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Chimera states are remarkable spatiotemporal patterns in which coherence coexists with incoherence.
As yet, chimera states have been considered as nongeneric, since they emerge only for particular initial
conditions. In contrast, we show here that in a network of globally coupled oscillators delayed feedback
stimulation with realistic (i.e., spatially decaying) stimulation profile generically induces chimera states.
Intriguingly, a bifurcation analysis reveals that these chimera states are the natural link between the
coherent and the incoherent states.
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Synchronization processes are of great importance in
various fields of physics, chemistry, biology, and medicine
[1–4]. Numerous studies have been devoted to the transi-
tion from incoherent to synchronization regimes [1,2,5]. In
recent years in a series of papers a strange new mode of
organization in arrays of identical limit-cycle oscillators
has been reported [6–9]. This peculiar mode, in which
coherence and incoherence coexist at the same time in a
system of oscillators, was first noticed by Kuramoto and
colleagues [6–8] in their simulations of the complex
Ginzburg-Landau equation with nonlocal coupling, and
was later called a chimera state by Abrams and Strogatz
[9]. The emergence of the chimera state was ascribed by all
authors to the impact of nonlocal coupling and was, thus,
considered to depend on intrinsic parameters of the system.
Moreover, all known chimera states coexist with a linearly
stable coherent state, and therefore one requires a very
specific initial condition to approach them. The chimera
states revealed so far are nongeneric in the sense that they
occur only for particularly prepared initial conditions.

In this Letter we describe how chimera states emerge
due to delayed feedback, which is a major approach to
controlling or manipulating synchronization processes in
ensembles of oscillators [10–15]. We show that chimera
states generically emerge already in a rather simple net-
work of globally coupled oscillators, provided the latter is
subject to spatially modulated delayed feedback. Spatial
modulation here means that the strength of the delayed
feedback is maximal at the site of injection and decreases
with increasing distance from the injection site. This fea-
ture is typical for spatially extended systems under the
influence of nonhomogeneous, local control forces [16].
Remarkably, in our model the emergence of a chimera state
depends mainly on the amplification and the delay in the
feedback loop, and these two parameters are well adjust-
able in real experimental setups. Moreover, there is a
sufficiently broad parameter range where the chimera
states do not coexist with any stable synchronized state.

In that region the chimera state emerges out of the coherent
initial condition, which is both the natural state of our
model system and a typical initial state in numerous con-
trol studies [10–12,14,15].

We start with an ensemble of identical, densely and
uniformly distributed Landau-Stuart oscillators, represent-
ing a normal form of a supercritical Andronov-Hopf bifur-
cation. The oscillators are globally coupled and exposed to
a delayed feedback stimulation according to
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� �1� i!� jWj2�W � C� �W�t� �W� � S�x; t�:

(1)

Here W�x; t� stands for a complex amplitude of the oscil-
lator at position x at time t. Our approach is valid for any
space dimension and any measurable space domain, but for
the sake of simplicity below we assume that x is one
dimensional and runs from �1 to 1. Positive parameters
! and C denote the natural frequency of the oscillators and
the global coupling strength, respectively, �W�t� � 1

2 �R
1
�1 W�x; t�dx is the ensemble’s mean field. We assume

in Eq. (1) that the mean field is delivered with the delay �
and the spatial profile ��x� to each oscillator according to
S�x; t� � K��x� �W�t� ��, where the constant K is the
strength of the delayed feedback. The stimulation profile
��x� is a non-negative even function, strictly decreasing on
�0; 1� and obeying the normalization condition 1

2 �R
1
�1 ��x�dx � 1.
For weak coupling and control, the oscillators’ ampli-

tudes can be eliminated (jW�x; t�j ! 1) and the complex
Eq. (1) is reduced [1,17] to the scalar equation of the phase
dynamics
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where  �x; t� is the phase of the oscillator at position x at
time t. To assess the impact of the particular shape of the
stimulation profile, we use in Eq. (2) the exponential
stimulation profile

 ��x� � ae�ajxj=�1� e�a� with a > 0: (3)

The discrete analog of Eq. (2) with spatially uniform
stimulation profile [��x� 	 1] has been studied in detail
with zero coupling (C � 0) [10] and with nonzero cou-
pling (C> 0) [11]. In both cases only completely coherent
or completely incoherent stable solutions were observed.
Remarkably, the stability analysis of the incoherent solu-
tion developed in [10,11] is also applicable to Eq. (2) with
spatially nonuniform stimulation profile. Moreover, due to
the normalization condition 1

