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ABSTRACT: Molecular docking is a widely used computational technique used to find the probabilistic 

binding sites of drugs in the vicinity of macromolecules. The drugs produce their working effect only when 

they bind and interact with the target macromolecule. The potential drugs can only be identified by their 

relative binding affinities and corresponding binding modes. Availability of huge numbers of such drugs has 

made the estimation of their relative potency, a difficult task. In the present work, carbazoles (3,6 and 2,7) and 

their analogs were studied for their DNA binding abilities using molecular docking calculations. Since the 

docked ligands had planar structures, it allowed them to adopt crescent shape and thus minor groove binding 

with DNA was preferred by all. However, it was found that a single molecule (Mol-6) (2,7-carbazole) showed 

promising results with all the selected DNA sequences also its results were exactly verified with those in the 

reported literature and therefore it can be said that its in-vivo studies could possibly produce some exciting 

results. This study also revealed that DNA binding energies of 3,6- and 2,7-carbazoles followed the same 

trend as their thermal melting values. 
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1. INTRODUCTION  

Deoxyribonucleic acid (DNA) is a double helical, twisted strand that serves as the main ingredient by 

acting as the carrier of all the genetic information [1]. Almost all the anti-cancer therapies involve the 

interaction of drugs with the target DNA. Therefore drug-DNA interaction studies are amongst the top rated in 

the biomedicine and related fields. Drug-DNA interactions can be broadly classified into two major categories 

viz., intercalation and groove binding. Groove binding in DNA takes place via two modes, viz., major groove 

binding and minor groove binding [2, 3]. However, intercalation involves the insertion of planar molecules 

into the DNA base pairs. 

In the present study, we prefer to analyse the minor groove binding tendency of carbazoles and its 

analogs with DNA. The ability to predict the geometrical conformation as well as the associated energy of 

binding of drugs in that conformation with DNA has played a crucial role in the field of biology and allied 

sciences. Due to the presence and wide use of various computational tools, the design of new drugs and test of 

their potency has been very easy since past few years. Molecular docking technique has proven itself to be of 

great importance in predetermination of binding site, in the approximation of associated binding energy and in 
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the identification of those macromolecule base pairs/residues that interact with the drug, in such a field of 

research. 

Since, almost all the anti-cancer and anti-microbial drugs preferentially bind itself to the DNA for 

their therapeutic action with DNA to begin [4], our study also adds to the same. Minor groove binders are 

found preferentially either to have crescent shape or to have adopted the crescent shape during the simulation 

and therefore they complement the shape of the minor groove of DNA [5-8] resulting in better binding and 

raised binding affinities. The binding mechanism of ligand/drug to the minor groove of the DNA can be 

mainly described via following two steps: in the first step, the ligand gets itself transferred to the minor 

groove of the DNA via electrostatic interactions and hydrophobic interactions whereas in the second step, 

numerous covalent interactions are formed in between ligand/drug and DNA base pairs. These interactions 

include van-der Waal's contacts, hydrogen bonds, electrostatic interactions and hydrophobic interactions. It 

has been observed that most of the minor groove binders preferentially bind themselves to AT-rich regions of 

the DNA [9]. 

Various experimental studies have been performed worldwide in order to explain and understand the 

binding mechanism of anti-cancer, anti-bacterial and various other diseases. The results obtained from these 

experiments serve as an excellent database for theoretical scientists to carry out and test the authenticity of 

their simulations [10-14]. 

In the present work, carbazoles and its analogs (3,6- and 2,7-carbazoles), were computationally 

docked to selected DNA sequences, for a deeper and better insight of their binding affinities as well as their 

binding sites. Literature [15] reported that selected carbazoles possess antimicrobial tendencies and therefore 

computational modelling of their binding with DNA was studied to understand their bindings with DNA. 

