU(6) values. At the same time a phenomenolog-
ical, very short-ranged contribution was added, denoted
as σrep. This phenomenological piece has the same ana-
lytical form as σ-exchange, but an exchange mass of 1200
MeV and, most importantly, an opposite sign. Such a
short-range contribution was required in order to obtain
sufficient repulsion for a reasonable description of the S-
wave KN phase shifts [21]. It was shown in Ref. [25]
that this phenomenological piece can be explained dy-
namically, even on a quantitative level, by genuine quark-
gluon exchange processes.
The contributions to the K̄N interaction in [22] are

fixed from those of the KN model [21] via a G-parity
transformation. The only exception is the phenomeno-
logical σrep whose strength is re-adjusted by a fit to K̄N
data. Its contribution required there was found to be
considerably reduced as compared to KN . Indeed, this
is in line with the results of [25] because the quark-gluon
exchange processes that generate most of the repulsion
simulated by the σrep in case of KN are absent in the
K̄N channel due to the different quark structure of the
K̄ meson.
Of course, in case of the K̄N system there are already

open channels at the reaction threshold and the coupling
to those channels (πΛ, πΣ) is taken into account explic-
itly. The diagrams considered for the K̄N → πY transi-
tions and the πY → πY interactions are shown in Fig. 2.
Also here SU(3) symmetry has been used for fixing the
vertex parameters as far as possible.
With the K̄N potential and the K̄N → πY and the

πY → πY transition interaction derived from the di-
agrams in Figs. 1 and 2, the reaction amplitude T is
obtained by a solving a (coupled-channels) Lippmann-
Schwinger type equation defined by time-ordered pertur-
bation theory:

Tαβ = Vαβ +
∑

γ

VαγG0,γTγβ (1)
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FIG. 3: Mechanisms included in our calculation of the reac-
tion K−d → πΣn. Plane-wave impulse-approximation (A);
K̄0n → πΣ (B1) and K−p → πΣ (B2) rescattering, respec-
tively.

with α, β, γ = K̄N , πΛ, πΣ.

III. FORMULATION OF K
−

D → πΣN

In our study of the reaction K−d → πΣn we include
the three diagrams shown in Fig. 3. Other 2-step pro-
cesses in conjunction with process A in the form of a
subsequent πn or Σn final-state interaction (FSI) are ne-
glected. This is done because, as will be demonstrated
later, the contribution from the process A to the cross
section is a factor 102 ∼ 103 smaller than the one from
process B2 in the considered region of incident K− lab
momenta around pk− = 600 MeV/c. The general expres-
sion of the cross section is given by

dσ =
1

|vK− − vd|
(2π)4δ4(pn + pπ + pΣ − pK− − pd)

×
∣

∣〈pn|〈pπ|〈pΣ|T |pK−〉|Φd〉
∣

∣

2

× d3pn
(2π)3

d3pπ
(2π)3

d3pΣ
(2π)3

(2)

where the obvious dependence of the cross section on spin
variables is omitted. The matrix element is given by

〈pn| 〈pπ|〈pΣ|T |pK−〉|Φd〉
=

√
2 tPWIA(pπ pΣ , pK− p̃1)Φd(p̃)

+
√
2

∫

d3q2
(2π)3

tF (pπ pΣ , q1q2)G0(q1q2)

× tI(q1 pn ,pK−p1)Φd(p) . (3)

The first term on the right-hand side is the plane-wave
impulse-approximation (PWIA) which is given by the
contribution of diagram A, while the second term refers
to diagram B, whose contribution will be discussed and
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FIG. 4: Definition of the kinematical variables used in our
calculation of the reaction K−d → πΣn.

shown explicitly later on for the two possible intermediate
particle states (B1 and B2). The factor

√
2 comes from

the proper antisymmetrization. The quantities tF and
tI denote the K̄N → πΣ and K̄N → K̄N amplitudes,
respectively. The various momentum variables which ap-
pear in the second term are depicted in Fig. 4. We work
in the lab frame (deuteron rest frame), and then the mo-
menta in Eq. (3) satisfy

p̃ = p̃1 = −pn ,

p = p1 = −q2 ,

q1 = p1 + pK− − pn . (4)

The meson-baryon two-body energy EI of the fully off-
shell t-matrix tI is given by

