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ABSTRACT 

A common way to maintain the quality of service on systems that are growing rapidly is by increasing server specifications 
or by adding servers. The utility of servers can be balanced with the presence of a load balancer to manage server loads. In 
this paper, we propose a machine learning algorithm that utilizes server resources CPU and memory to forecast the future of 
resources server loads. We identify the timespan of forecasting should be long enough to avoid dispatcher's lack of information 
server distribution at runtime. Additionally, server profile pulling, forecasting server resources, and dispatching should be 
asynchronous with the request listener of the load balancer to minimize response delay. For production use, we recommend 
that the load balancer should have friendly user interface to make it easier to be configured, such as adding resources of 
servers as parameter criteria. We also recommended from beginning to start to save the log data server resources because the 
more data to process, the more accurate prediction of server load will be. 
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ABSTRAK 

Cara umum untuk menjaga kualitas layanan pada sistem yang berkembang pesat adalah dengan meningkatkan spesifikasi 
server atau dengan menambahkan server. Penambahan jumlah server idealnya harus diimbangi dengan ketersediaan load 
balancer untuk menyeimbangkan beban server. Dalam makalah ini kami mengusulkan algoritma machine learning yang 
memanfaatkan sumber daya server CPU dan memori untuk memperkirakan dan menentukan beban tiap sever di waktu 
mendatang. Kami mengidentifikasi rentang waktu prediksi harus cukup lama untuk meningkatkan akurasi distribusi beban 
sever pada saat runtime. Selain itu, pengumpulan informasi profil resource server, prediksi beban server, dan pendistribusian 
beban seharusnya dilakukan secara asynchronous dengan komponent penerima request dari load balancer guna 
meminimalkan keterlambatan respons. Untuk penggunaan dalam produksi, kami merekomendasikan bahwa load balancer 
harus memiliki antarmuka yang dapat mempermudah proses konfigurasi, seperti penambahan sumber daya server sebagai 
kriteria parameter beban server. Kita juga merekomendasikan pada saat awal untuk memulai menyimpan data log sumber 
daya server karena semakin banyak data yang di proses, maka semakin akurat prediksi yang akan di hasilkan. 
 
Kata kunci: Beban server, load balancing, machine learning.  
 

I. INTRODUCTION 
  One of the technologies that emerges recently is the cloud computing. Cloud computing is used to store data in 

the cloud. A cloud in this context is known as the internet [1], [2]. A server can be placed anywhere on the internet 
and can be accessed from anywhere [3]. A user accesses data by using an application and data are retrieved from 
the server through the application [4]. In other words, users can access data everywhere without knowing where 
and which server that data is obtained from. 

Cloud computing is a quite reliable technology but still has some problems with its application. An overloaded 
server due to excessive access traffic can cause downtime [5]. The usage of a load balancer in cloud computing 
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server farm is to divide the traffic and avoid downtime [6]. A load balancer calculates servers’ and decides which 
server to serve a recent request based on the suitability and availability of the server. A server with high suitability 
and low load will be the strongest candidate to be selected.  

Load balancing refers to efficiently distributing incoming network traffic across a group of backend servers [7], 
also known as a server farm or server pool. Modern high traffic websites must serve hundreds of thousands, if not 
millions  [5], [6], of concurrent requests from users or clients and return the correct text, images, video, or 
application data, all in a fast and reliable manner. Modern computing generally requires adding more servers. A 
load balancer acts as the “traffic cop” sitting in front of your servers and routing client requests across all servers 
[8]. The load balancer maximizes the speed and the capacity utilization and ensures that no server is overworked, 
which could degrade its performance. Higher accuracy of server load forecasting results is critical for a load 
balancer to spread out the workload to the server. 

To improve the server load forecasting accuracy, researchers have proposed many approaches, for example PPLB 
algorithms [9]. The algorithms classify similar requests into one class, based on their CPU demands. The members 
of PPLB family of algorithms use utility function, RBFNN and ANFIS for correction procedure that results to 
PPLB-U, PPLB-RBF and PPLB-ANFIS algorithms, respectively. A load balancer (called IQRD) was applied to 
web servers [10]. In this paper, we propose a new load balancer method by implementing a machine learning 
algorithm. We use the machine learning algorithm to predict the condition of servers. By acquiring sufficient 
information about the condition of the servers, the load balancer can optimally balance the server loads.  

