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ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A
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REDES NEURAIS SEM PESO

Raul Bezerra Barbosa

Junho/2018

Orientadores: Felipe Maia Galvão França

Diego Moreira de Araujo Carvalho

Programa: Engenharia de Sistemas e Computação

Dispositivos com localização espacial estão em toda parte hoje em dia. Dentre

várias posśıveis aplicações com a grande quantidade de dados gerada por esse tipo

de equipamento, nosso trabalho foca em um problema crônico da cidade do Rio de

Janeiro: seu sistema público de ônibus.

Apresenta-se neste texto uma arquitetura para classificação de trajetórias GPS,

cujo foco é a identificação de rotas de ônibus do sistema público. Para isso, utiliza-

mos o leve e versátil classificador baseado em redes neurais sem peso WiSARD. Para

a geração da entrada da rede, experimentamos diferentes formas de binarização,

fazendo uso de regras definidas pelo problema. Ainda, avaliamos uma forma de

combinação das redes WiSARD com o uso de um grafo aćıclico de decisões. To-

das essas propostas resultam em diferentes sabores de um sistema de aprendizado

neurossimbólico.

Tal arquitetura foi testada contra um vasto conjunto de dados constrúıdo a

partir de dados fornecido em tempo real e de forma pública pelo sistema corrente

da cidade do Rio de Janeiro. Os resultados obtidos indicam a aplicabilidade da

solução proposta em um problema de classificação envolvendo mais de 500 classes.

As comparações efetuadas indicam uma equiparação do modelo WiSARD com outros

modelos em estado da arte. No mais, acreditamos que a metodologia aqui descrita

possa ser utilizada com sucesso em outros domı́nios.
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Geo-enabled devices are ubiquitous nowadays. Within a diversity of possible

applications using the huge of amount data generated by this technology, our work

focuses on a chronic problem of Rio de Janeiro city: its public bus system.

This text presents a framework for GPS trajectories classification, whose focus

is the identification of bus routes of a public bus system. In order to do that, it was

used the lightweight and versatile WiSARD, a weightless neural network classifier.

Different binarization methods were used to adapt raw data to WiSARD’s binary

input, making use of a set of rules defined by the application domain. Yet, it is

evaluated a way of combining WiSARD through decision directed acyclic graphs.

All these approachs result in different flavors of a neuro-symbolic learning system.

The framework was tested against a vast data set created from open access

and real-time data acquired from the current bus system of Rio de Janeiro city.

Results obtained suggest the applicability of the proposed solution in a classification

problem with more than 500 classes. Comparisons made also indicate an equivalent

performance of WiSARD and other state-of-art and widely used machine learning

methods. In addition, the framework described here is believed to be adaptable to

other application domains.
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Chapter 1

Introduction

A diversity of geo-enabled devices is currently among us. These devices, that can

accurately locate an object on Earth’s surface, have been generating a deluge of data

with spatial information. Such data mass is now being used in many applications,

becoming an important research area that mixes professionals from many different

fields such as geography, management, engineering and computer science. Some

recent works varies from mathematical analysis, modeling and data mining to city

management and urban planning [1, 2].

One of these applications is geo-located data mining, where there is the trajec-

tory classification problem [1, 2]. The main goal of this kind of classification problem

is to automatically categorize trajectories inside a well-known set of categories. Tra-

jectory classification is just a special case of the traditional classification problem

in machine learning [1], hence, all sort of machine learning techniques can be used,

supported also by different feature extraction strategies.

In the literature, a diversity of machine learning techniques has been successfully

tested to classify trajectories such as NaiveBayes [3], SVM, neural networks, forests

and decision trees [4]. Some more generalist frameworks have also been proposed,

like [5], where authors assess performance in various tasks, including classifying

animal trajectories. Some recent works in the field include [6] where authors explore

the problem of classifying hurricane trajectories and [3, 7, 8], in which the main goal

is to identify the transportation mode of a trajectory.

1.1 Motivation

Since 2013[9], the bus fleet of the city of Rio de Janeiro is being monitored by a GPS

enabled system. At this time, some legislation by city councilor Marcelo Queiroz was

proposed [10] and GPS real-time monitoring was put as one of the main objectives

of city administration[11].
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Such public transit monitoring system or automatic vehicle location (AVL) sys-

tem is not exclusive to Rio. There are several (and recent) works related to real-time

public transit management and monitoring [12–14]. An interesting common charac-

teristic of these systems is that their data available is mostly available to general

public, enabling its use by third parties applications.

In Rio’s case, the data is freely made available through the web, via an API

and, yet recent, there are some works already using it. In [15], the authors detail

a framework for data acquisition and storage. Such framework is essential for any

posterior work (since most of the data is a real-time stream) and a similar approach

is used in this work. Yet, [16] shows a real-time monitoring system, where one goal

is to keep track of bus travel times of the public transit system.

Normally, any monitoring application could straightforwardly use any GPS data

from the buses or other AVL system. In Rio de Janeiro it does not work that way,

though. It is just another contradiction in this city: data that was supposed to use

as a regulation data is not reliable enough to confirm that the service being offered

is the same agreed in the public contracts.

A preliminary analysis over all records of 2014 (over 200 million records) shows

that more than 25% could be discarded by an user or the city management, simply

because they would lack a very important information: which route is being served.

This is aligned with past reports in the literature [16], where the fact is also men-

tioned and numbers are similar. Also, it was previously verified that some vehicles

are officially labelled with one route tag but actually serving another.

It becomes mandatory to verify if the city regulations are being respected. One

step towards it is to make use of trajectory classification knowledge to enhance the

available data and empower the government in such a case of urban chaos.

1.2 Main Goal and Contributions

In the context of trajectory classification and using the above cited motivation in

the Rio de Janeiro urban planning and monitoring, the main goal of this work is

to present a viable solution to identify the route of each bus running on the streets

based on its trajectory.

In order to that, different alternatives that rely on machine learning techniques

to identify public buses routes from their preexisting digitized GPS trajectories were

proposed and evaluated. It was performed experimental tests using a lightweight

classification architecture known as the WiSARD [17] to help with the high amount

of data. The WiSARD model has been used in many different previous works and

contexts [18–20], always with competitive running time, accuracy and low standard

deviation. It was also compared WiSARD performance with other mainstream

2



classifiers [4] such as Random Forest and Naive Bayes.

The approaches developed here are examples of neuro-symbolic learning [21]

methods, which combine neural and symbolic reasoning for optimal performance. A

hybrid strategy was adopted, using weightless neural networks combined with a set

of pre-defined rules.

This strategy was first presented in [22] and expanded in [23], which are the

kernel of this work. Another kind of neuro-symbolic learning and reasoning was

developed by [24], where neural networks are used as building blocks for a complex

reasoning system.

Concluding, this work:

• Presents a viable solution to the real problem of identifying the route of run-

ning buses of the city of Rio de Janeiro based of their GPS data;

• Puts weightless neural networks closer to the trajectory classification field with

a reusable methodology;

• Compares weightless neural networks with other highly used classifiers in a

domain where agility and accuracy are indispensable;

• Makes a step towards a better public transit management in Rio de Janeiro.

Its contribution also aims to, in a near future, use geolocation data from city’s

buses to pinpoint deviations from a regular operation. Besides, the approaches

described here might be useful for other geospatial and non-geospatial classification

problems.

1.3 Structure of the Work

The remainder of this document is organized in 5 chapters besides this first intro-

ductory chapter. In Chapter 2, Rio de Janeiro’s public transit is described, with

problem’s base data model. Also some basic geography background is observed, to-

gether with explanations about the machine learning models and methods considered

in the work, such as the WiSARD model. Chapter 3 describes the methodology and

the approaches to the problem, which relies on different trajectory image generation.

The following chapter details the experiments using different datasets, parameters

and models, then shows and analyses its results, showing how one can benefit from

using different pre-processing procedures. At last, Chapter 5 wraps up providing an

overview of this work’s findings, as well as some ideas for future related works.
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Chapter 2

Background

2.1 Rio de Janeiro’s Public Bus System

2.1.1 History & Current Status

Rio de Janeiro’s public bus system has started in the early 1900s, when a first route

was opened between two important places in its commercial center: Passeio Público

and Praça Mauá [25]. Facing some competition from electric trams during the 1920s

and the 1930s [25], it became the dominant transportation mode in Rio in the early

1960s [25]. Nowadays, according to the most recent FETRANSPOR’s projections,

the city bus system represents around 60% of Rio de Janeiro’s metropolitan area

public transportation system (see Figure 2.1).

FETRANSPOR is the main responsible for the bus system in Rio de Janeiro

state, being a a congregation of syndicates of bus companies 2. One of these syndi-

cates is Rio Ônibus, main responsible for all 42 bus companies operating in Rio de

Janeiro city.