EI = Etotal −
√

q2
2 +m2

N

= EK− +md −
√

q2
2 +m2

N . (5)

Equations (2) and (3), presented here in a rather com-
pact form, can be derived within a field theoretical ap-
proach in an appropriate manner (see, for example [26]).
One only has to take care that the bound state deuteron
in the initial state is incorporated, which should be de-
scribed as a state in the Heisenberg representation (see
also, for example [27]). Since we will use different in-
teraction models for generating the t-matrices, derived
in different frameworks, and a nonrelativistic deuteron
wave function, those equations are not written in invari-
ant form. Also notice that we assume that the interme-
diate K̄ with momenta q1 propagates forward in time, so
that the Green’s function G0 will be described only by
the positive-frequency part. This is a quite reasonable
treatment because we consider transitions to final states
in the low-energy region around the nK̄N threshold.
Let us now derive the expression for the inclusive

d(K−, n)πΣ cross section, where πΣ indicates one of the
charge states π+Σ−, π0Σ0, or π−Σ+ . For evaluating

the cross section it is convenient to take as integration
variables the direction of the pion momentum pcm

π in the
center-of-mass (c.m.) frame of π and Σ. Thus, we first
rewrite part of the phase space factor

δ4 (pn + pπ + pΣ − pK− − pd) d
3pn d

3pπ d
3pΣ

= δ(Ecm
π + Ecm

Σ −WπΣ) δ
3(pcm

π + pcm
Σ )

× Eπ

Ecm
π

EΣ

Ecm
Σ

d3pn d
3pcmπ d3pcmΣ (6)

where

WπΣ = (EK− +md − En)
2 − |pK− − pn|2 . (7)

Due to the 3-momentum δ-function, the integral over pcm
Σ

can be eliminated. Next, the quantity dpcmπ is converted
to dMπΣ by the following relation,

dpcmπ =
Ecm

π Ecm
Σ

MπΣ pcmπ
dMπΣ , (8)

whereMπΣ(= Ecm
π +Ecm

Σ ) is the invariant mass of the πΣ
system. We would like to integrate over the magnitude
of the neutron momentum pn, which is related to WπΣ

by Eq. (7). Hence, the energy-conserving δ-function is
substituted as

δ (MπΣ −WπΣ)

=
WπΣ

|(EK− +md) pn/En − pK− cos θn|
δ(p̆n − pn), (9)

where θn is the polar angle of the neutron with regard to
the K− beam direction, and p̆n satisfies

MπΣ = (EK− +md − Ĕn)
2 − |pK− − p̆n|2 . (10)

Performing the integral over pn, we obtain the final ex-
pression of the inclusive cross section

dσ

dMπΣ dΩn

=
1

vK−(2π)5
pcmπ p̆2n

|(EK− +md) p̆n/Ĕn − pK− cos θn|

×
∫

dΩcm
π EπEΣ

∣

∣〈p̆n|〈pπ|〈pΣ|T |pK−〉|Φd〉
∣

∣

2
. (11)

Now, let us discuss the second term of the right-hand
side of Eq. (3) by introducing particle states explicitly.
This term written out in detail amounts to

√
2 〈n(1)| 〈πΣ(2) | tF (2)G0 t

I(1) |Φd〉|K−〉 (12)

where the two baryons are numbered 1 and 2, and the
argument 1 in the operator tI(1) indicates that it acts
only on particle 1. The same holds for tF (2). The pro-
cess corresponding to tF (1)G0 t

I(2) is absorbed into the

factor
√
2. Applying the operator tI(1) on |Φd〉 with the
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isospin part of the deuteron written out explicitly yields

〈n(1)| tI(1) |Φd〉|K−〉

= 〈n(1)| tI(1) 1√
2
[| p(1)〉|n(2)〉 − |n(1)〉| p(2)〉] |φd 〉|K−〉

=
1√
2
[ |n(2)〉〈n(1)| tI(1) |p(1)K−〉

−| p(2)〉〈n(1)| tI(1) |n(1)K−〉 ] |φd 〉 . (13)

Inserting the complete set,

|K̄0n(2)〉〈K̄0n(2)|+ |K−p(2)〉〈K−p(2)|,

between tF (2)G0 and tI(1) in Eq. (12) which is allowed
by the total-charge conservation, we end up with

