
i

RETRIEVING CURATED STACK OVERFLOW POSTS OF SIMILAR PROJECT

TASKS

Gláucia Melo dos Santos

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia de

Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

título de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Toacy Cavalcante de Oliveira

Rio de Janeiro

Dezembro de 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Pantheon

https://core.ac.uk/display/349545893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

RETRIEVING CURATED STACK OVERFLOW POSTS OF SIMILAR PROJECT

TASKS

Gláucia Melo dos Santos

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

 Prof. Toacy Cavalcante de Oliveira, D.Sc.

 Prof. Cláudia Maria Lima Werner, D.Sc.

 Prof. Eber Assis Schmitz, PhD.

RIO DE JANEIRO, RJ - BRASIL

DEZEMBRO DE 2018

iii

Santos, Gláucia Melo dos

Retrieving curated Stack Overflow Posts of similar project

tasks / Gláucia Melo dos Santos – Rio de Janeiro: UFRJ/COPPE,

2018.

XI,118 p.:il.; 29,7cm.

Orientador: Toacy Cavalcante de Oliveira

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2018.

Referências Bibliográficas: p.92-99

 1. Software Engineering. 2. Curated Stack Overflow

Posts. 3. Project Task Context Similarity. I. Oliveira, Toacy

Cavalcante de. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia de Sistemas e Computação.

III. Título.

iv

Agradecimentos

A única maneira de começar é agradecendo a Deus. Sou imensamente grata.

Agradeço aos meus pais Fátima e Cristóvão, minha irmã Gisele, minha madrinha Lila

e prima Thaisa pelo apoio ILIMITADO enquanto estive buscando o título de mestre e

nas tantas outras fases.

Agradeço ao meu orientador Toacy, por toda a sua paciência e apoio, além de

me impulsionar ao máximo como acadêmica, sempre respeitando e tentando tirar o

máximo proveito do meu histórico profissional. Também por me dar a oportunidade de

visitar a Universidade de Waterloo. Agradeço também à sua família por ter

desempenhado um papel muito importante durante minha visita a Waterloo. Estou

muito feliz por ter tido essa oportunidade e por ter tido a chance de trabalhar com os

incríveis professores Paulo Alencar e Don Cowan.

Agradeço a todos os meus colegas do Grupo Prisma pelo apoio, e aos meus

amigos do mestrado Victor e Rachel. Agradeço ao Luiz Oliveira, aos professores

Daniel e Jano, com quem publiquei meu primeiro artigo. Agradeço também ao Global

Affairs Canada, por financiar parte de minha pesquisa por meio do programa de bolsas

ELAP. Obrigada a empresa SpazioDati que nos permitiu utilizar os serviços de sua

API.

Alguns amigos me apoiaram incrivelmente durante o caminho à esta conquista:

todos os meus amigos da OWSE, que me ajudaram no trabalho enquanto eu estava

no campus; Ulisses, que me ouviu durante esses 3 anos; Bruno Brazil, que me ajudou

com dados para meus estudos; Paola Fernandes, que foi minha roommate durante o

primeiro ano de Mestrado e respeitou minha dedicação, cuidando da casa e cuidando

de mim mesma quando a única coisa que eu conseguia fazer era conciliar trabalho e

estudos; Paola Kozlowiski, por todas as longas conversas e por me motivar toda vez

que eu pensava que não era boa o suficiente, e por me receber em sua casa me

ajudando por muitas vezes com a logística para assistir às aulas, assim como minha

prima Nathalia. Agradeço também ao meu amigo e mentor Walter Magioli, que me

incentivou a realizar esse sonho desde o início.

E por último, mas não menos importante, agradeço à UFRJ e aos professores

por me darem a chance de trabalhar e aprender com esse incrível grupo de

pesquisadores. Considero como um sonho realizado e, para ser honesta, ainda é

difícil acreditar em ter tido a chance de trabalhar com professores de tão alto nível e

que tanto me ensinaram.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

RECUPERANDO POSTS DO STACK OVERFLOW QUE SOFRERAM CURADORIA

DE TAREFAS SIMILARES

Gláucia Melo dos Santos

Dezembro/2018

Orientador: Toacy Cavalcante de Oliveira

Programa: Engenharia de Sistemas e Computação

O desenvolvimento de software depende de diversas tecnologias e métodos e,

como resultado, as equipes de desenvolvimento de software geralmente lidam com

problemas em que não são especialistas. Para lidar com a falta de conhecimento,

desenvolvedores normalmente procuram informações em sites de perguntas e

respostas, como o Stack Overflow, um site usado para encontrar soluções para

problemas específicos relacionados à tecnologia. O acesso a esses sites não é

integrado ao ambiente de desenvolvimento de software e porque as associações entre

os projetos de desenvolvimento de software e as fontes de suporte de soluções

conhecidas não são explicitamente registradas. Com isso, desenvolvedores de

software podem investir um esforço em procurar soluções para problemas

semelhantes várias vezes. Essa falta de integração dificulta o reuso do conhecimento

obtido, além de não evitar esforços de busca e seleção, a curadoria, repetidas vezes.

Esta pesquisa tem como objetivo realizar um estudo sobre a associação explicita entre

elementos do projeto (como tarefas de projeto) a publicações do Stack Overflow que já

sofreram curadoria por desenvolvedores, e apresenta um estudo sobre sugestões de

publicações do Stack Overflow a desenvolvedores com base na similaridade de

tarefas de projeto.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

RETRIEVING CURATED STACK OVERFLOW POSTS OF SIMILAR PROJECT

TASKS

Gláucia Melo dos Santos

December/2018

Advisor: Toacy Cavalcante de Oliveira

Department: Computer Science Engineering

Software development depends on diverse technologies and methods and as a

result, software development teams often handle issues in which team members are

not experts. In order to address this lack of expertise, developers typically search for

information on web-based Q&A sites such as Stack Overflow, a well-known place to

find solutions to specific technology-related problems. Access to these web-based

Q&A locations is currently not integrated into the software development environment,

and since the associations between software development projects and the supporting

sources of known solutions, usually referred to as knowledge, is not explicitly recorded,

software developers often need to search for solutions to similar recurring issues

multiple times. This lack of integration hinders the reuse of the knowledge obtained,

besides not avoiding efforts of search and selection, curation, of this knowledge over

and over again. This research aims at proposing a study regarding explicitly

associating project elements (such as project tasks) to Stack Overflow posts that have

already been curated by developers, and presents a study about Stack Overflow posts

suggestions to developers based on similarity of project tasks.

vii

INDEX

1 Introduction .. 1

1.1 Context and Motivation .. 1

1.2 Objectives .. 4

1.3 Methodology .. 5

1.4 Organization .. 7

2 Theoretical Foundation .. 9

2.1 Introduction .. 9

2.2 From Software Processes to Software Projects 9

2.2.1 Project Work Plan and Project Management Tools 11

2.3 Q&A Websites as Knowledge Repositories.. 14

2.3.1 Stack Overflow ... 15

2.4 Data Mining ... 21

2.4.1 Recommendation Systems for Software Engineering 22

2.4.2 Similarity Metrics .. 23

2.5 Conclusion ... 32

3 Related Work ... 33

3.1 Introduction .. 33

3.2 Search Objectives .. 34

3.3 Planning .. 35

3.4 Execution ... 38

3.5 Analysis ... 43

3.5.1 Searching for and delivering Stack Overflow Posts 43

3.5.2 Defining a common context and using text similarity 46

3.5.3 Considerations regarding the association between software

development context and Stack Overflow ... 47

3.5.4 Considerations regarding evaluation Samples 47

3.6 Threats to Validity .. 48

3.7 Conclusion ... 49

4 Study on reusing curated Stack Overflow Posts ... 51

4.1 Introduction .. 51

4.2 Study Overview ... 52

4.3 Preliminary Assessment .. 55

4.3.1 Planning ... 56

4.3.2 Execution ... 57

viii

4.3.3 Reporting ... 59

4.3.4 Discussion ... 61

4.3.5 Threats to Validity .. 62

4.3.6 Conclusion ... 62

4.4 Study on reusing curated Stack Overflow Posts 63

4.4.1 Project Task Context .. 63

4.4.2 Study Implementation .. 69

4.5 Conclusion ... 75

5 Evaluation .. 76

5.1 Introduction .. 76

5.2 Metrics ... 77

5.3 Methodology .. 78

5.4 Executing the implemented RapidMiner process 79

5.5 Results .. 81

5.6 Threats to validity ... 84

5.7 Conclusion ... 85

6 Conclusion ... 87

6.1 Introduction .. 87

6.2 Contributions ... 88

6.3 Limitations ... 90

6.4 Future Work ... 91

References .. 92

Appendix A – Dandelion + R Implementation Code ... 100

Appendix B – Preliminary Assessment Implementation Code 107

Appendix C – Dataset Sample ... 109

Appendix D – SMS exclusion form ... 112

Appendix E – RapidMiner Process XML .. 114

Appendix F – Combinations on project task context elements 118

ix

INDEX OF FIGURES

Figure 1.1: Methodology timeline. ... 7

Figure 2.1: From process concept to project task. ... 11

Figure 2.2: Trello screen. .. 12

Figure 2.3: Redmine task list. Source: redmine.org. .. 13

Figure 2.4: Jira task list. .. 13

Figure 2.5: Scrum Tasks white board example. .. 14

Figure 2.6: Stack Overflow home page. .. 16

Figure 2.7: Stack Exchange Data Explorer web page interface. 17

Figure 2.8: Stack Overflow database domain model. .. 19

Figure 2.9: Stack Overflow question. .. 20

Figure 2.10: Stack Overflow answer. .. 20

Figure 2.12: Dandelion text similarity webpage. .. 28

Figure 2.13: Dandelion browser submission example. .. 29

Figure 2.14: RapidMiner Process Example. .. 31

Figure 3.1: Number of articles included in selection process. 41

Figure 4.1: BPMN process representing curation steps. ... 53

Figure 4.2: Proposed approach overview. ... 55

Figure 4.3: Domain project task context elements' model. .. 66

Figure 4.4: Task #29501 from Redmine project. ... 67

Figure 4.5: Task #13310 from industry project. ... 68

Figure 4.6: RapidMiner process. ... 71

Figure 4.7: Process Document from Data sub process. .. 72

Figure 4.8: Similarity table example. ... 72

x

INDEX OF TABLES

Table 2.1: Dandelion parameters. .. 29

Table 3.1: PICO (PAI et al., 2004) for SMS. .. 35

Table 3.2: Search string – January 2018. .. 36

Table 3.3: Search string – September 2018. ... 36

Table 3.4: Number of articles retrieved from database. ... 39

Table 3.5: Articles selected after reading Title and Abstract. 39

Table 3.6: Systematic Mapping Study selected papers. .. 42

Table 3.7: Criteria extracted from selected articles. .. 43

Table 3.8: Results extracted from articles. .. 44

Table 4.1: Manual association between Task and Stack Overflow posts. 59

Table 4.2: Levenshtein similarity calculations and developer’s opinion about Stack

Overflow post recommendation – Task1. .. 60

Table 4.3: Levenshtein similarity calculations and developer’s opinion about Stack

Overflow post recommendation – Task2. .. 60

Table 4.4: Levenshtein similarity calculations and developer’s opinion about Stack

Overflow post recommendation – Task3. .. 61

Table 4.5: Context description and source of elements. .. 65

Table 4.6: Examples on Tags for Project and Task. .. 66

Table 4.7: Context for Task #29501. ... 68

Table 4.8: Confusion matrix example. ... 75

Table 5.1: Confusion matrix. ... 82

Table 5.2: Evaluation Results – RQ1. ... 83

Table 5.3: Comparison of results with Related Work. .. 83

Table 5.4: Evaluation of combinations of project task context elements – RQ2. 84

xi

INDEX OF EQUATIONS

Equation 2.1: Levenshtein Distance – strings similarity metrics. 25

Equation 2.2: Formula application example. ... 25

Equation 2.3: Formula application example result. .. 25

Equation 2.4: Jaccard similarity. ... 26

Equation 2.5: Jaccard distance. .. 26

Equation 5.1: Precision formula. ... 77

1

1 Introduction

This chapter introduces the dissertation and presents its context and

main objectives. It also presents the methodology and how this

document is divided and organized over the next chapters.

1.1 Context and Motivation

Software development is a knowledge-intensive collaborative activity (DI CICCIO

et al., 2015) (VASANTHAPRIYAN et al., 2015). Currently, the development

environment constantly changes with the variety of technologies in use. Therefore, new

knowledge must be constantly gathered and software engineers need to engage in

tasks that are related to knowledge management, such as learning, capturing and

reusing collaborative knowledge during a software project (VASANTHAPRIYAN et al.,

2015). Software development tasks are organized through a software development

process and performed by people. During the execution of a software development

process (the act of working on tasks related to software development), knowledge and

expertise from developers are vital for the project to succeed (VASANTHAPRIYAN et

al., 2015).

There are a number of components that support software development, such as

code editors and debuggers (ROBERTO MINELLI et al., 2015). The software

development environment is usually an integrated system of these components with

which developers interact to build a software product. In order to acquire external

support (e.g., code snippets), developers frequently switch between a development

environment and browsers (MEYER et al., 2017). The support tools where developers

search for assistance and the development environment are not closely coupled.

Developers must leave the development environment, reason about relevant and

accurate terms for searches, open a browser, verify the results of the search, check if

the source is reliable and only then transfer the knowledge obtained to the software

and test the code or information (PONZANELLI et al., 2014) (MEYER et al., 2017).

Such activity usually occurs more than once, as software projects are large-scale

organized processes (software projects are iterative).

2

Important sources of knowledge - which is the information software developers

use to support them while working - are Question and Answer (Q&A) websites. These

websites represent communities where people ask and/or answer questions to get

support for whatever problem or doubt they encounter. Many Q&A websites have

voting and reputation systems implemented to ensure users are likely to get valuable

content (ANDERSON et al., 2012). A famous Q&A site for software engineers is Stack

Overflow (MAMYKINA et al., 2011; FUMIN et al., 2016; LIU et al., 2016; SAHU et al.,

2016), a community with millions of users that has become famous as a main source of

knowledge for developers. Stack Overflow is focused on getting detailed answers

about technical problems commonly found during software development. Stack

Overflow is mostly, but not uniquely, used during the development phase that

comprises coding and testing. Stack Overflow allows developers to place questions

regarding problems they have encountered so anyone can attempt to answer the

questions. Even though Stack Overflow participants might not be aware of specific

details of a project or company, as long as the developer provides enough information

for the problem to be understood or reproduced, one or more persons will likely work

on an answer.

Although Stack Overflow is widely used during software development as a source

of knowledge for developers (MAMYKINA et al., 2011), there are still issues about

explicitly associating the tasks performed during development and the knowledge

obtained from a Stack Overflow Post. Researchers have pointed the lack of integration

of the support often needed by software developers with the project as an open issue

(WANG et al., 2014) (PONZANELLI et al., 2014) (PONZANELLI et al., 2013);

Researches also point the lack of integration between IDEs and software development

team’s workflow as a problem (PONZANELLI et al., 2014). Some papers have

proposed solutions to integrate Stack Overflow to the software project, but mainly

focusing in issues (bugs, exceptions) and not the project plan. There is research

stating that developer’s expertise results in successful projects (VASANTHAPRIYAN et

al., 2015). This expertise is not considered when the selection of Stack Overflow Posts

is totally automated. Also, for projects that are not managed in English language, this

can be challenging, considering Stack Overflow content is mainly in English language.

And research has already pointed the text overlap between issues and Stack Overflow

can be as low as 16% (CORREA & SUREKA, 2013).

Researchers have worked on investigating the daily routine of software

developers, by observing how they perform their tasks, in order to perceive how

developers organize their work. Studies found that developers can spend most of their

3

time reading documentation (SINGER et al., 2010), and they also discovered search

tools are massively used (MEYER et al., 2017). More specifically, 57% of the daily

routine of developers is invested in fixing bugs; making enhancements on the system

consumes 35% of their day. Searching for external sources of knowledge is not only a

daily and usual activity performed by software developers, but also part of most of their

workday.

The effort of tapping into sources of support, reasoning about the help needed

and choosing among the vast available content will be referred in this dissertation as

curation. This term, inspired by the arts fields, has the following meaning in Oxford

dictionary:

“Select, organize, and look after the items in (a

collection or exhibition) … or

 Select, organize, and present (online content,

merchandise, information, etc.), typically using

professional or expert knowledge”

This effort of tapping into documentations and sources of knowledge is a great

part of developer’s routine, and is not coupled to the development project.

In summary, the problems identified are:

• Developers employ tacit knowledge or knowledge that was discovered during

development when looking in Stack Overflow, and these Posts are not

explicitly captured in the software project;

• Search results are detached (PONZANELLI et al., 2014) from project, meaning

there is no explicit association between curated Stack Overflow Posts and

software development;

• The curation effort, a time-consuming part of the daily life of software

developers, could be reused due to the iterative characteristic of software

development, but is hardly reused;

The research reported in this dissertation aims at capturing and reusing curation

effort by proposing to use project task information to identify and integrate the curated

Stack Overflow Posts with the software development project. This integration allows

Stack Overflow Posts suggestions and reuse once similar project tasks are identified.

We believe there is a possibility to suggest Stack Overflow Posts by integrating the

4

curated Stack Overflow Post to the project and using project task text similarity to aid

this suggestion, and this dissertation provides indications that this is possible.

Integrating curated Stack Overflow posts to software development projects could

help developers avoid performing curation of information multiple times, redundantly.

This work proposes to address the problems by (1) associating curated Stack Overflow

posts used to complete a project task with that task; (2) identifying a project task

context, (3) proposing a study to investigate the possibility to relate project tasks by

their similarity; (4) building an implementation that is able to retrieve project task

similarities, and (5) evaluating the study. The goal is to investigate the possibility to

reuse Stack Overflow Posts based on the similarity of the project tasks they are

working on or have worked on, and understand how project task context can influence

the effectiveness of Stack Overflow Posts suggestion.

1.2 Objectives

This dissertation aims at investigating the possibility to reuse curated Stack

Overflow Posts through the identification of similar project tasks. To investigate the

problems researched and to address the investigations, an objective for this work was

established. To define a goal for this study the GQM (Goal, Question, Metric) approach

(VAN SOLINGEN et al., 2002) was used. According to the GQM approach, the main

objective of this work is to

analyze project task context and similarity
with the purpose of reusing curated Stack Overflow Posts

from the point of software developers
in the context of software project development.

The specific goals towards this main goal are:

Obtaining the state-of-the-art of existing approaches that associate

software development projects with Stack Overflow. This objective aims to solve

the lack of vision of the state of the art in the area of strategies that aim to associate

the knowledge available in Stack Overflow to software development. To do this, it is

important (1) to investigate the current proposed strategies, and (2) to identify what the

proposals have in common, what are the most common metrics and to map the results

in each selected paper. To accomplish the objectives, this dissertation aims at (1)

presenting a systematic mapping study of the current state of the literature and (2)

identifying the characteristics of the retrieved articles, in order to support the

elaboration of the proposal in this work.

5

Identification of project task contexts. It is important to identify a set of project

task contexts that effectively allow curated Stack Overflow Post reuse through project

task similarity retrieval.

Implementation of a process to retrieve project task similarities. In order to

assess the possibility to reuse curated Stack Overflow Posts when project tasks are

similar, we believe it’s important to build as part of the study an implementation of a

process that retrieves project task similarities.

Evaluation. Obtain metrics for the provided implementation in order to

quantitatively assess the possibility to reuse curated Stack Overflow Posts, as well as

to investigate possible outcomes when project context elements vary.

1.3 Methodology

The methodology presented conducted the research, in order to achieve the

objectives proposed in Section 1.2. Figure 1.1 presents this dissertation’s methodology

timeline and activities, which will be detailed further in this work.

1. Selection of research topic: this dissertation’s subject arose from one

master course “Knowledge Intensive Processes” and from the

participant’s industry experience in software engineering and use of

Stack Overflow support. This brought the interest in this subject among

the research participants and these discussions supported the selection

of this topic.

2. Ad-Hoc Literature Review: after the topic selection, an ad-hoc

literature review was conducted in order to gather detailed information

regarding associating Stack Overflow Posts to software development.

During this review, we observed there are a number of researches

aiming at solving this problem, indicating there is a concern in

decreasing the separation between Stack Overflow content and

software development.

3. Preliminary Assessment: after gathering existing information in

literature of existing solutions for the problem, we conducted a

preliminary assessment, a Java implementation with industry

practitioners, in order to get indications if (1) the problem identified

existed in an industry scenario, and (2) the idea of the proposal could

possibly allow Stack Overflow Post reuse.

6

4. Systematic Mapping Study: considering the positive outcome of the

preliminary assessment, a Systematic Mapping Study (SMS) was

performed in order to obtain information regarding current researches on

software development and Stack Overflow Post association. The articles

found were important for getting insights about the problem we’ve

identified, as well as current proposed tools and studies.

5. Data Collection and Implementation: after the SMS was concluded

and a broader view of research was settled, an implementation of the

proposal was built in R language and using Dandelion similarity API,

which proved to be powerful tools. Although results were good, this

phase ended up serving as idea improvement, rather than for the final

proposal. Dandelion belongs to a private company and they don’t share

the code, hampering the proposal’s reproduction. For this reason, this

implementation is not described in this dissertation. The dataset

collected to test this implementation was kept for further

implementations.

6. Building Process and Evaluating: with the idea of the proposal

matured by the experience obtained in the previous implementation, we

developed a process using RapidMiner, a powerful data mining tool.

Both proposal and evaluation were implemented in this phase of the

research. The sample used to evaluate the process was the same

sample gathered in the previous step of this methodology.

7. Systematic Mapping Study Update: an update of the previous SMS

was performed in this step, in order to assess recent papers and test if

results and conclusions to include or exclude papers would be different

from the first SMS performed.

8. Final report development: all performed steps for this research were

organized in this dissertation format, providing extensive details

regarding findings.

7

Figure 1.1: Methodology timeline.

 The master’s qualification was presented in November 23th, 2017. The

qualification included the initial literature reviews and the preliminary assessment

results. The results of the preliminary assessment were published in XXI

Iberoamerican Conference on Software Engineering – CiBSE 2018 (Gláucia Melo,

Ulisses Telemaco, Toacy Oliveira, Paulo Alencar, Don Cowan. “Towards using task

similarity to recommend Stack Overflow posts”. Proceedings of CiBSE, 2018.)

1.4 Organization

The overall structure of this dissertation takes the form of six chapters and six

appendices. Besides the introduction, which explores the problem, motivations,

objectives and methodology of this research, the following chapters are presented:

Chapter 2 – Theoretical Foundation: Chapter two begins by laying out the

theoretical dimensions of the research, and looks at important concepts on Software

Development. It also presents Question and Answer websites, and Stack Overflow,

laying out its importance to the development community worldwide. Data Mining,

Recommendation Systems and Similarity strategies for recommendation systems are

also presented, since concepts from these theories are used in this dissertation

development.

Chapter 3 – Systematic Mapping Study: the Systematic Mapping Study plan,

execution, results and discussion are presented in this chapter. It features the study

planning, articles selection criteria and presents main findings in literature regarding

8

approaches that associate Stack Overflow and software development. Chapter 3

comprises methodology steps #4 and #7.

Chapter 4 – Proposal development and implementation: the study of curated

Stack Overflow Posts reuse is described in this chapter. It presents the project task

context identification and details the implementation of a process that retrieves project

task similarities. This chapter presents step #6 of the methodology.

This Chapter also presents a preliminary study performed in the early stages of

this research, step #3 of the methodology.

Chapter 5 – Evaluation: Chapter five presents the execution of the process

implemented. The results are presented for both proposed evaluations, reporting

precision and accuracy metrics. This chapter describes the evaluation step #6 and

uses the data collected in step #5 of this dissertation’s methodology.

Chapter 6 – Conclusions: presents a final discussion, future work possibilities

and also discusses limitations of this work.

Appendix A – Dandelion+R Implementation Code: it presents the source code

for the R implementation, using Dandelion similarity API. This was step #5 of this

dissertation.

Appendix B – Preliminary Assessment Implementation Code: here we

present the souce code for the preliminary assessment. It was a Java implementation

using a text lists of data.

Appendix C – Dataset Sample: it includes the information of the dataset used in

the evaluation step.

Appendix D – SMS exclusion form: we present here a form structured with

information from the excluded papers of the Related Work section. It presents each

excluded work and the reason for exclusion.

Appendix E – RapidMiner process XML: here we present the XML source code

of the process implemented in RapidMiner.

Appendix F – More combinations of project task context elements: finally,

here we present results for a wider list of project task context combinations, other than

the ones presented in the Evaluation Chapter 5, performed using RapidMiner.

9

2 Theoretical Foundation

This chapter contains details of the concepts involved in this

dissertation. It starts with an introduction of the further connecting and

describing each topic.