As of FETRANSPOR’ 2016 report[27], the city bus system has:

• 733 official bus routes;

• more than 8,000 vehicles serving these routes;

• more than 1,500,000 trips3;

• more than 60,000,000 kilometers traveled3;

• more than 100,000,000 passengers3.

1Values for year 2016 were projections. Data is reported in [26]
2http://www.fetranspor.com.br/
3All monthly
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Figure 2.1: FETRANSPOR’s modal market share survey 1.

The current system management is divided in regions managed by bus companies

consortia in a concession agreement [28], as depicted by Figure 2.2. There are 5

regions of interest, named ’RTRs’, from 1 to 5 (see Figure 2.3):

Figure 2.2: Rio de Janeiro city divided by bus consortia4.

• RTR 1 (also called Central): consisting of the neighborhoods of Centro and

Tijuca;

• RTR 2: comprising the South Zone (Zona Sul) neighborhoods;

4Adapted from [29]
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• RTR 3: comprehending in a vast majority the neigborhoods of the North Zone

(Zona Norte);

• RTR 4: consisting of some of the North Zone and some of the West Zone

(Zona Oeste), like Barra and Jacarapagua neighborhoods;

• RTR 5: with the remaining neighborhoods of West Zone.

Figure 2.3: Rio de Janeiro city divided by RTRs5.

The consortia are 4: Intersul, Internorte, Transcarioca e Santa Cruz, operating

regions 2, 3, 4 and 5, respectively. Region 1 is a common operation region, but its

internal routes are operated by Intersul consortium.

2.1.2 Data management

As leveraged by [25], every consortium is responsible for feeding FETRANSPOR

data servers. FETRANSPOR’s duty is to aggregate this data and then send to

Rio’s prefecture, which uses the data for city management and makes it public

available and free of charge (like in Figure 2.4).

In Rio’s system, as already cited, the data is provided as a public API (actually

just one public URL)6. Every minute this URL response is updated, but it is always

a JSON object consisting of:

• a timestamp - date and time of measure;

• vehicle id - an id that registers that car and is public visible in the car (see

Figure 2.5);

• the route or line the bus is serving;

• latitude of the bus;

5Figure adapted from [30].
6 http://dataṙio/dataset/gpsdeonibus
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Figure 2.4: GPS measures data flow: from each consortium to prefecture’s servers

• longitude of bus;

• current speed.

Figure 2.5: A Rio de Janeiro bus car illustration with ’A41196’ as its id7.

In addition, Figure 2.6 shows an example of a JSON object obtained through

the public API.

2.2 Geo-positioning and Cartography

2.2.1 GPS

The (NavStar) Global Positioning System, commonly referred as GPS [31], is an

US-owned system to ”accurately determine (...) position, velocity, and time in a

6Source: https://desenhos.onibusparaibanos.com. Authors: Antonio Mailson V Junior, Mailson
Amâncio Pereira, Gilberto da Costa Júnior
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{
"COLUMNS": [

"DATAHORA", //timestamp
"ORDEM", // vehicle id
"LINHA", //route
"LATITUDE",
"LONGITUDE",
"VELOCIDADE" //speed

],
"DATA":[

[
"06-18-2015 08:28:47", //timestamp
"C47705", //vehicle id
861.0, // route
-22.954453, // latitude
-43.391499, //longitude
19.0 //speed

],
...

]
}

1

Figure 2.6: Bus API response: a JSON example

common reference system, anywhere on or near the earth on a continuous basis”as

detailed by [32]. Primarily designed as a military system [33], today it is available

as a free public service, guaranteed by the US government, and can be used to

locate mostly anything around the Earth. A recent study concludes that a common

smartphone is typically accurate to within a 4.9 m radius under open sky [34].

According to [31], its structure follows a 3-segment approach: a space segment,

a control segment and a user segment. The space segment consists of a constellation

of at least 24 operational satellites around Earth’s orbit that transmit radio signal

to users. The control segment is a network of ground facilities that operates and

monitors the space constellation. Finally, the user segment is the user, most of

times a GPS receiver or a GPS-enabled device, which receives the signals from the

constellation and uses it providing three-dimensional location and timing.

The GPS system relies on precise atomic clocks in every satellite and the receiver

(see figure available in [35]). The satellites send signals to the user and based on the

time received and the time of reception, the receiver can calculate its distance to the

satellite. With some geometry and at least 4 different satellite signals is possible to

determine the position. The reader can refer to [31] for a more complete explanation

behind GPS.

2.2.2 Coordinates

A position given by a GPS system is often expressed in terms of latitudes, longi-

tudes and height (or depth), in some reference coordinate system. This is called a

ellipsoidal or geographical coordinate system, since it is a more geographical way of

viewing objects in the space. On the other hand, in mathematics, a more common

way is to use the Cartesian coordinate system, expressed in terms of X, Y and Z.
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The latitude (φ) of a point is defined as the angle between the equatorial plane,

an imaginary plane that divides the Earth in two hemispheres, and a straight line

that intersects the point and passes through the center of the Earth (or close to it).

The longitude (λ) of a point is defined as the angle between one reference me-

ridian and a meridian that intersects the considered. A meridian is a half of a

hypothetical great circle on Earth’s surface that ends in North and South poles. It

is common to use the Greenwich meridian (a meridian that crosses the British city

of Greenwich) as the reference meridian, as it is established as the division between

the Orient and the Occident.

The height (h) of a point is a more complicated problem, since it involves calcu-

lating the distance from the surface or center of the Earth to the given point. Since

the Earth is nor a sphere neither a ellipsoid (actually a geoid) [33], researchers have

come across the concept of different ellipsoids and reference systems to better fit

their region of interest. Usually there are equations to transform point from one

reference system to another. The reader can overview this scheme in Figure 2.7, as

[33] covers this topic in depth.

P

h

φ

λ
y

z

x

   Equator 
(0° latitude)       Prime 

    meridian 
(0° longitude)

North Pole
φ = latitude
λ = longitude
h = height

Figure 2.7: Geographical coordinates explained

2.2.3 Projections

Knowing the latitude, the longitude and the reference system is not enough to

precisely represent a point on a map. Since a map is usually a bi-dimensional canvas,

and Earth’s surface is a three-dimensional abstraction, researchers use projections

to project points into a 2D-space, where x and y coordinates are given by function

of the original latitude and longitude.

There is a huge number of projections [33], and the one used really depends on

the application. Since it is impossible to have a perfect projection, there is always

a trade-off. For instance, geodetic applications tend to use conformal projections,

like Lambert’s conical or cylindrical, which preserve the original angles from the
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ellipsoid on the map. Some maps or applications need an equivalent projections,

which preserve the original distances, but not the angles, and can be used to calculate

areas as well. Some examples of projections can be found in Figure 2.8.

(a) Lambert conformal projection (b) Azimuthal equidistant projection

(c) Albers projection (with equal area) (d) Plate Carrée projection

Figure 2.8: Projection examples. 8

2.3 The WiSARD weightless neural network ar-

chitecture

The WiSARD[17] model is a weightless neural network and has its name derived

from its authors (Wilkie, Stonham e Aleksander’s Recognition Device). It was

initially developed as a hardware architecture for image recognition [37] and it is

very different from other models such as the perceptron, derived from McCulloch &

Pitts’ neuron [38].

The McCulloch & Pitts’ neurons are human neurons abstractions, which activate

or not, depending on a linear combination u of a weight vector p and an input vector

x:

8Source:[36]
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u =
i=1∑
n

wi ∗ xi

where signal y of neuron is activated if it reaches some threshold θ:

y(u) =

1, u >= θ

0, u < θ

On the other hand, the WiSARD weightless neural network can be viewed as an

implementation of the Bledsoe & Browning’s n-tuple classifier [39]. It works based

on read and write operations of binary values in RAM memories, making use of

pseudo-random mappings on input vectors.

The network itself is mainly organized in discriminators which are sets of X

one-bit word RAMs with n inputs (also called neurons), being one discriminator

frequently used to determine just one class of many given as input to the classifier,

hence its name. This model can be categorized as a supervised learning method[40],

although it has been expanded to unsupervised learning as well [41]. Like every

supervised learning method, it is characterized by a training phase (learning from

examples) and a classification (or prediction and sometimes test) phase.

2.3.1 Training Phase

During the training phase, a number of binary vectors (examples) are shown to the

classifier. Each input vector is mapped to a retina, which is a division of the input

vector in X tuples of n bits, commonly in a pseudo-random manner. Following this

strategy, each n-bit tuple is used as an address of a RAM memory of 2n positions,

with the n tuples mapping X memories.