√
2 〈n(1)| 〈πΣ(2) | tF (2)G0 t

I(1) |Φd〉|K−〉
= 〈πΣ| tF G0 |K̄0n〉 〈K̄0n| tI |pK−〉|φd 〉
−〈πΣ| tF G0 |K−p〉 〈K−p| tI |nK−〉|φd 〉,(14)

where the first term of the right-hand side corresponds
to diagram B1 and the second term to diagram B2 in
Fig 3. Obviously, there is an interference between these
two terms.
Let us now come to the explicit expression of G0(q1q2)

in Eq. (3). As already mentioned, the K̄ with momenta
q1 propagates forward in time and G0 is described only
by the positive-frequency part. Since we work in the lab
frame, the Green’s function is given by

G0(q1q2) =
1

E1 − E1(q1) + iǫ

=
1

Eπ + EΣ − E2(q2)− E1(q1) + iǫ
, (15)

where

E1 ≡ Etotal − En − E2(q2)

= Eπ + EΣ − E2(q2), (16)

and

E2(q2) =
√

q2
2 +m2

N , E1(q1) =
√

q2
1 +m2

K̄
.(17)

The total energy and the energies of the outgoing parti-
cles are indicated by Etotal and by Eπ , EΣ, En, respec-
tively. We can express the lab energies Eπ + EΣ and
E2(q2) + E1(q1) in Eq. (15) by using the energies in the
c.m. frame of the K̄N system. Then

G0(q
′) =

1
√

P 2 +M2
πΣ −

√

P 2 +W (q′)2 + iǫ
, (18)

where P is the K̄N total momentum, and W (q′) is de-
fined by the momentum q′ of the K̄ in the c.m. frame:

P = q1 + q2 = pπ + pΣ ,

W (q′) =
√

q′2 +m2

K̄
+

√

q′2 +m2
N . (19)

In order to expose the nK̄N three-body unitarity cut
explicitly, we rewrite Eq. (18) as

G0(q
′) =

1

MπΣ −W (q′) + iǫ

×

√

P 2 +M2
πΣ +

√

P 2 +W (q′)2

MπΣ +W (q′)
. (20)

In particular the singular part is given by

1

MπΣ −W (q′) + iǫ
=

1

q20 − q′2 + iǫ
f(q0, q

′) , (21)

where q0 is defined by

W (q0) = MπΣ , (22)

and

f(q0, q
′)−1 = [E1(q0) +E1(q

′)]−1

+[E2(q0) + E2(q
′)]−1 . (23)

Consequently, one finds

G0(q
′) =

1

q20 − q′2 + iǫ
f(q0, q

′)

×

√

P 2 +M2
πΣ +

√

P 2 +W (q′)2

MπΣ +W (q′)
. (24)

The c.m. momentum q′ of the K̄ is related to the lab
momentum q2 of the nucleon by the relation [28]

q′ =
ǫ2q1 − ǫ1q2

ǫ1 + ǫ2
= −q2 +

ǫ2
ǫ1 + ǫ2

P , (25)

where ǫi = (Ei+Ecm
i )/2, (i = 1, 2). Thereby, in practice,

we change the integral variable q2 in Eq. (3) to q′ and
then we can treat the nK̄N three-body cut in Eq. (24)
precisely.
In the actual calculation the deuteron wave function of

the Nijmegen soft-core potential Nijm93 [29] is employed.
Test calculations performed with the wave function of the
CD Bonn potential [30] led to practically identical results.
Note that we used both the S and D wave components
but the latter has no visible effect on the considered ob-
servables.

IV. RESULTS AND DISCUSSION

Inclusive cross sections for the reaction d(K−, n)Σπ are
shown in Figs. 5 and 6 where the Jülich meson-exchange
[17, 18] and the Oset-Ramos chiral interaction [12, 13]
are used for generating the K̄N − πΣ amplitude, respec-
tively. We fixed the K− beam momentum to pK− =600
MeV/c and the neutron angle to θn=0◦, considering the
kinematics of the J-PARC experiment [9] where the neu-
tron is planned to be detected at forward angle. Taking a
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FIG. 5: πΣ invariant mass spectrum for the reaction K−d →

πΣn at the K− beam momentum of 600 MeV/c and neutron
angle θn = 0◦. The K−N → πΣ amplitudes of the Jülich
model [17] are used.
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FIG. 6: πΣ invariant mass spectrum for the reaction K−d →

