
FORSCHUNGSZENTRUM JÜLICH GmbH
Jülich Supercomputing Centre

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

JUICE - Jülich Initiative Cell Cluster
Report 2007

Matthias Bolten, Andreas Dolfen*, Norbert Eicker,
Inge Gutheil, Willi Homberg, Erik Koch*,

Annika Schiller, Godehard Sutmann, Liang Yang

FZJ-JSC-IB-2007-13

December 2007

(last change: 22.12.2007)

(*) Institut für Festkörperforschung





Contents

1 Cluster Overview 3
1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Installation and management . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 ParaStation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Torque batch system . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Hardware Architecture and Software Development 6
2.1 Cell Broadband Engine Architecture . . . . . . . . . . . . . . . . . . . . . . 6
2.2 QS20 Cell blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Software development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Projects 10
3.1 Lanczos for Hubbard models on Cell . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Lanczos method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Lanczos and Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 A multigrid method for the solution of the Poisson equation . . . . . . . . . 15
3.2.1 A short introduction to multigrid methods . . . . . . . . . . . . . . . 15
3.2.2 Multigrid method on the CBEA . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 A fast Wavelet based implementation to calculate Coulomb potentials . . . 20
3.3.1 Fast Wavelet based method . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Calculation on the cell processor . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Memory efficient algorithm vs. calculation efficient algorithm . . . . 22
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Cell Superscalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Examples and results . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 MPI on Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 Results for InfiniBand . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 Local communication . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 MPI performance of matrix-matrix-multiplication . . . . . . . . . . . . . . . 32
3.6.1 Matrix-matrix-multiplication . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2 Results of performance measurements . . . . . . . . . . . . . . . . . 34

A QS20 Memory Management 40

i



ii CONTENTS

B SUMMA Algorithm 43



Introduction

In the near future computer platforms will be based on multicore processors which will
concentrate dozens or even hundreds of cores on a chip. Hence the number of cores in a
high performance cluster will increase to hundreds of thousands. As a result, sequential
and parallel programming methods have to be adapted to an appropriate combination of
node-local and distributed parallel programming techniques and existing software has at
least to be extended or partly new software approaches have to be investigated to use such
clusters effectively.

While most processor manufacturers still follow conventional approaches of homogeneous,
symmetric multicores with transparent cache hierarchy, other vendors start to explore al-
ternative designs. One first example available to a broader audience is the Cell Broadband
Engine developed by STI, a consortium formed by Sony, Toshiba, and IBM. The archi-
tectural characteristics of this processor include multiple heterogeneous execution units,
SIMD processing engines, limited local store and a software managed cache. Applications
can achieve near theoretical-maximum performance if Cell-specific features are respected.
IBM’s first Cell-based system shipped was the QS20 blade, equipped with two Cell proces-
sors and 512 MB memory each and external connectivity provided by a Gigabit Ethernet
and an optional InfiniBand network interface.

In order to explore the capabilities of this innovative architecture, in early 2007, project
JUICE (JUelich Initiative CEll cluster) was established at JSC. A cluster of 12 IBM QS20
blades was procured to examine the potential of cell processors as a building block for fu-
ture high-end computing systems. Being lucky to have very early access to Cell hardware
and software the deployment phase however was a bit experimental and e.g. the spider-
net ethernet driver had to be adapted to get it running in line with our batch system Torque.

Example codes provided with the installation of the Software Development Kit (SDK)
produced high performance results on a single blade right from the beginning. With farming
codes more than 90 % of the peak performance could be achieved. The implementation of
the CellSs, a programming model developed at Barcelona Supercomputing Center (BSC),
facilitated the porting of sequential programs to the Cell platform. Subprojects evolved
dealing with Cell-specific implementations of software codes, e.g. based on the Lanczos
eigenvalue algorithm and the multigrid method.
The first implementation of the Cell processor is significantly more efficient at computing
single-precision floating results, a drawback which will vanish in the next enhanced double
precision version Cell eDP. Hence, at present, it is profitable to consider mixed-precision
software implementations in order to balance accuracy and performance.
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Installation of ParTec’s MPI stack allowed for promising tests with distributed parallel
jobs. Midyear, the JUICE cluster was equipped with an InfiniBand network and MPI
communication became more important. In the end we succeeded in getting at a TFLOPS
performance on our 12-nodes cluster.



Chapter 1

Cluster Overview

1.1 Configuration

The JUICE cluster consists of two BladeCenter-1 chas-
sis each equipped with six QS20 Cell blades. Each
blade includes two Cell BE sockets with one Power
Processing Element (PPE) and eight Synergistic Pro-
cessing Elements (SPEs) in each case, 1 GB Rambus
XDR memory, a 40 GB hard disk, and a 4x Mellanox
InfiniBand card.
The Gigabit Ethernet network is based on the onboard
ethernet adapters and the Nortel switches embedded
in the BladeCenter. The InfiniBand network is estab-
lished by an InfiniBand daughter card and a 24 port
Voltaire ISR9024 switch.
A x3550 system including dual XEON 5140 proces-
sors, 5 GB memory, 300 GB hard disk, and two Giga-
bit ethernet ports serves as frontend machine.
A terminal server is included to assure access to the se-
rial console of each cluster node. The JUICE hardware
is housed in the upper part of a 42 inch rack. Featur-
ing a single-precision floating point peak performance
of nearly 205 GFLOPS per Cell processor the overall
performance of the JUICE cluster is about 5 TFLOPS.
A fully equipped rack with six BladeCenter and seven
double wide blades would have an aggregated peak
performance of more than 17 TFLOPS thus presenting
an outstanding ratio between performance and floor
space as well as performance and power consumption. Rack hosting the JUICE cluster

1.2 Installation and management

The BladeCenter Management Module provides an overview of the system hardware status
and basic features like power restart and the setting of the boot sequence. The frontend

3
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serves for user login and as an NFS file server. Operating system installation of the cluster
nodes is done in two steps. A Golden Client is set up first by starting a netboot with VNC
support from the serial console loading the PPC Fedora Core image from the DHCP/TFTP
service on the frontend [13]. After completion the resulting root file system is transferred
by means of the System Installation Suite[8] tools to the images repository on the frontend
which serves as a basis for an automated installation of the cluster nodes.

1.2.1 ParaStation

The implementation of ParTec’s ParaStation furnished JUICE with a cluster middleware
for serial and parallel applications comprising an MPI stack, process management, and a
collection of administration tools providing a "Single System View" of the cluster.

The GridMonitor is a versatile system monitor
for Linux-based compute clusters. A multiplic-
ity of information from different devices and ser-
vices from a cluster may be read, evaluated and
stored. The GridMonitor provides the adminis-
trator with various aspects of the available infor-
mation, from an overall status of all configured
clusters to in-depth details of nodes and devices.
Data can be grouped with respect to different as-
pects and are visualized via a web browser. Fur-
thermore, parameters may constantly be moni-
tored and the adminstrator may be informed, if
required[9].

1.2.2 Torque batch system

Torque is Open Source and is being used on other Linux clusters at FZJ already. Torque is
based on PBS (Portable Batch System), an Open Source batch and resource management
system, and is available as RPM package for Linux.

In general, compilation is performed on the compute nodes. The user gets access to the
nodes by queueing an interactive job. A typical usage of the qsub command:

qsub -q sdk21 -l nodes=N:perfctr -I -X
mpirun -np N myprog

If there is more than one SDK version currently in use there is a seperate queue to access
the proper nodes (e.g. sdk21). N specifies the number of required nodes for parallel codes.
Additional options like perfctr and hugetlb are supported providing access to the Cell
performance counters (App.A) or making the hugetlb filesystem available. The option -X
is required for graphic support, e.g. when using parallel debugger like DDT.
Torque allows for prologue and epilogue scripts being executed when jobs are started and
terminated, respectively, thus granting optional resources if required, e.g. for using the Cell
performance counters:
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if [ ${PBS_RESOURCE_NODES} != ${PBS_RESOURCE_NODES/hugetlb/} ]; then
cpc -E > /dev/null 2>&1
chown ${2}:${3} /dev/cellperfctr

fi

Here (using SDK-2.1) the performance monitor is enabled and the ownership of the corre-
sponding device is properly set to give access to the user.



Chapter 2

Hardware Architecture and
Software Development

2.1 Cell Broadband Engine Architecture

The Cell Broadband Engine (CBE) processor is a heterogeneous multicore processor - based
on a PowerPC core and eight so-called synergistic processing elements - which distinguishes
itself by its extremely high performance single-precision arithmetic.

• One Power-based PPE, with VMX
– 32/32kB I/D L1, and 512kB L2
– dual issue, in order PPU, 2 HW

threads
• Eight SPEs, 2-way SMT

– up to 16x SIMD
– dual issue, in order SPU
– 128 registers (128b wide)
– 256kB local store (LS)
– 16+16B/cycle DMA, 25.6 GB/s,

16 outstanding requests

• Element Interconnect Bus (EIB)
– 4 rings, 16B wide at 1/2 clock
– 96B/cycle peak, 16B/cycle to

memory
– 2x16B/cycle BIF and I/O

• External communication
– Dual XDR memory controller

(MIC)
– Two configurable bus interfaces

(BIC)
∗ Classical I/O interface
∗ SMP coherent interface

The PPE runs the operating system and manages system resources. It is intended to
deal with the coordination of the eight other cores (see fig.2.1). An SPE core comprises a
very large register file of 128 registers each 128-bit wide for floating-point as well as integer
operations and owns a powerful SIMD engine operating on all 128-bit registers. It supports
16 byte, 8 halfword, 4 word (integer or float), or 2 double word operations in a single clock
cycle. Taking into account the fused add-multiply operation which delivers two results at a
time the theoretical single-precision peak performance is 25.6 (4 x 3.2 GHz x 2) GFLOPS
per SPE at 3.2 GHz and 8 x 25.6 = 204.6 GFLOPS for the CBE.