2.1 Introduction

This dissertation proposes a study to relate similar project tasks in order to reuse

Stack Overflow Posts, according to the project task’s similarity. Project task context

elements are used to discover the similarity. The similarity comparison is conducted for

pairs or project tasks. Each pair of tasks is submitted to similarity retrieval between

pairs of project tasks. A high similarity can indicate that the tasks could share the same

Stack Overflow Post associated to one of them. These main concepts mentioned are

described in this section. This section presents an overview of Software Processes,

given project tasks (elements’ which similarities will provide the source information for

similarity retrieval) can be derived from Software Processes. Q&A websites and Stack

Overflow, more specifically, are also discussed in this section; hence the knowledge

support source for developers discussed in this work is Stack Overflow. This chapter

also presents concepts of Data Mining and Recommendation Systems for Software

Engineering, as well as Similarity metrics, respectively, since those concepts are also

related to the study product of this dissertation. Finally, considerations over the

theoretical foundation are made; more specifically how these concepts are aligned and

together conceive this work’s background.

2.2 From Software Processes to Software Projects

Processes are an important concept to be used during software development, in

order to work towards the goal of software quality (FUGGETTA, 1996), or the steps

towards achieving a goal (FEILER & HUMPHREY, 1993). The dynamic work of

developing software is constantly evolving according to the technology needs of the

company and also of the software practices employed (AURUM et al., 2008). Software

processes can be used in different contexts, and are heavily context-dependent, which

means their outcomes vary according to the development environment, and comes as

10

a way to support the process improvement, management and also provide guidance in

performing the process (MÜNCH et al., 2012). There are definitions, such as Rocha’s

(DA ROCHA, et al., 2001), which suggests that software development involves a

transformation phase between Process Modeling and Process Execution, each with

characteristics of its own. Process modeling defines essentially a process methodology

and process execution provides the steps to be executed as part of that process

(MÜNCH et al., 2012). Part of this transformation – a conceptual piece of the process

lifecycle - is represented in Figure 2.1. Quality standards, maturity models and software

development methodologies, as well as other technological or software architectural

related concepts outline the Concept Cloud presented in Figure 2.1. Then, this

Concept Cloud (1) is synthesized into Process Models (2), which contains information

about process activities and their relations, considering what are the specialized needs

from the organization, work groups and projects (DA ROCHA, et al., 2001). After

instantiation, processes can be executed, and project tasks are produced as part of the

Project Work Plan (3) creation. At this stage, it is possible to create and work on project

tasks. Other authors have found this approach to Software Process transformation

useful for Process Representation (CAMPOS & OLIVEIRA, 2013), Process Tailoring

(PILLAT et al., 2015) and Process Mining (M. VALLE et al., 2017) (SANTOS et al.,

2015). While in the Project Work Plan (3) stage, project tasks are created and

developers are able to work on these tasks. In this step of software construction,

knowledge from software developers, as well as knowledge from a variety of sources is

massively needed. The Project Work Plan (3) is the process model with specific

characteristics of the organization and deadlines of the project, for example, resources

for projects, which developers work on the project and which are responsible for each

task and also deadlines for tasks. This is the stage where the project can be started

and in which tasks can be executed by developers or automatically (REIS, 2003). In

the context of this work, the Project Work Plan (3) can be associated to Stack Overflow

(4), which is also represented in Figure 2.1.

11

Figure 2.1: From process concept to project task.

2.2.1 Project Work Plan and Project Management Tools

When describing the Work Plan – Project (3) - presented in Figure 2.1, there are

some elements in this Work Plan, such as: Task, Person, Milestone, Flow, Decision,

Event and Iteration. Task element, is a task executed by a software developer or

automatically (REIS, 2003). Tasks have attributes, such as start and end dates, the

person responsible for working in the task (assignee), the complexity and priority of

resolution, among other elements. In other words, Tasks are pieces of actions each

software developer has to perform in a certain amount of time during the Project in

order to obtain the final product: the software or part of the software. These tasks are

materialized from project business needs and have to consider other aspects, such as

the size of the team, the desired client’s deadline, technology used to develop

software, infrastructure configuration and other specific conditions. When project tasks

are defined, there are tools that can be used to manage the execution of these tasks.

Tools can be project management tools or even a white board with post-its for each

task. Some examples of well-known project management tools used in industry are

Trello10, Redmine11 and Jira12, presented below in Figure 2.2, Figure 2.3 and Figure

2.4, and a white board as tool for managing tasks is presented in Figure 2.5. Figure 2.2

12

presents a project that is managed in the Project Management Tool Trello10. The

project name in this example is Scott’s Tasks and Projects and there is one column for

Notes, another one for Projects and another for Tasks.

Figure 2.2: Trello screen.

Source: https://blog.trello.com/why-your-to-do-list-is-going-nowhere

Another example of a task list is presented in Figure 2.3. This figure presents a

list of project tasks from the Redmine project, which is publicly available. This list has

the information of the type of the Task, identified by the Tracker column, and other

columns such as also Project, Status, Subtitle, Author, Category and Assignee. One

example of a task found in this list has as Subtitle “Error 404 on configure plugin”.

Figure 2.4 presents another example of a task list, now in Jira tool (source:

https://marketplace.atlassian.com/plugins/com.stiltsoft.connect.jira.todo/cloud/overview

. There are tasks such as “Fixing localization errors” and “Fixing interface glitches”.

These are examples of tasks that guide developers during their workflow throughout

the project. Another way to present and organize project tasks, for example, is to keep

them in post-its in a board that is hanging on a wall, as presented in Figure 2.5 (source:

https://goo.gl/images/iZ5daR).

https://blog.trello.com/why-your-to-do-list-is-going-nowhere
https://marketplace.atlassian.com/plugins/com.stiltsoft.connect.jira.todo/cloud/overview
https://marketplace.atlassian.com/plugins/com.stiltsoft.connect.jira.todo/cloud/overview
https://goo.gl/images/iZ5daR

13

Figure 2.3: Redmine task list. Source: redmine.org.

Figure 2.4: Jira task list.

14

Figure 2.5: Scrum Tasks white board example.

2.2.1.1 Project Tasks and Issues

Project tasks are the steps towards the software product, as defined by (FEILER

& HUMPHREY, 1993). Project Tasks might have information about technology as well

as information regarding the software domain or business of application (LINDVALL &

RUS, 2003). Issues are problems, such as errors and defects, which may occur during

software development. Issues may or may not have information about the domain, as

they are mostly errors and defects of the technologies that are being used during

software development. Stack Overflow content can support both, although Stack

Overflow does not have domain information. This is why when considering project

tasks, the role of a developer is important to look for and find support. This clarification

is necessary because some project management tools and even most of the Related

Work reported in this study use Issues as samples for tests and development of their

work and this dissertation work with project tasks from the project plan (which can also

be a issue or bug a developer worked on as part of the project).

2.3 Q&A Websites as Knowledge Repositories

Question and Answer (Q&A) websites are online communities where people with

specific interests post questions and other users attempt to provide answers (JAFFEE,

2005). There has been an evolution of such Q&A sites and often participants in a site

have substantial expertise in specific domain areas, thereby increasing the value of the

content. Q&A websites originally pursued to contribute to specific questions asked,

15

however within time, there has been a change on how these questions are asked and

answered. Instead of giving a very good answer to that specific question, a more

community-driven focus has been created. Within this perspective change, larger

audiences benefit from questions asked, as well as their solutions (ANDERSON et al.,

2012). Given this value for some Q&A sites and with the addition of mechanisms that

monitor the quality of the questions and the answers, these sources of knowledge have

become significant assets in supporting professional use. The work of MAMYKINA et

al. (2011) investigated question-answering sites, such as Java Forum and Yahoo!

Answers, the Korean Q&A site KiN, Slash(dot) and Stack Overflow.

Stack Overflow1 is a Q&A website considered to be a significant knowledge base

for highly technical software development (ANDERSON et al., 2012) (YANG et al.,

2016) (PONZANELLI et al., 2013) (EL-KORANY, 2013) (CORREA & SUREKA, 2013).

Stack Overflow has over 90% of answered posts. Research states posts are answered

in around 11 minutes, and users report Stack Overflow has become their primary

resource when solving programming issues (MAMYKINA et al., 2011). Although there

are other important sources of knowledge for software developers, such as product

manuals and guides, maturity models, Wikis and even a software developer’s own

experience (tacit knowledge), as consequence of its importance and extensive use,

Stack Overflow is considered the knowledge source in this research. Other authors

also considered Stack Overflow as the tool for software development knowledge

support in their researches (CORREA & SUREKA, 2013; PONZANELLI et al., 2013;

PONZANELLI et al., 2014; WANG et al., 2014; KOCHHAR, 2016).

2.3.1 Stack Overflow

Stack Overflow is a Q&A community of professional software developers and

development enthusiasts. Over 50 million accesses each month gives Stack Overflow

an importance of its own. It has become a valuable source of information for

developers as well as a recruiting tool for companies. Companies recruiters analyze

how engaged and the participation of potential employees, and use this information as

another tool to gather the person’s expertise information. Stack Overflow has questions

and answers on a wide range of topics in software programming. Stack Overflow has

been subject of conference mining challenges, as in MSR2 in 2015. Stack Overflow’s

homepage can be viewed in Figure 2.6.

1 stackoverflow.com
2 http://2015.msrconf.org/challenge.php

16

Figure 2.6: Stack Overflow home page.

In order to retrieve information, users can use the search box on the home page,

presented in Figure 2.6 surrounded by a red box. What users search for are, for

example, solutions for software errors or how to implement methods and pieces of

code on certain programming languages, or how to use APIs. Stack Overflow was

conceived to provide high quality information in an accessible way. Stack Overflow’s

creators, Joel Spolsky and Jeff Atwood, envisioned a combination of a collaborative

tool, with ranked feedbacks and moderated content. There was a planned

incorporation of strategies, thought by the site's creators, so they could guarantee that

Stack Overflow would be used solely with a software programming focus, and that its

content was actually used by software developers. These strategies were the

incorporation of mechanisms such as Votes and Tags for Stack Overflow posts, among

other strategies. Every user can vote if a question or answer is really useful, and these

votes are summed up and displayed. Users are encouraged to vote on questions

and/or answers they found most useful. Answers are organized on the post page by

the number of votes received and question’s rates are shown when they’re queried and

retrieved. This ensures highest quality answers are presented at the top, identifying the

most likely solution among all available ones easily. The reputation of users with most

voted answers increases, since they earn points when other users vote on their

questions or answers. To optimize retrieval of questions or answers, they are

associated with a variety of tags. Examples of tags are: java, Android, jQuery, and

other technology specifications and defined fields that help programmers search

17

directly for their expertise or area of interest (PONZANELLI et al., 2013). Users define

tags at their discretion.

Other than searching the homepage, there are APIs available that enables

access to Stack Overflow data. One example is Stack Exchange API3, which is a set of

automatic components that allows direct access to data through other applications. All

applications willing to access Stack Overflow’s data have to follow the Terms of Use

from Stack Exchange4 and use the API methods during development. Stack Exchange

community, which is a community of Q&A websites, also provides a dump with all

website content. This dump is available online5 and any person can download it.

Another example of data access provided is the Stack Exchange Data Explorer, a web

page interface that allows users to directly query Stack Overflow data using SQL

syntax. To support users during query build, a database description in form of a list is

provided. Figure 2.7 shows the query mechanism interface.

Figure 2.7: Stack Exchange Data Explorer web page interface.

Through the database schema by Stack Overflow Query webpage, it was

possible to create a partial model of what could be the Stack Overflow entities and its

relations. We transformed the provided list (marked by the red box in Figure 2.7) into a

relation-entity model. The model is illustrated in Figure 2.8. With the help of this model,

3 https://api.stackexchange.com/docs

4 https://stackexchange.com/legal/api-terms-of-use

5 https://archive.org/details/stackexchange

18

it was possible to understand Stack Overflow’s structure and the domain this research

is willing to support.

With Stack Overflow’s entities list provided by Data Explorer web page, and the

visualization facilitated by the model, it was then possible to perceive Questions and

Answers as types of a Stack Overflow Post. Figure 2.9 and Figure 2.10 present what

comprises a Stack Overflow post, in a user view. Each Stack Overflow post comprises

one question asked by a user, and one or more answers answered by one or several

users. One post can also receive comments from users. Each question has a title and

a description. The number in the left side of the image presents the votes for questions

and answers, with arrows on top and below the number. These votes are transformed

into scores for the authors of the content. Each time a user clicks an arrow, it counts as

one vote.

19

Figure 2.8: Stack Overflow database domain model.

20

Figure 2.9: Stack Overflow question.

Figure 2.10: Stack Overflow answer.

21

2.4 Data Mining

Data Mining is the discovery of “models” for data (D. ULLMAN & RAJARAMAN,

2013). These “models” can be defined as one of several things:

In statistical modeling, the construction of these data mining models aimed at

trying to extract information that was not supported by the data;

In Machine Learning, which sometimes is wrongly used as synonym for data

mining, data is used as training sets to algorithms. This approach is proved to be useful

when there is no expectation regarding the results; in situations where it is possible to

describe goals more directly, machine learning has not proved successful to mining

data.

In a computational approach, where computer scientists look at data mining as

an algorithm problem, the model is simply an answer to a query about it.

Most other approaches can be described as summaries of data or extracting

most prominent features from data. Regarding features, typical feature extraction

model looks for extreme examples of a phenomenon and represents data by these

examples. If there is a complex relationship between objects, this relationship can be

represented by finding statistical dependencies among these objects and using those

in representing the connections among objects. Two large-scale data extraction

features are frequent sets and similar items.

For similar items specifically, the goal is to find pairs of sets that have elements in

common. An example is when an online store analyzes customer’s profiles and what

they have in common in order to recommend products similar customers have bought.

This is called “collaborative filtering”. The notion of similarity regarding finding sets with

a relatively large intersection is called Jaccard Similarity (D. ULLMAN & RAJARAMAN,

2013). Jaccard similarity addresses an important class of problems, which is finding

textually similar documents in a large corpus. Note that Jaccard similarity is a

character-level similarity, meaning it does not extract “similar meaning”. More details in

this similarity algorithm are described further in next sections, where we approach the

similarity metrics implemented in this dissertation, specifically.

22

2.4.1 Recommendation Systems for Software Engineering

Although this dissertation does not propose a recommender tool, there are

conceptual aspects shared by this proposal and recommender systems. This is the

reason why this topic was included in this dissertation.

In the sense of what recommendation systems are, there is a definition proposed

by the organizers of the ACM International Conference on Recommender Systems

(RecSys 09; http://recsys.acm.org/2009), which is:

“[Recommendation] systems are software applications

that aim to support users in their decision-making while

interacting with large information spaces. They

recommend items of interest to users based on

preferences they have expressed, either explicitly or

implicitly.”

When narrowing the approach to Recommendation Systems for Software

Engineering (RSSE), there is the definition from Robillard et al. (ROBILLARD et al.,

2010) stating:

“An RSSE is a software application that provides

information items estimated to be valuable for a software

engineering task in a given context.”

Recommender Systems for Software Engineering (RSSE) are software

applications that provide valuable information in support of a software engineering task

(ROBILLARD et al., 2010). RSSEs are applications that foresee user responsiveness

to given options (D. ULLMAN & RAJARAMAN, 2013). The architecture of a typical

RSSE comprises at least three basic characteristics: a data-collection mechanism,

recommender engine and an interface for a user to give and receive recommendation

inputs and outputs. Recommender systems deal with problems such as the cold-start

problem, which addresses the lack of content to be recommended on initial states of

the system, when there are little or no available data. This definition arises as the

definition that has been used as standard for RSSEs (GASPARIC et al., 2017).

In addition to presenting this definition, the work from Robillard et al.

(ROBILLARD et al., 2010) is an overview of the RSSE field, focused on presenting

what good RSSE do for developers and also presented limitations for RSSE,

23

mentioning the fact that most systems recommend source code, resulting in a lack of

variety in the output type produced.

A Systematic Literature Review (SLR) published in 2016 (GASPARIC & JANES,

2016) (ANTUNES et al., 2012) focused on presenting functionalities of RSSE systems,

as well as research gaps and possible research directions. Results pointed that the

current recommendation tools focus on source code, mainly supporting reuse actions

and debugging. The papers mentioned by the SLR focus on:

(1) Task context as artifacts under development

(WARR & ROBILLARD, 2007) (KOBAYASHI et al., 2012)

(2) Suggestion of code modification made by mining a database that has
recorded the diffs of prior changes on code

(DOTZLER et al., 2012)

(3) Recommendation of code reuse

(HOLMES et al., 2009)

(4) Components recommendation regarding users browse history

 (HOLMES et al., 2009) (ICHII et al., 2009)

(5) Where to look for information while debugging source code

 (PIORKOWSKI et al., 2012)

(6) Recommendation of artifacts and recommendation of tools

(ČUBRANIĆ et al., 2004) (VIRIYAKATTIYAPORN & MURPHY, 2009).

These studies use a variety of strategies in order to accomplish recommendation.

Considering the focus of this work is to work with an existing database of project tasks

and use the text similarity of these tasks in order to discover how similar the tasks are

and provide the Stack Overflow Post to the most similar ones, similarity measures and

tools to implement these metrics will be presented in over the next sections.

2.4.2 Similarity Metrics

Similarity metrics are measures of how much two objects are alike. In other

words, within the mining scenario, similarity measure is a distance with dimensions

representing features of the compared objects. The smaller the distance, the higher is

the degree of similarity between the objects. Objects can also usually be measured as

the inverse, and are called distance metrics. Similarities are often measured in a range

of 0 to 1. Similarity will be 1 if the objects are identical and will be 0 if the objects are

completely different. There are some similarity metrics that are massively used by data

24

scientists, for example the Euclidean distance, Manhattan distance, Cosine similarity,

Jaccard similarity and others. Each of these metrics have their specifics, and as they

derive from statistics, most of them have implementations in most programming

languages today.

Recommendation systems mostly rely on Collaborative Filtering, which is the

method of making automatic predictions - filtering - about the interests of a user. This

method collects preferences or taste information from many users collaboratively.

However, when no such data are available, or even if they are available but the amount

of data is not large enough, other approaches are necessary. That is called the cold-

start problem, which in other words is the lack of information to be recommended if

there is no data to perform comparisons or relations between existing sets. One of the

strategies used to overcome the cold-start problem, are approaches that use distance-

based similarity calculations in multi-dimensional spaces, known as content-based

recommendation. Some of the popularly distance-based similarity calculations used

(YUNG-SHEN LIN et al., 2014) for comparing two documents (text fragments) are:

Cosine (HAN & MINING, 2000), Jaccard (TAN et al., 2006) (D. ULLMAN &

RAJARAMAN, 2013) and Levenshtein (LEVENSHTEIN, 1966). To explain how these

metrics work, we will present details on Levenshtein and Jaccard algorithms, the

algorithms implemented in this dissertation.

2.4.2.1 Levenshtein

A work that intended to develop binary codes that were self-correcting, strings

searches were developed and the Levenshtein distance was presented

(LEVENSHTEIN, 1966). The name, Levenshtein, comes after Vladimir Levenshtein,

who presented this technique in the year of 1965. Levenshtein distance suits the needs

to look for common features between texts and is an option for the cold-start problem.

This distance counts the steps needed to transform one word into the other, meaning it

checks the minimum effort required to transform one string into the other, by counting

the number of insertions, deletions and substitutions. To get a similarity index, this

distance is then calculated by proportionally comparing it to the size of the word (how

many characters the word has). This similarity index is then inversely proportional to

the distance. A distance of 0 implies maximum similarity. Levenshtein similarity is

presented using the formula presented in Equation 2.1. LabelSimilarity function is the

result of the formula. LevenshteinDistance represents the steps to transform label1 into

label2. Length is the operation that calculates the size of the label, how many

characters each word has.

25

Equation 2.1: Levenshtein Distance – strings similarity metrics.

For example, the Levenshtein distance between the labels "kitten" and "kitchen"

is 2, because:

● Step 1: kitten -> kitcen (substitution of “t” for “c”)

● Step 2: kitcen -> kitchen (addition of “h”)

Applying the formula to get the similarity index, once the word "kitten" has six

characters and the word "kitchen" has seven characters:

Equation 2.2: Formula application example.

Equation 2.3: Formula application example result.

This means the words kitten and kitchen, according to the Levenshtein distance,

are 84% similar. A perfect match would get score 1 as a completely different word

comparison would get score 0.

2.4.2.2 Jaccard

Jaccard index, also known as Jaccard similarity coefficient, is another statistic

metric used to compare finite sets of data. This metric is used to compare the similarity

and diversity of sample sets. It uses the ratio of the intersecting set to the union set as

the measure of similarity. Thus, it equals to zero if there are no intersecting elements

and equals to one if all elements intersect. The result of the metric is an index within a

range of 0 and 1. The equations of Jaccard similarity and Jaccard distance are

presented below in Equation 2.4 and Equation 2.5.

26

Equation 2.4: Jaccard similarity.

Equation 2.5: Jaccard distance.

In order to exemplify, supposing there is the following set of items, where 8 is

the total of items, and 3 items are in the intersection, the JaccardSim = 3/8 = 0.4 and

the JaccardDistance = 5/8 = 0.6. The set of the example is presented in Figure 2.11.

Figure 2.11: Jaccard set.

Using documents as examples, supposing there are the three following

documents:

• Document1: “Word2”, “Word3”, “Word4”, “Word2”.

• Document2: “Word1”, “Word5”, “Word4”, “Word2”.

• Document3: “Word1”

Comparing Document1 and Document2, as the total number of unique words of

both documents is 5, and the number of shared words between the documents is 2,

gives a Jaccard similarity of 2/5 = 0.4. Comparing Document1 and Document1, gives a

Jaccard similarity of 1. Comparing Document1 and Document3, the result is 0,

because they share no similarities between the documents. As stated by (TAN et al.,

2006), this is the most often used metric for document comparison.

Two metric solutions were described. Both of these algorithms were used in

different steps of this dissertation. The first one, Levenshtein, was used during an

implementation of the proposal that was not used in the end, but served well as a

maturing step, and the second one, Jaccard, was used in the similarity process

27

presented as the proposal in this dissertation. There are automated tools that

implement these algorithms when comparing documents. Tools and examples of tools

are described over the next sections.

2.4.2.3 Tools for Text Similarity Algorithm Implementations

Automatic texting processing through tools is necessary and mainly used in order

to extract information from the large amount of data generated everyday (RAQUEL

FONSECA & EDGAR CASASOLA, 2017). To process text data and use the results as

inputs for decisions is important in order to make predictions, extract information for

decisions over products or for sentiment analysis Process text data can also promote

the identification and classification of information in natural language texts. Text

similarity metrics retrieves a number (index) that means how much two texts (or

documents) are similar, mostly in a range of 0 to 1, 0 meaning not similar and 1

meaning the compared objects are equal. Tools can automate this process, as well as

also perform extra evaluation steps for the metrics provided. We describe two tools that

were used during the development of this work. The tools are Dandelion and

RapidMiner. They are essentially different in their goals and application, and the

differences are outlined in each section dedicated to each tool. How they were used in

this work will be presented further in the development of this work, more precisely in

Chapter 4.

2.4.2.4 Dandelion

Text Similarity tool Dandelion6 provides semantic text comparisons as a service.

Spaziodati7, an Italian company that develops a range of solutions for big data, is

responsible for developing and maintaining Dandelion. This tool provides APIs that can

easily be integrated into any application solution through JSON calls, providing

convenient usage. This tool was object of study and comparison to other tools, and

some of its features performed better when comparing to others (RAQUEL FONSECA

& EDGAR CASASOLA, 2017).

Dandelion Text Similarity API is based both on syntactic and semantic features.

With respect to the semantic ones, it is able to identify semantic relationships by

comparing the entities found in the two compared texts. Wikipedia, for example, if

considered as a graph of semantic relationships, defined by the page links, then

entities are more similar if they are "close" in this graph. A comparison of a Bag-Of-

6 dandelion.eu
7 spaziodati.eu

28

Words representation of two texts is used in the syntactic similarity retrieval. Presenting

an example, the words “blue sky” and “sky blue” would be a perfect match, as

presented in Figure 2.12.

Figure 2.12: Dandelion text similarity webpage.

Besides the interface presented in Figure 2.12, this tool also provides an API that

allows external application calls in order to get the comparison semantic index

generated between sentences. This API also works by submitting a formatted URL into

a browser or sending as a POST method8. This will generate a JSON response, which

includes among other information, the similarity index between the compared

sentences. The parameters that build this URL are described in Table 2.1.

 Figure 2.13 presents an example of an URL submitted to a browser and how

the response is returned. The parameters text1 and text2 used in the example are

“blue sky” and “sky blue”. The parameter lang is set for English language and the token

is the token for the author’s account. The URL submitted was

https://api.dandelion.eu/datatxt/sim/v1/?text1=%20%20sky%20blue%20%20&text2=%

20%20blue%20sky%20%20&token=1df1e8446ff14929a1a03c9489377722&bow=alwa

ys&lang=en and the response received was

{"time":0,"similarity":1.0,"lang":"en","timestamp":"2018-04-05T19:13:54.869"}.

