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Intracellular metabolic flux rates are the manifestatiometabolic activities within organisms.
Aiming at a precise quantification of tlire-vivo fluxes, Metabolic Flux Analysis based on label-
ing experiments has become an valuable key technology ite®gsBiology. Topology-based
computational algorithms are derived to facilitate infative high-throughput analyses as well
as predictive computational modeling and simulation apgines to generate new knowledge
and a robust experimental design of labeling experiments.

1 Introduction

Intracellular metabolic flux rates are the most importadtdators of the metabolic activ-
ities in organisms. Depending on external conditions,fiimeomedetermines the cells’
physiological phenotype and, thus, their metabolic cdjpi@si. Thein-vivoreaction rates,
however, cannot be directly accessed from measuremenisingiat a precise quantifi-
cation, Metabolic Flux Analysis (MFA) based on Isotope UaieExperiments (ILE) be-
came an invaluable tool for Systems Biology.

2 General Procedure: Isotope Labeling Experiments

Over the past decade two types of isotope-based MFA emergkaira being successively
refined. Both methods rely on measurements of either laletedass components (with
GC-MS, NMR) or labeled primary intermediates (LC-MS). Thessical, well established
stationaryisotope MFA characterizes a cell's fluxome in a metaboliciantbpic station-
ary state. Typically, in a continuous culture the feed isteing@d from naturally labeled to
isotopically labeled medium which propagates though thevoik and progressively re-
places the unlabeled intermediates. When the labelinglilision is approximately time-
invariant, samples are taken. In this field, recent expertaig@rogress strengthened the
development of high-throughput MEAthe investigation of extensive metabolic networks
as well as the utilization of elaborated nonlinear statitinethods for flux estimatién

A current area of research is isotopicatipn-stationaryMFA which represents a
promising generalization of the classical apprdattere, the cells are likewise kept under
metabolic steady state conditions, however, now the tinoéles of the labeling patterns
are measured upon start of the labeling period in order tateahe time-dissolved label-
ing propagation of the isotopic tracer though the networkm@ared to classical isotope
MFA, non-stationary ILEs are typically more informativedafacilitate a cross check be-
tween metabolome and fluxome data. In particular for comgsire networks, however,
the required computational effort is prohibitiveAltogether, the new experimental tech-
nigues result in an increased demand for more efficient éihgos.
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3 Modeling and Computational Machinery

Besides the measurement of labeling patterns in key metedoéxtracellular rates, and
pool sizes (non-stationary case only), a biochemical ractetwork has to be provided.
Additionally, atom transitions of all reactions have to lpeafied which essentially de-
scribe how the flow of labeled material through the cell'sabelic pathways is organized.

The analytic determination of the fluxes as a function of therging labeling patterns,
however, is impossible for realistic networks. Thus, foraueling intracellular fluxes, an
iterative parameter fitting procedure has to be applied. rBarizing, mathematical mod-
eling and computational algorithms build the foundationisaftope-based MFA. In this
context, the computational bottleneck is the forward satiah step, i.e. the calculation of
emerging labeling patterns from given parameters. Becallipessible labeling combina-
tions of each metabolite have to be considered, at the eadgtiation procedure involves
the solution of large, cascaded systems of Labeling BalEqcetions (LBES)®.

The requirement for the computational evaluation of the ehdglin each case high:
system dimensions range from 700 with 45 parameters (¢em&tabolism, CM) and 5600
with 65 parameters (CM with biosynthesis pathways) up to.@3% with 580 parameters
for genome-scale models. The classical method involvesdhgion of an algebraic equa-
tion system while for the non-stationary method a systenmaihary differential equations,
with possibly stiff characteristic, has to be solved.

4 Topological Technigues for Dimension Reduction

Efficient non-standard solution algorithms basically alyron the structure of the Isotope
Labeling Network (ILN) graph associated with the metabaktwork. Although the so-
lution algorithms for the stationary and non-stationargraaches are quite different, both
approaches certainly benefit from a reduction of the prolda®. Dimension reduction
is performed by a careful analysis of the ILN graph followgdebremoval of specified
nodes and edges or a decomposition into smaller subsysfEmestwo basic approaches
for dimension reduction are:

Path Tracing. Typically, measurement data describe only a small subsetetdbolites.
The forward simulation step can be restricted to a relevalnireetwork which sufficiently
describes the transport of labeling from the substratesdgarteasured metabolifesThe
necessary path tracing procedure relies on the compufattitne transitive closure of the
network graphs and is performed in two directionsferavard tracing which determines
the fate of the isotopic labeling found in the substrated,alpackward tracingwvhich de-
termines the topological predecessors of a labeling pattefragment.

Network Graph Decomposition. In a divide-and-conquer approach the network graphs
are decomposed inttisconnectedunilaterally connectedagyclic) andcyclic subnetwork
components (so called CCs, DAGs, and SCCs, respectively. decomposition heavily
uses the unidirectionality of reactions. Once labelingésaa cyclically connected subnet-
work (by taking an unidirectional reaction route), it is iogsible for it to return. This es-
sential information can be used for decomposition of a ngtwido smaller subnetworks.
The decomposition results in subproblems with lower dirr@mand, thus, dramatically
reduces the running time of the solution algoritRmBepending on the network connec-
tivity the speed-up is at least in the order of two to three mitages.
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Although the potential of these two methods is high, furtieeluction is possible using
an even more fine-grained approach: due to their combimtorigin, the ILNs contain
isomorphic subgraphs in form of parallel paths. Since theegeged LBES are likewise iso-
morphic, this property results in redundant computatioh&iwvare usually hard to elim-
inate. Fortunately, this problem is solved by the genenatioanalytical solutions which
facilitate the elimination of common subexpressions. Ag-gitoduct analytical solutions
enable exact evaluation of sensitivities and the generafibighly efficient machine code.

In case of non-stationary ILEs, typically with growing ldlegchange between neigh-
boring metabolites the differential equation systems tenide stiff. Application of e.g.
a s-stage implicit Runge-Kutta scheme involves/s x sN-dimensional linear equation
system, wheréV denotes the number of differential equations to be solvedinposing
specialized structures on the Runge-Kutta matrix, e.g.nmpsing a SDIRK scheme, the
computational cost for its solution can be reduced. Howeliercomplexity of performing
at least one Newton step remains. Clearly, both topologipproaches presented above
can be directly applied. Moreover, because the spargitpattern of the Runge-Kutta ma-
trix remains the same for all time steps, the network decaitipo has to be performed
only once.

5 Conclusion and Outlook

The computational routines used in stationary, and in @aer non-stationary isotopic
MFA suffer from the inherent computational complexity oéthpproach. However, ex-
ploiting the nature of the underlying (algebraic and diéfaial) equation systems improves
the efficiency of the solution methods. A careful study of lddgeling network topology
leads to a significant increase in performance. New algostamerge, having their roots
in Graph Theory, Linear Algebra, and Compiler Theory. Hogreparticularly for the clas-
sical approach the new techniques providing analyticalfastdnumerical solutions open
the perspective to simulate even genome-scale metabotielsio
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