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ABSTRACT 
With the steady progress of Deep Learning (DL), powerful tools are now present for sophisticated segmentation 

tasks. Nevertheless, the generally very high demand for training data and precise reference segmentations often 

cannot be met in medical domains when processing small and individual studies or acquisition protocols. As 

common strategies, reinforcement learning or transfer learning are applicable but coherent with immense effort 

due to domain-specific adjustment. In this work the applicability of a U-net cascade for training on a very low 

amount of abdominal MRI datasets of the parenchyma is evaluated and strategies to compensate for the lack of 

training data are discussed. Although the model accuracy when training on 13 MRI volumes with achievable 

JI=89.41 is rather low, results are still good enough for manual post-processing utilizing a Graph cut (GC) 

approach with medium demand for user interaction. This way, the DL models are retrained, when additional test 

data sets become available to subsequently improve the classification accuracy. With only 2 additional GC post-

processed datasets, the accuracy after model re-training is increased to JI= 89.87. Besides, the applicability of 

Generative Adversial Networks (GAN) in the medical domain is evaluated discussing to synthesize axial CT 

slices together with perfect ground truth reference segmentations. It is shown for abdominal CT slices of the 

parenchyma, that in case of lack of training data, synthesized slices, that can be derived at arbitrary number, help 

to significantly improve the DL training process when only an insufficient amount of data is available. While 

training on 2,200 real images only leads to accuracy JI=88.75, the enrichment with 2,200 additional images 

synthesized from a GAN trained on 5,000 datasets only leads to an increase up to JI=92.02. Even if the DL 

model is exclusively trained on 4,400 computer-generated images, the classification accuracy on real-world data 

is notable with JI=90.81.       
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1. INTRODUCTION 
The research and development on preferably 

automated, generic and precise segmentation 

strategies for processing medical image datasets has 

been of high importance since the very first 

computed tomographic image acquisition devices in 

the early 1970s. Since then many semi-automatic 

segmentation concepts have been proposed, but most 

of them conserve the medical diagnostician and its 

experience-based evaluation as central criterion for 

the final decision. While there are some few off-the- 

shelf applications available for specific diagnostic 

domains [Chr18], in general computer-aided 

diagnostics is still achieved in a user-centric process 

utilizing tools and frameworks for semi-automated 

image processing [Str15].  

1.1 Field of Medical Application  
Whenever quantitative evaluation is required for 

computer-based planning of a surgery, evaluating the 

success of the therapy or progress of a degenerative 

disease in a follow up study [Agg11], a precise 

segmentation of the target structures is inevitable. 

With emerging progress in 3D visualization with 

respect to the mixed reality continuum and the 3D 

print of anatomical structures as 3D models for 

surgery planning, training and education [Squ18] the 
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fields of application for medical image processing are 

steadily growing.  

A broad range of semi-automated image processing 

tools is available for user-centric processing in 

particular diagnostic domains. Nevertheless, 

evaluation of datasets with these tools requires a high 

level of experience in both, the medical and the 

technical domain to prevent from misapplication, 

errors and subjective bias of the results. To close this 

gap, the application of standardized image processing 

chains for processing medical tomographic datasets 

is recommended in radiographer training [Zwe13]. 

1.2 State of the Art 
Since the beginnings of computer-based medical 

image analysis, besides semi-automatic and user-

oriented methods such as Region Growing, Graph cut 

or Live-Wire [Son13], shape-modeling approaches 

have been a strategy for automation of the 

segmentation process in specific medical domains. 

Rudimental a priori knowledge regarding shape is 

incorporated for deformable models [McI96] or 

Level Set segmentation [Set99] while statistical 

shape models [Coo92] are trained on a large dataset 

of reference shapes representing the expected 

anatomical variability. While statistical shape models 

lead to a domain-specific compact representation of 

shape due to PCA, the generic use is still hard to 

achieve as extraction of corresponding landmarks is 

very domain-specific and difficult for non-prominent 

structure shapes. Incorporating the expected intensity 

profile besides shape makes Active Appearance 

Models [Coo98] relevant in several diagnostic 

domains but their most significant field of application 

is still human face recognition.  