When a new example of a new class C is presented to the network, a discriminator

is then created to this new class. This discriminator will usually have X RAM

memories, with all their 2n positions with no data. Learning from that example is

just as simple as writing a ’1’ in all memory addresses mapped by the tuples of that

example.

2.3.2 Classification Phase

The classification phase is when an input vector without a class is presented to the

network and we use the network to give it a class. It is handled by mapping an

input in the same way training examples were mapped.

Afterwards, we present the input to all discriminators previously trained. At

this moment, every tuple of the input can point to either a marked address (1) or

11



Figure 2.9: Training phase using WiSARD: the input binary vectors are pseudo-
randomly mapped into n-bit tuples (n = 3) that become addresses of X RAMs
(X = 4)

a non-written address(0) of RAMs. Here, we have the neuron activation: if a tuple

addresses a written address, that RAM will be activated, as a neuron, indicating a

pattern previously seen.

The score ry for a discriminator y given an input x is calculated by counting

the number of memories mapped by the classification example whose addresses were

previously written by any training example. The discriminator that has the greatest

score (rmax) is chosen as the output class for x, with ties being broken randomly.

Literature[37] also establishes a confidence measure for the result rmax (denoted here

by C), given by:

C =
rmax − rmax−1

rmax

(2.1)

where, again, rmax is the score of the output class discriminator and rmax−1 is the

runner-up discriminator’s score.

2.3.3 Binarization & Pre-processing Steps

Since the WiSARD architecture was designed to operate with bit vectors and not

with integers or other types of values, pre-processing an input dataset to use Wi-

SARD is a very common step. The so-called binarization, transforming or encoding

a vector into a bit vector is needed when one does not have a binary input. Many

binarization approaches have been proposed in the literature [42–44]. The genera-

tion of black and white images (which can be seen as binary inputs) is diversely

explored in [45], although in a different context.

Within many proposed approaches, one common approach to encode real values
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Figure 2.10: Classification in the WiSARD: the input (mapped the same way trai-
ning examples were) is presented to the network and for all trained classes (discri-
minators), the one with the best result r is chosen.

in binary values is the termometer transformation[44], when a fixed-length bit array

is used to discretize the values. As an example, suppose that 10 bits were chosen to

represent an real-valued attribute a. Hence, maximum and minimum values that a

can assume are:

amax = (1111111111)

amin = (0000000000)

with the median being a value like:

ymed = (1111100000)

When dealing with categorical values, another common transformation is the

one-hot encoding. In order to use it, a fixed-length array is again chosen, as also a

marker size (some bits). In example, supposed that some attribute color can assume

one between three values: red, yellow, blue, and a 3 bit marker will be used. The

final representation of the attribute will have 9 bits, with the possible values:

colorred = (111000000)

coloryellow = (000111000)

colorblue = (000000111)
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It is important to note that pre-processing steps are also common when using

other machine learning approaches, being an almost mandatory step in classification

tasks [1]. One of most common steps are data standardization and normalization[46],

used to reduce the effect that features of different scales and orders of magnitude

might produce over the final result. Even though very common, pre-processing steps

may play a key-role to achieve a final good result, especially when weightless neural

networks are being used [41]. In WiSARD, a good binarization is somewhat related

to finding a good distance measure, which is a very important factor in search and

query problems [1].

2.3.4 Bleaching & DRASiW

The performance of the standard WiSARD model can be affected when dealing with

very noise data. For instance, when many discriminators receive similar examples as

if they belong to their class, the network performance can degenerate to a complete

random answer. This can also happen if small tuples are being used, leading to

very common patterns, easily exausted. This phenomenon is called saturation of

the RAMs.

Saturation happens when many classes have high responses from the discrimina-

tors. If all RAMs have most of its addresses written, they will see the same patterns

in almost every class. It can be viewed as a form of overfitting the WiSARD model.

Such concept means that we are fitting more data than a network can absorb while

being trained.

An immediate aid to overcome this problem is the adoption of the bleaching [47]

technique with the so-called DRASiW. DRASiW [48] is a modification of WiSARD

where instead of using one-bit word RAMs, q-bit word RAMs are used. Hence,

different threshold values can be used to activate a RAM, instead of simply marking

whether an address was written or not. Although it becomes possibly more accurate,

it comes with a trade-off in speed[49].

Yet, this modification also enables the user to reverse the training process and

see what the network has absorbed in the form of a mental image (see Figure 2.11).

Figure 2.11: A DRASIW’s mental image example when WiSARD is trained on a
dataset of handwritten digits (is this case: digit three).

Although very fast and competitive, the WiSARD model is just the simplest
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model of a whole family of weightless neural networks as presented in [37].

2.4 Decision Trees

Decision trees classfiers [50] are widely used in machine learning [51]. Most common

use is done by building or inducting trees (acyclic graphs) capable of answering

questions or taking a decision in a methodological form. A decision tree classifier is

a decision tree capable of labeling an example in a path from its root to any of its

leaves (see Figure 2.12). It is a tree that consists of essentially three types of nodes:

Figure 2.12: A decision tree example. Here the tree distinguishes between three
classes: forgiven, good or bad.

• Root node: Where the process starts, with 0 incoming edges and possibly

more than zero outgoing edges;

• Internal nodes: Where questions are asked and paths can be chosen, with

exactly one incoming edge and at least two outgoing edges;

• Leaf nodes: Where questions are answered, with exactly one incoming edge

and no outgoing edges.

One of its biggest advantages is the fact that it is a ’white-box’ method: it can

give the user an explanation why a given class was the output. Other advantages

include the fact that it is a simple method that can fit a innumerable amount of

datasets. This can lead to of its main disadvantage: to not generalize well if trained

with few data and be very specific [52].
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2.4.1 Traditional Decision Tree Classifier

Here we present a general approach when building a decision tree classifier (training

phase):

• The tree has a root. There is a training dataset C and a attribute set A that

every example is made of;

• A measure of interest is calculated for every attribute a ∈ A;

• The initial dataset is divided in subsets, using the best attribute and its best

value according to the value of the measure of interest after the division;

• The attribute and its value become a node N , added to the tree (attribute is

sometimes discarded from set A and no longer used);

• The procedure is then repeated to all datasets created by the division (recur-

sively), having N as root;

• Stop the algorithm when some stop criteria is reached (given by the measure

of interest, for example), or if the attribute set is exhausted (if attributes were

discarded along the way).

There are two main decision tree classifiers in the literature: CART[53] and

C4.5[54]. Both are quite available in science tools like scikit-learn[55] or Weka[56]

and have similar tree induction algorithms.

Both algorithms are greedy algorithms, which may not find a perfect solution

to the problem. Also, finding the best tree to divide a dataset is known to the

NP-complete[57]. The main difference between the algorithms is in the measure

of interest and number of possible outcomes. CART takes into account the Gini

impurity of outcome nodes and only splits in two nodes. C4.5 uses information

gain as its split measure and can split nodes in more than two. The reader can see

that are other differences[51] between the algorithms, but they are not subject to

discussion here.

A classification phase can be executed when one has an inducted tree. Classifying

an example y without label is done by simply following the path from the tree’s root

to one of its leaves according to the internal nodes attributes and values (and also

the example attribute values).

As mentioned before, decision trees can suffer from overfitting as well. Its size can

grow out of control and make the tree very specifically fitted to the data presented

to it. In that sense, the tree may not be able to label examples that are somewhat

different from what was presented to it. A very common technique to tackle this

problem is to prune the inducted tree [52]. This can be done in two general ways:
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• Pre-pruning: When the tree inducting algorithm is stopped before termina-

ting, with some eartly stopping condition. The algorithm will produce a tree

that does not perfectly fit the training data, but might be better when seeing

test data or classifying in practice;

• Post-pruning: When after the tree induction some subtrees are discarded,

following some condition. This is done in a bottom-up fashion (leaf to root).

Some research [52] shows that post-pruning may lead to better results, but

might be more compute-intensive.

2.4.2 RandomForests

In an attempt to improve decision tree classifiers, Ho[58, 59] proposed random deci-

sion forests and more lately Breiman [60] improved the idea, creating the so-called

RandomForests algorithm. Its idea is based on few key aspects: forests (a set of

trees) instead of a single tree, combined with the use of bagging and random feature

selection when splitting the sets.

Bagging - bootstrap aggregating [61] - is a metaheuristic that consists of combining

solutions to build a solution that generalize better. From a training set C, N other

smaller datasets are created by sampling it with replacement. These N datasets can

be trained independently to induct N tree classifiers. The final answer of the model

is given by a voting where each classifier has one vote. The higher scoring class (the

one with more votes) will be chosen as output.

The other concept involved, random feature(attribute) subspace selection, means

that for every node decision (every partition of a dataset), only a random subset

of features is considered, with replacement. The rest of the algorithm remains the

same.