There are many predefined models to understand protein-DNA interactions but these models are not reliable 

in the case of drug-DNA interactions; the reason behind this is that unlike in the case proteins and enzymes 

there is no predetermined active binding site in DNA. Therefore, for such cases, molecular modelling 

techniques have proven themselves to be of great importance in understanding various types of non-covalent 

interactions existing between drug/ligand and DNA [16]. 

2. MATERIALS AND METHODS 

2.1. System preparation and data set 

The crystal structures of the selected eight DNA sequences (1BNA [17], 1DNE [18], 1QSX [19], 

1RMX [20], 195D [21], 2MNB [22], 2MNE [22], 4AH0 [23]) were downloaded from Protein Data Bank 

(PDB) [24] and are listed in Table 1. Fig. 1 represents the generalized structure showing the fused rings and 

the position of the substituent derivatives that were docked with the selected DNA sequences were obtained 

from literature [15]. 

2.2. Geometry optimization 

Water molecules from each of these DNA sequences were removed using UCSF Chimera [25]. 

Chemical structures of all the ligands/drugs were selected from the literature [15]. These chemical structures 

were then put to geometry optimization using Gaussian 09 software package [26]. Fig. 2 shows the chemical 

structures of the ligands that went under geometry optimization. 
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In the present work, the geometry optimization of selected ligands was carried out using Gaussian 09 

software using B3LYP hybrid functional at 6-31G** level of theory for their potentials to attain a local 

minimum. These optimized ligands were then docked to the selected DNA sequence. 

 

Table 1. PDB Id’s and sequence of the selected DNA sequences. 

S. No. PDB Id. DNA Sequence 
1 1BNA 5'-CGCGAATTCGCG-3' 

2 1DNE 5'-CGCGATATCGCG-3' 

3 1QSX 5'- CTTTTGCAAAAG-3' 

4 1RMX 5'- CGACTAGTCG-3' 

5 195D 5'-CGCGTTAACGCG-3' 

6 2MNB 5'- CGACGCGTCG-3' 

7 2MNE 5'- CGACTAGTCG-3' 

8 4AH0 5'- CGCAAATTTGCG-3' 
 

 

 

Figure 1. A generalised structure of the fused carbazole ring along with the position where  

the substituents are to be attached. 

 

 

Figure 2. Figure showing the chemical structure of ligands before geometry optimization. 

 

2.3. Molecular docking setup 

Molecular docking was performed using Autodock4 software package [27]. Gasteiger charges were 

added to the drug-DNA complex using Autodock Tools (ADT) before starting the docking calculations. A grid 

box, having different dimensions, was prepared for each drug-DNA complex that enclosed the entire 

macromolecule. This helped the drug/ligand in finding the most preferential binding site while the docking 

calculations were performed [28-30]. Calculations were set up using the classical Lamarckian Genetic 

Algorithm (LGA). A 20 LGA run with a maximum cycle of 2500000 energy evaluations was performed for 

each of the drug-DNA complex. The docked pose with the lowest binding affinity was extracted and aligned 

with the receptor for further analysis [31-33]. 
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3. RESULTS AND DISCUSSION 

 The results as obtained by the docking studies can be summarized and discussed as follows: 

3.1. Optimized geometries 

 Optimizing the ligand geometry before docking and other computational calculations is a very 

crucial step, as it brings the entire system into its lowest possible energy state; having least steric hindrances 

and charge based repulsions. The reason behind this is because then the system would then have attained a 

maximized distance between the bonds, the angles and the dihedrals [34]. Further, the electrostatic charges 

also tend to get well distributed throughout the system leading to the electron transfer between definite pair of 

atoms; eventually no distortions in the chemical structures are offered. Fig. 3 shows the optimized geometries 

of the selected ligands. 

 

 

Figure 3. Figure showing the optimized geometrical structures of selected ligands. 