Advances in available GPU hardware and machine 

learning frameworks such as Tensorflow/Keras lead 

to an immense boost in Deep Learning (DL) 

applications, facilitating practical use of formerly 

only theoretically specified concepts. Conventional 

Feed Forward networks, already applied in medical 

domains such as multi-modal image fusion [Zha11] 

are steadily enriched by an increasing number of 

hidden layers thus increasing the overall number of 

trainable parameters. All common Deep Learning 

Concepts found their way and application in specific 

medical domain. For instance self-organizing maps 

neural networks [Koh97] that are due to their 

grid/graph nature good for complex clustering tasks, 

were successfully applied for classification of renal 

diseases too [Van98]. Advanced semantic 

interpretation of input signals is of high relevance in 

natural langue, optical character or audio processing 

and was significantly boosted by recurrent neural 

networks introduced as long/short-term-memories 

(LSTM) [Hoc97] allowing incorporation of historical 

contextual aspects for an increased classification 

accuracy. A key trigger for the technological 

progress of Deep Learning is the development of 

convolutional neural networks (CNN). Instead of 

expert or machine driven feature selection in the 

machine learning domain, with convolutional 

networks the search for domain-specific and 

adequate features is now handled within the training 

process. The possible multi-resolution convolution 

pyramids and depth of 1200 layer for some CNN 

structures thereby significantly outperform classic 

convolution approaches such as Haar Cascades 

[Vio01] of sequentially applied weak classifiers. 

Another key development in Deep Learning is 

generative adversial networks (GAN) [Goo14] 

opening up totally new domains of application. 

GANs thereby are composed of a classification 

(discriminator) and a convolution network 

(generator) both alternatingly trained. While the 

generator tries mimicking the given reference 

samples with synthesized data, the discriminators 

loss indicates if the fake and real data are 

differentiable. As fields of application, the synthesis 

of handwritings, paintings, and medical data [Yi19] 

or general enrichment of the training data to prevent 

from over-fitting [Fri18] are of relevance.      

1.3 Related Work 
With few datasets available, i.e. around 10-20 

volumes only, common Deep Learning models 

generally cannot be trained to highest accuracy. 

Applying drop-out and data augmentation strategies, 

the risk for over-fitting can be significantly reduced 

[Gao19]. Besides data augmentation, the generation 

of synthesized data is another strategy for enriching 

the reference database as successfully shown for liver 

segmentation [Yan17]. Nevertheless, due to the 

black-box nature of Deep Learning models, dealing 

with results below required accuracy is difficult.  

A marker-based U-net model was proposed in 

[Sak19] that is simultaneously trained on both, the 

automatic classification of the target anatomical 

structure and to thereby obey markers optionally 

placed by the user for a post-processing classification 

run. While training a correction mechanism together 

with the net unmasks much of accept as is nature of 

Deep learning models, the problem of insufficient 

data for proper training still remains. 

Another approach to incorporate the human expert in 

the computer-based diagnostics is to interpret the DL 

computer outcome as a “third eye” [Fou19], i.e. using 

deep learning recognition algorithms to solely 

improve visual diagnostics in medicine.      

1.4 Training Deep Learning Models on 

Small Training Datasets 
In this work the applicability of Graph cuts, a 

segmentation concept known since two decades, is 

evaluated in a totally different context, namely as 

post-processing for segmentations of an insufficiently 
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trained Deep Learning model. That way, the black 

box nature of DL models is overcome and adequate 

correction of the results by experts becomes possible 

in a semi-automated way. The test data 

classifications significantly improved and validated 

that way by human experts in image processing are 

then used to enrich the data basis for model 

retraining. Thereby, a generic strategy for allowing 

expert-centered post-processing of DL models is 

introduced allowing to correct the seldom cases 

where obvious segmentation errors are introduced.  