II. LITERATURE REVIEW 
There are several studies to optimize the use of load balancing. Ahmad et.al [11] developed a distributed load 

balancing system using a demultiplexer (and/or multiplexers) network. This allows the system to carry out large 
calculations that leads to gradual growth of data center capacity. Another study conducted by Golchi et al. [12] that 
implemented cloud computing in load balancing systems. The study implemented a hybrid of firefly and IPSO 
algorithms on a load balancer and compared the algorithms with four scheduling methods, i.e. Round Robin (RR), 
First Come First Service (FCFS), Short jobs First (SJF), and Genetic Algorithms (GA). The algorithm they 
proposed showed better performance than similar methods and flexible behavior in minimizing average load 
through a multi-purpose optimization. While Rathore et al. [13] proposed a hybrid load balancing for the Grid and 
compared it with existing methods, I.e.  Least Clients, Round Robin, Least Load, and Fastest First. One of the the 
algorithms was redeveloped to improve its performance. The algorithms were compared to determine their load 
balancing efficiency for selecting servers from a pool of servers. Each algorithm has its own advantages and 
disadvantages, so there is no best algorithm. 

While in the development of machine learning, Shafiq et al. [14] compared four machine learning methods, 
namely, Support Vector Machine, C4.5 decision tree, Naive Bays and Bayes Net, to classify network traffic. The 
research indicated that the C4.5 classifier method gives the highest accuracy compared to the other machine 
learning classifiers. Research on forecasting by implementing machine learning was conducted by Chen et al. [15]. 
The research proposed a new EMD-Mixed-ELM short-term electrical load forecasting method based on empirical 
mode decomposition (EMD) and extreme learning machine (ELM). The study compared EMD-Mixed-ELM with 
several other methods, such as RBF-ELM, UKF-ELM, and Mixed-ELM, MFES, ESPLSSVM and some combined 
methods. The results of the research indicated that the EMD-Mixed-ELM are proved to be better than all the others. 
Research that implemented machine learning on load balancers has been conducted in [16] and [17]. A separated 
algorithm to be used in machine learning [16] by implementing several machine learning algorithms to create a 
more efficient scheduling mechanisms in load balancing. A scheduler capable of assigning jobs to CPUs and GPUs 
in a load-balanced manner was developed in [17] by considering account job processing requirements, device 
suitability, and predicted performance on a particular computing device. In addition, researchers also utilized 
machine learning in load balancing to decide on a job’s suitability for a particular multi-core processor. Machine 
learning on load balancing is trained using past experience and then machine learning models are trained to show 
adaptive behaviors (appropriate mapping) for different computing platforms and applications. Next, the research 
compared their scheduler systems with schedulers based only on CPUs or GPUs. The result of this research 
indicated that the proposed method has better performance than the scheduler which is only based on CPUs or 
GPUs. 

III. BASIC THEORY / BACKGROUND 
Load balancing is a technique to distribute traffic load from two or more connections to optimize resource 

consumption. Besides that, load balancing can also avoid overloading processes from a connection. An effective 
load balancing technique ensures that every machine works with a similar amount of process. Therefore, a load 
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balancer needs to maximize the throughput of traffic load so that the time required for a process will be minimized 
[18]. Six parameters are used to evaluate the load balancing method:    

- throughput: the amount of process to be executed,    
- response time: time needed to load a process,    
- fault-tolerance: the ability of a method to tolerate faults,    
- resource utilization: the ability to use on various resources,    
- scalability: flexibility to increase or decrease the number of nodes,   
- performance: the measurement of all working parameters by considering the accuracy,   

Figure 1 shows the architecture of load balancing. Load balancing techniques are divided into two algorithms: 
static algorithms and dynamic algorithms. The static algorithm is used for a stable environment; thus, this algorithm 
is not flexible to environment changes [19]. Static algorithms divide network traffic equally for every server. This 
division is based on the resource system and processor performance. Trafic allocation does not need current status, 
so the division becomes much fair to every server [18]. Dynamic algorithm work based on the current status of a 
server; it checks a server with low utilization and allocates the traffic to the server. The dynamic algorithm always 
checks every server before allocating traffic, so this algorithm is more flexible to the changes of the environment 
than the static algorithm. The advantage of the dynamic algorithm is that it can help improves system performance 
by considering the changes in the environment [18]. 