πΣn at the K− beam momentum of 600 MeV/c and neutron
angle θn = 0◦. The K−N → πΣ amplitudes of the Oset-
Ramos model [13] are used.

glance at the figures, one immediately finds that no clear
peaks are seen below the nK−p threshold (MπΣ ≃1432
MeV) for both the Jülich and the Oset-Ramos potentials.
Only for the π−Σ+n final state of the latter interaction
(Fig. 6) a fairly broad enhancement around MπΣ = 1425
MeV is visible, however with a shape strongly deformed
by the threshold. Obviously our results are in strong con-
tradiction to the preceding work by Jido et al. [10] where
the same kind of calculation, using the Oset-Ramos po-
tential, shows clear peaks below the threshold for all of
the three final states. In Ref. [10] lineshapes of the πΣ

invariant mass spectra integrated over neutron angles are
presented but in Ref. [9] lineshapes limited to θn = 0◦ are
given by these authors, which exhibit similar peaks to
the integrated ones. Since these peaks provide the basis
of their argument with regard to the Λ(1405) resonance
position, first we want to clarify where this conspicuous
difference comes from.
We start with examining the factorization approxima-

tion to the integral in Eq.(3), which is applied in Ref. [10].
Corresponding results are presented in Fig. 7. This ap-
proximation pulls the two amplitudes tF and tI out of the
integral, fixing the momentum variables for these ampli-
tudes to

p1 = −q2 ≈ 0 ,

q1 ≈ pK− − pn (26)

which are the values that give the maximum of the
deuteron wavefunction (see Eq. (4), and keep in mind
that we work in the deuteron rest frame). Furthermore,
the two-body energy EI of the full off-shell t-matrix tI is
approximated by

EI = Etotal − E2(q2)

= EK− +md − E2(q2)

≈ EK− +mN (27)

(see Eq. (17) for the definition of E2(q2)). Then the sec-
ond term of the right-hand side of Eq. (3) is expressed
as

√
2

∫

d3q2
(2π)3

tF (pπ pΣ , q1q2)G0(q1q2)

× tI(q1 pn ,pK−p1)Φd(p)

≈
√
2 tFapp tIapp

×
∫

d3q2
(2π)3

G0(q1q2)Φd(p) , (28)

where tFapp and tIapp are the pertinent amplitudes cor-
responding to the kinematics specified in Eqs. (26) and
(27). In Fig. 7 we illustrate the effect of the factorization
in the case of the final state π−Σ+n. One can see that
the magnitude of the cross section is reduced by about
30%, but the lineshape remains practically unchanged.
Before moving to the more crucial approximation

adopted in [10], we show individual contributions from
the processes A, B1 and B2 (depicted in Fig. 3) where
the factorization approximation is applied for B1 and
B2, see Fig. 8. As already mentioned, the cross section
for the process A is quite small. The large momentum
of the outgoing neutron, which is directly emitted from
the deuteron in the case of process A, leads to a tiny
value of the deuteron wavefunction and suppresses the
process (note that the momentum p̃ in Eqs. (3) and (4)
is 3.9 fm−1 at the nK−p threshold). As is seen in Fig. 8,
the process B2 yields the main contribution. This is due
to the fact that the amplitude tI(K−n → K−n) that en-
ters the process B2 is much larger than tI(K−p → K̄0n)
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FIG. 7: π−Σ+ invariant mass spectrum for the reaction
K−d → π−Σ+n at the K− beam momentum of 600 MeV/c
and neutron angle θn=0◦. The solid line is the correct result
while the dashed line is obtained by factorizing the two-body
amplitudes in the loop integral of the two-step process B.
The K−N → πΣ amplitudes of the Oset-Ramos model [13]
are used.
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FIG. 8: π−Σ+ invariant mass spectrum for the reaction
K−d → π−Σ+n at the K− beam momentum of 600 MeV/c
and neutron angle θn=0◦. The individual contributions from
the reaction mechanisms A (dashed line), B1 (dash-dotted
line), and B2 (solid line) are shown based on the factorization
approximation. The K−N → πΣ amplitudes of the Oset-
Ramos model [13] are used.

in B1 at pK− = 600 MeV/c, something that was already
pointed out in Ref. [10].