Furthermore, a strategy for synthesizing artificial 

medical image datasets together with highly 

correlating reference segmentations is evaluated. The 

medical fake images are mixed with real data at 

different mixing ratios and used for training a U-net 

cascade. As GANs generally require a huge amount 

of input data for training, a chicken-egg problem 

would arise. Thus, in this work it is shown that even 

GANs trained on a low amount of reference images 

can synthesize images that help to train DL models.   

2. MATERIAL 
As diagnostic domain in this research work, the 

parenchyma from CT and MRI imaging modality is 

chosen. The 131 CT datasets from the Medical 

Segmentation Decathlon [Sim19] with provided 

ground truth expert reference segmentations are used 

for training a GAN as well as for evaluations of real 

and synthesized data on the training process of a U-

net cascade [Zwe20] with the class liver and tumor 

being merged. Graph cut based post-processing of 

classification results from a weakly trained U-net 

cascade are evaluated on 20 parenchyma MRI 

datasets in axial CAIPIRINHA non-contrast, breath-

holding fat-suppressed AX CAIPI VIBE FS protocol 

[Mor15]. From the MRI datasets, 10 are without and 

10 with Hepatocellular Liver Lesions (HCC). In case 

of a lesion, this class is merged with the parenchyma 

region leading to a binary classification problem. The 

MRI datasets are segmented using spline tracing 

(live-wire) and auto-tracing (region growing) 

available from Analyze software [Rob98].   

2.1 Data Preparation and Pre-processing  
For both, CT and MRI datasets, the same pre-

processing strategies are applied. To balance the 

varying slice thicknesses, the z-spacing is adjusted to 

the x/y inter-slice spacing using cubic interpolation 

for the intensity dataset and binary shape 

interpolation [Raj03] for the reference segmentations. 

To limit the extent of the input slices, an area of 

352×288 pixels, referring to an average axial width-

to-height aspect-ratio, is extracted based on the 

segmentation ROI. To allow for data augmentation 

during the training process, a safety margin of 10px 

along the borders is applied, leading to original slice 

extent of 372×308 pixels.   

  

  

Figure 1. Slice Pre-processing for CT (top row) 

and MRI (bottom row). 

To normalize the intensity profile w.r.t the target 

anatomical structure, µliver and σliver are evaluated per 

dataset based on the segmentation mask. An intensity 

transform similar to windowing is applied to shift the 

mean object intensity to 127.0 per dataset applying a 

scale factor �	 � ���
�∙σ	
��
	, see Eqn. 1.  

T���� � � ����127 � |�� � μ���� | ∙ �, 0� �� # μ���� 
�$%�127 & |�� � μ���� | ∙ �, 255� �� ( μ����          (1) 

Preprocessing on slice #100 for the first CT and MRI 

volume respectively with size restriction to 372×308 

pixel and intensity transformation is shown in Fig. 1. 

3. METHODOLOGY 
The Deep Learning Network to be used in this paper 

for validation on low or synthesized data is a U-net 

[Ron15] applied as cascade with combining axial, 

sagittal and coronal views [Zwe20], see section 3.1. 

Although the Deep Learning model processes the 

input in a 2D slice-wise manner, results of Jaccard 

Index JI=.9529 and Dice Coefficient DC=.9759 are 

achievable with slice-mini-batch optimization and 

training on solid 22,000 images from 100 volumes.  

3.1 U-net Cascade for Liver Segmentation 
The input axial images are transformed to sagittal 

and coronal view with the 2D slices then each 

classified by a separately trained U-net, see Fig. 2.  

 

Figure 2. Slice-wise processing in axial, sagittal 

and coronal view with final results as average. 
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Figure 3. U-net adapted from [Ron15] with 

exemplary kernel output per hierarchy level. 

The U-nets thereby expect an unsigned char single 

channel 352×288 image as input and incorporate 

176×144, 88×72, 44×36 and 22×18 resolution 

hierarchies for the classic encoder/decoder pattern, 

see Fig. 3. For matter of illustration, in Fig. 1 kernel 

output feature images are visualized at different 

levels of hierarchy.  