Machine learning is used to uncover the unknown pattern of training datasets [20]. Machine learning has four 
types of learning:  

- Supervised Learning  
Supervised learning is a learning process where a machine learning algorithm creates a model from training 
data that are already labeled with classes.  

- Semi-supervised Learning  
Semi-supervised learning is a learning process where a machine learning algorithm creates a model from 
training data that has a small number of labeled data, while the rest of the data are unlabeled. The machine 
learning algorithm learns from labeled and unlabeled training data.  

- Unsupervised Learning  
Unsupervised learning is a learning process where a machine learning algorithm creates a model from 
training data from unlabeled data.  

- Reinforcement Learning   
Reinforcement learning is a learning process where a machine learning algorithm creates a model from 
training data that consider the environment when creating the model. External factors and environment are 
considered as additional knowledge in the learning process.  

Every model created by the machine learning algorithm will be used to classify unknown testing data. 

IV. PROBLEM SPECIFICATION 
In this study, balancing server load becomes challenging. This is due to the efficiency of managing workload 

management becomes more complicated, along with the unpatterned increasing number of user requests. To 
overcome this problem, we need an efficient way to optimize system resources and forecast next system resources.    

 

 
Fig. 1. Load balancing architecture. 
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Fig. 2. Basic load balancing architecture with machine learning. 

 
- In this paper, the focus of the problem is to identify the workload of each virtual machine by using load 

balancing techniques as the main limitation set and making predictions based on system resources. The 
limits are classified as follows:  Lots of literature [21] focuses on the CPU utilization ratio or RAM 
utilization ratio but does not use both..   

- In making predictions, the Log File becomes very important because it contains information that we need 
to predict. there is some literature like [22] that uses log files to predict and we use them to predict system 
resources.   

- In this research, we will try to predict the log file system resources usage we gets optimal results.   
There are several approaches that have been taken in clustering log files, but there are still some limitations. In 

[21], the authors propose an architecture using K-means as the main method of grouping VMs. The main attribute 
that is considered is RAM usage on the machine. In [16], load balancing is performed based on current CPU and 
RAM usage. A study in [22] used log files as a reference in grouping VMs based on the CPU and RAM utilization 
and as well as user job classifications (based on workload). This approach makes the workload more stable and 
opens up opportunities in elaborating machine learning to load balancing.   

V. DESIGN AND ARCHITECTURE 
We propose a machine-learning algorithm to perform load balancing on a server cluster. The machine learning 

is used to predict a server load based on the historical server load profiles such as CPU and memory usage. These 
aspects are chosen as they possess dominant roles in processing tasks.   

Figure 2 shows the basic architecture of load balancing to receive client requests and dispatch them to a server 
that currently has the lowest load. The load balancer must have a rapid response to decide which server a client 
request should be assigned to while receiving other client requests. If the load balancer requires more time to decide, 
it costs a significant contribution delay to the request-response time. Thus, leading to poor quality of performance. 

A load balancer should be able to predict future server load to avoid a significant delay. So, the load balancer 
does not have to load resource information (such as CPU, memory) of each server whenever the load balancer 
receives client requests. To do so, there should be a stateful or a daemon service that asynchronously pulls server 
load and predicts future resource information using a machine learning algorithm. The architecture of the load 
balancing algorithm is shown in Figure 3. Based this figure, at every cycle, prediction results are stored in the 
memory to be accessed by load balancing dispatcher submodule. This way, the dispatcher does not have to re-
predict the resources.  

Ideally, the load balancer should have an administration module that can be accessed by an administrator to make 
a change to the configuration of the load balancer. It will be useful to configure any dynamic parameters of 
computation needed by load balancing, such as CPU or memory usage. The other parameters that can be 
dynamically changed is forecasting timespan, i.e. how long timespan ahead of the server should be predicted and 
store in memory of load balancer. 
 