RandomForests has been used in a plethora of works [62, 63] with good results

and provides a good baseline for studies. Its random attribute subspace selection

combined with bagging reportedly increases performance over traditional decision

trees.

2.4.3 ExtraTrees

ExtraTrees or Extremely Randomized Tree [64] is another improvement over clas-

sical decision tree on top of the RandomForests algorithm. It is very similar to it,

but it adds another layer of randomness, making the value of attribute splitting a

random value between the maximum and the minimum possible values. The mea-

sure of interest is still evaluated though. Results are combined the same way as in

RandomForest, with voting. Yet in [64], authors show that ExtraTrees can improve
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performance over RandomForests. If not by making it more accurate, at least it is

shown that it may be faster without compromising the results.

2.5 Naive Bayes

The Naive Bayes classifier is a well-known and very simple classifier based on con-

ditional probabilities [52]. It makes strong use of Bayes theorem, hence, its name.

The word naive comes from the other core concept of it: a naive supposition of

conditional independence of all attributes in attribute set A (something that most

likely will not be true). Even being very simple, it still achieves good results in some

scenarios[65].

Given an attribute set A = a1, a2, ..., an, a class set C = c1, c2, ..., cq, a dataset

D = X1, X2, ..., Xm and every Xj = (x1, x2, ..., xn) and xi the value of attribute ai

in an example Xj, the output class y(X) of the Naive Bayes classifier will be given

by:

y(X) = argmax
c∈C

P (c|X) (2.2)

where P (c|X) is the probability of class c given the input vector X.

In order to computer this probability, the Bayes theorem is used, such that for

every class c ∈ C we have:

P (c|X) =
P (X|c)× P (c)

P (X)
(2.3)

Since P (X|c) = P (x1, x2, ..., xn|c) and conditional independence of every attri-

bute is assumed, it is possible to work on equation 2.3 using the chain rule for

conditional probabilities, which gives us:

P (c|X) =

∏n
i=1 P (xi|c)× P (c)

P (X)
(2.4)

One can easily verify that P (X) is constant for every class c ∈ C, leaving us with

only the numerator part of equation 2.4. P (c) can be estimated from frequency of

class c in D. If all attributes in A are discrete or categorical, P (xi = k|c = cq) can

be also estimated from the relative frequency of value xi = k within all examples of

class c in D.

So, in this case, there is no unknown value in equation 2.4 to estimate P (c|X) and

thus Naive Bayes can be executed. For other scenarios such as continuous attribute

values and a complete reference, the reader can see [66].
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Chapter 3

Methodology

3.1 Input data acquisition

According to [1], one can define a spatial trajectory as a sequence of points T =

p1, p2, .., pn chronologically ordered, such that each point pi = (x, y, t), where x and y

are geographical coordinates (latitude and longitude, mostly) and t is a time stamp

associated with that position.

The bus system API mentioned in the previous section does not provide any tra-

jectory, only points, and the system itself does not keep track of past measurements.

A trajectory can only be obtained if one keeps track of all API responses somehow.

In our work, it is used a data acquisition system to deal with this problem. A

service running 24/7 makes requests every minute and stores every JSON response

on a daily basis, like shown in Figure 3.1. Even doing this, there are only stored

points. It is still necessary to group the stored points by vehicle id to have a final

trajectory.

Figure 3.1: Storage scheme: API is called every minute by client code and results
are stored in a file server

19



3.2 Generating the network input

As discussed in Section 2.3, the WiSARD neural network operates only with binary

values (vectors). Since it the initial idea was to use the trajectories to classify buses

routes using WiSARD, an encoding method to the stored GPS trajectory data is

proposed here in order to use it as input data to our classifier.

3.2.1 The footprint

An initial approach to converting GPS trajectory data to a zero-or-one input is to

generate a black-and-white image out of it. The GPS coordinates can be plotted

as points in a 2-D canvas, within some reasonable bounding box such as the city

limits. A similar approach was used and explored with good results in [67] to solve

time series problems. This plotting can also be seen as a grid partitioning of the

city in disjoint cells similar to [68, 69], but here we are ignoring the sequential and

temporal characteristic of the trajectories.

In this initiative, the trajectories become some kind of photograph of the vehicle

throughout a window of observation. This approach is called the footprint. The

generated image can be easily converted to a binary vector if every painted pixel

becomes a ’1’ and ’0’, otherwise.

One can note that there is a clear trade-off here: a lossy data compression of the

trajectory [70]. However, it does not compromises the final goal, since it is likely to

represent what the bus was doing in a period of time. Conversely, because of this

compression, common problems of working with GPS data can be tackled, such as

a brief or temporary loss of GPS signal[1], as it uses a window of observation and

all points in this window are used together as an example.

This can be interesting to the bus case, where routes tend to be cyclic and a

temporary loss might not be even noted if we look at a day’s picture, for example.

Also, this grid strategy collapses similar GPS positions, aiming towards a more

complete and maybe redundant trajectory image, avoiding occasional noises and

natural GPS imprecision.

It is essential to note that due to a WiSARD’s characteristic, even if two or more

examples have non-overlapping gaps but represent the same class, a complete exam-

ple can be classified correctly, as the final memory will have a ”neural”representation

that is equal to the union of all training examples.

Figure 3.2 shows a single trajectory – the above-cited footprint – performed by a

vehicle that served only one route during a period of time of day. In order to unders-

tand the complexity of the classification task, Figure 3.3 presents the trajectories

of all vehicles, serving all lines during the same time period of time. Hence, the

footprint of a vehicle is used as the unit of classification, representing an example of
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Figure 3.2: The footprint of a vehicle.

a bus route for the WiSARD classifier.

3.2.2 A smart gridded image

One way to refine the footprint image is to add some prior knowledge about the

nature of the problem being solved. This is often employed in classical applied

machine learning, where feature extraction/engineering plays a key role [46, 71].

Domain experts work along with statistical methods and metrics to try to come up

with the most descriptive feature set to use as input to solve a problem using neural

network.

For instance, in the information retrieval field there are metrics like Document

frequency threshold and TF-IDF [72], commonly used to discard attributes based

on words relevance. Many times algorithms like PCA/SVD [73, 74], SIFT[75] are

used to extract relevant features out of other serveral features, possibly reducing a

problem’s dimension [46, 71].

In this application, as depicted by Figure 3.3, it is worth to perceive the distribu-

tion of the buses’ GPS measures (over a latitude/longitude space). There are some

regions where markers are abundant (like regions of interest) and others with not a

single marker. This image is a good visual evidence of how Rio’s bus system works

and gives a hint about Rio de Janeiro’s topography. In fact, there are some regions

where traffic is very dense, the city center. Besides that, a landscape of mountains
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Figure 3.3: The footprint of the entire fleet.

and forests forces traffic to be distributed along thin corridors that connect other

less dense but still central local areas. Figure 3.4 merges Rio’s topology with one

footprint example to better ilustration the situation.

Having this geographic prior knowledge in mind, a more symbolic representation

can be constructed from the initial grid image. By readjusting its cells sizes, more

pixels can be given to regions that might deserve more attention, less to ones that

might not.

In order to achieve this goal, the pixels of the previous binary image are re-

encoded, making a new image out of new division of the initial spatial boundary.

This new spatial division is supported by a kd-tree [76] division of the spatial limits,

where every pixel of the previous image will certainly fall into a leaf node of this

kd-tree. Each example is converted such that all leaf nodes with pixels inside gets a

’1’ in the new image and ’0’ for the opposite. The input vector is then transformed

to the size of the grid being used (the number of leaves). Figure 3.5 and Figure 3.6

show an grid example generated out of a kd-tree with a footprint example and a

footprint example only after the reencoding process, respectively. Figure 3.7 once

merges Rio’s topology with one re-encoded footprint example.

The spatial division process starts with kd-tree using on single node with the

city lat/long boundaries. The kd-tree is then grown (nodes are divided) based on

three criteria:

• Stopping criterion: when to stop the division of nodes, like reaching a certain
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Figure 3.4: Footprint example with Rio de Janeiro’s topology as background: green
areas are mountains or forests with low circulation of people. Black marks are GPS
measures.
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Figure 3.5: A footprint example after the grid preprocessing (with grid).
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Figure 3.6: A footprint example after the grid preprocessing as itself, cell resize
occurs in most of cases.

Figure 3.7: Re-encoded footprint example with Rio de Janeiro’s topology as back-
ground: green areas are mountains or forests with low circulation of people.
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number of leaves;

• Splitting criterion: where to divide a node, such as divide it in a middle point;

• Next node criterion: which is the next leaf node that will be split, for instance,

greatest number of points within node lat/long boundaries.