For training, an Adam Optimizer [Kin14] with 

learning rate 	
 � 5 ∙ 10)* using cross-entropy as 

loss is utilized to train the model at a +�,-ℎ/
0� �
32 and 2�,
�3-� � 12 up to 200 epochs. 

3.2 Data Augmentation 
A general key strategy for training is application of 

data augmentation, thereby slightly varying the input 

data. With data augmentation over-fitting can be 

reduced not only if training on small datasets but in 

general. For this research work, the following 

geometric and intensity transformations are applied 

on the input data at random scale:  

 transX and transY: translation in x-direction 

and y-direction of the current slice  

 rot: rotation around the image center 

 intMul: linear scale of the image intensities 

leading to brighter or darker pixel values  

 intAdd: additive manipulation of the 

intensities within the window, leading to a 

uniform shift for full scalar range  

For training of the U-net cascade as delineated in 

section 3.1 and [Zwe20], the augmentation scale is 

randomly varied within range [16, 16, 10, .1, 30] for 

transX, transY, rot, intMul and intAdd respectively. 

3.3 GAN for Medical Image Synthesis 
A GAN architecture with Generator as convolutional 

neural network fed by random input and a 

Discriminator as binary classificatory (fake or real) is 

chosen.  

 

Figure 4. Adapted GAN architecture [Ker17]. 

The GAN is trained in a progressive way using 7 

levels of resolution from 4×4 to 256×256, see Fig. 4 

for illustrated levels 1 (4×4), 4 (32×32) and 7 

(256×256). For training, an AdamOptimizer with a 

learning rate of 0.00015 and an iteration count iter 

increasing with the hierarchy level l as 
,�
 �
20,000 & 	 ∗ 32,000 & 	9 ∗ 3,200 is chosen, thus 

leading to iterations between [55.200;400.800]. As 

input for the Discriminator 5,000 CT slices non-

overlapping with the test-set are randomly arranged 

in batches of size 2 with data augmentation applied. 

To resample the input size between 256×256 used for 

the GAN and 352×288 used for the U-net cascade, 

bilinear interpolation is applied. An important aspect 

is the synthesis of an accurate ground-truth reference 

mask besides the fake medical images. Thus, the 

single-channel input tensor of size 2×256×256×1 

with values in [0.0;1.0] is extended to 2×256×256×2 

with the associated reference mask as additional 

channel.  

3.4 Graph cut Post-Processing 
To allow for user-guided post-processing of the DL 

results, a fitness function for N4 Graph cut processing 

combining both, original image properties and DL 

segmentation results is required, namely: 

 ORIG: horizontal (H) and vertical (V) edges 

of the original intensity profile after 

applying intensity shift, c.f. Equ. 1. 

 EXP: ORIG damped / amplified by a 

difference image from the expected intensity 

level after smoothing (median 
 � 1 and 

Gauss 
 � 5, : � 2.5). 

 S1 and S4: H/V edges from the binary 

segmentation results from axial, sagittal, 

coronal and combined with 1 and 4 hits per 

voxel respectively.  

Besides S1 and S4, the 2- and 3-hit cases are omitted 

due to lack in entropy. The cumulated fitness 

function is composed by applying Equ. 2 with 

function s() scaling to [0; ;�] and the weights 

optimized via Evolution Strategy. 
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max	?��@A$BC , ;D�, ��E�FC , ;��,
��/1C , ;9�, ��/4C , ;�� H              (2)                 (2) 

For Evolution Strategy optimization of the weights, 

recombination (μ/ρ+, λ) with epochs=100, 

batchSize=8, populationSize=8, children λ=32, 

mutationChance=0.4, mutationRate=0.25 dropping 

by 4% each epoch is applied.  

To reduce the required user-interaction to a 

minimum, the FG and BG seeds are derived from the 

combined DL segmentation via skeleton calculation.  