8 HTTP method for request-response between servers and clients.

29

Figure 2.13: Dandelion browser submission example.

Table 2.1: Dandelion parameters. 9

Parameter Description Type

text1|url1|html1|html_fragment1 These parameters define how you send to
the Text Similarity API the first text you want
to compare.

string

text2|url2|html2|html_fragment2 These parameters define how you send to
the Text Similarity API the second text you
want to compare, in the same way as
the text1|url1|html1|html_fragment1
parameters.

string

lang The language of the texts to be compared;
currently English, French, German, Italian,
Portuguese, Russian and Spanish are
supported.

string

bow The Text Similarity API normally uses a
semantic algorithm for computing similarity of
texts. It is possible, however, to use a more
classical syntactic algorithm where the
semantic one fails. This can be done with this
parameter.
● "never" uses always the semantic

algorithm;
● "both_empty" uses the syntactic

algorithm if both the two texts have no
semantic information;

● "one_empty" uses the syntactic algorithm
if at least one of the two inputs have no
semantic information;

● "always" uses always the syntactic
algorithm.

string

token=<YOUR_TOKEN> API token for each email account. string

The response received has the following values:

● Time: approximately how long the comparison execution took.

● Similarity: similarity index computed. For the example, the similarity is 1.0,

meaning the sentences are 100% similar.

● Lang: language used for comparison.

● Timestamp: timestamp of execution.

9 Source: https://dandelion.eu/docs/api/datatxt/sim/v1/

30

Analogously to the Levenshtein distance, Dandelion’s API solution compares two

strings and returns a similarity index that informs the percentage of similarity between

two text strings. Comparing one Task’s context string to another Task’s context string

generates a similarity index. This tool was used during this study based on the

documentation from other studies that use text similarity index comparisons. One

research work point Dandelion API as one of the best solutions for text disambiguation

(FILIPIAK et al., 2006). Another work (RAQUEL FONSECA & EDGAR CASASOLA,

2017) extracts entity recognition from short texts and compares Dandelion API with

another solution called AlchemyAPI. Each algorithm was compared against the other in

order to calculate their precision and recall. Dandelion API got better results with the

given data. Dandelion API was also considered to perform well in another work that

used the Name Entity Recognition feature (BAKER & VERSTOCKT, 2017). Based on

the proposal needs, which were to compare text strings and obtain a numerical index

that states the percentage of similarity between the compared strings, automatically

and with rich documentation, Dandelion API was chosen during the implementation

phase in this dissertation, as detailed in Section 1.3.

Dandelion is a very powerful tool, but as it belongs to a company, the similarity

retrieval mechanisms are not open to public. Also, we needed another tool or extra

implementation to evaluate the generated data. These were the reasons this solution

was not used in this work’s proposal. We are not aware of the algorithm (or

combination of algorithms) used and how the similarity is extracted, and to the best of

our knowledge, there are no documents available with this information. This hampers

the reproducibility characteristic of this dissertation’s proposal. Next, RapidMiner, a

powerful customizable data mining tool is presented.

2.4.2.5 RapidMiner

Data mining statistical computing tools are created and can be used on a large

amount of data types and analysis. These tools allow creating and monitoring data

mining processes, helping whoever is implementing these processes to build as well as

to manage them. A complete and very powerful data mining tool is RapidMiner10. The

Artificial Intelligence Group of Katharina Morik at the Dortmund University of

Technology developed RapidMiner, in 2001 (SCHLITTER et al., 2013). The project

was named YALE and in 2007 it changed to RapidMiner. The software is hosted by

SourceForge and is offered free of charge as a Community Edition released under the

10 rapidminer.com

31

GNU AGPL. RapidMiner is written in Java and runs user created processes. A process

is an XML-File generated by the user and contains a sequence of tasks, which are

represented by operators.

RapidMiner is used in research, education, prototyping, development and

industrial applications. It is open source and has a lot of features available as

operators, such as data cleaning, transformation, optimization, evaluation and

visualization. RapidMiner also has a wide range of algorithms implementations, to

classify, cluster and perform other analytical processes. An important characteristic of

RapidMiner is the coding-free implementation, meaning there is no need to code to use

the tool, although users can add their own code. The tool comes with a broad number

of native operators, but third-party extensions are also available (SANTHANAKUMAR

& COLUMBUS, 2015).

RapidMiner uses operators (there are around 500 built in operators), which act as

plug-and-play programming-free features, and together are responsible for a data

analysis process. Each operator performs a specific task on data, e.g., loading and

storing data, transforming data, or inferring a model on data. Placing a combination of

operators in a canvas and informing their input and output compose a process in

RapidMiner. For more than 10 years, RapidMiner has been extended and many

extensions were developed, making this tool an excellent option as a tool for data

mining and analytics. This tool is very much used in academic courses and universities

all over the world, as well as for industry solutions, as already mentioned (SCHLITTER

et al., 2013). An example of an implementation of a process is presented in Figure

2.14.

Figure 2.14: RapidMiner Process Example.

In this example, there are four operators implementing a Cluster Classification

process. The first operator Retrieve, imports the data into the process. The second

operator, KMeans, performs clustering tasks using the K-Means algorithm. Then, the

ChangeAttributeRole operator changes the role of one or more attributes of the

32

KMeans operator output, and the DecisionTree operator generates a decision tree

model, which can be used for classification and regression. All RapidMiner operator

are documented in RapidMiner website docs.rapidminer.com. RapidMiner also

supports performance evaluations with a wide variety of metrics implementations.

There are implementations of a variety of similarity and distance metrics in RapidMiner,

such as Dice, Jaccard, Euclidean and many others.

RapidMiner is used in this dissertation to implement the process created for the

proposal, as well as the evaluation. The application of RapidMiner in this dissertation is

described in Chapter 4 and the evaluation in Chapter 5.

2.5 Conclusion

This chapter introduces concepts on Software Processes, Question and Answer

services, data mining, recommender systems and also, similarity metrics and tools.

Software Processes are used during the software development workflow. Software

development is described as knowledge-intensive, collaborative and technology-

dependent, and because of that, knowledge is intensely present during software

development. Question and Answer websites are important sources of knowledge, and

software developers massively use one famous Q&A website, Stack Overflow, when

external knowledge is needed. The use of a mechanism to store and further associate

this acquired knowledge from Stack Overflow within the software project can bring

benefits to software developers. Software developers invest time in searching for what

piece of information (or pieces) should be used to help them during software

development. By extracting similarities from project tasks that have a curated Stack

Overflow Post associated to them can be a way to leverage software development and

furthering the area of software development. Next Chapter presents a Systematic

Mapping Study performed in order to obtain the state-of-the-art of how academia has

been researching and presenting solutions to help software developers find, select and

reuse Stack Overflow Posts in software projects.

33

3 Related Work

This Chapter presents the process and results of the Systematic

Mapping Study conducted to assemble approaches that associates the

software development projects with Stack Overflow, aiming at

understanding how this area has developed and what are the current

researches in the field. The findings expose the current state of the

research in literature and were used to support the development of this

work.

3.1 Introduction

This chapter presents a Systematic Mapping Study performed to investigate the

state-of-the-art of the existing strategies that associate Stack Overflow Posts to the

development environment. This fulfills this dissertation’s first objective, layed out in

Section 1.2. This study is aligned with the objectives proposed in Section 1.2 and

represents step #4 of the methodology of this dissertation, described in Section 1.3.

This Chapter is structured with the following sections: the current section presents an

introduction on the importance of researching the association of Stack Overflow Posts

to software development, then Section 3.2 presents the objectives of the Systematic

Mapping Study. Section 3.3 presents the steps conducted during planning and Section

3.4 the execution of the Systematic Mapping Study. The analysis steps of the papers

retrieved are presented in Section 3.5. The remainder Sections 3.6 and 3.7 present the

threats to the validity of the systematic mapping study and the conclusions,

respectively.

Stack Overflow is widely used by developers when help is needed during

software development (MAMYKINA et al., 2011). During this search, developers have

to choose among a list of items, find a suitable solution for the problem they have,

implement the solution and test it, to guarantee the chosen solution works for the

problem the developer is facing. Time is invested in this curation task, and it depends

on the tacit knowledge of developers. Due to the iterative characteristic of software

development projects, this search can even occur more than once.

34

In order to aid software development by helping developers assess Stack

Overflow Posts, several solutions were proposed. To have a broad perspective of what

researchers have proposed and map the proposed strategies, a Systematic Mapping

Study has been conducted. In this study, we used the protocol by (PETERSEN et al.,

2015), and also implemented strategies to increase the reliability of the study, such as

the addition of control studies and the participation of a second person during the

planning step of the study, when the search string has been assembled.

3.2 Search Objectives

The Systematic Mapping Study (SMS) approach is a common study to obtain

evidence on a particular subject and provides categorized results that have been

published in the area of research (PETERSEN et al., 2015) (BARROS-JUSTO et al.,

2018). The SMS reported in this chapter was conducted in order to gather the state-of-

the-art in the literature regarding the objectives presented in Section 1.2. The current

section presents the protocol used to select studies for this research. This protocol is

the process of building search strings and the definition of a search scope. These

procedures were conducted to have a comprehensive examination of what has been

published on the specific topic of strategies to associate development project with

Stack Overflow, acknowledging what are the current proposals, the input information,

the output, the evaluation method and the results. For this study, we performed an

automated search in Scopus, an online database that indexes several other scientific

databases.

The protocol suggested by (PETERSEN et al., 2015) also uses the GQM

approach (VAN SOLINGEN et al., 2002) in order to define the goals for the SMS. The

search developed in this work has as goal the analysis of articles that aim at

associating software development with Stack Overflow. It is possible to replicate this

SMS, considering how it was organized into plan, execution and analysis steps. This

organization also contributes to summarize the articles in integrating Stack Overflow

into the software development. The goals of this SMS are presented below.

analyze proposals that associate software development with Stack Overflow
with the purpose of characterizing

regarding strategy, input, output, evaluation methods, metrics and results
from the point of view of researchers

in the context of software development projects

Once the goal of this Systematic Mapping Study is defined, next sections present

the planning and execution steps of the SMS according to the established goal.

35

3.3 Planning

The planning step encompasses three different activities: (1) defining the

research questions for the SMS, according to the objectives, and (2) using PICO to aid

the search strings and from that, (3) creating a search string. According to the defined

goal for this SMS, the following research question is presented:

What are the existing association strategies, input and output information,

evaluation methods and results that propose the association of software

development projects and Stack Overflow Posts?

This research question is necessary because it is important to identify existing

studies in this area and create a summary and categorization of the information these

papers present.

In order to organize and structure the search string based on the objective and

research question, PICO approach was used - Population of interest, evaluated

Intervention, Comparison, Outcomes (PAI et al., 2004). Table 3.1 presents PICO

description and goals.

Table 3.1: PICO (PAI et al., 2004) for SMS.

(P) Population Software Development

(I) Intervention Research that aims at relating development project
with stack overflow

(C) Comparison Not applicable, as the goal of this study is to identify
the state-of-the-art, not compare.

(O) Outcomes Solutions that associate software development to Stack
Overflow.

Attempting to improve the reliability of the search string, the research goals were

presented to the Computer Science Library Liaison of the University of Waterloo in

January 2018. With the author of this dissertation, this researcher defined what would

be the search strings according to what understanding of the research objective. The

search strings (and synonyms) is presented in Table 3.2.

36

Table 3.2: Search string – January 2018.

"stack overflow" OR "online community" OR wiki OR "web 2.0" OR "crowd sourcing" OR
"crowd sourced" OR "crowd knowledge" OR "knowledge base" OR "reference base" OR
"reference manual"
AND (recommend* OR suggest* OR propos* OR offer*)
AND ((context* AND (word* OR post*)) OR "text mining" OR "text based" OR "text
attributes" OR "natural language")
AND (((manag* OR organiz* OR plan* OR project* OR track*) AND (tool* OR program*
OR software OR app OR application* OR platform*)) OR "issue tracker” OR "issue
tracking")

For a second execution of this SMS, aiming at raising the confiability of the SMS

and update with recently published articles, used the following search string presented

in Table 3.3.

Table 3.3: Search string – September 2018.

"stack overflow” OR ”stackoverflow"
AND (issue OR task OR context)
AND (recommend* OR suggest* OR associat* OR link OR integrat*)
AND ("software" OR "software process" OR "develop*")

The differences between the two strings are the number of synonyms used in the

second string. Regarding the results, they were almost the same as reported by the

first execution, with the following exceptions:

1) Fishtail (SAWADSKY & MURPHY, 2011) was included at first, but the

second SMS didn’t consider this article because there are no reported

results;

2) Articles published in 2018 were added in the second execution (SMS

update);

3) The articles (total of 3) from Ponzanelli et al., all about the tool

Seahawk, are represented by only one study after the SMS update,

instead of three in the first SMS.

Scopus (http://www.scopus.com/) scientific database was the data source to

retrieve the articles. This database indexes a wide amount of very important scientific

databases. The Scopus database search string is presented below.

(TITLE-ABS-KEY ("stack overflow" OR "stackoverflow")
AND TITLE-ABS KEY (issue OR task OR context)

AND TITLE-ABS KEY (recommend* OR suggest* OR associat* OR link OR
integrat*)

AND TITLE-ABS-KEY ("software" OR "software process" OR "develop*"))

37

For the selection of articles, inclusion and exclusion criteria were established to

support the decision of which papers should be read or not. The selection steps

performed are outlined below:

● Inclusion criteria:

o Articles that deal with stack overflow or crowdsourcing communities

where developers search for external support, presenting how it could

be integrated to the software development workflow; OR

o Articles dealing with recommendation/suggestion/link of software project

artifacts; OR

o Articles that address the use of issue or task information in order to find

Stack Overflow posts;

● Exclusion criteria:

o Articles not in the computer science area; OR

o Articles whose research do not focus in Software Engineering; OR

o Proposals that are not applied to software development; OR

o Articles not written in English language; OR

o Articles that do not state clearly the association strategy, input, output,

evaluation method and results between Stack Overflow Posts and

software development.

A group of known articles was defined; this being the most common strategy for

evaluating the search (PETERSEN et al., 2015). The group of known articles that

should be mandatorily retrieved by the search strings is:

PONZANELLI, L. et al. Mining StackOverflow to turn the IDE into a self-confident
programming prompter. Proceedings of the 11th Working Conference on mining
software repositories, p. 102-111, May 31, 2014.

PONZANELLI, L.; BACCHELLI, A.; LANZA, M. Seahawk: stack overflow in the IDE.
Proceedings of the 2013 International Conference on software engineering, p.
1295-1298, May 18, 2013.

CAMPOS, E.C.; SOUZA, L.B.L.; MAIA, M.D.A. Searching crowd knowledge to
recommend solutions for API usage tasks. Journal of Software: Evolution and
Process, Chichester, v. 28, n. 10, p. 863-892, Oct 2016.

CORREA, D.; SUREKA, A. Integrating Issue Tracking Systems with Community-Based
Question and Answering Websites. 2013 22nd Australian Software Engineering
Conference, p. 88-96, 2013.

38

 The selection of articles was conducted following three steps:

• Step 1 - Preliminary selection of publications: Running the search

string in Scopus database will perform the preliminary selection of

articles.

• Step 2 - Selection of relevant publications – 1st filter: For an initial

selection of relevant articles, the title and abstracts of each returned

article should be read and assessed according to the inclusion and

exclusion criteria defined in the search planning. In some articles, only the

reading of abstracts may not be sufficient, generating doubts as to

whether or not they should be included. In this case the articles should be

selected for full reading.

• Step 3 - Selection of relevant publications - 2nd filter: All articles

selected in the 1st filter will be read and analyzed if they fit in according to

the inclusion and exclusion criteria set.

3.4 Execution

According to the procedures for selecting articles defined in the planning of this

structured search, the next step is then to perform the execution of the search string in

each of the selected sources. Table 3.4 presents the results of the execution. This

table presents the year of the publication and the amount of papers published each

year, as well as the final count of papers retrieved. After applying all planned steps,

Table 3.6 presents the related work of this dissertation, and Table 3.5 presents the

selected papers after reading only Title and Abstract, which were fully read and some

were excluded for not comprising the criteria.

After reading all titles and abstracts from the 69 articles, 25 articles were

selected, according to the research objectives. Table 3.5 presents these articles,

organized by year of publication, authors and the title of each article.

39

Table 3.4: Number of articles retrieved from database.

Publication
Year

Number of
publications

2018 18

2017 16

2016 11

2015 8

2014 5

2013 6

2012 3

2007 1

2006 1

Total 69

Table 3.5: Articles selected after reading Title and Abstract.

Year Authors Title

2018
Sirres R., Bissyand T.F., Kim D., Lo D.,
Klein J., Kim K., Traon Y.L.

Augmenting and structuring user
queries to support efficient free-form
code search

2018 Wei Q., Liu J., Chen J.
A method for recommending bug
fixer using community Q&A
information

2018 Greco C., Haden T., Damevski K.
StackInTheFlow: Behavior-driven
recommendation system for stack
overflow posts

2018
Wu D., Jing X.-Y., Chen H., Zhu X.,
Zhang H., Zuo M., Zi L., Zhu C.

Automatically answering API-related
questions

2018 Etemadi V., Bushehrian O., Akbari R.
Association rule mining for finding
usability problem patterns: A case
study on StackOverflow

2018 Gao S., Xing Z., Ma Y., Ye D., Lin S.-W.
Enhancing Knowledge Sharing in
Stack Overflow via Automatic
External Web Resources Linking

2017 Liu X., Shen B., Zhong H., Zhu J.
EXPSOL: Recommending online
threads for exception-related bug
reports

2017 Fumin S., Xu W., Hailong S., Xudong L.
Recommendflow: Use topic model
to automatically recommend stack
Overflow Q&A in IDE

2016
Ponzanelli L., Bavota G., Di Penta M.,
Oliveto R., Lanza M.

Prompter: Turning the IDE into a
self-confident programming
assistant

2016 Campos E.C., de Souza L.B.L., Maia Searching crowd knowledge to

40

M.D.A. recommend solutions for API usage
tasks

2016 Sahu T.P., Nagwani N.K., Verma S.
An empirical analysis on reducing
open source software development
tasks using stack overflow

2015 Nagy C., Cleve A.
Mining Stack Overflow for
discovering error patterns in SQL
queries

2015
Zheng X.-L., Chen C.-C., Hung J.-L.,
He W., Hong F.-X., Lin Z.

A Hybrid Trust-Based
Recommender System for Online
Communities of Practice

2015
Amintabar V., Heydarnoori A., Ghafari
M.

ExceptionTracer: A Solution
Recommender for Exceptions in an
Integrated Development
Environment

2015 Wang W., Malik H., Godfrey M.W.
Recommending posts concerning
API issues in developer Q&A sites

2015
Wang T., Yin G., Wang H., Yang C.,
Zou P.

Automatic knowledge sharing
across communities: A case study
on android issue tracker & stack
overflow

2014
Ponzanelli L., Bavota G., Di Penta M.,
Oliveto R., Lanza M.

Mining stackoverflow to turn the IDE
into a self-confident programming
Prompter

2014
Ponzanelli L., Bavota G., Di Penta M.,
Oliveto R., Lanza M.

Prompter: A self-confident
recommender system

2014 Rahman M.M., Yeasmin S., Roy C.K.

Towards a context-aware IDE-
based meta search engine for
recommendation about
programming errors and exceptions

2013 Rahman M.M., Yeasmin S., Roy C.K.
An IDE-based context-Aware meta
search engine

2013 Ponzanelli L., Bacchelli A., Lanza M. Seahawk: Stack overflow in the IDE

2013 Correa D., Sureka A.
Integrating issue tracking systems
with community-based question and
answering websites

2013 Ponzanelli L., Bacchelli A., Lanza M.
Leveraging crowd knowledge for
software comprehension and
development

2012 Bacchelli A., Ponzanelli L., Lanza M.
Harnessing Stack Overflow for the
IDE

2012 Zagalsky A., Barzilay O., Yehudai A.
Example overflow: Using social
media for code recommendation

The article from (ČUBRANIĆ et al.) (2004), retrieved in the beginning of this

research during ad-hoc literature reviews was considered an important asset regarding

suggestion of development artifacts considering the project history. We consider

important to include one well-referenced and important article in the field that might not

only strengthen the importance of associating external information to the software

development, but also because authors might use interesting strategies to associate

41

other information rather than Stack Overflow Posts. The article included by manual

search (PETERSEN et al., 2015) technique was:

ČUBRANIĆ, D. et al. Learning from project history. Proceedings of the 2004 ACM
conference on computer supported cooperative work, p. 82-91, Nov 6, 2004.

This article does not have Stack Overflow as a base for discovered knowledge

association, nor uses text similarity. Instead, it suggests a new approach to aid

software development by identifying actions performed during software development

and suggesting artifacts to the developer that were identified by the creation of a

history of iterations while the software project was running. This approach is very

similar to the approach that will be proposed in this dissertation, as it mines existing

project history to feature possible future suggestions.

All papers retrieved by the search string on Scopus and the paper added

manually – were fully read (Step 3 of SMS), and considering the inclusion and

exclusion criteria, 8 papers were finally selected. The selection/elimination process with

the amount of papers is presented in Figure 3.1.

Figure 3.1: Number of articles included in selection process.

The 18 articles that were excluded with the reasons for exclusion after full text

reading are presented in Appendix D – SMS exclusion form. Table 3.6 presents the 8

selected articles (7 by database search + 1 manually). This table presents the selected

articles, the year of publication, authors and title of the article. In this table, we created

42

an identifier for each article. This identifier will be used when there is a need to make

reference to each of these articles.

Table 3.6: Systematic Mapping Study selected papers.

Article
ID

Year Authors Title

S1 2004

ČubraniĆ, Davor, Gail C.
Murphy, Janice Singer, and
Kellogg S. Booth
(ČUBRANIĆ et al., 2004)

Learning from project history: a
case study for software
development (Hipikat)

S2 2018
Greco C., Haden T., Damevski
K.
(GRECO et al., 2018)

StackInTheFlow: Behavior-driven
recommendation system for stack
overflow posts

S3 2018

Wu D., Jing X.-Y., Chen H., Zhu
X., Zhang H., Zuo M., Zi L., Zhu
C.
(WU et al., 2018)

Automatically answering API-
related questions

S4 2016
Campos E.C., de Souza L.B.L.,
Maia M.D.A.
(CAMPOS et al., 2016)

Searching crowd knowledge to
recommend solutions for API usage
tasks

S5 2015
Wang T., Yin G., Wang H., Yang
C., Zou P.
(WANG et al., 2015)

Automatic knowledge sharing
across communities: A case study
on android issue tracker & stack
overflow

S6 2014
Rahman M.M., Yeasmin S., Roy
C.K.
(RAHMAN et al., 2014)

Towards a context-aware IDE-
based meta search engine for
recommendation about
programming errors and exceptions
(SurfClipse)

S7 2013
Correa D., Sureka A.
(CORREA & SUREKA, 2013)

Integrating issue tracking systems
with community-based question
and answering websites

S8 2013
Ponzanelli L., Bacchelli A.,
Lanza M.
(PONZANELLI et al., 2013)

Leveraging crowd knowledge for
software comprehension and
development (Seahawk)

Each of these articles was read, and to extract data from the identified articles,

and the criteria extracted is presented in Table 3.7. Each field has a criteria item and a

description of the criteria. The data extraction form presented in Table 3.7 was

elaborated according to the SMS research question.

All articles presented in Table 3.6 were fully read and the criteria (Table 3.7) were

extracted and are presented in Table 3.8. The analysis of the extracted data is

presented in next section.

43

Table 3.7: Criteria extracted from selected articles.

Criteria Description

Study ID Identifier of study (to match Table 3.6)

Association
Strategy

The strategy mapped in each study used to associate
software development with Stack Overflow

Input What was the input information used in each study in
order to generate the association between software
development and Stack O verflow

Output What was the output information generated by the
association strategy

Evaluation How is the study evaluated, what sources of information
were used to evaluate the proposal

Results The results of the evaluation

3.5 Analysis

The analysis of the information extracted from the articles gathered during

execution is presented in this section. For this work, a thematic rationale in order to

categorize the details of the papers is proposed, by gathering articles according to a

common subject discussed, and pointing out specific issues and differences from what

is proposed in this dissertation. The author of this dissertation was responsible for

extracting the information. The next subsections describe the analysis. This

categorization process follows the systematic mapping study protocol proposed by

(PETERSEN et al., 2015). Based on the information extracted from the studies, it was

possible to answer the research question of this SMS by formulating Table 3.8 and

next sections further detail these studies into categories.