VI. EXPERIMENT AND ANALYTICS 
We used the dataset from http://gwa.ewi.tudelft.nl/datasets/gwa-t-13-materna, a raw data simulation of servers 

profile pulled periodically and asynchronously from a set of servers (347, 432, 511) by stateful service (Figure 2). 
The servers were chosen because the data in those servers has more reliable data, where the range of the data on 
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these servers is more stagnant than other. Data specifications of the servers are shown in Table I. The specifications 
(CPU and memory) of the servers are listed in Table II.  

Table II shows that the CPU and memory usage of the servers are different depending on the tasks processed by 
the servers. The profile information dataset can be used to predict profiles of each server in the future with specified 
timespan. In this experiment, we use SARIMA (Seasonal Autoregressive Integrated Moving Average). SARIMA 
is a development of ARIMA (Autoregressive Integrated Moving Average) which has a seasonal time pattern data. 
In general, SARIMA is denoted by (p, d, q) (P, D, Q)s. The p, d, and q notations sequentially state the order of 
auto-regression, integration (differencing), and moving average. Whereas the s notation is denoted as the seasonal 
periods of the data.  
 

TABLE I 
SET OF SERVER SPECIFICATION. 

 Server-347 Server-432 Server-511 
minCPU 29 MHz 20 MHz 24 MHz 
maxCPU 4608 MHz 3604 MHz 1144 MHz 
avgCPU 265 MHz 86 MHz 41 MHz 
Provisioned CPU Cores 4 GHz 4 GHz 4 GHz 
minRAM 11 MB 81 MB 5 MB 
maxRAM 7847 MB 7426 MB 7479 MB 
avgRAM 507 MB 596 MB 136 MB 
Provisioned RAM 8 GB 8 GB 8 GB 

 
TABLE II 

CPU AND MEMORY USAGE PROFILES OF SERVERS.  
Server CPU Usage %  Memory Profile %  

347 

  

432 

    

511 
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Fig. 3.  Components of load balancing service state in memory database and dispatcher. 

 

 
 

Fig. 4.  Result of SARIMA methods in server 347. 
 

Figure 4 shows the 347 server prediction results using the values p, d, q (1, 0, 1) and the seasonal values P, D, 
Q, m (1, 0, 0, 12). Based on the results of the statespace model, it shows how robust the modeling used is by looking 
at the log-likelihood value, which shows the value of 42,672, which means the number of matches between the 
data in the model, so the higher the value obtained, the better. Moreover, we can see through the value of Akaike's 
Information Criterion (AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion 
(HQIC), which show the same value by seeing the smaller the value obtained. For model evaluation, we can see 
through the value of Mean Absolute Error (MAE) 0.01114, Mean Squared Error (MSE) 0.0002, and Root Mean 
Squared Error (RMSE) 0.0147, which it shows that the value is close to 0 which means that the modeling results 
obtained are close to the best fit value. Whereas the forecasting results and the actual data based on the CPU is 
shown in Table III. The forecaseting result and the actual data in memory server is shown in Table IV. 
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TABLE III 
CPU ACTUAL AND FORECASTING. 

Server CPU Actual and Forecasting 
347 

 
 

432 

 

511 

 

  
Forecasting activity is key to choose the server a task should be assigned to accurately. The forecasting does not 

require a server profile for each incoming task to be dispatched. This mechanism simplifies the procedure and 
reduces delays (both form the server or the dispatcher) that they might cause significantly. The other concern 
regarding this research is the timespan of forecasting. It will be good if machine learning can predict long enough 
timespan to anticipate a high volume of transaction requests from clients. This is important for the dispatcher to 
anticipate memory allocations regarding the expected profile of each server each time they need to dispatch tasks.  
Finally, we can know the priority of servers to receive dispatches tasks using the prediction profiles we have. 
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TABLE IV 
MEMORY ACTUAL AND FORECASTING. 

Server Memory actual and forecasting 
347 

 

432 

 

511 

 

 

VII. CONCLUSION 
We proposed a method to predict the resources of servers based on the profile of the servers. The server profiles 

are used as input parameters of a load balancer to predict future server loads. The more parameters used, the more 
accurate the prediction to the actual condition. The timespan of profile collection should be long enough to 
maximize the prediction accuracy during server runtime. We suggest that the procedures for server profile pulling, 
data forecasting, and dispatching should be performed in asynchronous mode to the request listener of the load 
balancer to minimize response delay. Also, each of the procedures should be created in loosely coupled modules.   
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