2

R
1
�1 ��x�dx � 1, we obtain

the same analytical expressions for the boundaries of the
stability region. Some results concerning the existence and
stability of only the coherent solutions of Eq. (2) with
nonconstant stimulation profile were presented in [14,15].
Numerical simulations of Eq. (2) with parameters chosen
such that neither a stable coherent nor a stable incoherent
solution exist yield chimera states (Fig. 1). In the chimera
states the ensemble of identical oscillators is split into two
domains: In the domain close to the apex of the stimulation
profile the oscillators are coherent and phase locked. In
contrast, in the other domain the oscillators are incoherent
and desynchronized. It occupies the rest of the interval
��1; 1�, where the stimulation impact falls below a certain
threshold. Plotting the effective frequencies of the oscilla-
tors, !eff�x� � limt!1

1
t

R
t
0

_ �x; s�ds, we observe that in
the coherent domain they are identical, while in the inco-

herent domain they are nonidentical but lie on a well-
defined continuous curve. We distinguish two types of
chimeras depending on whether the effective frequencies
of the incoherent oscillators are greater [Fig. 1(a)] or
smaller [Fig. 1(b)] than the frequencies of the coherent
ones, denoted as chimera I and chimera II, respectively.

To explain these numerical results we utilize an ap-
proach similar to that proposed by Kuramoto and
Battogtokh [6]. For this we introduce the relative phase �
by � �  ��t, where � denotes the angular frequency of
an appropriate rotating frame in which the dynamics gets
simplified. Accordingly, � is the effective frequency of the
oscillators in the coherent domain. We define a complex
order parameter with modulus R and phase �

 R�t�ei��t� �
1

2

Z 1

�1
ei��x;t�dx; (4)

where 0 
 R�t� 
 1 holds for all times t, and R � 1 or� 0
corresponds to perfect in phase synchronization or absence
of in phase synchronization. Then Eq. (2) reads
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(5)

Following Kuramoto and Battogtokh [6], we study the
existence of statistically stationary solutions of Eq. (5)
for which the long-term averaged values of R and � are
time independent. In contrast to their method for nonlo-
cally coupled oscillators, we assume here that the averaged
values of R and � are also space independent, i.e., con-
stants. Given R and �, one can then easily identify coher-
ent and incoherent domains with the function

 g�x;R;���
!��

R
�������������������������������������������������������������������������������������
�C�K��x�cos�����2��K��x�sin�����2

p :

If jg�x; R;��j 
 1, then Eq. (5) has a stable fixed point

 ��x; R;�� � ���x; R;�� � sin�1g�x; R;��; (6)

where ��x; R;�� is uniquely defined by the relation

 ei� �
C� K��x� cos���� � iK��x� sin��������������������������������������������������������������������������������������������
�C� K��x� cos�����2 � �K��x� sin�����2

p :

This fixed point stands for the time-independent asymp-
totic phase deviation of a synchronized oscillator with
respect to the macroscopic phase �. In contrast, oscillators
for which jg�x; R;��j> 1 do not reach a stationary devia-
tion from the macroscopic phase and, therefore, do not
synchronize. Replacing now in definition (4) the factor
exp�i��x; t�� by its statistical average, and calculating the
latter with the help of expression (6) on the coherent
interval and with the help of an invariant measure obtained
from Eq. (5) on the incoherent interval (see details in [6]),
we derive a self-consistency equation
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FIG. 1 (color). Chimera states induced by the delayed feed-
back with the exponential stimulation profile (3). Parameters:
a � 1:0, C � 0:1�, K � �, ! � 2�, and � � 0:3 (a) or
� � 0:6 (b). Equation (2) was approximated with an array of
101 oscillators uniformly distributed over the interval ��1; 1�
and was integrated using a Runge-Kutta method starting from
the coherent initial condition. Top: Snapshot of the oscillators’
phases (black dots). Middle: Stimulation profile. Bottom: Ef-
fective frequencies of the oscillators (black dots). Green thick
lines in the top and bottom graphs represent the theoretical
predictions obtained from Eqs. (6)–(8).
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(7)

In fact, Eq. (7) is a system of two real equations for the two
unknowns R and �. This is significantly simpler than
solving a functional self-consistency equation for chimera
states in a system of nonlocally coupled oscillators [6]. For
Eq. (7) the position of the critical points separating the
coherent and the incoherent domains is given by
jg�x; R;��j � 1. In the coherent domain the effective fre-
quencies of the oscillators equal �, while in the incoherent
domain they obey

 !eff�x� � �� �!���
�����������������������������������
1� g�2�x; R;��

q
: (8)

The theoretical curves obtained from Eqs. (6)–(8) fit
perfectly to the numerical simulations of Eq. (2) (Fig. 1).
This shows that Eq. (7) is an adequate model capturing the
chimera states. Moreover, if jg�x; R;��j 
 1 holds for all
x 2 ��1; 1�, then Eq. (7) coincides with system (19) from
[15], which was shown to yield phase-locked solutions of
Eq. (2). Consequently, in a certain sense the chimera states
are linked to the coherent, phase-locked, solutions of
Eq. (2). This motivates us to solve Eq. (7) numerically, to
reveal solutions which constitute a continuous extension of
the completely coherent state (R � 1:0, � � !). The lat-
ter obviously satisfies Eq. (7) for � � kT, k �
0;�1;�2; . . . , where T � 2�=! is the natural period of
the oscillation [18]. The phase-locked and chimera states
obtained from Eq. (7) were used as initial conditions in an
extensive series of numerical simulations of a noisy dis-
crete approximation of Eq. (2) (with additive Gaussian
white noise). These simulations were used to verify the
results from Eq. (7) and to check their stability.