4. IMPLEMENTATION 
Model training and testing is implemented in Python 

version 3.7.3 using Tensorflow 2.0 beta together with 

Keras. The Python image processing is built upon 

OpenCV and numpy for fast matrix operations. To 

provide the model with training data, a 

DataGenerator class is derived from Sequence 

base class providing data augmentation functionality. 

5. RESULTS 
For evaluation, the Sørensen-Dice coefficient (DSC) 

and the Jaccard index (JI) are calculated from 

reference mask R and result foreground region S of 

image I with A ⊆ $,	/ ⊆ $ and pixel �J, K� ∈ 	A ∪ /. 

Additionally, the normalized surface distance (NSD) 

[Lap19] evaluates the FP and FN error based on the 

3D distance-map based proximity to the next correct 

border position, see Equ. 3-5.   

N/O�A, /� � 2 ⋅ |A ∩ /|
|A| & |/|  (3) 

%/N�A, $� � 1 � ∑ STU,VWXU,VY∙Z�T�U,VU,V
∑ Z�T�U,VU,V

	, 
 		N[,\�A� � ]
�,^_`��a
b�A�� 

(4) 

c$�A, /� � |A ∩ /|
|A| & |/| � |A ∩ /| (5) 

The process steps discussed in this paper, namely 

data preparation, pre-processing, GAN and U-net 

cascade model training and validation/test are 

performed on a Colfax SX9600 GPU Rack with 

2×Intel Xeon Gold 6148 2.4GHZ processors and 

768GB of DDR4 memory with 2667MHZ clock 

frequency split into 24 partitions of 32GB each. The 

system runs CentosOS 7.6 operating system and 

provides for fast tensor calculation 8 GPU cores, 

namely 4× NVIDIA Volta Titan V 12G and 4× 

NVIDIA Tesla V100 32G. For training and 

evaluation, parallelization was omitted and only one 

single Tesla core used in a sequential manner.   

5.1 GAN Synthesis of Medical Images 
Utilizing the GAN structure trained on 5,000 CT 

slices, 10,000 synthesized images are generated that 

meet the range criterion for cumulated discriminator 

and generator loss as |N�dee| & |B�dee| # 160.0, see 

Fig. 5 for images 10 (upper left), 20 (upper right), 30 

(lower left) and 40 (lower right).  

  

  

Figure 5. Synthesized Images with Reference. 

The synthesized images show a slightly different 

intensity profile with µreal=68.268 [26.52;106.70] and 

σreal=16.420 for the 640 real and µfake=69.341 

[26.827;104.022] and σfake=15.872 for the 640 fake 

images according to HYBRID_T in Tab. 1. The 

generated binary regions are of average size 

µsizeRefREAL=3,836,278 [6,156;7,809,799] and 

µsizeRefFAKE=3,678,637 [0;8.235,480] respectively. It 

seems that the loss-check for the data synthesis leads 

to an increase in caudal and cranial slices with 

smaller parenchyma cross-sections, areas that 

generally are weaker in axial U-nets and necessitate 

for additional training [Zwe20].  

5.1.1 GAN Synthesis 
For testing the applicability of GAN-synthesized data 

on training the U-net cascade, real and fake CT slices 

of the parenchyma are utilized for training and test as 

enlisted in Tab. 1. Training and validation of the U-

net utilizes different real CT slices (#9000-15000) as 

used for the GAN training (first 5000) while then for 

test, the CT slices #22500-27000 are used for 

extraction of 640 slices. With respect to the generated 

fake data, the synthesized slices for U-net training 

and test are separated datasets too.   