 

3.2. Molecular docking studies 

The binding energies obtained by computational docking for the selected ligands are listed below in 

Table 2, the compounds having the least binding affinities are shown in bold; these represent the formation of 

stable complexes [2] with corresponding mentioned DNA sequence. Fig. 4 represents the best docked poses 

corresponding to compounds having least binding affinities whereas Fig. 5 represents the interaction profile in 

2D obtained using Discovery studio visualizer [35] reveals various types of interactions taking place between 

the DNA bases and the selected drugs eventually leading to stabilization or de-stabilization of the complexes 

thus formed. These figures also reveal that the active binding site of the drug to be the AT-rich region of the 

selected DNA sequences. 

Clearly it can be seen from the above Table 2 that Mol-6 (2,7-carbazole) has highest reported (ΔTm) 

value and the docking binding affinity values of Mol-6 with all the selected DNA sequences verify the results 

obtained from docking studies that the geometrical structure of Mol-6 is apt for binding with DNA sequences 

providing least binding energy values. Also, the literature [15] shows that 2,7-carbazoles bind with DNA 

having their carbazole nitrogen pointing down into the groove, similar results were obtained from our docking 

simulations also. Further, Fig. 4 shows that binding of Mol-6 with 1RMX, 2MNB & 2MNE has least binding 

affinities as the ligand (Mol-6) turns out to get aligned vertically during the docking process and thus having 

maximum binding affinities. And therefore, the results obtained from our study are of significant importance. 
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This can also be verified from Fig. 6 that the variations in docking affinities with corresponding change in 

thermal melting values (ΔTm) are maximum for Mol-6, as represented in Table 2.  

 

Table 2. DNA binding affinities of ligands obtained by computational docking along with their change in thermal melting 

values (ΔTm). 

S.No. Exp. 
(ΔTm) 

1BNA 
(kCal/mol) 

1DNE 
(kCal/mol) 

1QSX 
(kCal/mol) 

1RMX 
(kCal/mol) 

195D 
(kCal/mol) 

2MNB 
(kCal/mol) 

2MNE 
(kCal/mol) 

4AH0 
(kCal/mol) 

Mol-1 10.9 -7.12 -8.11 -8.10 -6.97 -7.89 -6.92 -6.74 -7.26 

Mol-2 8.2 -7.42 -7.20 -7.70 -6.60 -7.53 -6.41 -6.75 -7.10 

Mol-3 6.5 -7.80 -7.68 -7.96 -7.08 -7.90 -6.94 -6.47 -8.13 

Mol-4 7.5 -6.91 -6.90 -7.85 -6.56 -8.01 -5.86 -6.14 -7.28 

Mol-5 7.8 -7.77 -8.05 -8.54 -6.46 -8.03 -6.68 -7.01 -8.09 

Mol-6 12.0 -8.76 -10.19 -9.43 -8.36 -10.30 -8.32 -7.36 -10.03 

Mol-7 6.3 -8.40 -8.38 -8.21 -7.35 -9.16 -7.44 -7.14 -9.30 

 

 

Figure 4. Figure representing the best docked posed complexes. 
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Figure 5. Figure representing the interaction profile for the best docked posed complexes. 

 

 

Figure 6. Figure depicting the binding energy trend along with the thermal melting values (ΔTm). 

 

3.3. Hydrogen bonding analysis 

 Formation of hydrogen bond owes solely to the complex stability [2]. Fig. 7 shown below, gives the 

3D representation of the hydrogen bonds formed between the DNA bases and Mol-6 corresponding to the best 

docked posed complexes whereas Table 3 represents the donor and the acceptor bases of the DNA involved in 

the formation of hydrogen bond and corresponding length and number of hydrogen bonds formed.   

 The acceptor and donor regions as shown in Fig. 8; assist in demonstrating the electron rich and 

electron deficient sites in the drug-DNA complexes and thus helps in the prediction of possible hydrogen 

binding sites within the system. These regions also represent the atoms which have the tendency to 

donate/accept electrons so as to achieve stability [36] during the docking calculations. It can be seen that due 

to the carbazole nitrogen in Mol-6 pointing down into the groove, there are more donor regions in the grooves 

of 1BNA, 1DNE, 1QSX, 195D and 4AH0 than that in that of 1RMX, 2MNB and 2MNE, eventually leading 

to stability and higher binding affinities. 
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Table 3. Following table represents the donor and the acceptor species and H-bond length formed. 