Due to the large performance difference between single-precision and double-precision arith-
metic (with a ratio of 14 as double precision operations are executed with a delay of 7 cycles
and only two instead of four operands can be processed in parallel) it is essential to exploit
32-bit floating point arithmetic whenever feasible.

6
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Figure 2.1: Cell processor architecture

2.2 QS20 Cell blades

A QS20 Cell blade consists of two CBE clocked at 3.2GHz. Each Cell processor has access
to a 512 MB XDR memory via its MIC. It is possible to coherently access the memory
attached to the other Cell chip’s MIC by crossing the so called IO interface (via BIC/BIF).
However performance is degraded. To achieve good performance it is important to ensure
that each thread accesses only the XDR DRAM device of the Cell chip it is running on.
There are two ways to control the NUMA policy of programs. From within the code one
can include the libnuma and from the command line one can make use of the numactl
command (App.A).

2.3 Software development

The Software Development Kit (SDK) is a complete package of tools for the creation of
applications meant to run on Cell Broadband Engine Architecture. It is composed of run-
time tools such as the Linux kernel, development tools, software libraries and frameworks,
performance tools, a Full System Simulator, and example source files[13].

The programming model for the Cell blades is a master slave model. We can distinguish
different ways of distributing work to the SPEs. The most simple case is the function offload
model where a single function is executed on one SPE. If more than one SPE is used there
is the choice between a data parallel and a task parallel model.

In the data parallel case all SPEs do the same computations on different local data. This
is very close to the familiar SPMD model and thus it is preferred by most applications up
to now. In the task parallel approach each SPE does a different part of the whole task and
data is pipelined from one SPE to the other thus reducing access to main memory at the
expense of a more complicated load balance.
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Figure 2.2: Cell programming model

PPE program skeleton (SDK-2.0)
extern spe_program_handle_t my_spe_program;
[...]
/* allocate the SPE tasks */
for (i = 0; i < num_spes; i++)

speid[i] = spe_create_thread (gid, &my_spe_program, NULL,
NULL, -1, 0);

[...]
/* send messages to SPE mailboxes */
for (i=0; i<num_spes; i++) spe_write_in_mbox(speid[i], 1);
[...]
/* receive messages from SPEs via PPE mailboxes*/
for (i = 0; i < num_spes; i++) {

while (spe_stat_out_mbox(speid[i]) < 1);
result[i] = spe_read_out_mbox(speid[i]);

}
[...]
/* wait for the SPEs to complete */
for (i = 0; i < num_spes; i++) spe_wait(speid[i], &status, 0);

SPE program skeleton
control_block cb __attribute__ ((aligned (128)));

int main(unsigned long long speid, addr64 argp, addr64 envp) {
unsigned int data0[SPE_BUFFER_ENTRIES] __attribute__ ((aligned (128)));
mfc_get(&cb, argp.ui[1], sizeof(cb), 0, 0, 0);

mfc_write_tag_mask(1<<0); mfc_read_tag_status_all();

while (spu_stat_in_mbox() < 1); spu_read_in_mbox();

mfc_get(data0, cb.PPE_data_Ptr, cb.size, 0, 0, 0);
mfc_write_tag_mask(1<<0); mfc_read_tag_status_all();

compute(data0);
mfc_put(data0, cb.PPE_data_Ptr, cb.size, 0, 0, 0);

mfc_write_tag_mask(1<<0); mfc_read_tag_status_all();
return 0;

}

The main program starts on the PPE and creates the required SPE threads which run
immediately and acquire their control block information from a dedicated area in main
memory. Then, all SPE threads wait for a message from the PPE notifying that input data
is in place and subsequently transfer data to the local store. Thereafter, computation is
performed and resulting data transferred back to main memory. While all SPE threads
perform computations the main program on the PPE waits for a final message from each
SPE indicating that all work is done.

The compilation of a Cell program consists of the following steps:

# compile spu code
spu-gcc -o test_spu.o test_spu.c

# compile ppu code
ppu-gcc -o test_ppu.o test_ppu.c

# embed spu object into ppu object
embedspu test_spu test_spu.o test_spu_embed.o

# link everything together
ppu-gcc -o test test_ppu.o test_spu_embed.o

After compilation of the SPE program the created object file must be embedded into an
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PowerPC object which at last is linked together with the object code of the PPE main
program to get an executable for the Cell processor.[20]

Figure 2.3: Cell compilation scheme

The CBE is no general purpose processor and algorithms only run efficiently if suffi-
cient computation is performed on the 256 KB local store between DMA transfers and
if SIMD parallelisation can be properly used. The considerable difference between single-
and double-precision perfomance suggests to perform compute intensive operations using
single-precision arithmetic and to improve the accuracy of the solution in double-precision.
Good performance results have been attained by the use of mixed-precision in the iterative
refinement step in solving systems of linear equations [17].



Chapter 3

Projects

3.1 Lanczos implementation for Hubbard model calculations
on Cell (Andreas Dolfen, Erik Koch)

To design new materials with superior properties we have to accurately solve the many-body
Schrödinger equation. The dimension of the Hilbert space grows, however, exponentially.
Thus we need to use approximations. A very successful approach, density functional the-
ory, makes realistic calculations for many materials possible. It relies on a single particle
picture. New materials of high technological interest show however effects of strong cor-
relations. This gives rise to exciting physics such as magnetoresistance, high-temperature
superconductivity or spin-charge separation. In these compounds electrons lose their in-
dividuality and we need to go beyond effective single particle theories and perturbative
approaches. This is, however, only feasible for model Hamiltonians. For these models to
be realistic they must be as large as possible. Thus, the need for supercomputers. The
CBE offers top performance on a single chip and is therefore an interesting architecture to
explore for these kind of calculations.

3.1.1 Hubbard model

The Hubbard model is the simplest many-body model which cannot be reduced to an
effective single-particle system. Although it is a very simple model it contains rich physics.
In its real-space representation it reads,

H = −
∑
σ,ij,ν

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ , (3.1)

where the first term denotes the kinetic energy and the second one the Coulomb repulsion.
In the kinetic energy term an annihilation operator c†iσ annihilates an electron with spin σ
on site i and the creator operation cjσ puts one on site j. Thus, effectively describing the
hopping of an electron from site i to j with hopping amplitude tij .
In the Coulomb term the operator niσ denotes the number of σ electrons on site i. A site
can only be occupied (niσ = 1) or unoccupied (niσ = 0) by electrons of a single spin due
to the Pauli principle. Thus, there are only four states a site can have. Either it is empty,
singly occupied with a spin-up or down electron, or doubly occupied with electrons of either
spin. In the latter case the Coulomb term describes a penalty of U in energy due to the
Coulomb repulsion of equally charged particles. In all other cases this term is equal to zero.

10
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3.1.2 Lanczos method

The Hubbard model can be solved numerically using the Lanczos method. It is an itera-
tive method which heavily relies on sparse matrix vector multiplication. In a nutshell it
works by starting from a random vector |φ0〉, which must not be orthogonal to the ground-
state vector, and applying the matrix to this vector. Afterwards the resulting vector is
orthogonalized with respect to the starting vector and then normalized, i.e.

〈φ1|H|φ0〉|φ1〉 = H|φ0〉 − 〈φ0|H|φ0〉|φ0〉 . (3.2)

Similarly the second iteration is carried out, i.e.

〈φ2|H|φ1〉|φ2〉 = H|φ1〉 − 〈φ1|H|φ1〉|φ1〉 − 〈φ1|H|φ0〉|φ0〉 . (3.3)

The n-th iteration can be expressed recursively as

βn+1|φn+1〉 = H|φn〉 − αn|φn〉 − βn|φn−1〉 , (3.4)

where n ∈ 2, . . . ,m and

αn = 〈φn|H|φn〉, βn+1 = ‖H|φn〉 − αn|φn〉 − βn|φn−1〉‖ .

Equation (3.4) shows that the Hamiltonian is a tridiagonal matrix in the basis of so-called
Lanczos vectors {|φn〉}, where the {αi} are the diagonal whereas the {βi} are the off-
diagonal elements. This tridiagonal matrix can be diagonalized by standard means. The
resulting lowest eigenvalue is a good approximation to the ground-state eigenvalue as long as
the number of iterations m is sufficiently large. It shows that only relatively few iterations
are needed to get a well converged ground-state energy. This is what makes this method
so powerful.

3.1.3 Lanczos and Cell

A supercomputer based on Cell will be a distributed memory system. An implementation
of the Lanczos method for Hubbard models has already been developed [11] and runs
efficiently on massively parallel systems like BlueGene [10]. It relies on the fact that the
Lanczos vectors can be written as a matrix whose indices denote the indices of the up and
down spin configurations. This leads to the idea of performing a matrix transpose on these
vectors. If the elements for different up spin configurations where stored locally in memory,
after transposition the same would be true for the down spin configurations.
As long as correlations are not too strong, i.e. there are no strongly separated energy
regimes, single precision suffices at least for test calculations. Hence we can make use of the
computational single precision power of the Cell chip. If single precision does not suffice we
can still resort to the technique of iterative refinement [18]. This technique was widely used
in former times when double precision computations were much more expensive than single
precision ones. This situation is enjoying a renaissance with the current implementation of
the Cell Broadband Engine Architecture.