Algorithm 1 gives an overview of this kd-tree induction. In a nutshell, the key

idea, like any other kd-tree, is to divide a space into k dimensions, alternately,

each dimension at a time. In our case, we have only two dimensions (latitude and

longitude), so the algorithm alternates splits between these two dimensions, always

observing the criteria mentioned earlier.

This approach can be thought as an enhancement of the previous approach, with

some sort of region-based clustering (as seen in [5]), since the pixels (or attributes)

from the previous approach are merged based on regions of interest. It can also be

transformed into a density-based clustering (as used in [77]) for feature extraction,

since density can be used to decide the next node to be divided.

Algorithm 1: A greedy ’kdtree’ based spatial division algorithm

input : NextNodeCriterion, SplittingCriterion, StopCriteria, tree
output: tree
while not StopCriteria() do

nextNodeToSplit ← GetNextNodeToSplit(tree,NextNodeCriterion);
dimension ← GetNextDimensionToSplit(nextNodeToSplit);
SplitBy(tree,nextNodeToSplit,dimension,SplittingCriterion)

end

3.3 Combining WiSARD layers - WiSARD-

DDAG

Going further on what [78] would define as a neuro-symbolic path, the third and final

approach proposed is an ensemble of WiSARD classifiers. WiSARD classifiers are

used as decision nodes in a decision directed acyclic graph - DDAG [79], a strategy for

multiclass problems. Using this approach, there is an attempt to encode logic rules

that hold between the same input represented in different grid sizes. In that sense,

a example is not only represented by a single gridded image but by a combination

of the same input encoded with different grid sizes.

In a more formal way, suppose that a grid G1, built using the aforementioned

kd-tree approach, is composed of some disjoint cells whose union represent the whole

space (like in Figure 3.8a). Consider also a second grid G2, also built using the same
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strategy with exactly same parameters and data. Its cells’ union also represent the

whole space, but it has more cells than G1 (see an example in Figure 3.8b). Then

each cell in G1 is the union of 1 or more G2 cells. If that holds, the following rule

applies: a trajectory happening in some subset S1 of G1 will happen in some subset

S2 of G2 whose cells are also contained in S1. In practical terms, it is conjectured

that G2 is a granularity refinement or zoom in over G1. Figures in 3.9 try to

illustrate this idea.

(a) Grid G1 (b) Grid G2

Figure 3.8: Hypothetical grids

(a) Grid G1 with a hypothetical foot-
print

(b) Grid G2 with the same hypothetical
footprint

Figure 3.9: Hypothetical grids with a hypothetical (and same) footprint. In light
blue, reader can see the different granularity between grids

This idea leads to a tie breaking policy: if two WiSARD discriminators are in

a tie situation using G1 as input, that tie might not happen when using a more

fine-grained input such as G2.

The proposed WiSARD-DDAG approach works as follows: a set W =

{W1,W2, ...,Wn} of WiSARD classifiers is trained with a combined dataset D =

{D1, D2, ..., Dn} and arranged in n sequential classification layers. Every Di has the

same trajectory examples, but each one is encoded with a different grid, such that

Di grid size is smaller than Di+1 grid size. Dataset Di is used to train WiSARD Wi.

Output class is given by testing the input data at each every layer iteratively,

starting with W1, with three possible paths:

• No class identified: terminate execution with ’UNKNOWN’ answer or output

previous layer WiSARD output if there is one;
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Figure 3.10: The decision directed acyclic graph approach with 4 WiSARD no-
des/layers.

• Class identified: terminate execution and output class;

• Tie: either proceed to next layer or if at last layer, output last WiSARD

response.

When proceeding to a next layer, only classes among the previously tied classes

are considered as valid output classes. Algorithm 2 tries to put this strategy into

picture together with Figure 3.10.
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Algorithm 2: The Decision DAG Algorithm

input : layers, testSample
output: output
filteredPartialResult ←null;
output ←NOTFOUND;
foreach layer l of pretrained layers L do

partialResult ← PredictClass(l,testSample);
filteredPartialResult ←
FilterOnlyPreviouslyPredictedClasses(partialResult);

if filteredPartialResult has only one class then
if filteredPartialResult[0 ]== NOTFOUND then

break;
else

output ←filteredPartialResult[0 ]
end

else if filteredPartialResult has more classes then
output ← BreakTie(filteredPartialResult)

else
break;

end

end
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Chapter 4

Experiments, results and

discussion

The methodology and proposals presented above were tested with some experiments.

All these experiments were run having the same goal: identify buses routes given

vehicles’ trajectory data.

4.1 Dataset definition & Problem parameters

In these experiments, it was collected a month of data between June and July of

2015. This data was then filtered and pre-processed, resulting in the datasets where

the classifiers were applied. In order to filter the data, measures without route

tag (to train a supervised classifier) and measures in regard to routes that are not

necessarily are part of the current system1 were removed.

Concerning the pre-processing step, initial images were generated out of the me-

asures of a vehicle (id) on a single day, following the footprint strategy (as presented

in Section 3.2.1). Plotting parameters were default parameters given by python li-

brary Matplotlib[80], producing black and white images of 620x480 pixels. Those

images were converted to binary vectors of same size or, in other words, 297600 bits.

This initial dataset D1 had 240192 samples, involving 517 different classes (bus

routes), with a highly imbalanced distribution among them (see 4.1 for an illus-

tration). Dataset D1 size is up to 67GB when stored using an ASCII encoding

format.

Several datasets were then produced out of D1, using the strategy mentioned

in Section 3.2.2, based on a kd-tree spatial division. Several criteria were tested

to generate these datasets. In respect to the Next node criteria, there were three

evaluated:

1Although it may seem strange, there are several measures presenting route tags that make no
sense to the bus system. Others have a special prefix, representing experimental routes
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Figure 4.1: Class distribution in dataset D1: almost a power law.

• Size: Largest size of node or how many points inside a node (S);

• Density: Greatest density of a node (D) - with density being defined as

number of points divided by the lat/long boundary of a node;

• Difference to Mean Density: Largest absolute difference to the mean den-

sity of the current node set (DMD).

Two Splitting criteria were also tested:

• Median (M): split the set at the median of the measures inside a node

(latitude or longitude - depending on the dimension being divided);

• Half (H): split the set at the middle point of node boundaries (latitude or

longitude - also depending on the dimension being divided).

Yet, for every combination of the two above-mentioned criteria, four different

grid/kd-tree sizes (256, 1024, 4096 and 16384) were tried, which were consequently

the number of bits of each input vector. The grid size (or number of leaves) was

used as Stopping criteria for the kd-tree growth algorithm as well.

Multiple WiSARD configurations were considered for the simple footprint ap-

proach and the kd-tree grid reencoded image. Once again, it is important to note

that the number of neurons given a fixed-size retina determined also the number of

bits used as addresses. In other words, every time X neurons are used, if a input

vector of B bits is used, this leads to the definition of X tuples of n bits, where

n = B/X (assuming that B | X).
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Solution Grid Size # Neurons F1 score

Original WiSARD 297600 (620x420) 64 0.7815 ± 0.004

Best WiSARD-kdtree

(Density/Half)
16384 32 0.7896 ± 0.0009

2nd Best WiSARD-kdtree

(Difference to Mean Density/Half)
16384 64 0.7843 ± 0.0010

Best WiSARD-DDAG (Size/Half) 256/1024/4096/16384 4/16/32/64 0.7590 ± 0.0006

Table 4.1: Summary of each WiSARD strategy and their best results for the first
experiment

In order to evaluate the WiSARD-DDAG approach (from Section 3.3), a graph

with 4 classifier nodes was considered (one for each grid size we tested before –

256, 1024, 4096, 16384). In addition, for each kd-tree generation combination one

WiSARD-DDAG was experimented, yielding a final test with six WiSARD-DDAGs.

Each classifier node (layer) was built using the best individual result and parameters.

In other words, for a given strategy and a given grid size, if WiSARD Wi had the

best result using nj neurons, it was used with nj neurons in the referred DDAG.

The performed experimental procedure was composed of 5 rounds of a 10-fold

cross-validation. As an example, if a twenty thousand samples dataset were used,

each of its ten (sub)rounds of training and testing would have 18 thousand observa-

tions used as training data, while the remaining 2 thousand examples would be used

to assess classification effectiveness of the tested alternatives. Also in this regard,

the macro-averaged F1 score [81] was chosen as performance measure due to the im-

balanced nature of the data set. All experiments were ran on an Intel(R) Xeon(R)

server, with an E5-2630 2.40GHz CPU and 32GB RAM.

4.2 First Experiment using full dataset

An initial experiment was conducted using the D1 full dataset for the standard Wi-

SARD model and the respective full dataset for each grid size and strategy combina-

tion (Size-Median, Size-Half, DMD-Median, DMD-Half, Density-Half and Density-

Median) for the two proposed approaches (WiSARD-kd-tree and WiSARD-DDAG).