S. No. Complexes Number of H-bonds Interacting species H-bond length (Å) 

1 1BNA + Mol-6 2 
DG16:N2 - UNK0:N 

UNK0:H - A:DC9:O2 

2.835594 

2.039468 

2 1DNE + Mol-6 2 
UNK0:H - A:DC9:O3' 

UNK0:H - B:DT18:O2 

2.459272 

2.189784 

3 1QSX + Mol-6 3 

UNK0:H - B:DT16:O2 

UNK0:H - B:DT18:O2 

UNK0:H - A:DC9:O3' 

2.081030 

2.189784 

2.459272 

4 1RMX + Mol-6 3 

DG12:H22 - UNK0:N 

UNK0:H - A:DC9:O2 

DG7:H22 - UNK0:N 

2.334379 

2.483855 

1.737888 

5 195D + Mol-6 3 

UNK0:H - B:DT18:O2 

UNK0:H - B:DT17:O2 

UNK0:H - B:DT18:O4' 

2.187745 

2.659172 

1.948403 

6 2MNB + Mol-6 2 
UNK0:H - B:DG15:O4' 

UNK0:H - B:DA13:O3' 

2.032501 

2.152659 

7 2MNE + Mol-6 3 

DG7:H22 - UNK0:N 

UNK0:H - A:DT8:O2 

UNK0:H - B:DC14:OP1 

1.750523 

2.968755 

2.182582 

8 4AH0 + Mol-6 2 
UNK0:H - B:DT19:O2 

UNK0:H - A:DT7:O2 

2.159898 

1.897104 

 

 

Figure 7. Figure showing 3D representations of the H-bonds formed corresponding to the best docked posed complexes. 

 

 

Figure 8. Figure showing H-bond donor and acceptor regions of the H-bonds formed corresponding to the best  

docked posed complexes. 
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4. CONCLUSIONS 

The computational study performed here was done in order to analyse and evaluate the DNA binding 

affinities of the ligands. The major focus was to get a detailed perspective of DNA minor groove binders at 

atomistic levels. The experimental studies revealed that all these ligands preferred to bind in the minor groove 

of the DNA rather than intercalating between the DNA base pairs; as expected due to the presence of fused 

rings in their chemical structures. 

Clearly it can be seen from the obtained results that Mol-6 (2,7-carbazole) has highest reported 

(ΔTm) value; as well as the docking binding affinity values of Mol-6 with all the selected DNA sequences are 

also higher than the others. These findings conclude that the geometrical structure of Mol-6 is apt for binding 

with DNA sequences providing least binding energy values. Results reported in the previous works show that 

2,7-carbazoles bind with DNA having their carbazole nitrogen pointing down into the groove, similar results 

were obtained from our docking simulations also. Further, it was also observed from the obtained results that 

binding of Mol-6 with 1RMX, 2MNB & 2MNE has least binding affinities (amongst those of the higher ones) 

as the ligand (Mol-6) gets aligned vertically during the docking process and thus offers steric hindrances 

eventually leading to decrease in binding affinities. Since our findings match with that of previous works, 

therefore, the results obtained from our study hold significant importance. 

Thus, we conclude that geometrical factors were the reasons why Mol-6 showed favourable results 

with all the selected DNA sequences and binding site was AT-rich regions as favoured by most of the minor 

groove binders. Therefore, our study helps in getting a deeper insight regarding the DNA binding mechanism 

and binding affinity of carbazoles and its analogs. This analysis will certainly help in improvement of the 

existing minor groove binders and would also prove helpful in the design of new and potent drugs with anti-

microbial activity. This study also fulfils its aim of complementing the experimental techniques and serves as 

a good database for structure-energy relationship of drug-DNA complexes. 
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