Now let us reveal why no clear peaks are seen in our
results of the cross sections, in contrast to what was
shown in Ref. [10]. In this reference the authors applied
the same approximation as introduced to EI in Eq. (27)

also to the intermediate K̄ energy E1 in the propagator
G0(q1q2) given in Eq. (16):

E1 = Etotal − En − E2(q2)

≈ EK− +mN − En (29)

(see Eq. (14) in Ref. [10]). Then it follows that

G0(q1q2) =
1

Etotal − En − E2(q2)− E1(q1) + iǫ

≈ 1

EK− +mN − En − E1(q1) + iǫ
. (30)

This approximation has a serious impact on the line-
shapes of the cross section as we will see. Compar-
ing it with the expressions without the approximation,
Eqs. (15), (18) and (24), one already suspects that it
shifts the nK̄N three-body unitarity cut and the nK̄N
threshold position.
In order to make the effect of this approximation

more transparent we work within the factorization ap-
proximation (Eq. (28)) and we consider here the two
ingredients that provide the dominant momentum de-
pendence in the evaluation of the cross section sepa-
rately, namely the K̄N → πΣ amplitude tFapp and the

integral
∫

d3q2 G0(q1q2)Φd(p). We focus on the pro-
cess B2 that yields the overall largest contribution. Re-
sults based on the assumption that the matrix element
〈pn|〈pπ|〈pΣ|T |pK−〉|Φd〉 is given solely by the integral
over the Green’s function and the deuteron wave func-
tion are presented in Fig. 9 where the solid and dashed
lines correspond to the cases without and with the ap-
proximation described by Eq. (30), respectively. One can
see that the approximation shifts the nK−p threshold to
lower energies by an amount of 14 MeV as compared to
its actual physical value. Furthermore, one realizes that
the integral that enters Eq. (28) generates a character-
istic behavior of the cross section at the threshold, in
particular a rapid decrease below the threshold, which
comes from the principal-value part of the integral over
G0(q1q2).
In Fig. 10 we display results for the cross sections where

the matrix element Eq. (28) is now assumed to be given
by the amplitude tFapp alone. The cross sections for the
three charge states are displayed, each of which shows
a clear peak around MπΣ = 1420 MeV. As expected
(and checked by us) those lineshapes agree pretty well
with the two-body invariant mass distributions due to the
K−p → πΣ amplitudes. Finally, in Fig. 11, we plot the
cross section based on the full matrix element of Eq. (28)
but with the approximation of Eq. (30) for the Green’s
function. (Please note that in the employed factorization
approximation this amounts practically to the product of
the results shown in Figs. 9 and 10.) As already seen and
discussed above, the nK−p threshold is shifted to lower
energies, specifically to MπΣ ≃1418 MeV. As a conse-
quence this artificial threshold position is then very close
to the energy where the amplitude tFapp has its peak so
that this approximation generates a huge bump of the
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FIG. 9: πΣ invariant mass spectrum for the reaction K−d →

πΣn at the K− beam momentum of 600 MeV/c and neutron
angle θn=0◦. Shown are results based on the integral over the
Green’s function alone, cf. Eq. (28), where either the correct
expression Eq. (24) (solid line) or the approximation Eq. (30)
(dashed line) are used.
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FIG. 10: πΣ invariant mass spectrum for the reaction K−d →

πΣn at the K− beam momentum of 600 MeV/c and neutron
angle θn = 0◦. The results are based on using only tFapp in
Eq. (28) and considering only the reaction mechanism B2.
The K−N → πΣ amplitudes of the Oset-Ramos model [13] is
used.

cross section just at that energy. Please compare the re-
sult for the π−Σ+n final state in Fig. 11 with the solid
line in Fig. 8 where the approximation of Eq. (30) is not
made!
The above considerations strongly suggest that in a

precise calculation where the three-body (nK̄N) unitar-
ity cut is implemented correctly the peaks which are
present in the two-body amplitude tF , due to the Λ(1405),
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FIG. 11: πΣ invariant mass spectrum for the reaction K−d →

πΣn at the K− beam momentum of 600 MeV/c and neutron
angle θn = 0◦. The results are based on the approximation
Eq. (30) considering only the reaction mechanism B2. The
K−N → πΣ amplitudes of the Oset-Ramos model [13] are
used.