3.5.1 Searching for and delivering Stack Overflow Posts

Most research on searching for and recommending Stack Overflow Posts have

been carried out starting in 2012. Most of the related works have as output a Stack

Overflow Post or a code snippet that is embodied in a Stack Overflow Post. Hipikat

(S1) is the exception, as it does not recommend Stack Overflow Posts, but it

recommends other artifacts from the software project, such as project documents,

source file versions and others. All the other papers (S2, S3, S4, S5, S6, S7 and S8)

deliver minimally a Stack Overflow Post or snippet from a Post to developers.

44

Table 3.8: Results extracted from articles.

Article ID Association Strategy Input Output Evaluation Results

S1

Hipikat infers links by
combining information
contained within the project
artifacts and the meta-
information about the
artifacts from different
information sources

Artifacts (tasks,
source file versions,
messages on
forums, project
documents)
produced during
development

Artifacts
Qualitative. New comers
using Hipikat x
experienced developers

Interview: Newcomers
found related files
faster, although
experienced performed
better in easy and
difficult tasks.

S2
Uses the source code to
generate Stack Overflow
queries. Manual, difficulty,
user action, error.

Text similarity
between Code or
Exception on IDE

Stack Overflow
code snippets or
Posts

Qualitative. Log analysis
of tool's performance.
Clicking in a query's
result indicate
effectiveness.

794 queries logged.
53% manual, 19%
difficulty, 15% user
action, 13% error.

S3
Associate text of API
tutorial with Stack Overflow
using Cosine Similarity API Tutorial

Stack Overflow
Post

Quantitative. 30 SO
Posts for each API:
JodaTime, Math, Official
Collections, Jenkov
Collections
Smack APIs

Precision:
Top5: 24.32% Top10:
20.67% Top15: 19.18%

MRR:
34.42%.

S4
Text Similarity between
issue’s text and Stack
Overflow posts text

Issues from
cookbooks for
Swing, Boost and
LINQ

Stack Overflow
Post

Quantitative. 35
cookbook tasks were
submitted to a SO dump
(similarity). Results were
manually analyzed by
authors qualitatively.

NDCG:
0.3583 (35%) for
Relevance

0.5243 (52%) for
Reproducibility.

S5
Text Similarity between
issue’s text and Stack
Overflow posts text

Android’s Issue text
Stack Overflow
Post

Quantitative. Uses
Android Issue Tracker
Tests Semantic
Similarity w/ Stack
Dump, Temporal
Similarity and, Temporal
and Internal Links.

Precision:
Top10
0.49, 0.56, 0.62.

MRR:
0.29, 0.33, 0.37.

45

Article ID Association Strategy Input Output Evaluation Results

S6
Text Similarity between IDE
exceptions text and Stack
Overflow posts text

IDE exception’s
errors text

Stack Overflow
Post and search
queries

Builds a Stack Overflow
corpus context
(exception / code). 38
unique traces from 6
grad students. 37
common exceptions
from Java were
included.

MeanPrecision:
Top10: 0.1229
Top20: 0.0736
Top30: 0.0538

Accuracy11:
Top10: 68%
Top20: 73.33%
Top30: 74.66%

S7
Text Similarity between
issue’s text and Stack
Overflow posts text

Android’s Issue text
Stack Overflow
Post

Quantitative. Compare
Issue’s Title with Stack
Overflow’s Title. Used 2
Samples. Compare SO’s
return with SO’s links on
issue trackers.

Precision:
Top10: 33:16%
Top20: 36:88%
Top100: 47:27%

S8
Suggests Stack Overflow
code snippets based on the
context inside Eclipse

Code
Stack Overflow
Post (Snippets)

Quantitative. 3
experiments with 35
Java Exercises from a
Book.

NDCG: 0.0907 (9,07%)
for Relevance.

Precision:
Top10: 0.0243
Top20: 0.0135
Top30: 0.0099

Accuracy:
Top10: 18.92%
Top20: 18.92%
Top30: m18.92%

11 Implemented w/ other approaches (ANTUNES et al., 2012, PONZANELLI et al., 2013).

46

Seahawk (S8) uses pieces of the code written by developers in Eclipse in order

to search for entire code snippets, saving developers the time they spend in typing an

entire block of code that is already in Stack Overflow. The approach used in Crosslink

(S5) is different, in the sense that it uses text similarity to match Android Issues with

Stack Overflow issues, and recommends the most similar posts. Similarly, the work

from Correia et al. (S7) also uses text similarity in order to associate Stack Overflow

and Android Issues. This work also analyzes contextual features (such as question

tags representing the topic) to recommend Stack Overflow questions in response to

bug reports. The approach proposed by Souza et al. (S4) classifies Stack Overflow

pairs of question/answers, comparing these pairs with the developer’s code through

text similarity, and also focuses on retrieving code snippets. The work from Wu et al.

(S3) associates’ text from API Tutorials with Stack Overflow Posts, using Cosine

Similarity. It retrieves questions regarding the API the developer is currently working

on. StackInTheFlow (S2) is a recent work – published in 2018 – and similarly to other

papers, it is a tool integrated to the IDE that uses the source code to generate Stack

Overflow queries. It uses information and events occurring on the environment to

generate the queries and present the results to developers. These events can be the

occurrence of an error, for example, then the tool automatically searches Stack

Overflow with the error message that was presented. The tool also analyzes when

developers are having difficulties in coding, these difficulties can be deleting a wide

range of code or not typing anything for a certain amount of time. It starts a search

using the code the user is currently editing. Users can also use this tool to search for

Stack Overflow Posts manually.

3.5.2 Defining a common context and using text similarity

Researchers have attempted to evaluate the impact of defining a context and

using text similarity to find correlations between them to recommend artifacts from the

project history, such as Hipikat (S1). Hipikat (S1) does not use Stack Overflow

information for the project, it uses other artifacts that have been created during the

project, such as other tasks, source file versions, messages on forums and project

documents. There is no external context associated, as for example a Stack Overflow

Post. SurfClipse (S6) uses a context aware tool in order to identify possible search

queries for exceptions presented in the IDE. The strategy is to search for similar texts

presented in the exception and other context in the IDE and through this context; it

47

builds a Stack Overflow corpus context containing the exception and the code that

should help the developer fix the exception.

3.5.3 Considerations regarding the association between

software development context and Stack Overflow

Hipikat (S1) uses as association strategy inference of links by combining

information contained within the project artifacts and the meta-information about these

same artifacts from different information sources. Some of the authors of this article

have worked on Mylar (KERSTEN & MURPHY, 2005), which is a very famous

relationship heuristic for software development artifacts. The importance of this article

relies on the association rationale, which is very similar to the one proposed in this

dissertation.

There are papers that deal specifically with issues from software projects, such

as S4, S5 and S7. As detailed in Section 2.2.1.1, issues are essentially different from

project tasks, but are important artifacts to use as input to search for Stack Overflow

Posts that should help with these issues. As issues might not contain information

regarding the domain of the system, only technological related problems, it’s somehow

easier to think about a direct search in Stack Overflow using issues text. Still, the direct

connection does not result in high accuracy, and to try to overcome that, the work S5

uses other strategies other than text association to increase accuracy results, such as

Temporal Similarity and the discovery of Internal Links of Stack Overflow in issue’s text

body.

3.5.4 Considerations regarding evaluation Samples

When considering characteristics of the evaluations of our Related Work, there

are articles using both qualitative and quantitative evaluation methods. The area of

recommendation struggles with cold-start problem. Other than that, when considering

software engineering, there is the need for people to engage in studies that take time

and sometimes depend on industry collaboration. Analyzing the selected Related

Work, we realized that most of the articles use small samples to validate their studies

(this also being a challenge faced in this dissertation). This motivated this section, to

expose a discussion regarding the samples used to evaluate our related work.

S1 and S2 evaluate qualitatively and the remainder papers evaluate qualitatively.

S1 uses an evaluation method that compares how easy it was for newcomers in a

48

company to get artifacts relations using Hipikat and compared the results with tasks

executed by experienced developers. S2 analyzed the log of the tool’s usage and

considered the high number of clicks as success. The other papers that evaluated

quantitatively, used samples with the following number of items in the samples: S3

used 5 APIs and 30 Stack Overflow Posts for each; S4 used 35 questions from

cookbooks from 3 different technologies, being 12 for the first, 14 for the second and 9

for the third cookbook. S5 used a large number of issues from Android Issue Tracker.

Android Issue Tracker, in the time of the collection of the dataset, had a total of

151,815 issues and 30,572 threads, and a total of 653 direct links to Stack Overflow.

The time period reported is between November 2007 until September 2013. S6 uses

75 traces from the IDE, being 38 stack traces from logs of 6 grad students and 37

common exceptions from Java traces. S7 uses two samples from Google Chronimum

and Android Issue Tracker. Both of these platforms contain issues that software

developers around the world have inserted. They matched the explicit links to Stack

Overflow encountered in both platforms to the actual text of the Issue. They also

surveyed software maintenance professionals in order to investigate solutions to

common problems of the area. By the time this paper was published, the results have

not been collected. And lastly, S8 uses as sample 3 experiments with 35 java

exercises from books.

3.6 Threats to Validity

While Planning: Protocol and process were used in order to enable the search

replication as well as minimize bias. In order to mitigate the recurrent issue on

inconsistent terminology and also reduce bias, the Computer Science Library Liaison of

the University of Waterloo was consulted in the beginning of 2018. After being aware of

the research, a revision of the search strings’ and their synonyms and keywords was

proposed, in an attempt to increase the search string’s reliability. The inclusion and

exclusion criteria might cause us to miss some studies.

While Executing: The use of only one research database can lead to missing

studies. One researcher performed the execution phase.

While Analyzing Results: The interpretation of data is a concern once bias can

be introduced.

The author of this dissertation executed the planning, execution and analysis

phases twice, first in January 2018 and then in September 2018, in an attempt to

perceive if the author followed the same rationale throughout the SMS.

49

3.7 Conclusion

This Chapter presented the Systematic Mapping Study performed in order to find

related works. There are several articles discussing the idea of reusing information

generated during the software development in order to support future steps in the

same or other projects. Our motivation is similar. However, the approach reported in

this work highlights the importance of the curation work performed by developers. This

dissertation also proposes searches in the project history for similar tasks, assuming

similar tasks reuse the same curated Stack Overflow Posts to aid subsequent task

issues. A Systematic Mapping Study found related work with approaches that use

code, development artifacts and other information to leverage software development.

Some articles found uses and suggest code snippets (S2, S8) or API

documentation content (S3). Most articles suggest automated searches for the

occurrence of exceptions or issues during project (S2, S4, S5, S6, S7). Projects that

are managed in languages other than English language might not find so many

relevant content in Stack Overflow, as the great majority of Stack Overflow Posts are

written in English; another consideration is that research shows that the text overlap

between issues and Stack Overflow is not greater than 16% (CORREA & SUREKA,

2013). We can also mention that when considering only issues and associating them

directly to Stack Overflow, project information is not considered, only technological

information regarding what was the error or issue. None of our related work has

mentioned the importance of the developer effort to formulate queries and pursue

results (curation). Developers search for sources of support that can help them solve

any kind of problem they might encounter, or even if the task they are working on

depends on knowledge beyond they possess.

S1 uses artifacts created within the project, which is similar to what is proposed

in this dissertation, and records what is called "project memory". This history called

“project memory“ is a logical association of artifacts, providing the developers a source

of preset associations of recurrent use of artifacts. The approach considers that a high

amount of artifact association is useful to suggest developers which artifacts they

should then review, in case it matches what is stored in the “project memory”.

This dissertation considers not only curation performed by developers, as it goes

beyond: it uses as source the project and information regarding project in order to find

similar project tasks, and suggest the curated work to a task that is likely to need it.

50

These characteristics indicate this work goes beyond the scope of some of the related

work. Next Chapter discusses the approach proposed in this dissertation in detail.

51

4 Study on reusing curated Stack Overflow Posts

This chapter describes the study that investigates the possibility to

associate project tasks with curated Stack Overflow Posts. It first

introduces the study and gives an overview of the problem, then it is

divided in two parts: the report of a preliminary study performed and the

main study proposed.

4.1 Introduction

Software developers rely on Q&A websites (such as Stack Overflow) in order to

solve technology-related issues while working on project tasks (KOCHHAR, 2016).

Developers use keywords that help them retrieve Stack Overflow Posts about similar or

even identical problems other developers already faced and reported. Once the

developer who needs support finds a similar solution, it is then implemented and

tested, and the software system should work as required, the developer then

completes the project task. The information that supported the developer to completing

the project task is not saved nor indexed anywhere within the project and therefore it is

never associated with the development workflow and the project explicitly. Also, there

was time invested in choosing what the suitable solution would be among a list of

Stack Overflow retrievals. If other team members have the same or similar problems,

they will have to re-execute the search by repeating all the steps, including reasoning

about a search string, reviewing possible solutions among all retrieved search results,

selecting and implementing the solution (or more than one solution, in case developers

are not sure if the chosen solution works) and testing it. In this work, we call these

steps curation, given the fact that developers have to select among a list of possibilities

that they will be implementing in the project.

Research shows that developers spend more than 10% of their time searching

the web looking for work solutions (MEYER et al., 2017). The support obtained is not

explicitly integrated into the software project. Because software development is

iterative, similar – or even identical – tasks can be executed several times during

iterations. Attaching what was used to support developers in the project should allow

52

reusing Stack Overflow Posts based on a task similarity discovery engine. Avoiding

repeated searches results in greater productivity to software development

(ROBILLARD et al., 2014). In order to be able to suggest curated Stack Overflow Posts

based on project task similarity, there are a number of procedures that need to be

implemented to allow Stack Overflow Posts suggestion. There are benefits of

integrating Stack Overflow posts with software development, according to (MEYER et

al., 2017), such as:

• It is beneficial in terms of keeping relevant information in the project;

• It avoids repetitive searches/selection of the same information;

• It is a practice that can help less experienced developers know how

experts are working;

• It reduces workflow interruptions; and

• When this information is proactively recommended, it can also result in

productivity for the development of the software.

This dissertation proposes a study on the viability of reusing curated Stack

Overflow Posts when identifying similar project tasks. In this Chapter, three important

steps of this study are laid out: a preliminary assessment, a project task context

identification and finally, an implementation of a process that retrieves similar project

tasks and is able to perform evaluations regarding the similarities retrieved.

4.2 Study Overview

Searching for Stack Overflow Posts is a typical procedure among daily activities

of software developers (PONZANELLI et al., 2013). The act of searching and selecting

one solution on Stack Overflow is referred to as curation in this dissertation.

The curation of Stack Overflow Posts occurs according to the following steps:

1. A developer has a problem, and creates a search string that might

retrieve satisfactory results;

2. The search string is submitted to Stack Overflow;

3. Stack Overflow executes the search, according to internal algorithms and

lists the results according to the search string created by the developer in

the first step; and

4. The developer selects one (or a set of) Stack Overflow Post that helps.

53

Each of these steps can be executed repeatedly, until the developer is satisfied

with the results listed and the developer chooses a Stack Overflow Post that helps the

project task resolution. Once a solution is chosen, curation is over. The curation steps

are represented in a BPMN process in Figure 4.1.

Figure 4.1: BPMN process representing curation steps.

Commonly, after a solution from a Stack Overflow Post is selected to be used by

developers, the post from where the solution was extracted is not associated with the

project hence cannot be reused by developers working in the same or similar projects.

There is a growing body of literature that recognizes the importance of associating

external knowledge to the development (CORREA & SUREKA, 2013; PONZANELLI et

al., 2013; PONZANELLI et al., 2014; WANG et al., 2014; KOCHHAR, 2016). Stack

Overflow is an important source of knowledge for software developers, and given its

importance, Stack Overflow is the source of support considered in this dissertation.

This support is presented in the form of curated Stack Overflow Posts. These posts are

pairs of one question and answers, along with comments and users’ information that

was previously selected among a wide list by a developer and implemented during the

task solution. Throughout the description of this proposal, curated Stack Overflow’s

Posts will often be referred to as KPost or KPosts. Developers themselves accomplish

the work of choosing the correct KPost among a list of results, and implement the

solution to resolve a specific project task this developer is working on. This selection

work is referred to in this dissertation as curation. Researchers have already proposed

approaches to retrieve Stack Overflow Posts for developers during the development of

the software product, and although they are able to suggest Stack Overflow

information, the articles either fail in covering a broad aspect of project tasks other than

suggesting code lines or artifacts, or they fail in not considering the curation effort at all.

The direct association between software project context and Stack Overflow can have

54

some other drawbacks, such as low precision in the information retrieval and important

curation efforts not considered, and therefore, KPost reuse is hampered. The

aforementioned conditions motivated this dissertation, which presents an approach to

aid the automatic correlation of curated Stack Overflow Posts to a project task,

enabling the reuse of KPosts.

The proposed study aims at using project task information and a text similarity

retrieval process to aid the suggestion of Stack Overflow Posts during software

development, according to the objectives presented in Section 1.2. Through the

identification of similar project tasks, KPosts that were once used to support a task

during its solution could be automatically linked to a similar task encountered. The

process functionality is receiving as input project tasks, submitting these tasks to a

similarity retrieval process, and by discovering the similarity among pairs of tasks,

linking the Stack Overflow Post of a project task to the most similar project task

discovered by the similarity retrieval process. The main study features are illustrated in

Figure 4.2. In this illustration, there are four tasks in the Project (1). Each project task is

composed of information, which we refer to as “Context” (2). Three of these tasks

(task1, task2 and task3) are resolved, represented by the white color of the “Task

Status” caption (3), and have Stack Overflow Posts (4) associated to them. One task is

not resolved (task4), neither have a Stack Overflow Post associated to it. When all the

tasks are submitted to a similarity retrieval algorithm (5), the similarities between the

project tasks are retrieved (6). These similarities are expressed in a range of 0 to 1. In

the example, when comparing task4 to task1, the similarity index between them is 0.6,

meaning these tasks are 60% similar. When comparing task4 to task2, the retrieved

similarity is 0.7, meaning these tasks are 70% similar. Finally, when comparing task4 to

task3, the result is 0.2, meaning these tasks are 20% similar. According to the

proposed approach, as the most similar tasks should share the same Stack Overflow

Post (7), it is then suggested that task4 should also be related to the Stack Overflow

Post associated to tasks task1 and task2, as they are the most similar tasks according

to the similarity index extracted in the illustration.

55

Figure 4.2: Proposed approach overview.

Developers perform the work of associating Stack Overflow Posts to project tasks

(4), after they have curated this KPost. Therefore, part of the solution is the developer’s

responsibility. The associations’ suggestions created automatically by the similarity

retrieval execution are represented in Figure 4.2 by the marker #7.

To assess the viability of this study before deepening the proposal research and

implementation, we decided to run a preliminary assessment study. This preliminary

assessment is described in Section 4.3. After, as the preliminary assessment returned

positive results, we kept pursuing the proposal research, and we present the studies

performed to characterize a project task context and the implementation for the

similarity between project tasks from Section 4.4 on.

4.3 Preliminary Assessment

According to our methodology, we first performed a preliminary assessment in

order to verify the feasibility of the proposal. This section presents the preliminary

assessment study performed. We considered evaluating the recommendation of Stack

Overflow Posts based on the association of a curated Stack Overflow Post to the

project task and further discovery of similar project tasks, in order to retrieve to

developers KPosts that could possibly be reused. We decided that it was important to

first check within an industry scenario if discovering the text similarity of project tasks

would be a good approach to suggest Stack Overflow Posts, if this relation was

somehow feasible. We ran this reported study and the results were later published in

CibSE Conference, 2018 (MELO et al., 2018).

56

4.3.1 Planning

The aim of the preliminary assessment was to assess the usefulness of the

associations of KPosts based on project task’s similarities. In other words, the goal of

the experiment is to discover similarities between project tasks and verify if the KPost

associated to one task could support similar project tasks, in an industry practitioner’s

view. We conducted a structured interview (KAJORNBOON, 2005), where the same

question with the same wording was asked in the same order. The aim of this type of

interview is, according to (KAJORNBOON, 2005),

“… to be given exactly the same context of questioning.

This means that each respondent receives exactly the

same interview stimulus as any other. The goal of this

style of interview is to ensure that interviewees’ replies

can be aggregated … Questions are usually very specific

… “

One of the strengths of this methodology, proposed by (KAJORNBOON, 2005),

is the fact the researcher who is interviewing has control of the topic and questions

asked. As the question we aim to ask is very specific and has one direct answer, we

chose this methodology for this study. The following steps were then performed in this

preliminary assessment:

1. Software developers from a company were asked to identify project tasks

that they could associate with Stack Overflow posts, informing which

Stack Overflow post helped which task (tasks that had curated Stack

Overflow Posts).

2. Once we had this result, a similarity discovery is performed using a java

implementation of the Levenshtein distance metric (Appendix B –

Preliminary Assessment Implementation Code contains the source code)

to discover similar tasks to each one of the tasks the developers provided.

3. Once the similarity index results were retrieved, we created a form in the

format of a table with all discovered tasks that were 50% similar or above

to the ones that had a Stack Overflow Post associated;

4. Developers that were willing to participate in this study answered, for

each similar task found, the following question: “Can possibly use the

same Stack Overflow post? “ where the developers should answer YES

57

or NO to each similarity discovered by the algorithm, in a structured form

sent to them with all similar tasks listed;

5. This form was sent to the software engineers of the company, in the form

of a questionnaire, and the ones who were familiarized with the project

tasks, answered the questions;

6. The exact same question was submitted to all developers that

participated, following the structured interview method (KAJORNBOON,

2005).

The company and participant selection criteria were from our professional

network. The criteria for selection were participants that had more than five (5) years

working with software development, which worked in companies that managed project

tasks in automated project management tools (which allows an automated similarity

discovery) and used, at least partially, some degree of process definition (iterations,

repeatability). We did not select participants who knew about this research to avoid

bias.

4.3.2 Execution

We sent emails to selected contacts from our professional network that work in

different kinds of software development businesses:

• Contact 1: Full-time software engineer from a software factory that mostly

works with public sector software projects;

• Contact 2: Full-time project manager from one big retail chain business;

• Contact 3: Full-time software architect from a small software factory that

works in the private and public sectors software projects;

• Contact 4: Full-time software architect from a North American startup

company;

They were asked to provide project tasks and their associated Stack Overflow

Post, to each task. We also explained how the study was supposed to occur after they

provided the tasks with their associated Stack Overflow Post, that their help would be

needed for a second time, in order to answer the questionnaire. We received answers

from all contacts. Contact 1 answered that could not provide an association with Stack

Overflow Posts to their tasks, although it was part of their routine during software

development. Contact 2 answered that he could look among the project management

tool some Stack Overflow Posts that helped him or developers of his team solve tasks,

but his manager did not allow us to access the company’s project management tool

58

data in order to look for similar tasks, as the second step of this study would require.

Contact 3 answered the email sent with three tasks from one project, and also a

tabulated file containing all tasks from this same project created until that date,

extracted from the project management tool. Contact 4 answered similarly to Contact

2, stating he could look for old tasks that had references to Stack Overflow Posts, but

when he talked to his manager about providing other tasks in order to find similar

tasks, the manager was not helpful, according to him, due to the novelty aspect of new

features of systems the company is currently developing, and also because his

manager was afraid he would be disrespecting some North American law he was not

aware of. The data of the company Contact 3 works in were then used for this study.

We had all data we needed: tasks with associated Stack Overflow Posts and all the

tasks from the same project, which were more than 4000.

The company was founded in 1998 and is focused on software solutions for

companies with a wide range of application needs in both the private and public

sectors in Brazil. For the last 10 years, the company has mostly developed software for

logistics and cargo transportation in container ships and trucks. With the help from the

company’s software architect and one mid-level software developer, we were able to

gather information of tasks, their possible related Process Activities and also, the Stack

Overflow posts that each developer used on the solution for each task. We were able

to access data from the company’s project management tool with the help of

developers that work in the company. The software developer of this company

suggested the project to be analyzed in this study, based on the fact that this was the

oldest project in the company with the most project tasks and had been using the

SCRUM process successfully during its development.

After we characterized the tasks we received, the similarity retrieval was

executed using the entire task database (dump file) of the same project of the

company, including archived tasks (around 4000 tasks extracted in a file at the time of

the assessment). After executing a similarity search over the project database records

and retrieving similar tasks, we created a questionnaire and returned to the company,

asking if the same Stack Overflow posts could be reused during the resolution of

similar tasks that were discovered. For the second phase of the study, we received

answers from one software developer in this company. This software developer worked

in this company for 5 years and has a total of 6 years of experience developing

software.

59

The tasks descriptions (e.g., title, context) are in Portuguese, and were not

translated into English during the similarity search in order to keep the original text and

because this proposal is intended to be multilingual. But for information purposes, the

three chosen tasks are presented in this dissertation with their English translation.

Developers associated three Tasks with Stack Overflow Posts. The associations

are presented in Table 4.1.