A typical solution of Eq. (7) is shown in Fig. 2. The
starting point A1 is the completely coherent state. With
increasing �=T this state, first, survives as a stable phase-
locked solution with modified effective frequency and
deformed phase pattern for delays up to a certain critical
value (see [15]). Point B1 indicates the boundary between
the phase-locked solution and the chimera state. For larger
delays one observes a series of stable chimera states along
arc B1C1 (the curve from B1 to C1). We characterize their
‘‘chimerness’’ using the synchronization parameter defined
as the relative measure of the coherent domain. It varies
between 0 and 1, and equals 1 for phase-locked solutions
only. Along arc B1C1 the synchronization parameter de-
creases monotonically with increasing delay, which corre-
sponds to a progressive ‘‘evaporation’’ of the oscillators
from the phase-locked to the drifting state. At point C1,

FIG. 2. Order parameter R from Eq. (7). Parameters: C=! �
0:05, K=! � 0:5, and exponential stimulation profile (3) with
a � 1:0. Solid lines represent stable branches of the solution:
phase-locked state (arcs A1B1 and A2B2), chimera I (arc B1C1)
and chimera II (arc B2C2). Dashed lines C1D1 and C2D2 stand
for unstable branches. The completely incoherent state is stable
for delays taken from the interval D1D2.

FIG. 3 (color). (a),(b) Domains in the
control parameters plane with one (yel-
low) or two (orange) stable chimera
states. The incoherent state is stable in-
side the regions marked by blue lines. At
least one stable coherent solution exists
in the region outside of the green lines
(see enlargement in Fig. 4). Parameters:
exponential stimulation profile with a �
1:0 and C=! � 0:05 (a) or C � 0 (b).
Synchronization parameter of the
chimera I (c) and chimera II (d) belong-
ing to (a).
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where the synchronization parameter reaches a certain
threshold, a saddle-node bifurcation occurs: the stable
chimera collides with an unstable solution, which can be
traced towards a subcritical bifurcation point D1, at which
the completely incoherent state (R � 0) changes its stabil-
ity. Between D1 and D2 the incoherent state is stable. An
analogous scenario is observed along the curve A2B2C2D2.
The only difference is that the arcs B1C1 and B2C2 corre-
spond to chimera I and chimera II, respectively.

Taking into account Fig. 2, with the same analytic-
numerical technique as described above, we revealed the
main features of the complete solution of Eq. (7)
[Figs. 3(a), 3(c), and 3(d)]. Note the pronounced multi-
stability, where different values of the control parameters
�=T and K=! may be connected with different combina-
tions of coexisting stable solutions (Fig. 4). For control
parameters taken from the white region in Fig. 4 the
chimera state is a unique stable solution, which evolves
starting from the coherent initial condition, i.e., from the
natural state of the unperturbed globally coupled system.

The results presented above are robust with respect to
variations of the coupling strength and the shape of the
stimulation profile. This can be seen, e.g., by comparing
Fig. 3(a) with the analogous Fig. 3(b) for vanishing cou-
pling (C � 0) or with the corresponding results for the
linear stimulation profile (data not shown).

In summary, in a network of globally coupled oscillators
chimera states can robustly be induced by delayed feed-
back stimulation with a variety of exponentially or linearly
decaying stimulation profiles, provided the key stimulation
parameters, the delay and strength, are tuned appropriately.
Thus, already in a rather simple model with a realistic
stimulation setup, chimera states are not just curious non-
generic solutions, but the natural link between coherent

and incoherent states. Accordingly, chimera states may be
relevant in other physical and biological systems too [19].
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FIG. 4 (color). The enlarged left third of Fig. 3(a) shows the
linkage between incoherent states (blue) and coherent states
(violet). The incoherent state is stable in the blue region. At
least one stable coherent solution exists in the violet region.
There is a small white gap between the blue and violet region
even at the bottom at �=T � 0:5: Incoherent and coherent states
are not directly transformed into one another. Numbers in the
plot indicate different types of stable solutions: incoherence (1),
incoherence and chimera (2), incoherence and two chimeras (3),
chimera (4), two chimeras (5), coherent solution (6), coherent
solution and chimera (7), two coherent solutions (8), two coher-
ent solutions and chimera (9), three coherent solutions (10), two
coherent solutions and two chimeras (11).
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