are suppressed by the threshold behavior of the Green’s
function G0(q1q2), so that no clear peak (besides a
threshold cusp) appears in the corresponding πΣ invari-
ant mass spectrum of the three-body final state. We
believe that this explains the difference between our re-
sult and the one by Jido et al. [10]. In the latter the
peak due to the Λ(1405) in the three-body case is seen at
practically the same invariant mass as in the two-body
amplitude - because approximations are applied to the
Green’s function that shift the opening of the three-body
cut to a lower invariant mass.
The success of the paper by Jido et al. in stimulating

experimental efforts (and pertinent proposals) results not
least from the fact that their calculation is roughly in line
with data of an old measurement of the π+Σ− invariant
mass spectrum for the reaction in question from 1977
[14]. Those data suggest a peak around MπΣ ≈ 1425
MeV - and not at the nK−p threshold! In our own cal-
culation within a similar approach, but where now the
nK−p unitarity cut is implemented correctly, those data
are no longer reproduced. However, we would like to em-
phasize that in a full calculation, where all rescattering
processes are summed up to infinite order as it is the case
in Faddeev-type approaches, it is certainly possible that
the structure due to the Λ(1405) could survive, after the
characteristic behavior of G0(q1q2) is smoothened out.
Such a calculation would then not only have the opening
of the nK−p channel at the correct location, it would
also fulfill exact three-body unitarity, which is not the
case in our study (and also not in Ref. [10]) where only
two-step processes are considered.
Since within our calculation based on two-step pro-

cesses, the cross sections below the nK−p threshold turn
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out to be suppressed by the Green’s function, we refrain
from discussing the results below the threshold, i.e. in
the Λ(1405) resonance region, in detail. Rather we focus
on the differences in the predictions for the πΣ invariant
mass spectra at pK− = 600 MeV/c based on the Jülich
and the Oset-Ramos interactions, as seen in Figs. 5 and
6. To shed light on this difference let us compare the indi-
vidual contributions from the processes B1 and B2 for the
two interactions in question. This is done in Figs. 12 and
13, exemplary for the final states π0Σ0n and π−Σ+n. As
is clear from Fig. 12, the contributions from the process
B2 predicted by those two interactions are very similar
above the nK−p threshold. On the other hand, the cross
section for the process B1 by the Oset-Ramos interac-
tion is much smaller than that of the Jülich potential
and amounts to just about 40% as compared to the lat-
ter at the nK̄0n threshold, cf. Fig. 13. These two pro-
cesses (B1 and B2) interfere and produce the differences
seen between Figs. 5 and 6. We have confirmed that the
difference due to B1 above comes from the difference of
the amplitude tI(K−p → K̄0n) in the relevant s wave.
For example, the correspondingK−p → K̄0n (two-body)
cross section at pK− = 600 MeV/c is 3.62 mb for the
Jülich interaction while it is just 1.57 mb for the Oset-
Ramos interaction. On the other hand, the K−n elastic
total cross sections at pK− = 600 MeV/c based on the
amplitude tI(K−n → K−n) that enters into the process
B2 are similar for the two interactions: 13.8 mb for the
Jülich and 13.5 mb for the Oset-Ramos interaction

TABLE I: Various K̄N s-wave cross sections in mb for pK− ≈

600 MeV/c. Results are given for the Jülich [17] and Oset-
Ramos (OR) [12] K̄N interactions and two partial wave anal-
yses [31, 32].

channel Jülich OR Alston [31] Gopal [32]

K−p → K−p 13.5 22.4 13.5 13.9

K−n → K−n 13.8 13.5 6.9 7.5

K−p → K̄0n 3.62 1.57 1.62 1.81

In table I we summarize the s-wave cross sections for
various channels at pK− = 600 MeV/c and compare them
with results of two partial wave analyses from the 1970s
[31, 32]. Obviously the predictions of the Jülich model
agree well with the s-wave K−p scattering cross sec-
tion deduced from empirical information but overshoot
the other channels, while the Oset-Ramos interaction is
only in line with phenomenology in case of the charge-
exchange reaction. This may be not too surprising in
view of the fact that both models were primarily designed
to reproduce the K̄N data near threshold. On the other
hand, it is obvious that for a future quantitative analysis
of the reaction K−d → πΣn, two-body amplitudes for
K−n → K−n and K−p → K̄0n are required that are
fully consistent with the available scattering data. Fur-
thermore, one should not forget that at momenta around
600 MeV/c higher partial wave could already play a role,