Table 4.1: Manual association between Task and Stack Overflow posts.

Task
ID

Task Title (Portuguese) + Task
existing Context

Task Title (English)12 Stack
Overflow

Post

Task1 [2.10.2] Evolutiva 39 - Inclusão
de combo no campo E-mail
envio NFS-e + Construir e testar
código

[2.10.2] Evolution 39 -
Inclusion of combo in E-mail
sending NFS-e field

29174164

Task2 [2.10.13.1] [Recepção] [Cheio]
Sistema não registra ocorrência
de envio de email ao criar
pedido

[2.10.13.1] [Reception] [Full]
System does not record
occurrence of email sending
when creating order

25636091

Task3 [2.10.2] Erro ao subir aplicação
em homol após inclusão do
campo listaEmailNFSe

[2.10.2] Error uploading test
application after inclusion of
lis-taEmailNFSe field

25996758

4.3.3 Reporting

In the second phase of this study, we submitted each of the three (3) tasks to a

text similarity comparison with all tasks from the same project using a Java

implementation of the Levenshtein algorithm. The implemented code is presented in

Appendix B – Preliminary Assessment Implementation Code. The most similar

discovered tasks (>= 50% similar) are presented in Table 4.2, Table 4.3 and Table 4.4,

for each task. A company’s software developer provided the answers regarding if the

same Stack Overflow post could possibly be reused by the similar tasks discovered by

the java implementation.

12 for information purpose only

60

Table 4.2: Levenshtein similarity calculations and developer’s opinion about Stack Overflow
post recommendation – Task1.

% of
similarity

(approximate
d)

Description

Can possibly use
the same Stack
Overflow post?

DeveloperAnswers

52% [HOMOL][Evolutiva] Envio de e-mail – Interceptor Yes

51% [HOMOL] Alteração do texto do e-mail Meio
Ambiente

No

51% [TESTE] Alteração do texto do e-mail Meio
Ambiente

No

52% [TESTE][Evolutiva] Envio de e-mail - Interceptor Yes

50% [Tela 3] - Criticar exclusão de transportador do
pedido

No

50% [2.2] Alteração do nome de procedure de DTC No

50% [HOMOL 2.2] Evolutiva na Consulta Boletim de
Pesagem

Yes

50% [DTC] E-MAIL - Envio de e-mail com PDF No

51% [RETIRADA] Importação - Alteração do formato
do campo CEMercante para string

No

51% [2.5.0]Erro ao finalizar Recepção Vazio
Embarque Direto

No

51% [2.3.8] HPU - Alteração do nome do bloqueio No

50% [Navis] Validação da solução de envio
multiThreads

No

Table 4.3: Levenshtein similarity calculations and developer’s opinion about Stack Overflow
post recommendation – Task2.

% of similarity
(approximated)

Description

Can possibly use
the same Stack
Overflow post?

DeveloperAnswers

51% [Reprogramar Recepção] Sistema está exibindo
mensagem de erro ao reprogramar

Yes

53% [ConsultaPedidoRecepçãoCheio] TESTAR Rever
acesso do Botão Editar Pedido

No

54% [Criar Pedido CHEIO] SIstema não gera
ocorrencia de criação de HPU (BLOQUEIO
NAVIS) na criação do PEDIDO CHEIO

Yes

51% [HOMOL_2.3.8] Recepção Vazio Embarque
Direto - Envio e-mail PDF

No

50% [2.5.0] Recepção Cheio e Vazio - Alteração de
restrição de utilização de container

No

54% [PRODUÇÃO] RECEPÇÃO - Sistema não exibe
mensagem de taxa não paga ao aprovar

No

61

54% [TRUNK] RECEPÇÃO - Sistema não exibe
mensagem de taxa não paga ao aprovar

No

51% [RECEPÇÃO] Registrar no LOG que o usuário
cancelou o envio de email automático

No

Table 4.4: Levenshtein similarity calculations and developer’s opinion about Stack Overflow
post recommendation – Task3.

% of
similarity

(approximate)
Description

Can possibly use
the same Stack
Overflow post?

DeveloperAnswers

51% [Tela 2] Erro como Administrador do Sistema Yes

51% [Tela 1] - Aplicar Exceção E4 como pré-condição
da tela 1

No

50% [2.5.0]Erro ao finalizar Recepção Vazio
Embarque Direto

Yes

The results collected and presented in Table 4.2, Table 4.3 and Table 4.4 were

analyzed and they are discussed in the next section.

4.3.4 Discussion

According to the company’s software developer who answered the assessment

question, for all three tasks, there was at least one similar task that could possibly

reuse a Stack Overflow post. As presented in Table 4.2 the Task1 scenario for

encountered 12 tasks that are at least 50% similar to Task1, and from a group of 12

similar tasks, a quarter of them can possibly reuse the associated Stack Overflow post.

In the Task2 scenario, presented in Table 4.3 from 8 similar tasks, 2 can possibly

reuse the same Stack Overflow post associated with Task2. Task3 has 3 similar tasks

and 2 of them could have reused the associated Stack Overflow post, as presented in

Table 4.4. The developer who provided the 3 initial tasks and their associated Stack

Overflow Post and the developer who answered the assessment question were two

different people. The first one is a senior developer who has been working in this

company for 7 years and has a total of 10 years of experience as a software developer.

The professional who answered the assessment question is a software architect with

15 years of experience as a developer and who has been working for 10 years in the

company. The person responsible for inserting the project tasks on the project

management tool varies. In this case, for the 3 selected tasks, the senior developer

inserted two of them, and one other team member, who is a project manager in the

company, inserted the other one.

62

The presented study result provides posts that are relevant to developers

executing specific tasks. Preliminary, though modest, results indicate that, through the

proposed solution, it is possible to bridge project tasks and Stack Overflow posts and

to reuse Stack Overflow Posts when similar tasks are found. The proposed approach –

using project task similarity to reuse curated Stack Overflow Posts – was able to

generate recommendations within all analyzed scenarios, according to the developer

interviewed. Also, according to this developer, the recommended Stack Overflow post

could be useful for the execution of at least 25% of similar tasks. This finding, while

preliminary, suggests that KPosts can be reused by identifying similar tasks and that

the proposal was worth to keep pursing further.

4.3.5 Threats to Validity

As threats to validity for this study we can mention:

(1) The sampling used for this interview might not be representative

enough; this is due to the fact that it was difficult to find companies that

were willing to share their data, and more importantly, that had explicit

associations between project tasks and Stack Overflow Posts in their

documents, histories, version control services and project

management tools.

(2) The study used project tasks that were already resolved (done). A more

accurate approach would be to include new tasks, perform

suggestions, and ask if the suggestions provided were useful for

developers, in real time. As this study was only preliminary, we

considered this as a threat, not as a circumstance that makes this

study impracticable.

4.3.6 Conclusion

A preliminary assessment was performed aiming to assess the proposal base

idea through the point of view of an industry practitioner. Therefore, invited participants

contributed in this assessment, which consisted in a structured interview about

similarity findings provided, using real data from a project in a software development

company.

From the results, we could perceive that the approach is valid, according to the

conclusions about the software developer’s answers, and we also concluded that the

approach needed further improvement and a quantitative evaluation. The study

63

improvement is reported in the next sections of the current chapter, and the evaluation

of the proposal is reported in Chapter 5.

4.4 Study on reusing curated Stack Overflow Posts

The next sections of this chapter describe how the proposal was further

developed after the preliminary assessment conclusions. First, we researched what

comprises the context elements of a project task. After, we implemented a process

using the investigated context and used a data science platform that aids data

solutions for implementation. This process provides similarity indexes when comparing

text strings from project tasks context. Through the similarities retrieved in this

implementation, the decision regarding associating Stack Overflow Posts was

evaluated and described in Chapter 5.

4.4.1 Project Task Context

Project Task Context is a set of information that composes a project task. In other

words, contexts are specific characteristics from one project task, which makes a

project task unique. Project tasks are the project assets used in this approach, since

the suggested association of a curated post to a project task will be provided according

to the similarity of project tasks, the possibility to reuse Stack Overflow Posts arises

from the similarity among project tasks. Because this project task context is an asset in

this research, an investigation on project task context elements was performed. From

this investigation it is possible to identify a group of project task context elements that

are suitable to be submitted to the similarity retrieval process implementation. The

suitability is determined by the characteristics of each project task to be used to find

similar tasks. We consider this project task context investigation important in order to

contribute to the guidelines of what information from project tasks are suitable for

similarity comparisons, as well as the possibility to remove researcher’s bias by

analyzing the information on how both academia and project management tools

perceive project tasks in software engineering.

We performed an ad-hoc literature review regarding what kind of information

exists in software projects and an investigation of three project management tools. We

were able to identify project task context elements from the theoretical foundation

literature and also from project management tools. What was found in the literature

was that software engineering is knowledge-intensive due to its dynamism and the

massive amount of technology used activity (DI CICCIO et al., 2015) (LINDVALL &

64

RUS, 2003). According to Lindvall et al., software engineering has two types of

knowledge associated with it: technical and business domain information. Technical

knowledge refers to design (design patterns, heuristics, best practices, technical

constraints and estimation models), programming (programming languages and

development tools) and software processes (methodology, code testing and debugging

procedures). Business domain knowledge refers to information regarding aspects of a

specific application (the customer’s business processes, business rules, activities,

stakeholder needs, business goals for software). This dissertation does not consider

application domain information; it only considers technical information because this

proposal’s aim is to be agnostic to business characteristics. From this analysis, a need

for a context element that can store technological information was perceived.

Therefore, we propose a context element to store technological information of project

tasks. This element can be expressed as tags. Tag is a term related to a piece of

information. In this case, the terms are any technical information directly related to the

task that can characterize it.

To broaden our study and capture what is currently used by industry, we also

included project management tools used in software engineering in the project task

context identification. Researchers also believe it is important to consider other sources

in grounding research other than formal literature in software engineering (GAROUSI

et al., 2016); considering other sources allows a broader theoretical aspect and brings

practical insights to the work. Therefore, we analyzed project management tools

information regarding project tasks. In this search, we concluded that some of the

project task elements identified in the literature were also reported in software

development tools that support project workflow. The tools analyzed were JIRA13,

Trello14 and Redmine15. With this analysis, we were able to identify context elements

such as a task’s title (subject), a task’s description, a project to which a task belongs,

and to what process information the task can be associated. Another element identified

was the category of a task. This category is determined by how the company wants to

classify the project tasks. Categories can be, for example, development and testing, or

a type that classifies a task. After performing analysis from both ad-hoc literature

search and of project management tools, we present a list of the identified context

elements in Table 4.5. This table has the following attributes: the name of the context

element identified, a description of each context, and also presents where each context

13 atlassian.com/Jira
14 trello.com
15 redmine.org

65

element was identified. For a context element found in the literature, the reference of

the article will be presented; if found in a project management tool, the name of the tool

is presented.

Table 4.5: Context description and source of elements.

Context
Element

Context Description
Source of context

element identification

Project/Board The name of the project that tasks
belongs to

Redmine
Trello (Board)

JIRA

Project Tag Tags related to the project (LINDVALL & RUS, 2003)

Process Process information that can be
associated to the task

(LINDVALL & RUS, 2003)

Task Title The title of the task Redmine
Trello
JIRA

Task
Description

The description of the task Redmine
Trello
JIRA

Category/Type A task category or type; a classification
used to divide tasks into different niche

Redmine (Category)
JIRA (Type)

Task Tag Tags related to the task (LINDVALL & RUS, 2003)
JIRA
Trello

Project is a context element identified in all project management tools

investigated. In Trello, it can also be identified as a Board, as each project has its own

board view. Process as context for project tasks was found in the literature.

Interestingly, although not identified in project management tools as default information

for project tasks, in the example of project task context in Section 4.4.1.1 the company

that provided the example had created a customized field to control Process

information for each task. Category, Task Title and Task Description are found in all

project management tools. Finally, task tags are general technological information

related to the specific project or task that identifies them, as found in the literature and

also in two of the investigated project management tools. Tags can be unlimited and

created at the discretion of the team member responsible for creating or editing tasks.

Technological information related to the task that can briefly characterize the task,

using one or at most two words, is a tag. Tags are also suited for projects. Each project

has specific context in respect to product (SANTORO et al., 2006), such as

technological characteristics that every task will inherit necessarily, indicating the need

66

for a project tag. Examples of tags contexts’ contents are presented in Table 4.6, for

clarification.

Table 4.6: Examples on Tags for Project and Task.

Identified Task Context Examples

Programming Language (ProjectTag or TaskTag) java, sql, jQuery, C++

Application Middleware (ProjectTag or TaskTag) jboss, weblogic, tomcat

Automation Tool (ProjectTag or TaskTag) maven, jenkins

Persistence Framework (ProjectTag or TaskTag) hibernate

Database (ProjectTag or TaskTag) oracle, sqlserver, mysql

IDE (ProjectTag or TaskTag) eclipse, notepad, visual studio

Error Message (TaskTag) ORA-0600, javaPersistenceError

Using another perspective to represent the identified project task context

elements, a domain model is presented in Figure 4.3. This domain model also presents

Stack Overflow as an external package associated to the task through curation.

Figure 4.3: Domain project task context elements' model.

In this section, project task context elements were identified in both literature and

project management tools. The next section presents an example of a project task from

Redmine project, and what would be this randomly selected tasks context elements.

67

4.4.1.1 Project Task Context Examples

Two examples of project tasks are presented to illustrate project task contexts

within real project task scenarios.

The project management tool Redmine has publicly available data regarding

feature requests for the tool, issue reports, and Wikis. It is therefore, an example to

illustrate project task contexts data from the Redmine project. We randomly chose a

project task to use as example. Figure 4.4 presents the screen of one registered

project task retrieved from the Redmine project. The red boxes identify the contexts of

the specific task we were able to identify.

Figure 4.5 presents another example from a project task. This example was

provided by a Brazilian software development company. The data used was from the

same company described in the preliminary assessment (Section 4.3).

Figure 4.4: Task #29501 from Redmine project.

c

68

Figure 4.5: Task #13310 from industry project.

The identified project task context from tasks #29501 and #13310 are described

in Table 4.7. The first column presents the identified context elements in Section 4.4.1

and the following columns present the context retrieved from each example task.

Table 4.7: Context for Task #29501.

Context Task #29501
Redmine Project

Task #13310
Industry Example Project

Project Redmine (all tasks belong to
project Redmine, although this
information is not presented in this
view)

Portal de Serviços
(information not presented
in this view)

Process N/A Construir e Testar Código

Category Issues ERRO

Task Title Allow addition of watcher group via
bulk edit context menu

[Crosscheck] Mensagem
da Aba a Bloquear

Task Description Currently, bulk edit context menu
allows adding of watchers.
However, addition of Watcher
Group is not available. If this
feature could be added, it would
really save a great deal of effort for
us.
Instead of searching and selecting
each watcher individually we can
assign a watcher group for issues
in bulk. Please do consider this
feature addition in the future
release.

Quando não há
contêineres na aba A
Bloquear, aparece a
mensagem “Nenhum
container consta como
bloqueado”. Deveria ser
“Não existem contêineres
a bloquear”.

Project Tag N/A N/A

Task Tag N/A N/A

69

As presented in Table 4.7, it is possible to visualize the retrieved context from

project tasks. The fields filled with “N/A” were the ones identified in Section 4.4.1 -

Project Task Context but that were absent in the example; in the examples, the tool

does not allow tags for tasks and the projects do not use custom fields to classify tasks

using tags.

The next section presents the process implementation that retrieves the similarity

among project tasks contexts and evaluates the study.

4.4.2 Study Implementation

After project task context elements were identified in both industry and project

management tools, we proposed an implementation to obtain the similarity index

between the project task context elements. This implementation comprises

methodology step #6, which describes the process that allows the association

suggestions of curated Stack Overflow Posts to project tasks. This process, in

summary, should be prepared to receive as input a dataset containing project tasks

associated with Stack Overflow Posts, then to retrieve similarities from pairs of project

tasks and evaluates if the Stack Overflow Posts are the same (indication of reuse)

between tasks with a high degree of similarity.

The proposal in this dissertation compares one project task (task’s context

elements identified) with a set of tasks, and after identifying the most similar task from

a list of existing tasks, it associates the curated Stack Overflow Post (or posts) of the

most similar project task found among comparisons. This means that the tasks that are

closer to the similarity index of 1 (100% similar) among all compared ones will have its

KPost associated to the task requesting the KPost. The platform RapidMiner16 was

used to implement the process. RapidMiner is a very powerful data science platform,

requiring a small learning curve to be used. There are reports of wide use in the

academic field (SCHLITTER et al., 2013). This process generates a table with all the

similarity indexes retrieved for each pair of compared tasks and is able to evaluate this

similarity table. RapidMiner has embedded into its functionalities a wide number of

algorithms to extract text similarity, including the Jaccard algorithm.

This current section presents how the process in RapidMiner is implemented and

all tasks performed. This process retrieves the similarity indexes between the project

tasks of a given dataset and evaluate if the comparisons with higher similarities refer to

16 rapidminer.com

70

the tasks that use the same Stack Overflow Post. The implemented process receives

as input a dataset with project tasks, gathers the similarity between each pair of project

tasks and evaluates the similarity generated by providing metric results. Note that the

referred similarity table is different from the dataset. The dataset is a list of project

tasks. The dataset is used as input to a RapidMiner process. This process generates

the similarity table during the execution of the process and evaluates the data of the

similarity table.

The development of the process was performed using RapidMiner Studio

version 8.2, the desktop version of RapidMiner platform. Each implemented step

(represented by operators in RapidMiner) and the final process are described below.

After all operators are described, we present the execution of the process the

generated similarity index and the results in Chapter 5. The process created in

RapidMiner is presented in Figure 4.6. Each operator will be detailed over the next

sections. Operators that run sequentially compose the process. Each operator has a

different responsibility, and the combination and order of operators can change the

result of a process. In this process, the first operator loads the sample file with project

tasks. A straight line connects operators. Each operator is a box that runs a unique

procedure and the result is an input to the next operator. Every operator has

semicircles that are ports for inputs and outputs, except for the Retrieve operator, that

has no input, because this operator represents a loaded file. These semicircles are

labeled icons on the side of operators. The inputs and outputs of operators are:

1. out: output port.

2. ori: the original data of the sample.

3. exa: the generated set modified by operators.

4. sim: similarity table generated.

5. lab: labeled data. A label input is applied in the example set and is

delivered in this port.

6. per: performance vector for selected attributes.

7. doc: document or document set.

8. res: connector represents the end of the process.

71

Figure 4.6: RapidMiner process.

Each operator and its functionality are described below.

Retrieve Operator: The first operator in the process is the Retrieve operator.

This operator represents the dataset import in the process. According to RapidMiner

documentation, this operator loads the desired repository into the process. It is

necessary to inform the platform where the physical file is and also configure a few

characteristics of the dataset. RapidMiner provides guided user interfaces (GUI) to aid

the needed configurations. The configurations needed are: encoding, defining a

specific character for comments, and column separator. The GUI also helps the user

set column types. The result of the configuration is the Retrieve operator referencing a

configured data sample. After creating this operator, it is necessary to select which

attributes of the dataset (project task context elements) will be used to generate the

similarities. The operator responsible for selecting the attributes is Select Attributes.

Select Attributes: The Select Attributes operator is used in order to select what

attributes from the dataset will be the project task context elements to generate the

similarity index extraction. This operator selects a subset of attributes of a dataset and

does not consider the other attributes that were not selected. This attribute is then

linked to the Retrieve attribute out port to its exa in port. After selecting project task

context elements, they are submitted to a text pre-processing process. The exa output

port of the Select Attributes operator is then connected to the exa input port of the

Process Documents from Data operator.

Process Documents from Data: this operator is a sub process, responsible for

the text pre-processing transformations. The transformations executed are the

transformation of characters to lowercase (Transform Cases), the removal of every

character that is not an alphanumerical character (Tokenize), stop-words filtering (Filter

Stopwords) and lastly, the transformation of inflected words into a base or root form of

72

the word (Stem). The sub process is presented in Figure 4.7. Label doc represents the

inputs and output ports.

Figure 4.7: Process Document from Data sub process.

This operator’s output, which is the text with which all text pre-processing

configurations, is connected to the next operator input port, Set Role.

Set Role: This operator changes the role of an attribute of the dataset. It is

needed by the next operator´s (Data to Similarity Data) input. This operator identifies

which information from the input dataset is the dependent variable, meaning,

information that will be suggested and submitted to evaluation further in the process.

Data to Similarity Data: this operator is responsible for creating the similarity

table. It receives as input the configured and selected attributes of the imported dataset

and provides as output the similarity table, containing all similarity indexes extracted

from each project task comparison. Part of a similarity table example is presented in

Figure 4.8.

Figure 4.8: Similarity table example.

The similarity table has four columns: Row No., FIRST_ID, SECOND_ID and

SIMILARITY. Row No. is an identification number of each generated row. FIRST_ID is

the identifier of the row number of the dataset used as a base for comparison. This row

is compared to the row informed in the SECOND_ID column. The SIMILARITY column

is the discovered similarity index result as comparison between FIRST_ID and

SECOND_ID. We can read this table information as: the first row of the similarity table

(Row No. = 1) presents the first project task of the dataset (FIRST_ID = 1), compared

to the first row of the dataset (SECOND_ID = 1) and the result of this comparison is a

similarity index of 100% (SIMILARITY = 1). The second row of the similarity table (Row

73

No. = 2) presents the first project task of the dataset (FIRST_ID = 1), compared to the

second row of the dataset (SECOND_ID = 2), and the result of this comparison is a

similarity index of approximately 38% (SIMILARITY = 0.375).

Data to Similarity Data operator has two parameters: Measure Type and the

algorithms available for each measure type. The parameter Measure Type is used for

selecting the type of measure to be used for calculating similarity. The available

measure types are: mixed measures, nominal measures, numerical

measures, and Bregman divergences. These parameters define how to calculate

distances for the attributes of the input dataset. This parameter is configured according

to the dataset’s configurations and characteristics. For this work, considering the

dataset has text columns only, the option selected for Measure Types is “Nominal

Measures”. When this parameter is selected, the second parameter changes

dynamically. The parameters tab changes and presents “Nominal Measures” as label,

and this parameter has the suited algorithms for textual measure type as options.

Nominal measure algorithms are described below. Considering “e” as number of

attribute for which both examples have equal and non-zero values, “u” the number of

attribute for which both examples have not equal values and “z” the number of attribute

for which both examples have zero values, the available algorithms are:

1. NominalDistance: Distance of two values is 0 if both values are the

same and 1 otherwise.

2. DiceSimilarity: With the above-mentioned definitions the DiceSimilarity is

2*e/(2*e+u)

3. JaccardSimilarity: With the above-mentioned definitions the

JaccardSimilarity is e/(e+u)

4. KulczynskiSimilarity: With the above-mentioned definitions the

KulczynskiSimilarity is e/u

5. RogersTanimotoSimilarity: With the above-mentioned definitions the

RogersTanimotoSimilarity is (e+z)/(e+2*u+z)

6. RussellRaoSimilarity: With the above-mentioned definitions the

RussellRaoSimilarity is e/(e+u+z)

7. SimpleMatchingSimilarity: With the above-mentioned definitions the

SimpleMatchingSimilarity is (e+z)/(e+u+z)

Jaccard algorithm is broadly used in text similarity retrieval (LEVENSHTEIN,

1966) (YUNG-SHEN LIN et al., 2014), and the algorithm most often used for document

comparison (TAN et al., 2006). It compares two strings and retrieves an index that

74

shows how similar both strings are. The similarity indexes retrieved as a result of the

execution of similarity algorithms have a range from 0 to 1 and can be interpreted in

percentages. This operator compares each document to all other documents (n^2). For

example, if there are 25 examples in the given dataset, there will be 625 (i.e., (25*25))

similarity comparisons in the resultant similarity table. This operator is connected to

another Set Role operator, which has a different responsibility in this step of process.

Set Role (2): This operator sets roles for specific attributes. The input

information for this operator is the similarity table and its four columns. In this Set

Role(2) operator, column FIRST_ID is set to “label” and column SECOND_ID is set to

“prediction”. The label attribute serves as a target for comparison, and the prediction

attribute is the prediction of a process. In other words, this means that the information

on the SECOND_ID is the expected prediction and the FIRST_ID column is the base

information for the prediction. In this dissertation, the information we are studying is

Stack Overflow Posts. This means both columns should present the Stack Overflow

Post associated to that compared project task. This way we can evaluate if project

tasks with a high degree of similarity share the same Stack Overflow Post, in case they

are equal in both columns.

Filter Examples: is the operator that sets a threshold of similarities. We defined

a threshold of 50% similarity (similarity index >= 0.5).