It is further evaluated, how different the images 

synthesized for FAKE_T according to Tab. 1 and the 

ones used for training are, i.e. that the random 

number generator utilized by Tensorflow does not 

lead to redundancy, see Fig.  6 for the first three 

generated images and their most similar images from 

the fake training database evaluating the difference 

images (mid) and the reference mask match (right). 

purpose dataset #real #fake 

TRAIN 

REAL_SMALL 2,200 0 

REAL 4,400 0 

FAKE 0 4,400 

HYBRID 2,200 2,200 

HYBRID_LARGE 2,200 6,600 

TEST 

REAL_T 640 0 

FAKE_T 0 640 

HYBRID_T 640 640 

Table 1. Small train and test ensembles for 

validation on the axial U-net. 
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test_fake #1 

 
train_fake #1094 

 
train_fake #1094 

 
test_fake #2 

 
train_fake #1377 

 
train_fake #4254 

 
test_fake #3 

 
train_fake #2427 

 
train_fake #3719 

 Figure 6. GAN synthesized image similarity. 

As the same GAN model is utilized, depending on 

the random seeds the similarity at least implies, the 

slices might result from a same virtual volume. 

Nevertheless, the accuracy of a potential model on 

the synthesized data is not as relevant as the 

difference in the real data from the synthesized 

samples, see Fig. 7. Here the GAN being trained on a 

distinctive dataset prevents from potential bias. For 

the real-data, separation into slices for 

train/validation/test that do not originate from the 

same volume is important. It ensures that not only the 

slices but the entire tomographic information is 

distinctive, very relevant to prevent from bias due to 

high z-resolution.    

 
test_real #1 

 
train_fake #873 

 
train_fake #4361 

test_real #2 
 

train_fake #2533 
 

train_fake #3804 

test_real #3 
 

train_fake #1103 
 

train_fake #3263 

Figure 7. Similarity of real images with GAN-

synthesized images in train and test. 

model 
dataset 

REAL_T FAKE_T HYBRID_T 

REAL 92.3572 89.9044 91.1111 

REAL_SMALL 88.7514 87.7616 88.3140 

FAKE 90.8081 95.7848 93.0345 

HYBRID 92.0237 94.9955 93.4568 

HYBRID_LARGE 92.9145 97.6974 95.1660 

Table 2. JI on axial U-net with Synthesized Data 

from 5k GAN. 

5.1.2 Training with synthesized data 
With the proposed datasets, 5 axial U-net models are 

trained with the mean JI evaluated as percentage-

accuracy on the 3 test datasets, see Tab. 2. With 

4,400 compared to 2,200 datasets used for training, 

REAL significantly outperforms REAL_SMALL.  

Comparing the performance on real data with the 

models HYBRID and HYBRID_LARGE it becomes 

obvious that synthesized data significantly boosts the 

training process. The model FAKE only trained on 

4,400 synthesized data achieves solid JI=90.808 on 

the REAL_T test data. In Fig. 8 results of 

REAL_SMALL model (second row) and 

HYBRID_LARGE model (third row) on REAL_T 

test data for slices #1-3 (first row) with color-

encoded FN (red) and FP (blue) are presented. 

The training process for 97 epochs on the 

HYBRID_LARGE model is shown in Fig. 9. Due to 

heterogeneity of the data and applied data 

augmentation, the validation accuracy follows the 

trend of the test accuracy indicating no over-fitting. 

The loss is reduced from 0.7 to 0.18 within the first 

epoch and then drops approximately indirect 

proportional to the loss with a sink at epoch 46. 

 

   

   

   
Figure 8. FN, FP and correct classification with 

HYBRID model on REAL_T test data. 
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Figure 9. Loss and accuracy of train/validation 

per epoch when training  HYBRID_LARGE. 

5.2 Graph cut Post-processing  
In this section, the applicability of Graph cut as post-

processing tool for DL classifications as well the 

influence of enriched datasets on the training process 

is evaluated.  