General observation

Before actually starting the development of the Lanczos code it is practical to take a
closer look at the Cell system itself, since many design decisions strongly depend on the
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actual performance of various subsystems and their interplay. For instance is it feasible
to perform operations, which are needed often, once and store them or is it better to
redo the calculations each time the result is needed? This, of course, depends on the
transfer/compute ratio. If the calculations can be performed within the time needed to get
the elements from memory, on-the-fly calculation is feasible. We thus assess the actual DMA
transfer bandwidth using a norm calculation which employs double buffering to overlap
communication and computation. The results are shown in plot 3.1.
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Figure 3.1: Bandwidth for norm calculation on one(red), two (green), four (blue) and eight (ma-
genta) SPEs. The size of the vector is 128 MB which is equivalent to 32 k pages of size
4 kB. Timings measured from PPE. Code employs double-buffering. The plot shows
the timings for different methods of memory allocation and NUMA affinities. The blue
dashed line denotes the theoretical peak performance of 25.6 GB/s. It is advisable to
use more than one SPE to exploit the DMA bandwidth. Moreover, binding threads
to NUMA nodes also is crucial to achieve good performance. SDK2.0 with libsdk1 is
used. Shown are average values for five iterations.

We observe that the Cell boards are NUMA architectures, which is important to have in
mind when coding. It is interesting to note that it does matter which NUMA node we
bind the memory and the computation to. NUMA node 0 always yields better performance
(7.2 GB/s vs. 5.6 GB/s). We are not sure how this comes about. A reason could be the
address concentrator, which is only located at numa node 0. But this should only have an
impact on the latencies.

The second effect one has to take care of are TLB misses. Norm calculations of large vectors
obviously access large ranges of memory and thus suffer from many TLB misses, if the pages
are small. We thus use 16 MB pages, effectively eliminating TLB misses and thus making
address translation efficient. And indeed, using NUMA to bind the computation and the
memory allocations to node 0 as well as using huge pages yields the best results for a single
SPE with 11.4 GB/s. This is still far from the theoretical peak bandwidth. The situation,
however, improves when using more SPEs. With four SPEs, NUMA policies set to node 0
and huge pages the norm code gives a performance of about 18.2 GB/s. Strangely, however,
the best performance (19.6 GB/s) in this test was achieved having two SPEs using NUMA
node 0 and hugetlbs.
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Coulomb term

First we discuss the calculation of the diagonal elements of the Hamiltonian, i.e. the
Coulomb term. In our implementation a single configuration is stored in two integers,
one for the up-spin configuration and one for the down-spin configuration. The bit repre-
sentation of the integers shows which sites are occupied and which are not. For the local
Hubbard term we need to calculate the number of doubly occupied sites, i.e.∑

i

ni↑ni↓ .

This can be achieved by using a bitwise and operation on the two integers and then counting
the number of set bits. This number obviously is equal to the number of doubly occupied
sites.
Shall we use on-the-fly calculation or precalculated diagonal elements? Let us try both.
The on-the-fly implementation exploits the SIMD capabilities of the SPEs performing these
operations on four 32 bit integers per SPE in a single clock cycle. In the local store of each
SPE participating in the calculation we need to store the lookup tables which map the
integer labels for up and down spin configurations to the actual configurations encoded
again in integers. Alternatively we can precalculate the diagonal elements on the PPE and

 0
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precalc (2 SPE)
precalc (4 SPE)
precalc (8 SPE)

on-the-fly (2 SPE)
on-the-fly (4 SPE)
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Figure 3.2: Comparison of the runtime for on-the-fly and pre-calculation of the Hubbard term for
different numbers of SPEs. For two SPEs both methods are almost equally fast. Start-
ing from four SPEs on, the on-the-fly calculation becomes significantly faster. This
is because the bandwidth is bounded and the precalulation-code is transferwise more
expensive. For four SPEs it is almost fully exploited and thus on-the-fly calculation
becomes preferable.

transfer it to the SPEs. Aside from the two (get and put) DMA transfers of the wave
vector elements we then need a third transfer of the same size. Depending on the DMA
to computation performance ratio either on-the-fly calculation or precalculation is faster.
Figure 3.2 shows the runtime measured from the PPE for on-the-fly and pre-calculation
codes using two, four and eight SPEs, respectively. First we observe the expected linear
increase of runtime with respect to vector size. For a single SPE (not shown) and two SPEs
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on-the-fly calculation and pre-calculation are equally fast. Starting from four SPEs on the
one-the-fly calculation is significantly faster.

Outlook

The Cell chip is a very promising architecture for compute-intensive tasks like the simulation
of strongly correlated materials. The current cell blades have, however, some significant
drawbacks. While the Cell chip has a highly efficient but simplified architecture which gives
much responsibility and control to the programmer, the boards come with a complicated
NUMA architecture which makes it difficult to reliably achieve high performance. We feel
that it would be completely sufficient for our purposes to have a single chip per board/node.
Then there would be no overhead to preserve coherence, no strange memory access time
differences for different NUMA nodes (see section 3.1.3). All in all a less complex and more
deterministic system.
Also the operating system does not quite fit the philosophy of the Cell chip. It is a conven-
tional full-featured Linux system, where instead a lightweight kernel on the compute nodes
(CNK) similar to the one found on BlueGene super computers would be more appropriate.
High performance applications in general have no need for sophisticated virtual memory
solutions and their computational overhead. On the BlueGene/L Run Time Supervisor
(BLRTS) the kernel and the userspace share the same address space and only a single
process can run on the CNs. To avoid being overwritten by the user program the kernel
protects itself by reprogramming the PowerPC MMU [1].
Finally, we think that an important consideration for the development of Cell architectures
is the balance of floating point performance, memory access, and network. Currently the
small size of the local store is a severe limitation to efficiency (see on-the fly vs. memory
access) and we would like to see the local store increased.
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3.2 A multigrid method for the solution of the Poisson equa-
tion (Mathias Bolten)

Multigrid methods are known to be optimal methods for the solution of linear systems
arising from the discretization of elliptic PDEs, although they are not limited to these
problems. So they are of interest for a broad range of applications originating from different
fields of research. As multigrid methods are useful for a number of applications and as they
are an important representative of the class of methods that deals with structured grid
problems and the emerging matrices we decided to study the performance of a multigrid
method on the Cell broadband engine architecture.

3.2.1 A short introduction to multigrid methods

Multigrid methods are solvers for linear systems of algebraic equations of the form

Ax = b. (3.5)

Instead of presenting a detailed introduction to multigrid methods we refer to the introduc-
tion by Briggs, Henson and McCormick [4] and to the excellent textbook by Trottenberg,
Oosterlee and Schüller [24]. Nevertheless we like to mention the fundamental observation
that is exploited in geometric multigrid methods. When we apply an iterative solver like
Jacobi or SOR to the system (3.5) and observe the error it turns out that the error is not
reduced very efficiently, but it is smooth after only a few iteration steps, c.f. figure 3.3 for
an example of the standard 5-point discretization of the Laplacian. Analyzing the iteration
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Figure 3.3: Error after 0, 5 and 10 iterations of damped Jacobi iteration for standard 5-point
discretization of Laplacian

matrix of the Jacobi iteration affirms this observation, as the error components belonging to
the eigenvectors of the matrix A that are highly oscillating are damped very fast, whereas
the low-frequency modes are hardly affected at all. Similar observations can be made for
other iteration methods like SOR. A two grid method exploits this fact in the following
way: After carrying out a few iterations of a such a smoother the resulting residual

r = b−Ax

is computed and transferred to a coarser grid. On that level the defect equation

ACd = r

is solved using an appropriate representation AC of A on that level, i.e. a rediscretization
of the underlying partial differential equation using a larger grid width, and the resulting
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defect is transferred back to the fine grid. Using that approximation of the defect the
current approximate solution is corrected. The process of transferring the residual vector
to a coarser grid, solving the defect equation on that level and correcting the current
approximate solution is called coarse grid correction. After the coarse grid correction a few
additional iterations of our smoother are applied, as it introduces highly-oscillating error-
components, again. Using that technique the computational requirements can be reduced
significantly, as the problem on the coarse grid is typically much smaller than the original
problem. Due to the fact that smooth error modes can be well-represented on the coarse
grid, the method is very efficient. If this technique is applied recursively to solve the defect
equation on the coarse grid the resulting method is a multigrid method. As seen in figure
3.4 the resulting method has a linear convergence rate, a huge benefit compared to the
damped Jacobi iteration, which is its basis.
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Figure 3.4: Convergence of the damped Jacobi iteration and multigrid method using 3 presmooth-
ing steps and 3 postsmoothing steps of the damped Jacobi method

3.2.2 Multigrid method on the CBEA

The Cell broadband engine architecture with its limited local storage and the availability
of DMA transfers for load/store operations to/from the main memory is well-suited for the
solution of linear systems arising from the discretization of partial differential equations on
structured grids. As seen in the previous section the smoothing iteration plays an important
role in the multigrid method and as it is computationally the most expensive part we started
with the implementation of the damped Jacobi method for a 7-point discretization of the
Laplacian in three dimensions, where the computation is offloaded to the SPUs.