Each dataset was tested using from 4 to 128 neurons in each discriminator.

Table 4.1 presents the winners for each approach. Figure 4.2 shows the perfor-

mance evolution when the numbers of neurons increases. In general, performance

starts increasing until a peak performance is reached and after that the model starts

to deteriorate.

As the reader can see, the best overall result was obtained using WiSARD-kd-

tree, with the ”Density-Half”grid formation strategy and sixty four neurons. It is

interesting to notice that the best model using WiSARD-DDAG did not perform

better than the original grid, thus giving no f1-score increase over it.
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Figure 4.2: Results of the first experiment

4.3 Second Experiment - A Comparison with

other classifiers

A second experiment was conducted using subsets of twenty thousand samples of D1

and the others respective datasets for each grid size and strategy combination (Size-

Median, Size-Half, DMD- Median, DMD- Half, Density-Half and Density-Median)

for the two proposed approaches (WiSARD-kd-tree and WiSARD-DDAG). Each

dataset was tested using from 4 to 256 neurons in each discriminator.

Also, three widely used classifiers were chosen as baselines for our experiment:

Random Forests, Extremely Randomized Trees and Naive Bayes (here adapted for

a black-and-white input). All these comparisons were performed using implementa-

tions obtained from the Scikit Learn [55] package with their default configurations

and parameters.

Table 4.2 highlights the top result for each WiSARD approach (out of 181 com-

binations) as well the baselines compared (Extra Trees, Random Forest and Naive

Bayes) ordered by F1-Score2. The best overall result was obtained using the kd-tree

2A complete table with all experiments is in appendix A

32



Solution Grid Size # Neurons F1 score

WiSARD-kd-tree 16384 64 0.6324 ± 0.0043

WiSARD-DDAG 256/1024/4096/16384 8/16/32/64 0.6209 ± 0.0035

WiSARD 297600 (620x480) 64 0.5989 ± 0.0042

Ext. Rand. Trees 297600 (620x480) N/A 0.5983 ± 0.0070

Random Forests 297600 (620x480) N/A 0.5825 ± 0.0067

Naive Bayes 297600 (620x480) N/A 0.0269 ± 0.0031

Table 4.2: Ranking of WiSARD and its derived methods, as well as the baseline
alternatives. The reported results regard the best configuration of each method,
found by grid-searching through their possible settings. A total of 184 different
instances of all classifiers was evaluated.

approach, using a grid with 16384 cells and using the policy to split at the half the

node with the greatest density.

An aspect denoted by Figure 4.3 and Figure 4.4 is again the evolution of per-

formance when the number of neurons increases, as all tested architectures seem to

reach a peak performance followed by slightly decreases. In addition, the reader can

notice some correlation between a grid size (effectively the size of the input) and

the number of neurons where the best performance is achieved. Smaller grids tend

to reach its peak performance using fewer neurons.
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Figure 4.3: Results of the second experiment

When comparing the performance on F1-Score of different classifiers, as depicted

by Figure 4.5 and Figure 4.6, using the WiSARD-kd-tree approach consistently

achieves better results. ExtraTrees and Random Forests have similar performance,

with the latter reaching a slightly lower performance than the former and with Naive

Bayes being definitely not a good option.

Moreover, it is noticeable the difference of score comparing grid sizes. Both size-

driven policies perform relatively similar even using few cells when other strategies

tend to show progress when increasing their grid sizes. This might indicate that

size-driven grids are more representative of the problem space then other grids.

Concluding, the DDAG approach presents an impressive performance difference

33



0 50 100 150 200 250 300
# of Neurons

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Original Grid Best WiSARD-KDTree

(a) Original WiSARD results (no grid)
w/ Best KD-Tree approach comparison

0 50 100 150 200 250 300
# of Neurons

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

DMD-M-00256
DMD-M-01024
DMD-M-04096
DMD-M-16384

DMD-H-00256
DMD-H-01024
DMD-H-04096
DMD-H-16384

(b) WiSARD-kd-tree (’DMD’) results

0 50 100 150 200 250 300
# of Neurons

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

D-M-00256
D-M-01024
D-M-04096
D-M-16384

D-H-00256
D-H-01024
D-H-04096
D-H-16384

(c) WiSARD-kd-tree (’Density’) results

Figure 4.4: Results of the second experiment (continued)

depending on the grid strategy, which might be related to the representativeness

of the grids. For example, having poor grids at a small granularity (’Density/Half’

and ’DMD/Half’) severely decreases performance, which is not perceived when size-

driven grids are used. The ensemble method was not able to surpass a single kd-tree

approach, but it achieved comparable performance.
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Chapter 5

Conclusions and Future Works

This works aims to contribute to the literature of machine learning and knowledge

discovery from geographical location data. More than ever this is an interesting

and active research area given the current availability of data of this kind due to

the ubiquity of sensors supporting its gathering. In this regard, our research was

based on a very large collection of GPS trajectories from buses in the city of Rio de

Janeiro. The city bus system is in a chaotic situation and identifying labelling in-

consistencies through proper classification of bus routes could be a valuable asset for

city management, specially in regard to traffic optimization and urban engineering.

In this text it was introduced a neuro-symbolic framework for classification based

on GPS data. This framework can be a viable solution to the problem of identifying

the route of running buses of the city of Rio de Janeiro based of their GPS data. The

WiSARD artificial neural network model is the kernel of such tool, contributing with

some of its patent strengths as accuracy and reduced computational cost. Different

pre-processing procedures were explored, namely gridding strategies, to transform

raw geolocation data into WiSARD-friendly binary inputs. Both WiSARD-based

neuro-symbolic learning, as well as binarization techniques compatible with this

model have been approached previously, and this work provides novel findings for

both subjects.

The experimental evaluation of the methods proposed showed that its perfor-

mance is generally at least as good compared to that of other also lightweight,

widely used and state-of-the-art classifiers. That is, the WiSARD-based solution

has the best overall F1-score, but it is precipitate to declare it as an overall winner.

Since using a kdtree grid led to the best performances, testing other tree struc-

tures in this regard is an interesting follow-up of this work. R-trees are also widely

used in the database world, especially when dealing with geospatial queries. Other

classifiers might benefit from using a kd-tree quantization instead of a raw image

approach as well. Although there is some evidence, is was out of the scope of this

work to evaluate this, since it needs to be better investigated.
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Also, the presented framework can be an alternative when dealing with large

data masses and it can be adapted to solve other similar problems such as rogue

vehicle detection. The footprint image and its grid variants can still be explored,

since parameters like grid size and observation window were not exhausted in this

work. Moreover, to further investigate the neuro-symbolic, the DDAG-based lear-

ning process is another interesting future work, possibly considering the addition of

parameters such as a confidence threshold, more nodes and different grid granulari-

ties.

This work is just a step towards a complete solution. The focus was constrained

to a closed class set classification, but there is still room to look at the problem

through an open-set classification perspective. Also, online classification of running

buses is desirable, whenever it is related to real time classification of the API res-

ponses or to the ability to learn new and forget unused routes automatically, as a

human-independent solution.
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pońıvel em: <http://www.fetranspordocs.com.br/downloads/TB4_

DadosoperacionaismensaisdomunicipiodoRio_anode2016.xls>. Ac-

cessed 24 January 2018 (In Portuguese). 4
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Appendix A