5.2.1 Training U-net cascade on MRI data 
Training on 13 test datasets (#2-14, 7 without and 6 

with HPC; 3,132 slices) gives solid results for the 

axial, sagittal and coronal models with significant 

boots when combining with 2/3 majority voting 

(AVGa,c,s) for tests on 420 slices of datasets #1 and 

#14 (1 with and 1 without HPC), see Tab. 3. 

model DSC JI NSD 

�J 92.1154 85.3834 92.3271 

�Je 91.9219 85.0513 88.6966 

�J` 92.5392 86.1144 93.2273 

�fBg,`,e 94.4096 89.4111 97.0472 

Table 3. U-net cascade trained with 13 datasets in 

axial, sagittal, coronal and combined AVGa,c,s.   

5.2.2 Graph cut for post-processing 
Utilizing evolution strategy, after 100 epochs 

evaluating on the CT parenchyma data with 

automatic application of the Graph cut post-

processing, the fitness-function weights get 

optimized to w0=0.287, w1=0.217, w2�0.419, 

w3�0.641, c.f. Fig. 10.  

 

Figure 10. Evolution Strategy-based optimization 

of the Graph cut fitness function. 

With only the weight ratio relevant, w3 for the  

cumulated DL result is of highest importance, while 

the original image aspects (w0, w1) still allow for 

adaption  to the image profile, see Fig. 11 for original 

images, combined DL segmentation and the 

horizontal edges derived from the fitness function for 

slices 30, 100 and 190 of MRI dataset #1.  

   

   

   

Figure 11. Horizontal GC fitness image. 

With the FG and BG seeds automatically derived 

from the combined segmentations, the required 

amount of user interaction is kept to a minimum; see 

Fig. 12 for skeleton, GC result and mismatch for 

slices 30, 100 and 190 of MRI dataset #1. 

   

   

   

Figure 12. GC segmentation based on skeletons. 

To allow for tests with enriched datasets, the 

remaining 5 MRI datasets (2 without and 3 with 

HPC; 1,238 slices in total) are segmented by a 

medical expert utilizing Live-wire (LW) to provide 

rough reference segmentations. From these 5 

datasets, two (484 slices) are classified by the U-net 

cascade (AVGa,c,s) as described in sections 3.1 and 

5.2.1. The two datasets thereby only achieve 

JI=82.1644, DSC=90.2091 and NSD=91.5809. After 

the GC post-processing, the accuracy is increased to 

JI=88.8186, DSC=94.0782 and NSD=98.1452 with 

the semi-automated processing lasting for 152min 

(18.8sec per slice on average). To evaluate 

robustness of the Graph cut post-processing step, 

three experts evaluate the same subset of n=30 

randomly selected slices. Although the FG skeletons 

placed by the experts in a manual way vary, the 

segmentation outcome is very stable, see Fig. 13.   
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

 
(i) 

Figure 13. Slice #28 robustly segmented by three 

medical experts utilizing GC with different FG 

and BG skeletons. 

Slice #28 without skeleton support (a) and expected 

ground truth (e) shows suboptimal DL result JI=.877 

and can be improved by all test persons (f-h) in range 

[.911;.920] even with very different GC skeleton 

interpretations (b-d). Utilizing GC for manual DL 

post-processing, potential invalid DL results get 

improved by test persons p#1-#3 and variability of 

the JI accuracy is generally decreased, see Fig. 13 (i). 

   

   

   

Figure 14. MRI add-on data with original, result 

from AVGa,c,s and result from Graph cut. 

As a rough Live-wire segmentation with immanent 

inaccuracies is used as base for comparison, the 

accuracies before and after GC correction allow for 

relative comparison only, see Fig. 14 comparing 

original slice, initial result from AVGa,c,s and after GC 

correction for add-on slices #100, 150 and 1100 

respectively.   