Performance: Performance operator is used for statistical performance

evaluation of classification tasks. This operator delivers a list of performance criteria

values of the classification task. The classification task is the similarity extraction and

that classification has the instances of data we wish to evaluate with the performance

operator. To use this operator, it is mandatory to set roles to attributes from the

similarity table as “label” and “prediction” roles, for which the Set Role(2) operator was

responsible. The “label” attribute stores the actual observed values whereas

the “prediction” attribute stores the values of label predicted by the classification

process under analysis. This operator is connected to the “res” port of the process,

indicating the end of the process. The output of this operator is a confusion matrix of

the similarity table, and all metrics are calculated from this confusion matrix. The

confusion matrix has two dimensions: label and prediction. It allows visualizing the

performance of the algorithm. Each row (first dimension) represents the labels and the

columns (second dimension) represent the predictions (or vice-versa). For example, if

a system is trained to distinguish between elements chairs and pens, and there are 5

75

chairs and 2 pens, the resulting confusion matrix can look like the one presented in

Table 4.8.

Table 4.8: Confusion matrix example.

 Actual (label)

 Chair Pen

Predicted Chair 3 2

Pen 2 0

From this table, we can conclude that from 5 occurrences of chairs, 3 were

predicted right. And for 2 occurrences of pens, 0 were predicted right. We should be

looking for the row where the label and prediction are the same elements. This last

operator is connected to the res port, ending the process construction.

For didactic purposes, we divided the methodology step #6 into two chapters.

Chapter 4 comprises the entire process implementation, including the operators

responsible for evaluating, and the details on the RapidMiner operators used in the

implementation. Chapter 5 continues the study description, as it evaluates the dataset

sample collected and presents the results.

4.5 Conclusion

This chapter investigated project task context elements and proposed an

implementation of a data mining process that is able to load a dataset of project tasks

and retrieve statistical results with the possibility of reusing curated Stack Overflow

Posts associated to project tasks when project tasks are similar (have a high similarity

index). This implementation fulfills two of the specific objectives of this dissertation:

Identification of project task contexts and Implementation of a process to

retrieve project task similarities.

 Next chapter continues the study, as it presents the evaluation of the process

implemented in Chapter 4.

76

5 Evaluation

In this chapter, the process implemented in Chapter 4 will be evaluated.

A sample using data from industry is used in this evaluation. There are

two different results observed: the comparison of the results with the

related work, and the results regarding context combinations. The

evaluation methodology is presented, as well as all results obtained.

5.1 Introduction

In Chapter 4, a process that is able to retrieve similarities between project tasks

and evaluate curated Stack Overflow reuse was presented. This process is an

implementation of a data process in RapidMiner, and includes features to read data,

select what are the project task context elements, create a similarity table and verify

the results of the implementation, presenting metrics. In this chapter, we present the

execution of the process built in Chapter 4 and the results provided by the process

implementation. There are two evaluations result of this implementation: in the first, we

collect results from the process executed, having as input the project task contexts

identified in Section 4.4.1, using a sample gathered from a company. In the second

evaluation, using the same sample, different project task contexts are combined and

metrics of each different combination are provided. Evaluation variations are possible

due to the offline experiment characteristic, which enables controlled data manipulation

by changing the presence of variables of the dataset. Applying variables variations

within the same set of tasks allows building basis for comparisons and analysis of

diverse formats of methods or metrics (EKSTRAND et al., 2010).

Offline experiments are usually performed to evaluate recommender systems.

There are challenges on selecting metrics to quantitatively evaluate systems that

suggest data based on existing information, as there is a lack of standardization of a

metric in collaborative filtering systems (HERLOCKER et al., 2004). Accuracy is a

metric commonly used in this scenario (SHANI & GUNAWARDANA, 2011). According

to these authors and the measures from our Related Work (S3, S5, S6, S7, S8),

accuracy and precision are common metrics used for evaluating collaborative filtering

systems. Due to the characteristic of our implementation - having a dataset with preset

values allowing multiple tests and results comparisons - the evaluation for this proposal

77

is an offline evaluation. Although it is possible to run multiple tests and there is no need

for people involved in the experiment, there are two weaknesses regarding offline

evaluations: the lack of user ratings and the fact they are limited to objective

evaluation. No offline analysis can determine if users prefer a system because of the

quality of its recommendations or because it has a good interface, for example.

The following sections present details regarding the evaluation metrics and the

methodology, objectives, its execution, results gathered and a discussion regarding the

obtained results, as well as the threats to validity identified.

5.2 Metrics

Precision is the proportion of Predicted Positive cases that are correctly Real

Positives (POWERS, 2011). The equation for Precision is presented below in Equation

5.1.

Equation 5.1: Precision formula.

The accuracy is calculated by taking the percentage of correct predictions over

the total number of examples. Correct predictions (accuracy) means the examples

where the value of the prediction attribute is equal to the value of label attribute.

Regarding Precision, RapidMiner provides a mean of the weights of precisions

extracted. For this dissertation, each precision has the same weight, meaning the

metric, although presented as Weighted Mean Precision, or WMP, is the mean

precision, as there are no weights defined.

Regarding Accuracy, researchers aim to find solutions that provide better

predictions, because there is an assumption that users will prefer a system that

predicts better. The accuracy is the most discussed property in the literature of

recommender systems. This metric is usually interface-independent and can be used

in an offline experiment. The accuracy of the suggestions is measured by the

prediction accuracy of a user study, and is closer to the true accuracy in the real

system (SHANI & GUNAWARDANA, 2011).

Next section presents the methodology of the evaluation, providing the research

questions formulated as well as the evaluation objectives.

78

5.3 Methodology

We base our evaluation according to the guidelines proposed by (SHANI &

GUNAWARDANA, 2011). We have implemented part of the methodology that

addresses offline experiments, proposed by these authors. It is expected from an

offline evaluation that the data used matches as closely as possible to the data the

system will use when deployed, because the introduction of bias is a concern. When

data is collected from an existing system where there is no recommendation available,

there is a tendency to exclude and pre-filter the data to exclude items with low costs

(SHANI & GUNAWARDANA, 2011). To avoid this, we decided not to collect random

samples or alter any of the data content, and we also believe the project task context

combination evaluation mitigates the possible inclusion of bias when selecting project

task context element variables. We defined a hypothesis, controlling variables and

generalization power to serve as guidelines for this evaluation, also as part of the

evaluation methodology proposed by (SHANI & GUNAWARDANA, 2011).

Hypothesis: Project task similarity can provide effective suggestions of curated

Stack Overflow Posts. We test this hypothesis by verifying whether highly similar tasks

share the same Stack Overflow Post.

Controlling Variables: Considering this study uses only one dataset, there is no

concern regarding having fixed controlled variables. In fact, we propose a study

considering different variable combinations to analyze the effects of the absence or

presence of variables on precision and accuracy.

Generalization Power: Considering this study uses only one dataset, we believe

the results are indications rather than generalization. All results found in this research

concern this dataset or a dataset with very similar characteristics, and can be used as

indications for general conclusions.

This experiment aims at gathering precision and accuracy metrics for the

proposed study in this dissertation. The study proposes indications that there is a

correlation between project tasks with curated Stack Overflow Posts, meaning that it is

very likely that project tasks with high similarity share the same curated Stack Overflow

Post. We present the goal of this evaluation in a GQM (Van Solingen et. al., 2002)

approach format:

analyze precision and accuracy metrics
with the purpose of verifying the effectiveness of reusing curated Stack

Overflow Posts

79

regarding the identification of similar project tasks
from the point of view of process implementation

in the context of collected industry sample

This objective being considered, the research questions for this study are:

RQ1: What is the precision and the accuracy metrics for the collected

sample? It is important to verify these metrics in order to have means of comparison

with the related work, while verifying the effectiveness of considering similar project

tasks to reuse curated Stack Overflow Posts.

RQ2: What are the impacts in precision and accuracy when different

context elements are combined? It is important to evaluate different project task

context combinations because these contexts can vary in each project. A project can

maintain records of processes and another project might not, for example. Given this

variation, it’s important to understand the impacts of different project task context

combinations.

In next sections, we present the execution of the process built in Chapter 4. The

following sections present details regarding the dataset used during the execution of

the process, and also the Results, Discussion and Threats to Validity of this evaluation.

5.4 Executing the implemented RapidMiner process

To execute the implemented process presented in Chapter 4, a dataset with

project tasks have to be loaded in the process (Retrieve operator). We gathered a

dataset from a company in Brazil. This company has been developing software

products for more than 20 years, and has a total of 30 employees. The software

development projects follow agile guidelines and the project tasks are managed on

both a project management tool and a white board. We were able to gather 25 project

tasks with associated Stack Overflow Posts to each of the 25 tasks. Other contacts

from our professional network were contacted, but other companies don’t concentrate

their knowledge into the project management tool, or don’t even have processes to

control the information that was used to support project tasks at all. The tasks needed

for this study should have two mandatory requirements: all of them should have at

least one Stack Overflow Post associated and different tasks should share the same

Stack Overflow Post, once our goal is to evaluate if different tasks have context

similarities, and therefore could share the same Stack Overflow Post. All project tasks

are listed in Appendix C – Dataset Sample. This dataset contains the following

information for each task:

80

1. TaskID: The ID generated by the Project Management Tool that identifies

a task uniquely.

2. StackOverflow: The ID of the Stack Overflow Post associated to the

task, the post that was used to support the project task.

3. Project: The name of the Project the task belongs to.

4. Category: A classification for the task. The categories are determined by

the project managers, and can be: Corrective, Planned, Not Planned, a

name of a specific branch/iteration and other customized information to

characterize a task and its purpose.

5. Iteration: The name of the iteration the task belongs to.

6. Title: The title of the task. This is filled at discretion of the responsible.

7. Description: The description of the task. This is filled at discretion of the

responsible. The description should contain details about the task.

8. Process: The Process Activity related to the task.

For this study, as we have concluded in Section 4.4.1, technological information

is an information intrinsic to software development. Because of that, we asked the

software developers of this company to also inform us the technological characteristics

of the projects and each task, and that information were added to the dataset as Tags

(Task Tags and Project Tags). With this provided dataset added as input to the

process, we were able to execute the implementation in RapidMiner.

The dataset is uploaded in Retrieve operator, and in Select Attributes operator,

the information from the dataset that will be used to retrieve similarity indexes are

chosen. TaskID and StackOverflow information from the dataset are not selected when

retrieving the similarities. This is due to the fact TaskID is an identification number that

is different for each project task and StackOverflow is the information we are trying to

predict, and therefore should not be included in the similarity index retrieval. For the

analysis of RQ1, we also do not consider the Iteration information from the dataset, as

it was not identified in Section 4.4.1, when project task contexts were identified. For

RQ2 we will consider Iteration in order to analyze the impact of the insertion of the

information Iteration. Set Role operator indicates which information from the dataset

will be predicted, in this case, StackOverflow. StackOverflow is set to the role “id”,

meaning this is the information the process is predicting. The Data to Similarity Data

operator, which implements a similarity algorithm and generates as output a similarity

table with all similarity indexes of compared project tasks, was configured to use

Jaccard algorithm as parameter.

81

The second Set Role operator – presented in the model as Set Role(2) because

there is already one Set Role operator - between the operators Data to Similarity Data

and Filter Examples has as input the similarity table generated by the Data to Similarity

Data operator. Set Role(2) operator needs to set roles for the attributes FIRST_ID and

SECOND_ID for the generated similarity table. It then sets FIRST_ID to role “label” and

SECOND_ID to role “prediction”. The Filter Examples operator is filtering the rows in

the similarity table that are above or equal 50%, setting a similarity threshold for

analysis. The Performance operator is used for statistical performance evaluation;

therefore, it is responsible to retrieve the precision and accuracy results. Performance

operator is connected to the “res” end port of the process, being the last operator in the

implemented process. The output of this operator is a confusion matrix of the similarity

table, and all metrics are calculated from this confusion matrix.

The results from the implemented evaluation process are presented in next

section.

5.5 Results

After executing the evaluation with the dataset, the precision and accuracy are

calculated, using Jaccard algorithm. Results are presented in Table 5.2. As results for

this work, only Precision is compared to the Related Work. The confusion matrix result

of the execution is presented in Table 5.1. The grey cells are the counts when the

same Stack Overflow Posts are identified in the similarity table in both label and

predictions attributes (correct prediction). Both dimensions contain Stack Overflow

Post’s IDs from the dataset.

82

Table 5.1: Confusion matrix.

256360
91

259967
58

291741
64

211685
21

26072
89

113459
26

254723
78

281176
15

139442
22

155499
31

385108
79

250983
07

class
precisi
on

256360
91

27 3 0 0 2 2 0 0 0 0 0 0
79.41
%

259967
58

3 24 0 0 0 0 0 0 0 0 0 0
88.89
%

291741
64

0 0 10 1 0 0 0 0 0 0 0 0
90.91
%

211685
21

0 0 1 1 0 0 0 0 0 0 0 0
50.00
%

260728
9

2 0 0 0 1 1 0 0 0 0 0 0
25.00
%

113459
26

2 0 0 0 1 1 0 0 0 0 0 0 25.0%

254723
78

0 0 0 0 0 0 1 0 0 0 0 0 100%

281176
15

0 0 0 0 0 0 0 1 0 0 0 0 100%

139442
22

0 0 0 0 0 0 0 0 1 1 0 0 50%

155499
31

0 0 0 0 0 0 0 0 1 1 0 0 50%

385108
79

0 0 0 0 0 0 0 0 0 0 1 0 100%

250983
07

0 0 0 0 0 0 0 0 0 0 0 1 100%

class
recall

79.41% 88.89% 90.91% 50.00%
25.00
%

25.00% 100% 100% 50.00% 50.00% 100% 100%

83

Table 5.2: Evaluation Results – RQ1.

Accuracy WMP
(Precision)

77.78% 71.60%

Table 5.2 presents the results for RQ1. The accuracy for the given dataset with

the elements identified in Section 4.4.1 is 77.78% and the mean of precisions is

71.60%. These results consider the similarities above or equal 50%. Table 5.3

presents all collected results from the Related Work in order to be able to easily

compare the results. All the metrics presented from Related Work are the highest

scores gathered in each of the related works.

Table 5.3: Comparison of results with Related Work.

Related Work Articles Precision Accuracy

Wu et al., 2018 (S3) 24.32%

Wang et al., 2014 (S5) 62%

Rahman et al., 2014 (S6) 11% 88%

Correa & Sureka, 2013 (S7) 47:27%

Ponzanelli et al., 2013 (S8) 2.43% 18.92%

Current Dissertation 77.78% 71.60%

To answer RQ2, we evaluated different combination of project task contexts. The

precision and accuracy metrics were extracted for each combination, and results are

presented in Table 5.4. The Select Attribute operator was an important asset for this

evaluation in particular, considering the selection of the elements was facilitated by

RapidMiner interface usage of this specific operator. Table 5.4 presents the attributes’

combinations selected, the precision and accuracy extracted, and the attribute change

summary, as it might not be easy to perceive from the attribute list which attribute was

selected and which one was not selected in the combination.

As presented in Table 5.4, when considering the project task context elements

originally identified, the outcomes of the evaluation are higher precision and accuracy

among all combinations. When considering the Iteration context, which was informed in

the dataset sample gathered in industry, precision and accuracy are lower. This can

indicate that either this context element is bad for the approach, or in the dataset

sample, the information was not properly set. The same is perceived when removing

other elements of the context, such as Process, ProjectTags and TaskTags, and Title

and Description. More information regarding other context combinations are presented

in Appendix F – Combinations on project task context elements.

84

Table 5.4: Evaluation of combinations of project task context elements – RQ2.

Selected Attributes Precision Accuracy Attribute(s)
change

Category
Description
Process
Project

Project Tags
Task Tags
Title

77.78% 71.60% -

Category
Description
Process
Iteration

Project
Project Tags
Task Tags
Title

61.17% 70% Included
Iteration

Category
Description
Project

Project Tags
Task Tags
Title

48.01% 54.69% Removed
Process

Category
Description

Process
Project
Title

69.81% 66.67% Removed
ProjectTags
TaskTags

Category
Process

Project
Project Tags
Task Tags

45.64% 37.12% Removed
Title
Description

The results also indicate that the hypothesis of the evaluation Project task

similarity can provide effective suggestions of curated Stack Overflow Posts is

correct. There is an indication project task similarity can provide accurate associations

between project tasks and curated Stack Overflow Posts, as the prediction and

accuracy are as high as 70%. This result, above of most of our Related Work, also

indicates that the predictions performed by the process are among a reasonable scale.

Next section presents the threats identified in this evaluation and means to

mitigate the threats.

5.6 Threats to validity

Following the model proposed by (WOHLIN et al., 2012), we present threats to

the validity of this evaluation in this section. According to this model, there are events

that can impact or limit the study. The events and threats of each event are described

below.

Internal Threats: events not controlled by the researcher that can produce

distortions in the expected result. In this study, a threat to internal validity is the small

sample we were able to get. A way to mitigate this would be gather more samples from

other companies or implement the solution in companies and verify ratings for

85

suggestions/recommendations. The fact we have a dataset made the offline

experiments possible. Although they are controlled experiments, they have as

drawback, no user interaction (SHANI & GUNAWARDANA, 2011).

External Threats: events that cause jeopardy to the generalization of the study

results. A feasibility study does not aim to have its results generalized to other

contexts; even so, some threats to external validity have been identified. The first is

with respect to the representativeness of the study, which was executed with only one

sample of a software organization. To minimize this threat, real project tasks were

collected from a software development organization and the proposal was based on

research in the literature and tools that are largely used by industry, as well as the

construction of a model using widespread algorithms and metrics.

Construction Threats: events that may impact correct measures in the study.

One of the threats to the validity of construction would be the incorrect definition of the

measures in the study, as well as the selection of methods that could harm its

collection. To mitigate this type of threat, the measures used in the study were based

on highly referenced literature for evaluation of recommendation systems.

Conclusion Threats: events that hamper the establishment of statistical

relationships. In this evaluation study, statistical tests were used to analyze the data,

and compared to the related work. Therefore, the results can be considered

conclusive: we believe they are indications of the applicability of the proposed solution.

Also, the fact that the study was conducted within one industry scenario might indicate

the tendency that the same developers fill the text of project tasks, meaning there

might occur a standardization in project task texts. This is mitigated by selecting tasks

from different projects where different teams work on, but there is still no guarantee this

problem can’t occur.

5.7 Conclusion

This section performed two different evaluations proposed by this dissertation.

The first arises from RQ1: What is the precision and the accuracy metrics for the

collected sample? The answers are 77.78% and 71.60%, respectively, indicating

effectiveness when considering similar project tasks to reuse curated Stack Overflow

Posts. The second proposed evaluation, which arises from RQ2: What are the

impacts in precision and accuracy when different context elements are

combined?, has as results that the removal of some of the project task context

86

elements decrease the precision and accuracy, when comparing to a baseline

containing the specific group of contexts identified in Section 4.4.1. The same

developer did not create the project tasks used in the dataset, as the projects are

different and different team members work in each project. Two developers identified

the Stack Overflow Posts associated to the tasks within their personal notes, or project

management tool history and code versioning programs.

87

6 Conclusion

This chapter concludes the dissertation, presenting the final

considerations and contributions, discussing limitations and future work.

6.1 Introduction

This dissertation presented research on reusing Stack Overflow Posts during

software development, through the identification of similar project tasks. First, it

introduces the research motivation and problem, in Chapter 1. Then, it discusses

central concepts behind software projects, how project tasks are conceived and

presents project management tools that are widely used to manage software

development. Then it discusses Q&A websites in general and narrows to Stack

Overflow, which is nowadays one of the most important sources for software

development support. The dissertation introduces data mining and recommender

systems concepts, mentioning widely implemented algorithms and tools used on

mining data, which can be used for recommendation purposes.

After concluding conceptualization – presented in Chapter 2 - an investigation on

if the idea of reusing Stack Overflow Posts using project task similarity would be

feasible initiated. We performed a preliminary assessment, using data from one

company, and the results indicated the study was worth pursuing further. Besides this

conclusion, we also coined a new term in software development: curation. As we

observed, there is a relevant part of software developers’ daily routine they invest in

searching and selecting information to support their development. We simplified the

searching and selection effort into one word: curation.

The objectives for the research were defined and in order to accomplish the first

specific objective Obtaining the state-of-the-art of existing approaches that

associate software development projects with Stack Overflow, a Systematic

Mapping Study was performed. The first study was performed in January 2018, and

then it was updated in September 2018. After performing the Systematic Mapping

Study, we were able to have a broad view on researches that have implemented

solutions to associate Stack Overflow with the development environment. Other than

that, we got insights on what to expect regarding sample sizes, metrics mostly used in

88

the field, and we confirmed the importance of Stack Overflow, as there are many, and

recent, papers focusing in Stack Overflow data. This study is described in Chapter 3.

The second and third specific objectives Identification of project task contexts

and Implementation of a process to retrieve project task similarities were

accomplished by furthering the study development. An investigation on project task

context elements, with an ad-hoc literature review and project management tools was

performed. A set of project task context elements was identified and described. Also,

we implemented a data mining process. This process and each of its operators were

created according to the objectives defined in this dissertation. These studies, along

with the preliminary assessment, are described in Chapter 4.

The fourth and last specific objective was to Evaluate the implemented process.

A dataset collected in a company that develops software for over 10 years was used in

this evaluation. This dataset is composed by project tasks and each task has one

Stack Overflow Post associated to it. Two research questions guided the evaluation.

The first, RQ1: What is the precision and the accuracy metrics for the collected

sample? determined the implemented process should retrieve both metrics. The

accuracy and precision (77.78% and 71.60%, respectively) were the results of this

evaluation. For the second evaluation proposed, RQ2: What are the impacts in

precision and accuracy when different context elements are combined? different

combinations of the project task context elements were proposed. It is possible to

conclude that the original combination of contexts, as suggested by the study

described in Section 4.4.1, is the best combination for the given dataset, considering

both accuracy and precision are the highest, when comparing to the other

combinations. The evaluation is presented in Chapter 5.

We conclude that by associating curated Stack Overflow Posts with the specific

project task that prompted the developer to look for support, it is possible to reuse the

curation effort when similar project tasks are identified.

6.2 Contributions

The main contribution of this work is to provide a study and quantitative and

qualitative results on the possibility to capture and reuse curated Stack Overflow Posts

during software development, using existing project task context information. Also, we

were able to perceive the correlation between curated Stack Overflow posts and

project tasks. The following secondary contributions may be highlighted:

89

• Preliminary Assessment: in order to verify the feasibly of the intended

study, a qualitative preliminary assessment was performed. A company in

the Brazilian software project industry scenario participated in this study,

that allowed us to receive insights on the usefulness of the intended

research development.

• Systematic Mapping Study: a Systematic Mapping Study on

approaches that associate Stack Overflow to software development was

performed. The result of this study is a detailed mapping on association

strategies, input and output information, evaluation methods and results

for the selected papers.

• Project Task Context investigation: we investigated, in literature and

project management tools, what is the context for project task that would

aid similarity retrieval. A list with the contexts identified is the result of this

investigation.

• Data Mining Process Implementation: this contribution allows both

development and evaluation of the study. A process using a set of

operators was implemented, and through this implementation, it was

possible to compare a set of project tasks, retrieve their similarity and

evaluate the precision and accuracy of the most similar project tasks. This

same process can be used to evaluate different datasets.

• Study on accuracy and precision of different project task context

combinations: this study allowed the verification what was the best set of

contexts chosen for the tested dataset.

• Stack Overflow database model: Stack Overflow provides a list of

tables available for querying content. From this list, we provided a entity-

relation model, which can aid decisions regarding Stack Overflow data.

Other contributions:

• Paper publication in the Iberoamerican Conference of Software

Engineering, 2018, main Software Engineering track.

• Collaboration with University of Waterloo, provided by ELAP (Emerging

Leaders of the Americas) Scholarship.

• Teaching internship in Software Quality course (2016.3, 2017.3 and

2018.3).

90

6.3 Limitations

Some limitations were identified, considering the execution of the studies. The

main limitations identified were:

• Need for human intervention in the curation result association: the

fact that developers need to proactively associate the selected Stack

Overflow post after curation can hamper the study functionality, as this

step is completely human dependent.

• Sample for evaluation: Although the sample size of the dataset used to

perform the evaluation in this dissertation is small, we identified small

samples also in Related Work. Even though, this is considered a limitation

of this dissertation. Also, we were able to evaluate using only one sample.

The ideal situation would be to have at least three different samples. The

results are considered indications and cannot be generalized. Still

regarding the sample and project tasks in it, there is a concern in how

project tasks are created, who writes the text of tasks and how detailed

the task is. Considering the dataset used, the company maintain a serious

quality standard regarding tasks for two main reasons: clients have full

access to the project management tool and the company, although not

officially certified by an institute that guarantee the level of maturity of

processes, is strict in relation to maintaining descriptions of quality

artifacts, emphasizing the verbal and written communication of artifacts.