1400 1420 1440
MπΣ [MeV]

0

5

10

15

20

25

30

35

dσ
/d

M
πΣ

dΩ
n [µ

b/
M

eV
 s

r]

π0Σ0

π-Σ+

π0Σ0

π-Σ+

pK- = 600 MeV/c

FIG. 12: πΣ invariant mass spectrum for the reaction K−d →

πΣn at the K− beam momentum of 600 MeV/c and neutron
angle θn =0◦. Comparison of results based on the K−N →

πΣ amplitudes of the Jülich (dash-dotted and solid lines) [17]
and the Oset-Ramos (dotted and dashed lines) [13] models.
Only the reaction mechanism B2 is taken into account.
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FIG. 13: πΣ invariant mass spectrum for the reaction K−d →

πΣn at the K− beam momentum of 600 MeV/c and neutron
angle θn =0◦. Comparison of results based on the K−N →

πΣ amplitudes of the Jülich (dash-dotted and solid lines) [17]
and the Oset-Ramos (dotted and dashed lines) [13] models.
Only the reaction mechanism B1 is taken into account.

an issue which likewise has to be addressed in a quanti-
tative analysis of upcoming experimental information.

V. SUMMARY

We investigated the reaction K−d → πΣN taking into
account single scattering and the two-step process due to
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K̄N → πΣ rescattering. This reaction is considered as
a promising candidate for exploring the properties of the
Λ(1405) resonance.
The main aim of our work was to examine the influ-

ence of some approximations applied in earlier studies
of this reaction [10] on the results for the πΣ invariant
mass spectrum. In particular, in our study we did not use
factorization, i.e. the K̄N → K̄N and K̄N → πΣ ampli-
tudes that enter into the calculation of the two-step pro-
cess are not pulled out of the loop integral, and, more im-
portantly, we treated the kinematics in the Green’s func-
tion that appears in the loop integral properly. Specif-
ically we made sure that the three-body unitarity cut
for the intermediate K̄NN system occurs at the correct
(physical) threshold. In addition we consider different
models for the elementary K̄N -πΣ interaction.
We found that the factorization approximation leads to

an overall reduction in the magnitude of the predicted in-
variant mass spectrum in the order of roughly 30%. How-
ever, the lineshape itself remains practically unchanged
by this approximation. On the other hand, the approx-
imation in the kinematics of the Green’s function, also
applied in the works of Jido et al. [10, 11], has a rather
dramatic impact on the resulting lineshape. This approx-
imation shifts the three-body cut due to the opening of
the nK−p threshold down by roughly 14 MeV from its
physical value. It then coincides practically with the peak
value of the elementary K̄N -πΣ amplitude that corre-
sponds to the Λ(1405) resonance and, consequently, the
resulting lineshape exhibits a strong enhancement at a
πΣ invariant mass of around 1426 MeV. In contrast, a
calculation where the nK−p cut is taken into account
precisely leads to a πΣ invariant mass spectrum that has
a pronounced peak around 1435 MeV, i.e. at the opening
of the nK−p channel. Indeed the peak is nothing else

than a threshold effect (cusp). In that calculation the
contribution of the rescattering process K̄N -πΣ around
1426 MeV, where this amplitude has its maximum, is al-
ready significantly suppressed by the deuteron wave func-
tion and the fall-off of the nK−p Green’s function. Thus,
only a rather broad structure is visible in the spectrum for
the case of the K̄N -πΣ generated from the Oset-Ramos
interaction whereas for the Jülich K̄N model there is no
direct sign at all of the Λ(1405) resonance.

Interestingly, existing data on the π+Σ− invariant
mass spectrum from the reaction K−d → πΣN [14] seem
to suggest a peak around MπΣ ≈ 1425 MeV - and not
at the nK−p threshold! Should that be confirmed in the
planned measurements at J-PARC it would be certainly
a sign for the inadequacy of the approach adopted so far
in the pertinent investigations [10, 11]. And it would be
a strong hint that one should rather rely on Faddeev-
type approaches where all rescattering processes can be
summed up to infinite order. Then the structure in the
two-body amplitudes corresponding to the Λ(1405) reso-
nance can be generated within the three-body context in
a consistent way. Moreover, exact three-body unitarity
can be automatically fulfilled. Such a calculation is be-
yond the scope of the present investigation but we intend
to address this issue in a future study.
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