5.2.3 Re-training the U-net on enriched data 
The training of the 4 models for the U-net cascade, as 

described in section 5.2.1, is re-run with enriched 

data. The initial 13 datasets thereby get enriched by 

484 slices (1 dataset with and 1 without HPC) 

previously corrected by user-guided Graph cut post-

processing, see Tab. 4. Furthermore, all 5 add-on 

datasets (1,238 slices) are used to directly train the 

U-net cascade based on the rough Live-wire 

segmentation provided, see Tab. 5.  

model DSC JI NSD 

�J 93.2937 87.4303 96.0364 

�Je 92.1216 85.3940 85.8697 

�J` 92.9323 87.1230 93.4942 

�fBg,`,e 94.6671 89.8742 97.4724 

Table 4. Results on Models trained with 13 

datasets enriched by 2GC datasets 

model DSC JI NSD 

�J 92.6168 86.2488 94.3139 

�Je 92.1746 85.4850 87.9913 

�J` 92.1341 85.4155 91.9131 

�fBg,`,e 94.5163 89.6028 97.0967 

Table 5. Results on Models trained with 13 

datasets enriched by 5 LW datasets. 

A comparison of the achievable test accuracy for the 

models trained on the 13, the 13+2GC datasets and 

the 13+5 LW datasets is provided in Fig. 15. 

A visual representation of the tomographic 

segmentation achievable by the AVGa,c,s model 

trained on 13 + 2GC is given in Fig. 16 with FP 

(blue) and FN (red) visualized for test dataset #1 with 

errors in cranial and caudal direction and high 

accuracy in the mid slices. 

 

Figure 15. Achievable JI accuracy for DS13, 2GC 

add-on and 5LW add-on, c.f. Fig.12-14. 
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Figure 16. 3D segmentation of test dataset #1. 

6. DISCUSSION AND CONCLUSION 
Although the texture of the GANs at increased mask 

size does not look natural for a human inspector, yet 

the synthesized data is highly applicable for training 

of DL Models with an abstraction from pure visual 

input to implicit features anyway. The results in Tab. 

2 indicate that enriching the data with synthesized 

data boosts the training process similar to data 

augmentation. In case of lack of real-world data, the 

gap can be closed. As models REAL (4,400 real) and 

HYBRID_LARGE (2,200 real, 6,600 fake) perform 

at comparable accuracy, the impact of synthetic data 

seems of course not equal to enriching with real data 

but leading to an improvement with increasing 

number as compared to models  REAL_SMALL and 

HYBRID. As synthesized data can be generated in 

arbitrary numbers at very high variability it is a good 

option to compensate for lack of real-world testing 

data. It has to be stated, that training the GAN itself 

at a high accuracy necessitates for a sufficient 

amount of real data too.  

For the GAN used in this paper, 5,000 input slices 

from 24 CT volumes were used. Thus, for application 

domains with a very low number of samples, a kind 

of chicken-egg-problem arises as the GAN needs to 

be trained first in a sufficient way. Here the 

application of data augmentation as applied for the 

U-net training helps to significantly reduce the 

demand for training data. Furthermore, a reasonable 

batch size, e.g. 16 or 32, which was not possible due 

to resource limits of the DL HW, will help to reduce 

the data demand for GAN training.  The presented 

encoding of intensity profile and binary reference 

segmentation as a 2-channel tensor allows for 

generation of medical data together with very precise 

ground-truth. To reduce the memory demand by a 

factor of two, both the intensity and the reference 

channel could be encoded in a single channel.  

The applicability of GC as post-processing tool is 

given due to fitness function weights optimized with 

Evolution strategy to balance between original image 

intensity and segmentation edges. Using two 

additional input data first weakly classified by the U-

net cascade at only JI=82.1644 and then post-

processed by GC allows to iteratively enrich the 

training dataset. As the reference segmentations 

generally originate from different tools and experts, 

this heterogeneity affects the training process too. It 

is shown, that a small set of segmentations prepared 

with region growing, Graph cut and Live-wire trains 

well with the U-net cascade. As shown in Fig. 16, 

adding data of adequate quality can help to improve 

the training and test quality.  

Thus, if in specific diagnostic domains or for 

particular studies the initially available amount of test 

data is insufficient to train DL models at highest 

accuracy, an incremental approach for data revision 

and model re-training was presented. In future, 

training of GANs with less input slices and the 

combination with GC will be evaluated.  
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