Implementation of the Jacobi smoother

The implementation of the Jacobi solver works as follows: The PPU program allocates
the memory for the right hand side and the solution and it supervises the work of the
SPUs, which poll their mailboxes for messages from the PPU. The sizes are chosen such
that the boundaries are included in the volume for ease of implementation and to avoid
conditional branches which are expensive to do for the SPU. First the PPU tells the SPU
programs to initialize, i.e. read in the addresses of the solution and the right hand side
and the appropriate sizes. Furthermore, memory for their part of eight slices of the data
is allocated in the local storage. The data distribution amongst the SPUs is depicted in
figure 3.5 and explained as follows: The SPUs work on one xy-slice of the data at once.
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This slice is distributed amongst the SPUs in the y-direction and packed into the vectors
in x-direction. After initialisation the SPUs are ready to do work. To do an iteration of the

Figure 3.5: Distribution of the data to the SPUs

Jacobi method the PPU sends an iterate command to each of the SPUs. This causes the
SPUs to do an iteration of the Jacobi iteration. To use multibuffering two slices of the right
hand side and four slices of the current solution are kept in the local store, additionally two
slices of temporary storage are needed that carry the new iteration of the solution. When
the SPUs have finished the work for one iteration they put a message in their outbox.
The outbox is polled by the SPU. The arithmetic operations of the Jacobi iteration are
vectorized using the vector intrinsics of the SPU.

Some performance results

We measured the different aspects of the performance of our implementation. The per-
formance for 643 grid points using up to 8 SPUs can be found in Table 3.1 and in figure
3.6. It can be seen that the time per iteration can be reduced by a factor of 4.5 if 8 SPUs
are used. The available bandwidth is also utilized very well, although there is still some
potential. The next test regarded the dependence of the time per iteration on the number

#SPUs bandwith/SPU [GB/s] total bandwith [GB/s] time per iteration [s]
1 3.36 3.36 1.04 · 10−3

2 3.43 6.86 5.24 · 10−4

3 2.72 8.16 4.53 · 10−4

4 3.19 12.76 2.98 · 10−4

5 2.32 11.60 3.37 · 10−4

6 2.15 12.90 3.10 · 10−4

7 2.04 14.28 2.89 · 10−4

8 2.33 18.64 2.27 · 10−4

Table 3.1: Bandwith and time per iteration for 643 grid points for various numbers of SPUs

of grid points of the original grid. For that purpose we tested grids up to a size of 1283

grid points on the 8 SPUs of one chip and grids up to 2563 grid points on the 16 SPUs of
one blade, respectively. The results can be found in Tables 3.2 and 3.3, additionally a plot
of the respective times per iteration can be found in figure 3.7. As the 8 SPUs were forced
to use memory local to the Cell chip only, the performance was slightly better compared
to the 16 SPU variant, although in the latter case the mere floating point performance
is twice as large. One also notices that while the algorithm scales linearly using 8 SPUs
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Figure 3.6: Bandwith and time per iteration for 643 grid points for various numbers of SPUs

for problems from 323 grid points on, the scaling behavior is not so clear in the 16 SPU
case, which seems to be founded in the NUMA architecture. We like to note the achieved
floating point rate is far below the hardware maximum, which is clear, as the algorithm is
dominated by load/store operations.

3
√

#grid points time per iteration [s] GFLOPS [1/s]
8 7.736690 · 10−5 0.05

16 7.748190 · 10−5 0.42
32 7.806350 · 10−5 3.36
64 2.265704 · 10−4 9.26

128 1.557704 · 10−3 10.77

Table 3.2: Time per iteration and GFLOPS for 8 SPUs for various grid sizes

3
√

#grid points time per iteration [s] GFLOPS [1/s]
16 1.760862 · 10−4 0.17
32 1.758365 · 10−4 1.49
64 2.752577 · 10−4 7.62

128 1.746457 · 10−3 9.61
256 1.246028 · 10−2 10.77

Table 3.3: Time per iteration for 16 SPUs for various grid sizes

3.2.3 Conclusion and outlook

The implemented Jacobi smoother allowed us to get more familiar with the Cell broadband
engine architecture. The results were as expected: The performance benefits a lot from
the high available memory bandwith, although we only get about 5 percent of the possible
floating point performance. The enormous performance drop for small grid sizes was not
unexpected, although future tests have to show how multigrid performance is harmed by
this fact. We currently plan to expand our code to use a pipelining mechanism to transfer
slices from one SPU to another to benefit more from each load/store operation. The most
important step is to run a whole multigrid cycle on the Cell’s SPUs, not only the smoother.
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Figure 3.7: Time per iteration for 8 SPUs (left) and for 16 SPUs (right) for various grid sizes
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3.3 A fast Wavelet based implementation to calculate Coulomb
potentials (Annika Schiller, Godehard Sutmann)

Long range interactions play an important role in complex molecular systems. The calcu-
lation of long range interactions is computationally very demanding. Since all interactions
between particle pairs have to be considered, the calculation scales like O(N2). To overcome
the quadratic scaling, methods were developed to reduce the complexity to O(NlogN) or
even O(N). In general those methods can be classified into mesh-free and mesh-based algo-
rithms. Mesh-free algorithms like the Fast Multipole Method (FMM) yield better results,
since the discretization error is avoided, but are demanding to implement. Alternatives
may be found in mesh-based algorithms, where fast methods like multigrid techniques can
be applied.
In the present work we consider a mesh-based method, which uses a fast Wavelet transform
technique. This method reduces the computational complexity to O(N). To make this
method even faster, an implementation was developed, which uses the cell processors of the
IBM Cell BladeCenter QS20 in Jülich (JUICE).

3.3.1 Fast Wavelet based method

The particles interact via Coulomb interactions, so the potential at a charges position with
index i is given by

φ(ri) =
N∑

i6=j

qj

|ri − rj |
(3.6)

where N is the number of charges in the system, qj the charge of particle j and rj its
position. The interaction energy of particle i with all other particles is then given by

Ui(ri) = qi · φ(ri) (3.7)

Equation 3.6 can also be written in short hand notation as matrix-vector product

Φ({R}) = A({R}) ·Q (3.8)

where Φ = {φ1, ..., φN} is the potential for every particle and Q = {q1, ..., qN} is a constant
charge vector. The matrix elements are given by Aij = 1/|ri − rj |. The interaction energy
could then simply be written as U = diag(QΦT ).
The charge vector Q is constant, but the matrix elements change from step to step because
the particles move along their trajectories. Therefore, the computational complexity is
O(N2). To shift the time dependence from the matrix to the vector Q we introduce a
mesh, onto which the particle charges are distributed. This mesh has a constant grid
spacing throughout the time evolution of the system. Nevertheless, with this grid based
summation, the complexity is still O(N2) due to the dense matrix-vector product. To obtain
an efficiency gain, it will be necessary to transform the matrix into a sparse representation.
This transformation is realized via Wavelets.
In principle, Wavelets are a tool to analyse data on different time and length scales. A
Wavelet transform can be represented by an orthogonal matrix W. In this case equation
3.8 can be written as
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Figure 3.8: Matrix A after Wavelet transform

W Φ = W A WT W Q (3.9)

After this transformation the matrix A is still dense. To transform A into a sparse matrix
we introduce a threshold value, below which the absolute value of coefficients is set to zero.
The structure of the compressed matrix A is shown in figure 3.8. A back-transformation
using the sparse matrix representation still contains the essential information. The Wavelet
transform of A has to be calculated only once at the beginning of the simulation because
the distance between grid points is kept constant during time. The time dependence is
completely shifted to the vector WQ. Using this approach the computational complexity
is reduced to O(N) [23].

3.3.2 Calculation on the cell processor

Although the Wavelet transform of A has to be calculated only once, it is nevertheless the
most time-consuming part of the whole calculation. So the question is, if we can use the cell
processor to calculate the following triple matrix multiplication as efficiently as possible:

Ã = W A W T ⇒ Ãij =
∑
k,l

Wik ·Akl ·Wjl (3.10)

To answer this question we first of all have to look at the structure of the matrices. The
inverse-distance matrix A is dense and symmetric with dimension N × N where N =
np·np·np is the number of grid points and np is the number of grid points in one dimension.
The elements of matrix A can be calculated as follows:

Aij =

{
1

|ri−rj | = 1

a·
√

(ix−jx)2+(iy−jy)2+(iz−jz)2
, i 6= j

0 , i = j
(3.11)

where
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ix = i % np
iy = (i %(np · np))/np
iz = i/(np · np)

(3.12)

In this equation a is the width of one grid cell, i and j are the indices of the elements
of matrix A, ix, iy, iz are the corresponding coordinates of matrix index i in the three-
dimensional np·np·np grid. Note, that the matrix A contains a lot of redundant information.
More precisely many entries are the same. That is because the three-dimensional grid of
the simulated system has to be mapped onto the two-dimensional matrix A as shown in
equation 3.12. In this three-dimensional grid many particles have the same distances, so that
there are only O(N) different distances. That means that it is enough to store O(N) values
instead of O(N2) and get the right distance by mapping the two-dimensional addressing of
the A matrix back onto the three-dimensional addressing of the systems grid.
The Wavelet matrix W is sparse and has a kind of band structure (see figure 3.9). Therefore
it is well suited to store it via Compressed Sparse Row (CSR) format.
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Figure 3.9: Structure of the wavelet matrix W (Haar Wavelet)

Due to the Wavelet matrix W we have an algorithm which depends on sparse linear algebra
operations. Studies have shown that the cell processor is not best suited for sparse matrix
operations [7]. Sparse linear algebra operations have a very irregular memory access pattern,
make heavy use of indirect addressing and are inherently memory bound. So the operation’s
performance is limited by the speed of the bus. It have been shown that with sparse matrix
operations an efficiency of at most 6% of the peak performance is possible to achieve. That
corresponds to 12.8 Gflops [7]. But nevertheless, 12.8 Gflops is a remarkable speed which
is higher than the speed of conventional processors.