Second Experiment Full Results

Rank Method # Neurons F1 Score

1 WiSARD-KDTree (Density/Half/16384) 64 0.6324 ± 0.0043

2 WiSARD-KDTree (Diff. to Mean Density/Half/16384) 64 0.6305 ± 0.0039

3 WiSARD-KDTree (Size/Median/16384) 32 0.6287 ± 0.0034

4 WiSARD-KDTree (Density/Median/16384) 32 0.6274 ± 0.0023

5 WiSARD-KDTree (Diff. to Mean Density/Median/04096) 32 0.6260 ± 0.0036

6 WiSARD-KDTree (Diff. to Mean Density/Median/16384) 32 0.6260 ± 0.0040

7 WiSARD-KDTree (Size/Half/16384) 64 0.6256 ± 0.0038

8 WiSARD-KDTree (Size/Median/04096) 32 0.6252 ± 0.0040

9 WiSARD-KDTree (Density/Median/04096) 32 0.6250 ± 0.0030

10 WiSARD-KDTree (Density/Half/16384) 32 0.6245 ± 0.0041

11 WiSARD-KDTree (Size/Half/04096) 32 0.6237 ± 0.0044

12 WiSARD-KDTree (Size/Half/01024) 16 0.6215 ± 0.0030

13 WiSARD-DDAG (Size/Half) 8/16/32/64 0.6209 ± 0.0035

14 WiSARD-DDAG (Size/Median) 8/16/32/32 0.6180 ± 0.0020

15 WiSARD-KDTree (Size/Median/01024) 16 0.6151 ± 0.0041

16 WiSARD-KDTree (Size/Half/04096) 64 0.6013 ± 0.0032

17 WiSARD 64 0.5989 ± 0.0042

18 Ext. Rand. Trees N/A 0.5983 ± 0.0070

19 WiSARD-KDTree (Size/Median/01024) 32 0.5941 ± 0.0047

20 WiSARD 128 0.5862 ± 0.0042

21 WiSARD-KDTree (Diff. to Mean Density/Median/04096) 64 0.5843 ± 0.0028

22 WiSARD-KDTree (Diff. to Mean Density/Half/16384) 128 0.5841 ± 0.0020

23 WiSARD-KDTree (Size/Half/16384) 128 0.5833 ± 0.0026

24 WiSARD-KDTree (Diff. to Mean Density/Median/16384) 64 0.5829 ± 0.0039

25 WiSARD-KDTree (Size/Median/16384) 64 0.5828 ± 0.0027

26 Random Forests N/A 0.5825 ± 0.0067

27 WiSARD-KDTree (Size/Half/01024) 32 0.5812 ± 0.0026

28 WiSARD-KDTree (Size/Median/04096) 64 0.5809 ± 0.0029

29 WiSARD-KDTree (Size/Median/00256) 8 0.5803 ± 0.0029

30 WiSARD-KDTree (Density/Median/16384) 16 0.5750 ± 0.0018

Table A.1: Final ranking (part 1 of 4): Showing from rank 1 to 30. The number of
experiments was 184.
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Rank Method # Neurons F1 Score

31 WiSARD-KDTree (Size/Half/00256) 8 0.5747 ± 0.0023

32 WiSARD-KDTree (Density/Median/04096) 16 0.5741 ± 0.0049

33 WiSARD-KDTree (Density/Median/16384) 64 0.5720 ± 0.0012

34 WiSARD-KDTree (Density/Median/04096) 64 0.5716 ± 0.0017

35 WiSARD-KDTree (Density/Half/16384) 128 0.5716 ± 0.0028

36 WiSARD-DDAG (Diff. to Mean Density/Median) 8/16/64/32 0.5668 ± 0.0031

37 WiSARD-KDTree (Diff. to Mean Density/Half/16384) 32 0.5631 ± 0.0053

38 WiSARD-DDAG (Density/Median) 8/16/32/32 0.5593 ± 0.0029

39 WiSARD-KDTree (Size/Median/00256) 16 0.5369 ± 0.0033

40 WiSARD-KDTree (Size/Half/16384) 32 0.5340 ± 0.0041

41 WiSARD-KDTree (Diff. to Mean Density/Median/01024) 16 0.5318 ± 0.0031

42 WiSARD-KDTree (Density/Median/01024) 16 0.5265 ± 0.0009

43 WiSARD-KDTree (Size/Half/00256) 4 0.5262 ± 0.0035

44 WiSARD-KDTree (Diff. to Mean Density/Half/04096) 32 0.5240 ± 0.0024

45 WiSARD-KDTree (Density/Half/04096) 32 0.5234 ± 0.0018

46 WiSARD-KDTree (Size/Median/16384) 16 0.5233 ± 0.0071

47 WiSARD-KDTree (Diff. to Mean Density/Median/16384) 16 0.5217 ± 0.0033

48 WiSARD-KDTree (Diff. to Mean Density/Median/04096) 16 0.5215 ± 0.0054

49 WiSARD-KDTree (Size/Half/04096) 128 0.5203 ± 0.0029

50 WiSARD-KDTree (Size/Median/04096) 16 0.5202 ± 0.0045

51 WiSARD-KDTree (Size/Half/00256) 16 0.5188 ± 0.0033

52 WiSARD 256 0.5180 ± 0.0040

53 WiSARD-KDTree (Size/Median/01024) 64 0.5131 ± 0.0043

54 WiSARD-KDTree (Density/Median/01024) 32 0.5094 ± 0.0024

55 WiSARD-KDTree (Diff. to Mean Density/Median/01024) 32 0.5091 ± 0.0026

56 WiSARD-DDAG (Density/Half) 8/16/32/64 0.4974 ± 0.0052

57 WiSARD-DDAG (Diff. to Mean Density/Half) 8/16/32/64 0.4970 ± 0.0014

58 WiSARD-KDTree (Diff. to Mean Density/Half/04096) 64 0.4966 ± 0.0014

59 WiSARD-KDTree (Density/Half/04096) 64 0.4958 ± 0.0021

60 WiSARD-KDTree (Diff. to Mean Density/Median/04096) 128 0.4904 ± 0.0017

61 WiSARD-KDTree (Size/Median/16384) 128 0.4891 ± 0.0029

62 WiSARD-KDTree (Diff. to Mean Density/Median/16384) 128 0.4890 ± 0.0040

63 WiSARD-KDTree (Size/Median/04096) 128 0.4879 ± 0.0022

64 WiSARD-KDTree (Size/Half/16384) 256 0.4877 ± 0.0042

65 WiSARD-KDTree (Size/Half/01024) 64 0.4837 ± 0.0034

66 WiSARD-KDTree (Diff. to Mean Density/Half/16384) 256 0.4803 ± 0.0040

67 WiSARD-KDTree (Size/Median/00256) 4 0.4743 ± 0.0050

68 WiSARD-KDTree (Size/Half/01024) 8 0.4725 ± 0.0023

69 WiSARD-KDTree (Density/Median/04096) 128 0.4696 ± 0.0031

70 WiSARD-KDTree (Density/Median/16384) 128 0.4692 ± 0.0027

71 WiSARD-KDTree (Density/Half/16384) 256 0.4514 ± 0.0041

72 WiSARD-KDTree (Size/Median/00256) 32 0.4277 ± 0.0023

73 WiSARD-KDTree (Density/Median/01024) 64 0.4258 ± 0.0021

74 WiSARD-KDTree (Diff. to Mean Density/Half/04096) 128 0.4253 ± 0.0021

75 WiSARD-KDTree (Density/Half/04096) 128 0.4232 ± 0.0015

76 WiSARD-KDTree (Diff. to Mean Density/Median/01024) 64 0.4207 ± 0.0042

77 WiSARD-KDTree (Size/Median/01024) 8 0.3896 ± 0.0059

78 WiSARD-KDTree (Size/Half/04096) 256 0.3889 ± 0.0039

79 WiSARD-KDTree (Size/Median/01024) 128 0.3888 ± 0.0038

80 WiSARD-KDTree (Diff. to Mean Density/Median/01024) 8 0.3886 ± 0.0025

Table A.2: Final ranking (part 2 of 4): Showing from rank 31 to 80. The number
of experiments was 184.
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Rank Method # Neurons F1 Score