• Preliminary Assessment: this study was not performed in other

companies or with different set of data. Therefore, results are considered

indications and cannot be generalized, as the sample might not

representative enough.

• Systematic Mapping Study: the use of only one research database for

the Systematic Mapping Study can result in papers not being considered.

• Curation and scalability: when considering scalability of the proposal,

the list of suggested Stack Overflow Posts can get long when more

curation results are associated with time. This can lead to a new curation

of the already curated results. Ranking curation results and improving the

role of context elements when finding similar tasks can mitigate this

problem. If real similar tasks are found, the amount of curated results

suggested tends to have increased quality.

91

6.4 Future Work

Considering the conclusions and the research conducted in this dissertation, it is

possible to suggest future work opportunities.

Future work might involve development of a recommendation tool using the

strategy proposed in this dissertation. A tool would allow the incorporation of rating

mechanisms for given suggestions. The tool was not developed in this work, as we

intended to focus on the study of the impacts of associating the curation information

with development. The development of a tool would demand a considerable amount of

effort and there wouldn’t be enough time to test the tool in a proper environment, such

as an industry scenario, or tested by a team with a proper amount of people to

participate.

 A deeper understanding of the role of project task context elements should be

pursued, in a broader perspective. This would allow better combinations of contexts, as

well as the possibility to define weights for given contexts. This was not possible in this

study, since this proposal focus on the possibility to achieve results comparable to

some of the Related Work, when considering curation to associate software

development with Stack Overflow. However, the results of the second evaluation

proposed indicate that context elements have deep impacts on results, leading to

conclude each context element can have a different importance, represented by

weights.

Finally, a comparison of different algorithms would allow verifying

implementations that can possibly perform better in this software project task scenario.

92

References

ANDERSON, Ashton et al. Discovering value from community activity on focused

question answering sites: a case study of stack overflow. In: Proceedings of

the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 2012. p. 850-858.

ANTUNES, Bruno; CORDEIRO, Joel; GOMES, Paulo. An approach to context-based

recommendation in software development. In: Proceedings of the sixth

ACM conference on Recommender systems. ACM, 2012. p. 171-178.

AURUM, A.; DANESHGAR, F.; WARD, J. Investigating Knowledge Management

practices in software development organisations – An Australian experience.

Information and Software Technology, Amsterdam, v. 50, n. 6, p. 511-

533, 2008.

BAKER, K.; VERSTOCKT, S. Cultural Heritage Routing. Journal on Computing and

Cultural Heritage (JOCCH), v. 10, n. 4, p. 1-20, Jul 31, 2017.

BARROS-JUSTO, J.L.; BENITTI, F.B.V.; CRAVERO-LEAL, A.L. Software patterns and

requirements engineering activities in real-world settings: A systematic

mapping study. Computer Standards & Interfaces, v. 58, p. 23-42, 2018.

BRANDT, Joel et al. Two studies of opportunistic programming: interleaving web

foraging, learning, and writing code. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 2009. p.

1589-1598.

 CAMPOS, E.C.; SOUZA, L.B.L.; MAIA, M.D.A. Searching crowd knowledge to

recommend solutions for API usage tasks. Journal of Software: Evolution

and Process, Chichester, v. 28, n. 10, p. 863-892, Oct 2016.

CORREA, Denzil; SUREKA, Ashish. Integrating issue tracking systems with

community-based question and answering websites. In: Software

Engineering Conference (ASWEC), 2013 22nd Australian. IEEE, 2013. p.

88-96.

93

ČUBRANIĆ, Davor et al. Learning from project history: a case study for software

development. In: Proceedings of the 2004 ACM conference on Computer

supported cooperative work. ACM, 2004. p. 82-91.

CAMPOS, Andre LN; OLIVEIRA, Toacy. Software processes with BPMN: an empirical

analysis. In: International Conference on Product Focused Software

Process Improvement. Springer, Berlin, Heidelberg, 2013. p. 338-341.

LESKOVEC, Jure; RAJARAMAN, Anand; ULLMAN, Jeffrey David. Mining of massive

datasets. Cambridge university press, 2014.

DA ROCHA, ANA REGINA CAVALCANTI; J.C. MALDONADO; K.C. WEBER.

Qualidade de software: teoria e prática: Prentice Hall, 2001.

DE SOUZA, Lucas BL; CAMPOS, Eduardo C.; MAIA, Marcelo de A. Ranking crowd

knowledge to assist software development. In: Proceedings of the 22nd

International Conference on Program Comprehension. ACM, 2014. p.

72-82.

DI CICCIO, Claudio; MARRELLA, Andrea; RUSSO, Alessandro. Knowledge-intensive

processes: characteristics, requirements and analysis of contemporary

approaches. Journal on Data Semantics, v. 4, n. 1, p. 29-57, 2015.

DOTZLER, Georg; VELDEMA, Ronald; PHILIPPSEN, Michael. Annotation support for

generic patches. In: Proceedings of the Third International Workshop on

Recommendation Systems for Software Engineering. IEEE Press, 2012.

p. 6-10.

EL-KORANY, ABEER. (2013). Integrated Expert Recommendation Model for Online

Communities. International journal of Web & Semantic Technology. 4.

10.5121/ijwest.2013.4402.

EKSTRAND, M.D.; RIEDL, J.T.; KONSTAN, J.A. Collaborative Filtering Recommender

Systems. Human–Computer Interaction, v. 4, n. 2, p. 81-173, 2010.

FEILER, Peter H.; HUMPHREY, Watts S. Software process development and

enactment: Concepts and definitions. In: Software Process, 1993.

Continuous Software Process Improvement, Second International

Conference on the. IEEE, 1993. p. 28-40.

94

FILIPIAK, D.; WECEL, K.; FILIPOWSKA, A. Semantic Annotation to Support

Description of the ArtMarket. SEMANTiCS 2015 Vienna, Austria, v. 23, n.

4, p. 291-305, 2006.

FUGGETTA, A. Software process Chichester [u.a.]: Wiley, 1996.

FUMIN, Sun et al. Recommendflow: Use Topic Model to Automatically Recommend

Stack Overflow Q&A in IDE. In: International Conference on Collaborative

Computing: Networking, Applications and Worksharing. Springer,

Cham, 2016. p. 521-526.

GAROUSI, Vahid; FELDERER, Michael; MÄNTYLÄ, Mika V. The need for multivocal

literature reviews in software engineering: complementing systematic

literature reviews with grey literature. In: Proceedings of the 20th

International Conference on Evaluation and Assessment in Software

Engineering. ACM, 2016. p. 26.

GASPARIC, M.; JANES, A. What recommendation systems for software engineering

recommend: A systematic literature review. The Journal of Systems and

Software, New York, v. 113, p. 101-113, Mar 1, 2016.

GASPARIC, M.; MURPHY, G.C.; RICCI, F. A context model for IDE-based

recommendation systems. The Journal of Systems and Software, v. 128

Jun 1, 2017.

GRECO, Chase; HADEN, Tyler; DAMEVSKI, Kostadin. StackInTheFlow: behavior-

driven recommendation system for stack overflow posts. In: Proceedings of

the 40th International Conference on Software Engineering: Companion

Proceeedings. ACM, 2018. p. 5-8.

 HAN, J.; MINING, M.K.D. Concepts and Techniques. Morgan Kauffman, San

Francisco 2000.

HERLOCKER, J. et al. Evaluating collaborative filtering recommender systems. ACM

Transactions on Information Systems (TOIS), New York, v. 22, n. 1, p. 5-

53, Jan 1, 2004.

HOLMES, Reid et al. Automatically recommending triage decisions for pragmatic reuse

tasks. In: Proceedings of the 2009 IEEE/ACM International Conference

95

on Automated Software Engineering. IEEE Computer Society, 2009. p.

397-408.

ICHII, Makoto et al. Software component recommendation using collaborative filtering.

In: Proceedings of the 2009 ICSE Workshop on Search-Driven

Development-Users, Infrastructure, Tools and Evaluation. IEEE

Computer Society, 2009. p. 17-20.

JAFFEE, L. Finding Growth in a Mature Business. Medialine, p. 6, Oct 1, 2005.

KAJORNBOON, Annabel Bhamani. Using interviews as research instruments. E-

journal for Research Teachers, v. 2, n. 1, p. 1-9, 2005.

KERSTEN, Mik; MURPHY, Gail C. Mylar: a degree-of-interest model for IDEs.

In: Proceedings of the 4th international conference on Aspect-oriented

software development. ACM, 2005. p. 159-168.

KOCHHAR, Pavneet Singh. Mining testing questions on stack overflow.

In: Proceedings of the 5th International Workshop on Software Mining.

ACM, 2016. p. 32-38.

 LEVENSHTEIN, V.I. Binary codes capable of correcting deletions, insertions, and

reversals., v. 10, n. 8, p. 707-710, 1966.

LINDVALL, M.; RUS, I. Knowledge management for software organizations. In:

Anonymous Managing software engineering knowledge: Springer, 2003.

LIU, Xiaoning et al. Expsol: Recommending online threads for exception-related bug

reports. In: 2016 23rd Asia-Pacific Software Engineering Conference

(APSEC). IEEE, 2016. p. 25-32.

MAMYKINA, Lena et al. Design lessons from the fastest q&a site in the west.

In: Proceedings of the SIGCHI conference on Human factors in

computing systems. ACM, 2011. p. 2857-2866.

RAHMAN, Mohammad Masudur; ROY, Chanchal K. Surfclipse: Context-aware meta-

search in the ide. In: Software Maintenance and Evolution (ICSME), 2014

IEEE International Conference on. IEEE, 2014. p. 617-620.

VALLE, Arthur M.; SANTOS, Eduardo AP; LOURES, Eduardo R. Applying process

mining techniques in software process appraisals. Information and

software technology, v. 87, p. 19-31, 2017.

96

MELO, G., TELEMACO, U., OLIVEIRA, T., ALENCAR, P., COWAN, D. Towards using

task similarity to recommend Stack Overflow posts. Avances en Ingenieria

de Software a Nivel Iberoamericano, CIbSE 2018, pp. 199-211.

MEYER, André N. et al. The work life of developers: Activities, switches and perceived

productivity. IEEE Transactions on Software Engineering, v. 43, n. 12, p.

1178-1193, 2017.

MÜNCH, Jürgen et al. Software process definition and management. Springer

Science & Business Media, 2012.

PAI, Madhukar et al. Systematic reviews and meta-analyses: an illustrated, step-by-

step guide. The National medical journal of India, v. 17, n. 2, p. 86-95,

2004.

PETERSEN, Kai; VAKKALANKA, Sairam; KUZNIARZ, Ludwik. Guidelines for

conducting systematic mapping studies in software engineering: An

update. Information and Software Technology, v. 64, p. 1-18, 2015.

PILLAT, Raquel M. et al. BPMNt: A BPMN extension for specifying software process

tailoring. Information and Software Technology, v. 57, p. 95-115, 2015.

PONZANELLI, Luca; BACCHELLI, Alberto; LANZA, Michele. Leveraging crowd

knowledge for software comprehension and development. In: Software

Maintenance and Reengineering (CSMR), 2013 17th European

Conference on. IEEE, 2013. p. 57-66.

POWERS, David. (2008). Evaluation: From Precision, Recall and F-Factor to ROC,

Informedness, Markedness & Correlation. Mach. Learn. Technol.. 2.

PIORKOWSKI, David et al. Reactive information foraging: An empirical investigation of

theory-based recommender systems for programmers. In: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems.

ACM, 2012. p. 1471-1480.

PONZANELLI, Luca; BACCHELLI, Alberto; LANZA, Michele. Seahawk: Stack overflow

in the ide. In: Proceedings of the 2013 International Conference on

Software Engineering. IEEE Press, 2013. p. 1295-1298.

PONZANELLI, Luca et al. Mining StackOverflow to turn the IDE into a self-confident

programming prompter. In: Proceedings of the 11th Working Conference

on Mining Software Repositories. ACM, 2014. p. 102-111.

97

RAHMAN, Mohammad Masudur; YEASMIN, Shamima; ROY, Chanchal K. Towards a

context-aware IDE-based meta search engine for recommendation about

programming errors and exceptions. In: Software Maintenance,

Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software

Evolution Week-IEEE Conference on. IEEE, 2014. p. 194-203.

CANALES, Raquel Fonseca; MURILLO, Edgar Casasola. Evaluation of entity

recognition algorithms in short texts. CLEI ELECTRONIC JOURNAL, v. 20,

n. 1, 2017.

REIS, Carla Alessandra. Uma abordagem flexível para execução de processos de

software evolutivos. 2003. 267 f. 2003. Tese de Doutorado. Tese

(Doutorado)-Curso de Ciência Da Computação, Universidade Federal do Rio

Grande do Sul, Porto Alegre.

MINELLI, Roberto; MOCCI, Andrea; LANZA, Michele. I know what you did last

summer: an investigation of how developers spend their time.

In: Proceedings of the 2015 IEEE 23rd International Conference on

Program Comprehension. IEEE Press, 2015. p. 25-35.

ROBILLARD, M.; WALKER, R.; ZIMMERMANN, T. Recommendation Systems for

Software Engineering. IEEE Software, Los Alamitos, v. 27, n. 4, p. 80-86,

2010.

SANTOS, Renata et al. Mining software development process variations.

In: Proceedings of the 30th Annual ACM Symposium on Applied

Computing. ACM, 2015. p. 1657-1660.

SAHU, T.P.; NAGWANI, N.K.; VERMA, S. An empirical analysis on reducing open

source software development tasks using stack overflow. Indian Journal of

Science and Technology, v. 9, n. 21 2016.

SANTHANAKUMAR, M.; COLUMBUS, C.C. Web usage based analysis of web pages

using rapidminer. Wseas Transactions On Computers, v. 14 2015.

SANTORO, Flávia Maria; BRÉZILLON, Patrick; DE ARAUJO, Renata Mendes. Context

dynamics in software engineering process. In: International Conference on

Computer Supported Cooperative Work in Design. Springer, Berlin,

Heidelberg, 2006. p. 377-388.

98

SAWADSKY, Nicholas; MURPHY, Gail C. Fishtail: from task context to source code

examples. In: Proceedings of the 1st Workshop on Developing Tools as

Plug-ins. ACM, 2011. p. 48-51.

SCHLITTER, Nico et al. Distributed data analytics using RapidMiner and BOINC.

In: Proceedings of the 4th RapidMiner Community Meeting and

Conference (RCOMM 2013). 2013. p. 81-95.

 SHANI, G.; GUNAWARDANA, A. Evaluating Recommendation Systems. In:

Anonymous Recommender Systems Handbook. Boston, MA: Springer US,

2011.

TAN, P.; M. STEINBACH; V. KUMAR. Introduction to data mining. Pearson internat.

ed. ed. Boston ; Munich [u.a.]: Pearson Addison Wesley, 2006.

VAN SOLINGEN, R. et al. Goal question metric (gqm) approach. Encyclopedia of

software engineering 2002.

VASANTHAPRIYAN, Shanmuganathan; TIAN, Jing; XIANG, Jianwen. A survey on

knowledge management in software engineering. In: Software Quality,

Reliability and Security-Companion (QRS-C), 2015 IEEE International

Conference on. IEEE, 2015. p. 237-244.

VIRIYAKATTIYAPORN, Petcharat; MURPHY, Gail C. Challenges in the user interface

design of an IDE tool recommender. In: Proceedings of the 2009 ICSE

Workshop on Cooperative and Human Aspects on Software

Engineering. IEEE Computer Society, 2009. p. 104-107.

WANG, Tao et al. Linking stack overflow to issue tracker for issue resolution.

In: Proceedings of the 6th Asia-Pacific Symposium on Internetware on

Internetware. ACM, 2014. p. 11-14.

WANG, Tao et al. Automatic knowledge sharing across communities: a case study on

android issue tracker and stack overflow. In: Service-Oriented System

Engineering (SOSE), 2015 IEEE Symposium on. IEEE, 2015. p. 107-116.

WARR, Frederic Weigand; ROBILLARD, Martin P. Suade: Topology-based searches

for software investigation. In: Software Engineering, 2007. ICSE 2007. 29th

International Conference on. IEEE, 2007. p. 780-783.

99

YANG, Di; HUSSAIN, Aftab; LOPES, Cristina Videira. From query to usable code: an

analysis of stack overflow code snippets. In: Proceedings of the 13th

International Conference on Mining Software Repositories. ACM, 2016.

p. 391-402.

LIN, Yung-Shen; JIANG, Jung-Yi; LEE, Shie-Jue. A similarity measure for text

classification and clustering. IEEE transactions on knowledge and data

engineering, v. 26, n. 7, p. 1575-1590, 2014.

WOHLIN, C. et al. Experimentation in software engineering: Springer Science &

Business Media, 2012.

100

Appendix A – Dandelion + R Implementation Code

#install.packages("jsonlite") #Json get and post
#install.packages("httr")
#install.packages("stringr")

library(jsonlite)
library(httr)
library(stringr)
library(tm)
library(SnowballC)

Importing the dataset
dataset = read.delim('dataset6.tsv', quote = '', stringsAsFactors = FALSE)

#Preparing the dataset - removing punctuation and numbers from specific

dataset fields - without tm - version dependent
dataset$Title = gsub('[0-9]+','',dataset$Title)
dataset$Description = gsub('[0-9]+','',dataset$Description)
dataset$Title = gsub('[[:punct:]]+',' ',dataset$Title)
dataset$Description = gsub('[[:punct:]]+',' ',dataset$Description)
dataset$Project.Tags = gsub('[[:punct:]]+',' ',dataset$Project.Tags)
dataset$Task.Tags = gsub('[[:punct:]]+',' ',dataset$Task.Tags)

dataset$Title = chartr("áéíóúãõâêîôû", "aeiouaoaeiou", dataset$Title)
dataset$Description = chartr("áéíóúãõâêîôû", "aeiouaoaeiou",

dataset$Description)
dataset$Project = chartr("áéíóúãõâêîôû", "aeiouaoaeiou", dataset$Project)

dataset$Title = sapply(dataset$Title, tolower)
dataset$Description = sapply(dataset$Description, tolower)
dataset$Project.Tags = sapply(dataset$Project.Tags, tolower)
dataset$Task.Tags = sapply(dataset$Task.Tags, tolower)

Use only the 100th characters of description for simpliciy sake
dataset$Description = substr(dataset$Description, 1,100)

#Building Dandelion API URL
url_part1 = "https://api.dandelion.eu/datatxt/sim/v1/?text1="
url_part2 =" &text2="
url_part3 =

"&token=1df1e8446ff14929a1a03c9489377722&bow=always&lang=pt" #token for
user glauciamelo@gmail.com

#url_part3 =
"&lang=pt&token=9951341d2ed648ffb907f78fba091066&bow=always" #token for user
gmelodos@uwaterloo.ca

#1
#Dynamic Data Frame (Table) that receives similiarities indexes using all

contexts

101

df_allContext = data.frame(Task1 = numeric(),
 Task2 = numeric(),
 method = character(),
 similarityindex = character(),
 t1Stack = character(),
 stringsAsFactors = FALSE)

#1
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {
 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

 #Contex: all variables
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Project[[i]], dataset$Title[[i]],

dataset$Description[[i]], dataset$ProcessActivity[[i]], dataset$Project.Tags[[i]],
dataset$Task.Tags[[i]],

 url_part2,
 dataset$Project[[j]], dataset$Title[[j]],

dataset$Description[[j]], dataset$ProcessActivity[[j]], dataset$Project.Tags[[j]],
dataset$Task.Tags[[j]],

 url_part3)),
 fixed=TRUE)
 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame
 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "allContext",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)
)
 }
 }
}

#2
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {

102

 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

 #Contex: no Description
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Project[[i]], dataset$Title[[i]],

dataset$ProcessActivity[[i]], dataset$Project.Tags[[i]], dataset$Task.Tags[[i]],
 url_part2,
 dataset$Project[[j]], dataset$Title[[j]],

dataset$ProcessActivity[[j]], dataset$Project.Tags[[j]], dataset$Task.Tags[[j]],
 url_part3)),
 fixed=TRUE)
 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame
 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "noDesc",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)
)
 }
 }
}

#3
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {
 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

 #Contex: no description and no title
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Project[[i]], dataset$ProcessActivity[[i]],

dataset$Project.Tags[[i]], dataset$Task.Tags[[i]],
 url_part2,
 dataset$Project[[j]], dataset$ProcessActivity[[j]],

dataset$Project.Tags[[j]], dataset$Task.Tags[[j]],
 url_part3)),
 fixed=TRUE)

103

 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame
 # Populates Data Frame
 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "noDescnoTitle",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)
)
 }
 }
}

#4
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {
 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

 #Contex: noProcess
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Project[[i]], dataset$Title[[i]],

dataset$Description[[i]], dataset$Project.Tags[[i]], dataset$Task.Tags[[i]],
 url_part2,
 dataset$Project[[j]], dataset$Title[[j]],

dataset$Description[[j]], dataset$Project.Tags[[j]], dataset$Task.Tags[[j]],
 url_part3)),
 fixed=TRUE)
 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame
 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "noProcActivity",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)

104

)
 }
 }
}

#5
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {
 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

 #Contex: No Desc, No Title, no Proc Activity
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Project[[i]], dataset$Project.Tags[[i]],

dataset$Task.Tags[[i]],
 url_part2,
 dataset$Project[[j]], dataset$Project.Tags[[j]],

dataset$Task.Tags[[j]],
 url_part3)),
 fixed=TRUE)
 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame
 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "noProcActNoDescNoTitle",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)
)
 }
 }
}

#6
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {
 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

105

 #Contex: No Project Tag
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Project[[i]], dataset$Title[[i]],

dataset$Description[[i]], dataset$ProcessActivity[[i]], dataset$Task.Tags[[i]],
 url_part2,
 dataset$Project[[j]], dataset$Title[[j]],

dataset$Description[[j]], dataset$ProcessActivity[[j]], dataset$Task.Tags[[j]],
 url_part3)),
 fixed=TRUE)
 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame
 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "noProjTag",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)
)
 }
 }
}

#7
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {
 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

 #Contex: No Task Tag
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Project[[i]], dataset$Title[[i]],

dataset$Description[[i]], dataset$ProcessActivity[[i]], dataset$Project.Tags[[i]],
 url_part2,
 dataset$Project[[j]], dataset$Title[[j]],

dataset$Description[[j]], dataset$ProcessActivity[[j]], dataset$Project.Tags[[j]],
 url_part3)),
 fixed=TRUE)
 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame

106

 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "noTaskTag",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)
)
 }
 }
}

#8
#Goes through each line of dataset, comparing and getting similarity index from

Dandelion API
for (i in 1:nrow(dataset)) {
 for (j in 1:nrow(dataset)) {
 # for (i in 1:5) {
 # for (j in 1:5) {
 #Creating url submission string to Dandelion API of each line of dataset
 #Submit call to Dandelion API and get JSON answer

 #Contex: no Project
 if (dataset$ID[[i]] != dataset$ID[[j]]) {
 url_set = gsub(" ", "%20", (paste(url_part1,
 dataset$Title[[i]], dataset$Description[[i]],

dataset$ProcessActivity[[i]], dataset$Project.Tags[[i]], dataset$Task.Tags[[i]],
 url_part2,
 dataset$Title[[j]], dataset$Description[[j]],

dataset$ProcessActivity[[j]], dataset$Project.Tags[[j]], dataset$Task.Tags[[j]],
 url_part3)),
 fixed=TRUE)
 #Extracts similarity index from Json response from Dandelion Server
 data1 = fromJSON(url_set)
 names(data1)
 similarity = data1$similarity

 # Populates Data Frame
 df_allContext = rbind(df_allContext, data.frame(
 Task1 = dataset$ID[[i]],
 Task2 = dataset$ID[[j]],
 method = "noProject",
 similarityindex = similarity,
 dataset$Stack.Overflow[[i]],
 dataset$Stack.Overflow[[j]]
)
)
 }
 }
}

write.csv(df_allContext, file = "df_allContext.csv")

107

Appendix B – Preliminary Assessment Implementation

Code

public class LeveTestClass {
 /**
 * Calculates the similarity (a number within 0 and 1) between two strings.
 */
 public static double similarity(String s1, String s2) {
 String longer = s1, shorter = s2;
 if (s1.length() < s2.length()) { // longer should always have greater length
 longer = s2; shorter = s1;
 }
 int longerLength = longer.length();
 if (longerLength == 0) { return 1.0; /* both strings are zero length */ }
 return (longerLength - editDistance(longer, shorter)) / (double) longerLength;