3.3.3 Memory efficient algorithm vs. calculation efficient algorithm

In this work two different algorithms are implemented, one algorithm that is more efficient
on memory usage and another one with a more efficient calculation. The first approach
was to calculate the elements of A on the SPU to minimize storage space and avoid DMA
transfers. Each element of the result matrix Ã is calculated in one step as shown in equation
3.10 where Akl is calculated as shown in equation 3.11. This approach considers that
for larger problem sizes the matrix A becomes very large and contains more redundant
information. Regarding the fact that the memory of the PPU is limited to 1 GB and the
local store of the SPU is limited to 256 KB the amount of data is an important aspect.
This approach is efficient on the usage of memory space but it turned out to be not very
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efficient on the speed. Measurements showed that the number of DMA transfers causes no
problem but the time for the calculation of the triple matrix product was surprisingly high.
A closer look at the operations needed for the calculation of an element of matrix A yields
a first explanation. To calculate the inverse distance between particles division and square
root operations are necessary which need several cycles on the Cell. Another reason is that
e. g. for N = 1744 and a Daub4 basis, every element of A is calculated about 83 times on
average during the whole matrix multiplication. Measurements of the time for DMA and
calculation yield that the DMA transfer is about 104 times faster than the calculation of
the triple matrix multiplication on the SPU. In this case double buffering would not have
much impact on the performance.
To avoid the redundant calculation of the elements of matrix A, another approach was to
calculate the complete matrix A only once on the PPU and load it line by line onto the
SPU. The result matrix Ã is calculated column by column in two steps as follows:

Ã = W A W T ⇒ ãq = W × (A× wT
q ) (3.13)

In this equation ãq is the q-th column of the result matrix Ã and wT
q is the q-th column of

the transposed Wavelet matrix W T . In the first step the intermediate result bq = A× wT
q

is calculated. In the second step the q-th column of Ã is calculated via ãq = W × bq. These
steps have to be repeated for each of the N columns. In this approach the calculation was
reduced but the number of DMA transfers increased. For every calculation of bq the whole
dense matrix A has to be loaded. Nevertheless, it is faster than the first approach.
In the left graphic of figure 3.10 the excecution time for the triple matrix multiplication of
the two approaches is compared to the execution time of the original Fortran implementation
running on the PPU and on the frontend. Obviously, the second approach that reduces
the calculation is much faster than the first one which optimizes the usage of memory. The
right hand graphic shows the speedup of the two approaches compared to the execution
time using one SPU. One can see that the first approach has a better scalability than the
second one.
One disadvantage of the second approach is, that we need more memory to store the
whole dense matrix A with its redundant information. Another disadvantage is, that the
symmetry of the matrix A is not exploited. For future research it would be interesting
to optimize this approach in exploiting the symmetry and improve the storage to avoid
redundant information. The advantage of this approach in contrast to the first approach is,
that it is more general. The Wavelet transform is not specific for the Coulomb interaction
but it can be applied to every quadratic matrix A. So this implementation can be applied
to a broader spectrum of applications, e. g. it can be used in image processing.

3.3.4 Summary

The efficient implementation of sparse matrix operations on the Cell is difficult. The com-
putational power of the processor cannot be fully exploited. The reasons are well known.
The SPUs are very fast arithmetic units which are constructed to handle a range of SIMD
instructions. That is a problem with sparse matrices because they often make heavy use
of indirect addressing due to the fact that storage formats like CSR are used. So these
algorithms are hard to vectorize. Another problem that results from the storage format is
the memory alignment. It is very hard to follow a regular pattern to memory on aligned
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Figure 3.10: Speedup of the two approaches (N = 1744, Daub4 basis): compared to the orig-
inal Fortran implementation executed on the frontend and on the PPU (left) and
compared to the same implementation running with one SPU (right)

locations. Because of the indirect addressing it is also difficult to reduce the number of
branches.
All these aspects also appear in the implementation of the triple matrix multiplication.
Additionally we have to consider, that the matrices can become very large. So the ideal
solution will be an algorithm which can be calculated efficiently on the Cell and which
optimizes the usage of memory. In this work we introduced two implementations. The first
one was efficient in memory usage but the speed was comparatively slow. The second one
was faster because of the reduction of calculation but needed more memory. All together
the second implementation is more general. It can also be applied for other applications
like image processing while the first algorithm is specific for Coulomb interactions.
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3.4 Cell Superscalar (Liang Yang)

3.4.1 Introduction

CellSs is proposed as a programming model for multicore processors. Based on a source
to source compiler and a runtime library the programming model generates the code for
both PPE and SPEs from a sequential code with simple annotations. Using CellSs requires
that the application is composed of coarse grain functions and that these functions do not
have collateral effects (only local variables and parameters are accessed). With CellSs, the
annotation preceding a coarse grain function (task) does not indicate the parallel region
as OpenMP does but just indicates the direction of parameters of this function. During
runtime, CellSs builds a data dependency graph by collecting the information about these
parameters and schedules independent tasks to different SPEs concurrently. As well, all
data transfers required for the computations on the SPEs are automatically handled by the
system.

3.4.2 Examples and results

Dense matrix multiply

For dense matrix multiply, the common block algorithm was used. With the code displayed

Figure 3.11: Blocked dense matrix multiply

in figure 3.11, we can achieve about 2 GFLOPS when it is running on 8 SPEs. If vector
computing is adopted and the calculation on the SPE properly pipelined, up to 33 GFLOPS
can be achieved. As presented in figure 3.12, both the speedup for scalar and vector
computing increases almost linearly along with the number of SPEs indicating that the
communication between PPE and SPEs is matched with the computation on SPEs and is
not the bottleneck of the whole operation.
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Figure 3.12: Performance and speedup for matrix multiply

3-D Jacobi

In this application, the computation below is executed.

An+1
i,j,k = fi,j,k + An

i−1,j,k + An
i+1,j,k + An

i,j−1,k + An
i,j+1,k + An

i,j,k−1 + An
i,j,k+1 (3.14)

In computation, the whole matrix is partitioned into smaller blocks to fit in the local mem-
ory space of the SPE. While the data of one block is sent to SPE, the 6 neighbor planes
are grouped together and are also sent to SPE. The performance curves are depicted in
plot 3.13. Here, the performance improvement gained from vectorization is not so obvious
as in matrix multiply because the routines are not carefully pipelined and the time for
DMA transfer exceeds the time for SPE computing. The largest speedup for vector Jacobi
occurred while 5 SPEs are used concurrently.

Figure 3.13: Performance and speedup for Jacobi method

Triple matrix multiply

Triple matrix multiply represents the compute intensive kernel of a Wavelet based evalua-
tion of Coulomb potentials in molecular systems.
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Ã = W A W T (3.15)

In this equation, W is a sparse wavelet matrix with a band structure. For the code com-
piled by CellSs, the dense matrix A is computed first and kept in main memory. Then two
steps of sparse matrix-matrix multiply are executed. Results gotten with that scheme are
graphed in figure 3.14.

Figure 3.14: Performance and speedup for triple matrix multiply
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3.5 MPI on Cell (Norbert Eicker)

In order to build clusters out of Cell nodes a highly capable interconnect is necessary. To
enable tightly coupled parallel applications to make efficient use of a cluster system this
network has to provide both, low latency and high bandwidth.
On the QS20 Cell blade for this reason InfiniBand daughter-cards based on Mellanox silicon
are available. Since InfiniBand is a widespread technology as a high speed / low latency
interconnect in the context of cluster systems, we did not expect severe problems concerning
the availability of corresponding software – even if the combination of hard- and software
in use within JUICE is not officially supported by the OpenFabrics software stack.
Nevertheless, we had to start our work on MPI within the project with a complete different
solution: Due to the fact that the InfiniBand daughter-cards where late we started our
experiments by implementing a MPI system based on the on-board Gigabit-Ethernet NICs
of the QS20. While this was quite helpful in order to start with software development
early, the achievable performance numbers for this setup were – as expected – sub-optimal.
Even worse, the NICs integrated in the QS20’s southbridge turned out to be quite limited
in performance. While ParaStation MPI on other processor and Ethernet platforms has a
latency of 10− 20µsec, the best results achievable on JUICE were almost 40µsec. Also the
single-direction bandwidth of slightly more than 70 MB/s is by far off the expected results
of > 100 MB/s. So we were lucky to finally be able to start with real hardware in May
2007.
In order to connect the InfiniBand host channel adapter (HCA) to the Cell system we
made use of the PCIe 4x socket available on the QS20 blade. By saying that it is clear
that for the InfiniBand bandwidth the expectation should not be set too high: On more
mainstream platforms like Intel XEON or AMD Opteron the full performance of this kind
of interconnect can only be achieved, if at least a 8x socket is available.
Different from other BladeCenter solutions provided by IBM the HCA are not connected
directly to the BladeCenters backplane but the external connector is attached to the front
bezel of the blade. From here ordinary CX4 cables are used to setup the connection to the
Voltaire ISR 9024 switch.
The software-stack we chose is the 4th release candidate of the Open Fabrics Enterprise
Distribution (aka OFED 1.2rc4). Since there were no precompiled packages for the Cell
platform running Fedore Core 6 – the Linux distribution running on our blades at that
time – we had to compile the software by ourself. It turned out that this worked with only
slight modifications of OFED’s build system.