81 WiSARD-KDTree (Size/Half/00256) 32 0.3820 ± 0.0037

82 WiSARD-KDTree (Density/Median/01024) 8 0.3636 ± 0.0054

83 WiSARD-KDTree (Size/Half/04096) 16 0.3626 ± 0.0058

84 WiSARD-KDTree (Diff. to Mean Density/Half/04096) 16 0.3558 ± 0.0022

85 WiSARD-KDTree (Size/Half/01024) 128 0.3556 ± 0.0087

86 WiSARD-KDTree (Density/Half/04096) 16 0.3529 ± 0.0023

87 WiSARD-KDTree (Diff. to Mean Density/Median/04096) 256 0.3335 ± 0.0040

88 WiSARD-KDTree (Diff. to Mean Density/Median/16384) 256 0.3333 ± 0.0033

89 WiSARD-KDTree (Size/Median/04096) 256 0.3324 ± 0.0056

90 WiSARD-KDTree (Size/Median/16384) 256 0.3316 ± 0.0057

91 WiSARD-KDTree (Density/Half/16384) 16 0.3192 ± 0.0085

92 WiSARD-KDTree (Density/Half/04096) 256 0.3169 ± 0.0049

93 WiSARD-KDTree (Diff. to Mean Density/Half/04096) 256 0.3163 ± 0.0038

94 WiSARD 32 0.3115 ± 0.0027

95 WiSARD-KDTree (Density/Median/01024) 128 0.3077 ± 0.0050

96 WiSARD-KDTree (Size/Median/00256) 64 0.3056 ± 0.0069

97 WiSARD-KDTree (Density/Median/04096) 256 0.3036 ± 0.0038

98 WiSARD-KDTree (Density/Median/16384) 256 0.3027 ± 0.0043

99 WiSARD-KDTree (Diff. to Mean Density/Median/01024) 128 0.2965 ± 0.0028

100 WiSARD-KDTree (Density/Half/01024) 16 0.2761 ± 0.0023

101 WiSARD-KDTree (Diff. to Mean Density/Half/01024) 16 0.2756 ± 0.0043

102 WiSARD-KDTree (Diff. to Mean Density/Median/00256) 8 0.2607 ± 0.0034

103 WiSARD-KDTree (Density/Half/01024) 32 0.2577 ± 0.0028

104 WiSARD-KDTree (Diff. to Mean Density/Half/01024) 32 0.2574 ± 0.0017

105 WiSARD-KDTree (Density/Median/16384) 8 0.2565 ± 0.0060

106 WiSARD-KDTree (Density/Median/04096) 8 0.2521 ± 0.0058

107 WiSARD-KDTree (Size/Half/00256) 64 0.2392 ± 0.0032

108 WiSARD-KDTree (Size/Median/01024) 256 0.2334 ± 0.0053

109 WiSARD-KDTree (Density/Median/00256) 8 0.2331 ± 0.0021

110 WiSARD-KDTree (Diff. to Mean Density/Median/00256) 16 0.2230 ± 0.0024

111 WiSARD-KDTree (Diff. to Mean Density/Half/01024) 64 0.2144 ± 0.0024

112 WiSARD-KDTree (Density/Half/01024) 64 0.2123 ± 0.0025

113 WiSARD-KDTree (Density/Median/00256) 16 0.2095 ± 0.0026

114 WiSARD-KDTree (Diff. to Mean Density/Half/00256) 8 0.2091 ± 0.0019

115 WiSARD-KDTree (Diff. to Mean Density/Half/01024) 8 0.2042 ± 0.0034

116 WiSARD-KDTree (Density/Half/00256) 8 0.2039 ± 0.0021

117 WiSARD-KDTree (Diff. to Mean Density/Median/00256) 4 0.2014 ± 0.0023

118 WiSARD-KDTree (Density/Half/01024) 8 0.2012 ± 0.0022

119 WiSARD-KDTree (Size/Half/01024) 256 0.1946 ± 0.0066

120 WiSARD-KDTree (Diff. to Mean Density/Median/16384) 8 0.1911 ± 0.0055

121 WiSARD-KDTree (Size/Half/01024) 4 0.1907 ± 0.0039

122 WiSARD-KDTree (Size/Median/16384) 8 0.1892 ± 0.0040

123 WiSARD-KDTree (Diff. to Mean Density/Median/04096) 8 0.1883 ± 0.0047

124 WiSARD-KDTree (Size/Median/04096) 8 0.1879 ± 0.0037

125 WiSARD-KDTree (Diff. to Mean Density/Half/16384) 16 0.1866 ± 0.0032

126 WiSARD-KDTree (Density/Median/00256) 4 0.1791 ± 0.0045

127 WiSARD-KDTree (Density/Median/01024) 256 0.1788 ± 0.0033

128 WiSARD-KDTree (Diff. to Mean Density/Median/01024) 256 0.1753 ± 0.0018

129 WiSARD-KDTree (Diff. to Mean Density/Median/00256) 32 0.1726 ± 0.0009

130 WiSARD-KDTree (Density/Half/00256) 16 0.1691 ± 0.0023

Table A.3: Final ranking (part 3 of 4): Showing from rank 81 to 130. The number
of experiments was 184.
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Rank Method # Neurons F1 Score

131 WiSARD-KDTree (Diff. to Mean Density/Half/00256) 16 0.1668 ± 0.0033

132 WiSARD-KDTree (Diff. to Mean Density/Half/01024) 128 0.1630 ± 0.0032

133 WiSARD-KDTree (Density/Half/01024) 128 0.1623 ± 0.0040

134 WiSARD-KDTree (Density/Median/00256) 32 0.1593 ± 0.0012

135 WiSARD-KDTree (Size/Half/16384) 16 0.1568 ± 0.0044

136 WiSARD-KDTree (Diff. to Mean Density/Median/01024) 4 0.1567 ± 0.0038

137 WiSARD-KDTree (Diff. to Mean Density/Half/00256) 4 0.1566 ± 0.0010

138 WiSARD-KDTree (Size/Median/01024) 4 0.1540 ± 0.0027

139 WiSARD-KDTree (Density/Half/00256) 4 0.1526 ± 0.0019

140 WiSARD-KDTree (Size/Median/00256) 128 0.1520 ± 0.0046

141 WiSARD-KDTree (Size/Half/04096) 8 0.1368 ± 0.0023

142 WiSARD-KDTree (Diff. to Mean Density/Half/00256) 32 0.1335 ± 0.0010

143 WiSARD-KDTree (Density/Half/00256) 32 0.1329 ± 0.0012

144 WiSARD-KDTree (Density/Median/01024) 4 0.1318 ± 0.0049

145 WiSARD-KDTree (Diff. to Mean Density/Median/00256) 64 0.1230 ± 0.0021

146 WiSARD-KDTree (Density/Median/00256) 64 0.1189 ± 0.0012

147 WiSARD-KDTree (Diff. to Mean Density/Half/01024) 256 0.1114 ± 0.0023

148 WiSARD-KDTree (Diff. to Mean Density/Half/04096) 8 0.1113 ± 0.0033

149 WiSARD-KDTree (Density/Half/01024) 256 0.1105 ± 0.0023

150 WiSARD-KDTree (Density/Half/04096) 8 0.1082 ± 0.0050

151 WiSARD-KDTree (Size/Half/00256) 128 0.1004 ± 0.0055

152 WiSARD-KDTree (Density/Half/00256) 64 0.0976 ± 0.0018

153 WiSARD-KDTree (Diff. to Mean Density/Half/00256) 64 0.0973 ± 0.0021

154 WiSARD-KDTree (Diff. to Mean Density/Half/01024) 4 0.0915 ± 0.0031

155 WiSARD-KDTree (Density/Half/01024) 4 0.0895 ± 0.0023

156 WiSARD-KDTree (Density/Median/00256) 128 0.0855 ± 0.0025

157 WiSARD-KDTree (Density/Half/16384) 8 0.0839 ± 0.0027

158 WiSARD-KDTree (Density/Median/16384) 4 0.0773 ± 0.0021

159 WiSARD-KDTree (Density/Median/04096) 4 0.0748 ± 0.0026

160 WiSARD-KDTree (Diff. to Mean Density/Median/00256) 128 0.0729 ± 0.0005

161 WiSARD-KDTree (Density/Half/00256) 128 0.0623 ± 0.0015

162 WiSARD-KDTree (Diff. to Mean Density/Half/00256) 128 0.0616 ± 0.0016

163 WiSARD 16 0.0613 ± 0.0012

164 WiSARD-KDTree (Size/Median/16384) 4 0.0581 ± 0.0023

165 WiSARD-KDTree (Diff. to Mean Density/Median/16384) 4 0.0579 ± 0.0038

166 WiSARD-KDTree (Diff. to Mean Density/Median/04096) 4 0.0578 ± 0.0014

167 WiSARD-KDTree (Size/Median/04096) 4 0.0550 ± 0.0016

168 WiSARD-KDTree (Diff. to Mean Density/Half/16384) 8 0.0528 ± 0.0020

169 WiSARD-KDTree (Size/Half/04096) 4 0.0508 ± 0.0012

170 WiSARD-KDTree (Size/Half/16384) 8 0.0450 ± 0.0016

171 WiSARD-KDTree (Size/Median/00256) 256 0.0391 ± 0.0023

172 WiSARD-KDTree (Diff. to Mean Density/Half/04096) 4 0.0368 ± 0.0023

173 WiSARD-KDTree (Density/Half/04096) 4 0.0367 ± 0.0014

174 WiSARD-KDTree (Density/Median/00256) 256 0.0363 ± 0.0009

175 WiSARD 8 0.0313 ± 0.0014

176 Naive Bayes N/A 0.0269 ± 0.0031

177 WiSARD-KDTree (Density/Half/16384) 4 0.0254 ± 0.0010

178 WiSARD-KDTree (Diff. to Mean Density/Median/00256) 256 0.0245 ± 0.0017

179 WiSARD-KDTree (Diff. to Mean Density/Half/16384) 4 0.0217 ± 0.0011

180 WiSARD-KDTree (Density/Half/00256) 256 0.0208 ± 0.0026

181 WiSARD-KDTree (Size/Half/16384) 4 0.0202 ± 0.0011

182 WiSARD 4 0.0197 ± 0.0010

183 WiSARD-KDTree (Diff. to Mean Density/Half/00256) 256 0.0193 ± 0.0019

184 WiSARD-KDTree (Size/Half/00256) 256 0.0160 ± 0.0028

Table A.4: Final ranking (part 4 of 4): Showing from rank 131 to 184. The number
of experiments was 184.
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