 }

 // Implementation of the Levenshtein Edit Distance
 public static int editDistance(String s1, String s2) {
 s1 = s1.toLowerCase();
 s2 = s2.toLowerCase();

 int[] costs = new int[s2.length() + 1];
 for (int i = 0; i <= s1.length(); i++) {
 int lastValue = i;
 for (int j = 0; j <= s2.length(); j++) {
 if (i == 0)
 costs[j] = j;
 else {
 if (j > 0) {
 int newValue = costs[j - 1];
 if (s1.charAt(i - 1) != s2.charAt(j - 1))
 newValue = Math.min(Math.min(newValue, lastValue),
 costs[j]) + 1;
 costs[j - 1] = lastValue;
 lastValue = newValue;
 }
 }
 }
 if (i > 0)
 costs[s2.length()] = lastValue;
 }
 return costs[s2.length()];
 }

 public static void printSimilarity(String s, String t) {

108

 if (similarity(s, t) > 0.0) {

 System.out.println(String.format(

 "%.3f is the similar \"%s\" and \"%s\"", similarity(s, t), s, t));
 }
 }
 public static void main(String[] args) {
 printSimilarity("[2.10.13.1] [Recepção] [Cheio] Sistema não registra ocorrência
de envio de email ao criar pedido Construir e Testar Código","[HOMOL][Corretiva]
Filtros fixos estão editáveis para os perfis TRANSPORTADOR, DESPACHANTE,
ARMADOR e CLIENTE Construir e testar código");
 //...
 // For space sake, the lines were removed.
 }
}

109

Appendix C – Dataset Sample

ID Stack Overflow Project Title Description ProcessActivity
 Project Tags Task Tags
19506 25636091 PTVV [2.10.13.1] [Recepção] [Cheio] Sistema não registra
ocorrência de envio de email ao criar pedido Ao criar um pedido recepção cheio
o sistema envia email com PDF mas não registra ocorrência do envio. Basta criar um
pedido recepção cheio sem IMO e sem VGM, colocar horário e finalizar. Error
 sybase; oracle; jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi;
jasperreport detachedEntity
18984 25996758 PTVV [2.10.2] Erro ao subir aplicação em homol após inclusão
do campo listaEmailNFSe Error sybase; oracle; jenkins; hibernate; java;
seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport LazyInitializationException
18619 29174164 PTVV [2.10.2] Evolutiva 39 - Inclusão de combo no campo E-
mail envio NFS-e Possibilitar informar mais de um e-mail no campo E-mail envio
NFS-e ao criar pedido de retirada de DTC. Sugestão de inclusão de combo
selecionável com os e-mails cadastradados nos registros da empresa. Implement
Code sybase; oracle; jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi;
jasperreport combo; multi-selection
16565 29174164 PTVV [2.10.6] [CRUD EMPRESA] Combo Tipo E-mail A
combo de tipo de e-mail não está funcionando no Internet Explorer (vide anexo)
 Implement Code sybase; oracle; jenkins; hibernate; java; seam; jsf; jsf-1.2;
richfaces; jpa; poi; jasperreport combo; multi-selection
14446 29174164 PTVV [2.9] [Presença de Carga] Lacre Na tela de inclusão
de presença de carga, a combo de lacres já deve trazer o lacre preenchido se só
houver 1 lacre disponível para seleção. Existindo mais de 1 lacre, manter o
comportamento atual (combo para seleção). Implement Code sybase; oracle;
jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport combo;
multi-selection
10831 29174164 PTVV [Termo de Entrega] A combo de despachante deve exibir
os usuários que tiverem perfil tanto de despachante quanto de cliente, mostrando
primeiro os que tenham perfil de despachante. Implement Code
 sybase; oracle; jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi;
jasperreport combo;
11607 25636091 PTVV [Enviar Pendencia] Exception ao enviar pendencia criou
pedido com horario mandou special stow mandou appointment mandou bloqueio -
("Sucesso no Envio de bloqueio Manual RFB para o Navis") - cadeado mandou
desbloqueio - ("Sucesso no Envio de desbloqueio Manual RFB para o Navis") enviou
pendencia - (sistema exibe mensagem de erro abaixo) Error sybase; oracle;
jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport
 detachedEntity
4964 25636091 PTVV [Reprogramar] - Erro ao reprogramar mais de uma vez
um pedido apos reprogramacao, tentar reprogramar novamente. provocando a
excecao "detached persist" Error sybase; oracle; jenkins; hibernate; java; seam; jsf;
jsf-1.2; richfaces; jpa; poi; jasperreport detachedEntity
19369 25996758 PTVV [2.10.13] [Retirada Importação] Sistema quebra após
enviar email na tela de detalhes Ocorre erro de LazyInitializationException e o
sistema quebra. Basta realizar a operação em um pedido retirada importação. O erro
ocorreu em um pedido DI. Os testes foram feitos com o perfil adm_sistemas. Error
 sybase; oracle; jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi;
jasperreport LazyInitializationException

110

16575 25996758 PTVV [2.10.6] [Retirada Importação] [Reprogramar] - Erro ao
reprogramar pedido importação Ocorre LazyInitializationException ao reprogramar
pedido retirada importação Error sybase; oracle; jenkins; hibernate; java; seam; jsf;
jsf-1.2; richfaces; jpa; poi; jasperreport LazyInitializationException
15046 21168521 PTVV [CONTROLE DE CARGA] Cabeçalho das colunas
devem ficar bloqueadas caso o usuário role ambos os grids. Quando o usuario
fizer scroll para consultar os documentos ou cargas, o cabeçalho deve acompanhar os
dados. tal qual ocorre no excel. Implement Code sybase; oracle; jenkins;
hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport
19649 2607289 PTVV [2.11.0] [Configuração Parâmetro Sistema] Corrigir erro
ao não encontrar TipoParametroSistema para um valor no banco de dados
 Quando um novo parâmetro é criado no banco de dados mas não é inserido no
ENUM, ao entrar na tela de Configuração Parâmetros Sistemas o sistema quebra.
Alterar o sistema para exibir um alerta de que existem parâmetros "desconhecidos" no
banco mas permitir o funcionamento normal da tela. Error sybase; oracle;
jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport
20243 11345926 PTVV [2.10.15] - Corrigir erro de timeout ao tentar buscar
arquivos edi no ftp Ler documentação do camel ftp para tentar encontrar uma
solução. *OBS (DSV): Adicionei um parâmetro na conexão do
FTPConsomeEdiCoparnRouter passando a conexão para o modo passivo.*
https://stackoverflow.com/questions/11345926/apache-camel-failing-ftp-component
http://slacksite.com/other/ftp.html Error sybase; oracle; jenkins; hibernate; java;
seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport
21146 25472378 Sisccon Legado Alterar a validação do formato das OS e
Booking no Ecargo. Houve uma mudança no formato das OS e Bookings no ECargo
e é preciso alterar a validação que é feita SISCCON. Implement Code
 oracle; jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi;
jasperreport
20810 28117615 Visão RFB Resolver problemas de integração de dados
GTVV Error java; mongodb; oracle; angular; spring; hql; apache-camel;
activemq; oracle; sybase
21220 13944222 Visão RFB Incidente 207052 – Data/Hora de escaneamento
e Gate In... Incidente 207052 – Data/Hora de escaneamento e Gate In estão iguais
e não deveriam pois o escaneamento não acontece no momento do Gate In. Os
campos são AcessoVeiculo.Data de Entrada e Imagem.Data de Captura. Implement
Code java; mongodb; oracle; angular; spring; hql; apache-camel; activemq; oracle;
sybase
21221 15549931 Visão RFB Incidente 207059 – Quando o campo
Ocorrencia.pesoDiferenca é inserido na consulta... Incidente 207059 – Quando o
campo Ocorrencia.pesoDiferenca é inserido na consulta o campo Carga.Identificador
de Carga passa a ser retornado em branco. Implement Code java; mongodb;
oracle; angular; spring; hql; apache-camel; activemq; oracle; sybase
19453 38510879 Arquitetura Instalar e configurar Sonarqube nos projetos da
Login Architecture Sonar; sonarqube; devops; jenkins; nexus;
19989 25098307 Migração JBoss Suporte configuração e deploy das
integrações no JBoss Manage integrations jboss; apache-camel; log4j
20729 25636091 PTVV [2.10.16] [RECEPÇÃO CHEIO] Erros ao complementar
Nota Fiscal) Sistema exibe mensagem de "Pedido Reprogramado com Sucesso"
ao inserir notas fiscais e pedido ficar PROGRAMADO 2) Erro de
LazyInitializationException ou DetachedEntity ao alterar notas fiscais (associar, incluir,
desassociair nota) 3) Erro ao acessar a tela de notas fiscais pela tela de detalhes de
um pedido, incluir notas para que o pedido fique PROGRAMADO, retornar para e tela
de detalhes e reprogramar o pedido. Error sybase; oracle; jenkins; hibernate; java;
seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport detached entity

111

19965 25636091 PTVV [2.10.17] Apontamento 23 - Não houve envio de bloqueio
manual ao Navis (Retirada de DI) Durante o processo de tratativas do pedido
1720000287 do contêiner ZCSU8598748, o Perfil Fiel depositário utilizou a função de
bloqueio manual para este pedido, porém não foi incluído o bloqueio do Navis
BLOQUEIO MANUAL DE RETIRADA DE CONTÊINER. Error sybase; oracle;
jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport detached
entity
17235 25636091 PTVV [2.10.8] [Recepção Cheio] Erro ao adicionar contêiner
além da quantidade disponível no booking O sistema apresentará um erro de
nullpointer ao tentar adicionar o contêiner acima da capacidade do booking (no passo
4) e ao finalizar o pedido, apresentará o erro de "detached entity" Error sybase;
oracle; jenkins; hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport
 detached entity
10796 25636091 PTVV [Suspensão da Liberação] Ao suspender liberação em
lote, o sistema exibe mensagem abaixo, 14:42:19,296 ERROR [retirada]
org.hibernate.PersistentObjectException: detached entity passed to persist:
br.com.loginlogistica.tvv.entity.OcorrenciaPedido Error sybase; oracle; jenkins;
hibernate; java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport detached entity
18769 25996758 PTVV [TRUNK] [Retirada DTC] LazyException ao carregar
emails ao Liberar pagamento Erro ao carregar destinatarios para envio de confirmacao
de liberacao de pagamento Error sybase; oracle; jenkins; hibernate; java; seam; jsf;
jsf-1.2; richfaces; jpa; poi; jasperreport LazyInitializationException
11512 25996758 PTVV [Reprogramar Pedido DTC Manual] - Erro ao
reprogramar pedido. 14:58:46,363 ERROR [org.hibernate.LazyInitializationException]
could not initialize proxy - no Session Error sybase; oracle; jenkins; hibernate;
java; seam; jsf; jsf-1.2; richfaces; jpa; poi; jasperreport LazyInitializationException

112

Appendix D – SMS exclusion form

Year Authors Title Exclusion Reason

2018

Sirres R.,
Bissyand T.F.,
Kim D., Lo D.,
Klein J., Kim K.,
Traon Y.L.

Augmenting and structuring
user queries to support
efficient free-form code
search

Subject differs from
dissertation goal. Deals with
vocabulary for search string
formation

2018
Wei Q., Liu J.,
Chen J.

A method for recommending
bug fixer using community
Q&A information

Subject differs from
dissertation goal. Measures
expertise of developers.

2018
Etemadi V.,
Bushehrian O.,
Akbari R.

Association rule mining for
finding usability problem
patterns: A case study on
StackOverflow

Subject differs from
dissertation goal. Discover
problem patterns in tools
through usability issues.

2018
Gao S., Xing Z.,
Ma Y., Ye D., Lin
S.-W.

Enhancing Knowledge
Sharing in Stack Overflow
via Automatic External Web
Resources Linking

Subject differs from
dissertation goal. Uses links
from Stack Overflow Posts
to reference official
documentation of products.

2017
Liu X., Shen B.,
Zhong H., Zhu J.

EXPSOL: Recommending
online threads for exception-
related bug reports

Used a model trained by
support vector machines.

2017
Fumin S., Xu W.,
Hailong S.,
Xudong L.

Recommendflow: Use topic
model to automatically
recommend stack Overflow
Q&A in IDE

It is unclear if the solution
suggests a query based on
code context or threads.

2016
Sahu T.P.,
Nagwani N.K.,
Verma S.

An empirical analysis on
reducing open source
software development tasks
using stack overflow

Although the proposal links
bugs and posts, the goal is
to compare de average bug
fix time of posted bugs in
SO.

2015
Nagy C., Cleve
A.

Mining Stack Overflow for
discovering error patterns in
SQL queries

Subject differs from
dissertation goal. Use Stack
Overflow database to
identify error-prone patterns
in SQL queries

2015

Zheng X.-L.,
Chen C.-C.,
Hung J.-L., He
W., Hong F.-X.,
Lin Z.

A Hybrid Trust-Based
Recommender System for
Online Communities of
Practice

Subject differs from
dissertation goal. E-Leaning
paper that uses Stack
Overflow to experiment.

2015
Amintabar V.,
Heydarnoori A.,
Ghafari M.

ExceptionTracer: A Solution
Recommender for
Exceptions in an Integrated
Development Environment

No evaluation performed or
metric presented.

2015
Wang W., Malik
H., Godfrey M.W.

Recommending posts
concerning API issues in
developer Q&A sites

Subject differs from
dissertation goal. Analyze
Stack Overflow posts rather
than based in other context

113

content.

2016

Ponzanelli L.,
Bavota G., Di
Penta M., Oliveto
R., Lanza M.

Prompter: Turning the IDE
into a self-confident
programming assistant

Uses Stack Overflow API.
The mechanism and search
algorithm from this API is
unknown.

2014

Ponzanelli L.,
Bavota G., Di
Penta M., Oliveto
R., Lanza M.

Mining stackoverflow to turn
the IDE into a self-confident
programming Prompter

Uses Stack Overflow API.
The mechanism and search
algorithm from this API is
unknown.

2014

Ponzanelli L.,
Bavota G., Di
Penta M., Oliveto
R., Lanza M.

Prompter: A self-confident
recommender system

Uses Stack Overflow API.
The mechanism and search
algorithm from this API is
unknown.

2013
Rahman M.M.,
Yeasmin S., Roy
C.K.

An IDE-based context-
Aware meta search engine
(SurfClipse)

Uses Stack Overflow API.
The mechanism and search
algorithm from this API is
unknown.

2013
Ponzanelli L.,
Bacchelli A.,
Lanza M.

Seahawk: Stack overflow in
the IDE

Same study conducted in
paper S8

2012
Bacchelli A.,
Ponzanelli L.,
Lanza M.

Harnessing Stack Overflow
for the IDE (Seahawk)

Same study conducted in
paper S8

2012
Zagalsky A.,
Barzilay O.,
Yehudai A.

Example overflow: Using
social media for code
recommendation

No evaluation performed or
metric presented.

114

Appendix E – RapidMiner Process XML

<?xml version="1.0" encoding="UTF-8"?><process version="8.2.001">
 <context>
 <input/>
 <output/>
 <macros/>
 </context>
 <operator activated="true" class="process" compatibility="8.2.001"

expanded="true" name="Process">
 <parameter key="logverbosity" value="init"/>
 <parameter key="random_seed" value="2001"/>
 <parameter key="send_mail" value="never"/>
 <parameter key="notification_email" value=""/>
 <parameter key="process_duration_for_mail" value="30"/>
 <parameter key="encoding" value="SYSTEM"/>
 <process expanded="true">
 <operator activated="true" class="retrieve" compatibility="8.2.001"

expanded="true" height="68" name="Retrieve dataset8Translations" width="90" x="112"
y="187">

 <parameter key="repository_entry" value="dataset8Translations"/>
 </operator>
 <operator activated="true" class="select_attributes" compatibility="8.2.001"

expanded="true" height="82" name="Select Attributes" width="90" x="246" y="187">
 <parameter key="attribute_filter_type" value="subset"/>
 <parameter key="attribute" value=""/>
 <parameter key="attributes"

value="Description|ProcessActivity|Project|Project Tags|Stack Overflow|Task
Tags|Title|Category"/>

 <parameter key="use_except_expression" value="false"/>
 <parameter key="value_type" value="attribute_value"/>
 <parameter key="use_value_type_exception" value="false"/>
 <parameter key="except_value_type" value="time"/>
 <parameter key="block_type" value="attribute_block"/>
 <parameter key="use_block_type_exception" value="false"/>
 <parameter key="except_block_type" value="value_matrix_row_start"/>
 <parameter key="invert_selection" value="false"/>
 <parameter key="include_special_attributes" value="false"/>
 </operator>
 <operator activated="true" class="text:process_document_from_data"

compatibility="8.1.000" expanded="true" height="82" name="Process Documents from
Data" width="90" x="380" y="187">

 <parameter key="create_word_vector" value="true"/>
 <parameter key="vector_creation" value="TF-IDF"/>
 <parameter key="add_meta_information" value="true"/>
 <parameter key="keep_text" value="true"/>
 <parameter key="prune_method" value="none"/>
 <parameter key="prune_below_percent" value="3.0"/>
 <parameter key="prune_above_percent" value="30.0"/>
 <parameter key="prune_below_rank" value="0.05"/>
 <parameter key="prune_above_rank" value="0.95"/>

115

 <parameter key="datamanagement" value="double_sparse_array"/>
 <parameter key="data_management" value="auto"/>
 <parameter key="select_attributes_and_weights" value="false"/>
 <list key="specify_weights"/>
 <process expanded="true">
 <operator activated="true" class="text:transform_cases"

compatibility="8.1.000" expanded="true" height="68" name="Transform Cases"
width="90" x="112" y="34">

 <parameter key="transform_to" value="lower case"/>
 </operator>
 <operator activated="true" class="text:tokenize" compatibility="8.1.000"

expanded="true" height="68" name="Tokenize" width="90" x="246" y="34">
 <parameter key="mode" value="non letters"/>
 <parameter key="characters" value=".:"/>
 <parameter key="language" value="English"/>
 <parameter key="max_token_length" value="3"/>
 </operator>
 <operator activated="true" class="text:filter_stopwords_dictionary"

compatibility="8.1.000" expanded="true" height="82" name="Filter Stopwords
(Dictionary)" width="90" x="380" y="34">

 <parameter key="file"
value="/Users/glaucia/Dropbox/mestrado/dissertation/stopwords.txt"/>

 <parameter key="case_sensitive" value="false"/>
 <parameter key="encoding" value="x-MacRomania"/>
 </operator>
 <operator activated="true" class="text:stem_snowball"

compatibility="8.1.000" expanded="true" height="68" name="Stem (Snowball)"
width="90" x="514" y="34">

 <parameter key="language" value="Portuguese"/>
 </operator>
 <connect from_port="document" to_op="Transform Cases"

to_port="document"/>
 <connect from_op="Transform Cases" from_port="document"

to_op="Tokenize" to_port="document"/>
 <connect from_op="Tokenize" from_port="document" to_op="Filter

Stopwords (Dictionary)" to_port="document"/>
 <connect from_op="Filter Stopwords (Dictionary)" from_port="document"

to_op="Stem (Snowball)" to_port="document"/>
 <connect from_op="Stem (Snowball)" from_port="document"

to_port="document 1"/>
 <portSpacing port="source_document" spacing="0"/>
 <portSpacing port="sink_document 1" spacing="0"/>
 <portSpacing port="sink_document 2" spacing="0"/>
 </process>
 </operator>
 <operator activated="true" class="set_role" compatibility="8.2.001"

expanded="true" height="82" name="Set Role" width="90" x="514" y="187">
 <parameter key="attribute_name" value="Stack Overflow"/>
 <parameter key="target_role" value="label"/>
 <list key="set_additional_roles">
 <parameter key="Stack Overflow" value="id"/>
 </list>
 </operator>

116

 <operator activated="true" class="data_to_similarity_data"
compatibility="8.2.001" expanded="true" height="68" name="Data to Similarity Data"
width="90" x="447" y="34">

 <parameter key="measure_types" value="NominalMeasures"/>
 <parameter key="mixed_measure" value="MixedEuclideanDistance"/>
 <parameter key="nominal_measure" value="JaccardSimilarity"/>
 <parameter key="numerical_measure" value="CosineSimilarity"/>
 <parameter key="divergence" value="GeneralizedIDivergence"/>
 <parameter key="kernel_type" value="radial"/>
 <parameter key="kernel_gamma" value="1.0"/>
 <parameter key="kernel_sigma1" value="1.0"/>
 <parameter key="kernel_sigma2" value="0.0"/>
 <parameter key="kernel_sigma3" value="2.0"/>
 <parameter key="kernel_degree" value="3.0"/>
 <parameter key="kernel_shift" value="1.0"/>
 <parameter key="kernel_a" value="1.0"/>
 <parameter key="kernel_b" value="0.0"/>
 </operator>
 <operator activated="true" class="set_role" compatibility="8.2.001"

expanded="true" height="82" name="Set Role (2)" width="90" x="581" y="34">
 <parameter key="attribute_name" value="SECOND_ID"/>
 <parameter key="target_role" value="prediction"/>
 <list key="set_additional_roles">
 <parameter key="FIRST_ID" value="label"/>
 <parameter key="SECOND_ID" value="prediction"/>
 </list>
 </operator>
 <operator activated="true" breakpoints="after" class="filter_examples"

compatibility="8.2.001" expanded="true" height="103" name="Filter Examples"
width="90" x="715" y="34">

 <parameter key="parameter_expression" value=""/>
 <parameter key="condition_class" value="custom_filters"/>
 <parameter key="invert_filter" value="false"/>
 <list key="filters_list">
 <parameter key="filters_entry_key" value="SIMILARITY.ge.0\.5"/>
 </list>
 <parameter key="filters_logic_and" value="true"/>
 <parameter key="filters_check_metadata" value="true"/>
 </operator>
 <operator activated="true" class="performance_classification"

compatibility="8.2.001" expanded="true" height="82" name="Performance" width="90"
x="849" y="34">

 <parameter key="main_criterion" value="first"/>
 <parameter key="accuracy" value="true"/>
 <parameter key="classification_error" value="false"/>
 <parameter key="kappa" value="false"/>
 <parameter key="weighted_mean_recall" value="false"/>
 <parameter key="weighted_mean_precision" value="true"/>
 <parameter key="spearman_rho" value="false"/>
 <parameter key="kendall_tau" value="false"/>
 <parameter key="absolute_error" value="false"/>
 <parameter key="relative_error" value="false"/>
 <parameter key="relative_error_lenient" value="false"/>
 <parameter key="relative_error_strict" value="false"/>
 <parameter key="normalized_absolute_error" value="false"/>

117

 <parameter key="root_mean_squared_error" value="false"/>
 <parameter key="root_relative_squared_error" value="false"/>
 <parameter key="squared_error" value="false"/>
 <parameter key="correlation" value="false"/>
 <parameter key="squared_correlation" value="false"/>
 <parameter key="cross-entropy" value="false"/>
 <parameter key="margin" value="false"/>
 <parameter key="soft_margin_loss" value="false"/>
 <parameter key="logistic_loss" value="false"/>
 <parameter key="skip_undefined_labels" value="true"/>
 <parameter key="use_example_weights" value="true"/>
 <list key="class_weights"/>
 </operator>
 <connect from_op="Retrieve dataset8Translations" from_port="output"

to_op="Select Attributes" to_port="example set input"/>
 <connect from_op="Select Attributes" from_port="example set output"

to_op="Process Documents from Data" to_port="example set"/>
 <connect from_op="Process Documents from Data" from_port="example set"

to_op="Set Role" to_port="example set input"/>
 <connect from_op="Set Role" from_port="example set output" to_op="Data

to Similarity Data" to_port="example set"/>
 <connect from_op="Data to Similarity Data" from_port="similarity example

set" to_op="Set Role (2)" to_port="example set input"/>
 <connect from_op="Set Role (2)" from_port="example set output"

to_op="Filter Examples" to_port="example set input"/>
 <connect from_op="Filter Examples" from_port="example set output"

to_op="Performance" to_port="labelled data"/>
 <connect from_op="Performance" from_port="performance" to_port="result

1"/>
 <portSpacing port="source_input 1" spacing="0"/>
 <portSpacing port="sink_result 1" spacing="0"/>
 <portSpacing port="sink_result 2" spacing="0"/>
 </process>
 </operator>
</process>

118

Appendix F – Combinations on project task context

elements

Selected Attributes Precision Accuracy Attribute(s)
change

Category
Description
Process
Project

Project Tags
Task Tags

40.87% 36.57% Removed Title

Category
Process
Project

Project Tags
Task Tags
Title

45.64% 37.12% Removed
Description

Category
Description
Process
Project

Project Tags
Title

54.76% 38.28% Removed
TaskTags

Category
Description
Process
Project

Task Tags
Title

61.46% 74.47% Removed
ProjectTags

Description
Process
Project

Project Tags
Task Tags
Title

49.01% 41.18% Removed Category

Category
Description
Process

Project Tags
Task Tags
Title

61.46% 74.47% Removed Project

Category
Description
Process

Task Tags
Title

77.78% 85% Removed Project
Project Tags

Title
Description

71.67% 54% Removed Category
Process
Project
Project Tags
Task Tags

Project Tags
Task Tags

13.51% 22.69% Removed Category
Process
Project
Title
Description