3.5.1 Results for InfiniBand

Fig. 3.15 shows the results we got from two tests of the Intel MPI Benchmark (IMB). This
synthetic low-level communication benchmark is used in order to experimentally determine
the two fundamental parameters of our interconnect: latency and bandwidth.
All data presented in this section results from four independent runs of the same benchmark.
The actual data-points in the diagrams are the resulting average. Correspondingly the
error-bars depict the variation of these runs.
The left diagram of fig. 3.15 gives latency results for the pingpong test. The four lines
depicted are from four different benchmark setups. Each setup uses two processes running
on two different nodes of the cluster sending messages to each other. The difference between
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Figure 3.15: MPI performance for InfiniBand on QS20 blades.

the setup is that the processes are pinned1 to one of the four different (virtual) cores of
the blades2. Since the cores with numbers 0 and 1 in fact are the same physical core,
we expect their results to be identical. The diagram clearly shows that this expectation
holds. The same is true for the cores with number 2 and 3. On the other hand the latency
for communication between cores 0 is different from the one we get between cores 2. We
interpret this behavior as a result of the fact that the southbridge is directly connected to
the CBE hosting core 0. The extra latency experienced by the other CBE results from the
extra time the messages need from one CBE to the other.
Furthermore the absolute results for InfiniBand latency are not exhilarating, too. A latency
of > 8µsec is about a factor 2 larger than experienced on other processor platforms. This
might either be due to the sub-optimal southbridge of the QS20 or result from the strict
in-order design of the CBE’s PPE.
Similar findings are shown in the right diagram of fig. 3.15 for the bandwidth. The numbers
presented here are created by IMB’s sendrecv test. Let us first concentrate on the two
lines marked as 0-0 and 2-2. Again, the processes are pinned to the cores 0 and cores 2,
respectively. For large messages the bandwidth achieved on core 2 is almost 6% smaller
than the one seen on core 0. Again we hold the BIF connecting the two CBEs responsible
for this result.
The absolute bandwidth for the (bi-directional) sendrecv test is disappointing, too. In
fact it is only 4% more than the 582 MB/s achieved by the one-directional pingpong test.
Again we think the southbridge is responsible for that. Since only a PCIe 4x slot is available
bandwidth is already missing on the hardware level.

3.5.2 Local communication

Since the QS20 blades host two CBEs local communication is an interesting topic, too.
We expect many parallel applications to make use only of one CBE per process, i.e. there
will run two processes on each node of a Cell cluster. Therefore these processes have to
exchange messages locally.

1In fact not only the processes are pinned but also memory-binding to the corresponding NUMA node
is enabled.

2While the QS20 blade has two CBEs with one PPE, each PPE provides symmetric multi-threading
(SMT) capability. Therefore, from the operating system’s point of view each of the two PPEs looks like
two. Thus the Linux kernel reports four processors in /proc/cpuinfo.
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While setting up our tests we experienced some strange behavior of our parallel applications:
During the call of MPI_Init the processes stopped running for some minutes. After that the
program started up normally and we got results quite similar to the ones we got from the
Ethernet-based ParaStation MPI – as we expected for local communication. It took some
time to find out that this is due to strange process pinning done by the MPI implementation
of MVAPICH included within the OFED. In fact this MPI implementation tries to pin
processes to exclusive cores. The strategy is to use core 0 for the first process sent to
a node, core 1 for the second one, etc. Unfortunately on the QS20 the virtual cores 0
and 1 belong to the same physical one. Setting up some shared memory segment for local
communication now seems to trigger some race-conditions between the two processes pinned
to the same core leading to a significant delay of a few minutes.
By setting some magic environment variables3 we were able to switch of MVAPICH’s process
pinning. This prevents the behavior described above and reduces startup time to the normal
means.
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Figure 3.16: MPI performance for local communication on QS20 blades.

Figure 3.16 present results for local communication corresponding to fig. 3.15 for real com-
munication via InfiniBand. Additionally it compares two implementations of the MPI
standard concerning local communication: MVAPICH as contained in the OFED stack on
the one hand, ParaStation MPI (denoted as PS) on the other hand. The latter is a highly
optimized MPI stack provided by ParTec and used as a reference implementation for shared
memory communication.
Again, we expect two different classes of results: Doing communication between cores of the
same socket and between different sockets4. The left diagram of fig. 3.16 presents the laten-
cies as determined by IMB’s pingpong test. It shows clearly that ParTec’s implementation
is outperforming MVAPICH by more than 50% in the relevant case.
The bandwidth results displayed in the right diagram of fig. 3.16 approve this tendency.
Furthermore, the absolute bandwidth we were able to achieve using our MPI tests is by far
off the 25.6 GB/s the CBE’s memory interface is able to provide to the SPEs and not even
near the bandwidth of the BIFs connecting the CBEs. Most probably this is due to the very
special capabilities of the PPE. Since implementation of the PPC core within the CBE is a
strict in-order one it is quite different from any other current node of a HPC-cluster. As a
comparison, on the JS21 blade hosting normal PPC970 CPU we were able to achieve more

3export VIADEV_ENABLE_AFFINITY=0
4While the first class is quite artificial since both virtual cores map in fact to the identical physical one,

the latter is more relevant in practice
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than double the bandwidth with the same software even on a much less capable memory
subsystem.

3.5.3 Conclusions

We have investigated the MPI capabilities of the QS20 blades equipped with IBM’s Infini-
Band option. Our results show that the current hardware is not well suited to serve as a
HPC platform. This is due to many reasons:

• The southbridge of the QS20 only provides a PCIe 4x socket. This is definitely too
narrow to serve a normal 4x InfiniBand HCA.

• The implementation of the southbridge seems to be sub-optimal. The total latency
for MPI communication is double the one observed on any other hardware platform.

• Also the strict in-order implementation of the PPC core seems to introduce additional
problems – at least for local communication within a node.

IBM promises to address this problems in the next generations of their Cell blade by
implementing a new southbridge.
In addition to that, a radical new design of a communication interface might be the right
answer to the questions introduced by the new design of the CBE: Since almost all of the
computing-capabilities of the Cell are concentrated in the SPEs, at least on a logical level
most communication operations are messages to be sent between SPEs. As long as the
interconnect is not directly accessible by the SPEs, each communication operation has to
be composed out of three steps:

1. Copy data to send from the SPE’s local store to the memory. This will occupy precious
memory bandwidth.

2. Initiate sending the actual message into the memory of the remote node. Again,
memory bandwidth is occupied on both sides.

3. Retrieve the message from main memory into the local store of the destination SPE.
This occupies the memory interface, too.

Thus it would be much nicer if the communication interface would be connected to the
CBE’s BIF in a way that it is directly accessible by the SPE. This will release some of the
pressure on the memory interface and at least in principle enable much smaller latencies.
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3.6 MPI performance of matrix-matrix-multiplication
(Inge Gutheil)

3.6.1 Matrix-matrix-multiplication

Matrix-matrix-multiplication is the application with the best computation to memory access
ratio. Thus it is the candidate to get almost peak performance on modern computers where
memory access is one order slower than CPU performance.

The starting-point

The SDK 2.1 is shipped with some example programs one of which is a matrix-matrix-
multiplication program which achieves almost peak performance on a single cell blade. It
computes C = A · B for square matrices with sizes of 64x64, 128x128, 256x256, 512x512,
1024x1024, 2048x2048, or 4096x4096 and up to 16 SPEs per blade with a single PPE. To
achieve this very good performance the matrices are partitioned into 64 × 64 blocks and
these blocks are stored row wise in the main memory. The blocks of C to be computed
form a work pool and each SPE takes one of these blocks from the work pool marking the
index of this block as being worked on. It then reads the necessary blocks of A and B and
accumulates the block of C in the local store until it is computed. Then the block of C is
written to the main memory and C’s index is marked as computed. Each SPE takes new
blocks to be computed until no more blocks are available. This leads to very good load
balance even if the SPEs do not start at the same time.
When more than 8 SPEs are used the matrices to be multiplied are copied to both parts
of the main memory so that each SPE only reads from the part of the main memory which
can be accessed without using the BIC. The result matrix is held only once. With this
constellation the performance for the largest matrix size and 16 SPEs was 379 GFLOPS.
We changed the program slightly to allow all multiples of 64 as matrix size and to allow
rectangular matrices, too. In the original program there is an option to test the result
for correctness which makes it necessary to store another matrix. In order to enlarge the
problem size we wrote a second version without result test needing only the matrices A and
B (still stored twice to use 16 SPEs) and the result matrix C. In this version 5 matrices
of size n2 have to be stored in 1 GB of main memory. This means that we expected good
performance only for matrices of size n < 7000.

Farming

In the next step we did some kind of farming for the multiplication of larger matrices with
more cell blades. Each of the np blades computes a part of size n/np ·n of the whole matrix
by multiplying the n/np ·n part of A with the whole matrix B. This means that each blade
has to store its part of A and C and the whole matrix B. In this approach we only used
8 SPE per PPE but sometimes both PPEs per blade so that we could use up to 24 MPI
processes. There was no need to store matrices twice during these tests but n/np had to
be a multiple of 64 and each MPI node had to store 2 matrices of size n/np · n and one
matrix of size n · n in the main memory, now being limited to 512 MB. This means that
the memory limits for the matrix sizes were the following:
np = 2 : n < 8192, np = 4 : n < 9459, np = 8 : n < 10362,
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np = 16 : n < 10923, np = 24 : n < 11130. From figure 3.17 we can see that the
performance decreases shortly before that limit is reached.

Matrix-matrix-multiplication with MPI communication

We used an easier parallelization than the standard SUMMA[12] algorithm. In the SUMMA
algorithm the communication part consists of broadcasts along rows and columns of a rect-
angular processor grid, which should be as square as possible. If the number of processors
np is square in the SUMMA algorithm √

np steps are performed (each one perhaps not in
one step but in several smaller ones so that not too much memory for MPI communication
is needed) and in each step one of the processors does two broadcasts, one to the √np− 1
processors in its row and one to the √np − 1 processors in its column. In each broadcast
n2/np elements are sent. The other processors do at most one broadcast along their pro-
cessor row or column. As the execution time of the whole parallel program can not be less
than the time for the slowest processor, in each step the time for the two broadcasts have
to be taken into account which gives an amount of 2

√
np broadcasts of n2/np Elements

sent to √np− 1 processors (see [6]).
In our simpler algorithm only the matrix B is sent around by MPI_Sendreceive_replace in
a ring topology. The matrices are distributed in a row block manner. Each processor keeps
its part of A and C. In the first step each processor copies its part of B to a send-receive
buffer and does the MPI_Sendreceive_replace with its predecessor. After having done the
computation of the correct part of the local part of A times local part of B the buffer
received is copied to B and MPI_Sendreceive_replace is done again with the buffer. The
multiplications are done with B again. In the last step only MPI_Sendreceive_replace is
done the npth time and the matrix received is copied to B so that each processor has the
same part of B in the end as in the beginning.
In [6] the communication time per step for the SUMMA algorithm is given without latency
as

tcomm =
msgsize · nmsg

bw

where msgsize is the length of the message sent in that step and nmsg is the number of
messages per step and bw is the bandwidth for broadcast. In total n/nb steps are performed
where nb is some well suited block size. If latency plays an important role the number of
steps must not be too large, i.e. the blocks mustn’t be too small.
For the case of a square processor grid with np processors in each step there is one processor
which has to do two broadcasts of messages of length n√

np ·nb·fpsize, one along its processor
row and one along its column. Each of this broadcasts results in √np−1 messages for small
np or in log2

√
np messages for a good implementation of broadcast and np ≥ 16. This

results in msgsize = n√
np · nb · fpsize and nmsg = 2(

√
np − 1). In total with n/nb steps

this gives

tcomm =
4n2

bw

2(
√

np− 1)
√

np

and
4n2

bw
≤ tcomm ≤ 8n2

bw

For a non square processor grid with np = np1 · np2 the formula for the communica-
tion time for SUMMA is more complicated and the total communication time can be
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higher (see Appendix B). Our algorithm depends on a processor ring topology and the
possibility to send messages independently so that all processors in the ring can do the
MPI_Sendreceive_replace in parallel. If that is true and we denote by tsrr the factor by
which MPI_Sendreceive_replace per message is slower than a simple send we get np steps
with the amount of communication mentioned above which makes

tcomm =
4n2

bw
tsrr

in total for the algorithm with MPI_Sendreceive_replace. Thus it depends on tsrr and the
choice of the processor grid for SUMMA whether the communication time for SUMMA or
for the simple matrix multiplication algorithm is higher.
Nearly all the communication can be overlapped by computation if there is enough com-
putation to do. This is the case, if the computation time per step is higher than the
communication time per step.
For our algorithm this is the case if

tcomp =
2n3/np2

peak
≥ tcomm =

4n2/np

bw
tsrr

⇐⇒ n

np · peak
≥ 2

tsrr

bw

⇐⇒ n ≥ 2peak · tsrr

bw
· np (3.16)

3.6.2 Results of performance measurements

Performance on a single blade using one PPE and all SPEs

First we measured the performance of the only slightly modified workload program for
square matrices with n up to 7168 and could see that for 2432 ≤ n ≤ 6400 more than
370 GFLOPS were achieved for any n. For larger n we found more than 370 GFLOPS for
n = 6528, 6656, and n = 6784 whereas for n = 6464, 6592, and n = 6720 only 300 or
310 GFLOPS could be achieved. For larger n the performance broke in dramatically from
almost 200 GFLOPS for n = 6848 to only 73 GFLOPS for n > 7000. This result agrees
well with the memory limit for the matrix size mentioned before.

Performance with farming

For the tests with farming we only measured the performance for square matrices with sizes
up to 9216. The results can be seen in figure 3.17. The performance achieved is always
more than 90 % of the peak performance.
The memory limits are a bit smaller than expected. With two PPEs and 8 SPEs per PPE the
maximum performance achieved is 380 GFLOPS which is a little less than the performance
with one PPE and 16 SPEs. The performance begins to decrease with n = 7296 and breaks
in for n > 7900 where it is less than 200 GFLOPS. With four PPEs we get almost perfect
scaling for 4600 < n < 8700 where we get 760 GFLOPS. For n > 9000 the performance is
less than 200 GFLOPS again. The region with a performance of about 1500 GFLOPS with
8 PPEs is 3584 < n < 8704, with 12 PPEs more than 2260 GFLOPS were achieved for
n > 3840, with 16 PPEs more than 3000 GFLOPS were achieved for n > 4096, and with
24 PPEs more than 4500 GFLOPS for n > 4608. As we did not measure problems larger
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than 9984 we did not see the performance break-in for 12 and more PPEs.
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Figure 3.17: Matrix-matrix-multiplication on JUICE, farming, using various numbers of PPEs
each with 8 SPEs

Performance with MPI communication

We measured the performance of the simple algorithm without overlap and Gigabit Eth-
ernet and it was terribly slow. With InfiniBand it became much better, and when we
overlapped communication with computation, the performance became even better. To
overlap communication by computation a copy operation of a part of the matrix has to be
done which is also rather slow, thus the performance gain of the overlapping could only be
seen for large n.
The measured bandwidth for broadcast as well as simple MPI_Send is bw = 600 MB/sec.
We measured the communication time for the SUMMA algorithm without computations
and found for n = 1024 and np = 4 as best time measured 13.178 ms compared to

210 · 210 · 4
600 · 220

sec =
1

150
sec = 6.67ms

expected time.
Isolated measurements of the performance of MPI_Sendreceive_replace showed that

bw

tsrr
≈ 1.55 · 108Byte/sec = 155 MB/s (3.17)

which means that tsrr is almost 4 compared to the 600 MB/sec for broadcast but only
about 2 compared to the communication time measured for the SUMMA communication.
Thus it has further to be investigated whether the SUMMA algorithm should be preferred.
Measurements of the total communication time for the simple algorithm showed that for
matrix sizes of n = 2048 and larger the communication time measured within the complete
matrix-matrix multiplication was slightly less than 4 times the communication time of one
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MPI_Sendreceive_replace cycle with 4 processors on 4 nodes. This is a little surprising but
perhaps repeated MPI communication of the same type are faster because some overhead
is reduced. For the complete programs we still have to add the copy times, which are about
half the times for the communication in the simple algorithm. We shall thus take the bw

tsrr

measured without computations (equation 3.17) to guess the problem sizes necessary to
overlap communication by computation.
The peak floating point performance with 8 SPEs is approximately 200 GFLOPS. Thus
looking at the problem sizes necessary to overlap communication by computation (equations
3.16 and 3.17) we see the following: (The additional overhead for the first copy operation
is not taken into account.)

2peak
tsrr

bw
= 2 · 2 · 1011 · 1

1.55 · 108
≈ 4

1.55
103 ≈ 2600

=⇒ n ≥ 2600 · np

The values of n resulting from this condition are given in the second column of table 3.4.
On the other side the amount of memory available per blade is 1 GB=230 Byte and for
the simple matrix multiplication each processor has to store four matrices of size n · n/np ·
sizeof(float) = 4n2/np Byte. MPI_Sendreceive_replace needs at least one more buffer of
the same size, from our measurements we assume that it even needs twice that amount of
memory, which means that each MPI-process has to store 6 · 4n2/np = 24n2/np Byte. In
order to fit into the main memory of 230 Byte there is a limit of

n2 <
np · 230

24
⇐⇒ n <

√
np/24 · 215

(first column of table 3.4) if we use one MPI process per blade.

np maximum n minimum n maximum n measured maximum performance
for overlap without swapping measured [GFLOPS]

2 9460 5200 9728 335 (n = 9600)
4 13400 10400 13568 581 (n = 13312)
6 16400 15600 16512 809 (n = 16512)
8 18900 20800 18944 1012 (n = 18944)
10 21200 26000 21120 1157 (n = 21120)
12 23200 31200

Table 3.4: Limitations for n

If we tried to use two MPI processes per blade, each with 8 SPEs, the memory limit per
process would be half the memory, thus the maximum size would not allow the overlap of
communication by computation. The same holds if we take 16 SPEs per MPI process. This
doubles computation speed and with that the minimum n to overlap.
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Figure 3.18: M atrix-matrix-multiplication on JUICE, MPI communication, overlapped by com-
putation

The performance results for the matrix-matrix multiplication using MPI_Sendreceive_replace
with overlapping communication by computation are depicted in figure 3.18.
Table 3.4 shows that even for one MPI process per blade and 8 SPEs per MPI process the
memory is only slightly larger than necessary for overlap of communication by computation
for up to 6 MPI processes, for more MPI processes the complete overlap of communication
by computation is not possible.
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Conclusions

Starting in January 2007, the JUICE project experienced a rapid development. The Cell
platform was in great demand and shortly after the cluster setup there were many scientists
who applied for access to the cell nodes. The tutorials and example programs shipped with
the SDK were a good starting point. Software projects evolved and in May, first results
were presented at the Cell Cluster Meeting 2007 in Jülich [16].

The Cell chip is a very promising architecture for compute-intensive tasks like the sim-
ulation of strongly correlated materials. The current cell blades, however, come with a
complicated NUMA architecture which makes it difficult to reliably achieve high perfor-
mance. We feel that it would be completely sufficient for our purposes to have a single chip
per board/node. Also the operating system does not quite fit the philosophy of the Cell
chip. It is a conventional full-featured Linux system, where instead a lightweight kernel on
the compute nodes (CNK) similar to the one found on BlueGene super computers would
be more appropriate. An important consideration for the development of Cell architectures
is the balance of floating point performance, memory access, and network. Currently the
small size of the local store is a severe limitation to efficiency.

The Cell broadband engine architecture with its limited local storage and the availability
of DMA transfers for load/store operations to/from the main memory is well-suited for the
solution of linear systems arising from the discretization of partial differential equations on
structured grids. In the multigrid method the smoothing iteration plays an important role
and is computationally most expensive. Offloading the Jacobi smoother to the SPUs reveals
that the performance benefits a lot from the high available memory bandwidth, although
we only get about 5 percent of the possible floating point performance.

The calculation of the Coulomb potential based on a Wavelet transformation requires sparse
matrix operations which are difficult to implement on the Cell. Use of storage formats like
CSR entails heavy use of indirect addressing. So these algorithms cannot fully exploit the
SIMD operations of the SPUs. Memory alignment also turns out to be problematic because
it is hard to follow a regular pattern to memory on aligned locations. Additionally we have
to consider, that the matrices can become very large.

After the setup of an InfiniBand network parallel computing via MPI became more im-
portant. SDK’s matrix-matrix-multiplication example was modified and using a version
without communication (farming) a performance of 4.5 TFLOPS (90% peak) could be at-
tained. A parallel version of this code with MPI communication achieved 56% of the peak
using 80 SPEs on 10 blades (1.157 TFLOPS).

Investigating the MPI capabilities of the QS20 blades equipped with IBM’s InfiniBand
option revealed some deficiencies. The southbridge of the QS20 only provides a PCIe 4x
socket. This is definitely too narrow to serve a normal 4x InfiniBand HCA. The total latency
for MPI communication is double the one observed on any other hardware platform. Also
the strict in-order implementation of the PPC core seems to introduce additional problems.

While IBM has launched successor systems of the JUICE components - BladeCenterH and
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QS21 blades with double memory size and including a new southbridge - the big step in
Cell architecture is expected in 2008 with the enhanced double precision Cell processor as
part of the the Cell-accelerated petascale system Roadrunner[19].

Acknowledgement

We would like to express our gratitude to IBM, in particular to Michael Hennecke and
Uwe Holzinger, for their efforts in the deployment phase and the setup of the JUICE
cluster. As well, we would like to thank all who joined us in our regular meetings or helped
us in getting more and more familiar with Cell: Ralph Altenfeld, Ulrich Detert, Daniel
Hackenberg, Stefan Krieg, Jan Meinke, Markus Stürmer, Brian Wylie.



Appendix A

QS20 Memory Management

Two variants of dense matrix-matrix-multiplication are considered to reveal some informa-
tion about the QS20 memory subsystem: The mmikj variant with a regular unit stride and
mmĳk featuring a kernel with a large stride in the innermost loop.

mmikj core loops:
for (i=0; i<size; i++) {

for (j=0; j<size; j++)
cmat[i*size+j] = 0.0f;

for (k=0; k<size; k++) {
for (j=0; j<size; j++) {

cmat[i*size+j]+=amat[i*size+k]
*bmat[k*size+j];

}
}

}

mmijk core loops:
for (i=0; i<size; i++) {

for (j=0; j<size; j++) {
cmat[i*size+j] = 0.0f;
for (k=0; k<size; k++) {

cmat[i*size+j]+=amat[i*size+k]
*bmat[k*size+j];

}
}

}

The package numactl allows starting processes with a specific NUMA scheduling or memory
placement policy and the package cellperfctr-tools provides access to hardware counters, e.g.
L1 and L2 cache misses. Performance tests have been run with the following code sequence
(SDK-2.1):
//cpc -e: events to count: D-cache load miss and L2 loads
//cpc -E: enable performance counter
system("cpc -e DL1_Miss_t0,cache_miss; cpc -E");
system("cpc -z"); //cpc -z: zero the counters
gtime = times(&tbuf);
mmikj(a, b, c, n );
etime1 = (double)(times(&tbuf) - gtime) / (double)sysconf(_SC_CLK_TCK);
system("cpc -r"); //cpc -r: read counters and display on stdout
system("cpc -z");
gtime = times(&tbuf);
mmijk(a, b, c, ln );
etime2 = (double)(times(&tbuf) - gtime) / (double)sysconf(_SC_CLK_TCK);
system("cpc -r");

Compilation:
ppu32-gcc -m32 -mabi=altivec -maltivec -include altivec.h -O3 -c matrix_mul.c
ppu32-gcc -o matrix_mul matrix_mul.o -m32 -Wl,-m,elf32ppc -lm -lnuma

Accepting the default NUMA policy the measured runtimes for the matrix multply variants
mmikj (red) and mmĳk (magenta) are depicted in figure A.1. In addition, for the mmĳk
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Figure A.1: Default NUMA policy: Runtimes and L1 cache misses

variant (memory access with stride N) the corresponding numbers of L1 cache miss events
on cpu0 (green) and cpu1 (blue) are displayed. Cache misses for variant mmikj are negli-
gible and not displayed. The curve for mmikj shows the expected behaviour according to
the numerical complexity O(N3) whereas the curve for mmĳk depicts some peaks (N=512,
565,...). The type of cache miss event (green for cpu0 and blue for cpu1) unveils which cpu
is currently executing. The measured runtimes for mmikj and mmĳk (disregarding N=512,
565) indicate that the L1 cache misses with mmĳk are responsible for the higher execution
times. The peaks at N=512 and 565 cannot be attributed to L1 cache misses.

Pinning the program execution to CPU 0 and memory allocation to the local memory can
be achieved by: numactl –membind=0 –physcpubind=0 ./mmrun

Figure A.2: Runtimes and L2 cache misses: NUMA default (left) and pinning to CPU 0

Figure A.2 displays runtimes and L2 cache misses for both policies. One can conclude that
the peaks at N=512 and 565 are caused by the increased number of L2 cache misses for
these problem sizes. When process execution is pinned to CPU 0 the peaks are considerably
reduced.
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A good approximation for the measured
mmĳk runtime is given by assessing
14 cyc (4,4ns) for computation in

the innermost loop
58 cyc (18,1ns) per L1 cache miss
497 cyc (155,3ns) per L2 cache miss
368 cyc (115,0ns) for the cache line

transfer from remote
to local L2 cache



Appendix B

SUMMA Algorithm

The amount of communication per step for the SUMMA algorithm in the case where np =
np1 · np2 can be predicted in the following way.
In each step there is one processor sending n

np1
· nb 4-Byte data to np2 − 1 processors and

n
np2

· nb 4-Byte data to np1 − 1 processors, so that the communication time per step is

tcomm =
4n · nb

bw
·
(

np2 − 1
np1

+
np1 − 1

np2

)
The second term can be larger than 2 if the np1 and np2 differ much. In the examples we
considered this is the case for a 2× 5 grid, where 2−1

5 + 5−1
2 = 2 + 1

5 .
The total communication time in n

nb steps then is

tcomm =
4n2

bw

(
np2 − 1

np1
+

np1 − 1
np2

)
This means that the SUMMA algorithm should be preferred if(

np2 − 1
np1

+
np1 − 1

np2

)
< tsrr

With a measured bandwidth for broadcast to one processor and point-to-point commu-
nication of 600 MB/sec for messages longer than 220 Bytes this means that for np = 4
processors the total communication time for the SUMMA algorithm should be

tcomm =
4n2

600 · 220
(
1
2

+
1
2
) =

n2

150 · 220
[sec]

for n >= 1024. (For n = 1024 the local pieces of the matrix are 512 ·512 floats which makes
29 · 29 · 4 = 220 Bytes.)
The minimum matrix size n for the total overlap of communication by computation in the
SUMMA algorithm is

tcomp =
ops

peak
=

2 · n2/np ∗ nb

peak
≥ tcomm =

4n · nb

bw
·
(

np2 − 1
np1

+
np1 − 1

np2

)
⇐⇒ n

np · peak
≥ 2

bw
·
(

np2 − 1
np1

+
np1 − 1

np2

)
⇐⇒ n ≥ 2peak

bw
·
(

np2 − 1
np1

+
np1 − 1

np2

)
· np
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