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Simulating Materials with Strong Correlations on
BlueGene/L

Andreas Dolfen, Yuan Lung Luo, and Erik Koch

Institut für Festkörperforschung
Forschungszentrum Jülich, 52425 Jülich, Germany

E-mail: {a.dolfen, y.luo, e.koch}@fz-juelich.de

Understanding the physics of strongly correlated materials is one of the grand-challenges in
condensed-matter physics. Simple approximations such as the local density approximation fail,
due to the importance of the Coulomb repulsion between localized electrons. Instead we have to
resort to non-perturbative many-body techniques. Such calculations are, however, only feasible
for quite small model systems. This means that the full Hamiltonian of a real material has to be
approximated by a model Hamiltonian comprising only the most important electronic degrees
of freedom, while the effect of all other electrons can merely be included in an average way.
Realistic calculations of strongly correlated materials need to include as many of the electronic
degrees of freedom as possible.

We use the Lanczos method for calculating ground state and dynamical properties of such
model Hamiltonians. In the method we have to handle the full many-body state of the correlated
system. The method is thus limited by the available main memory. The principal problem for
a distributed-memory implementation is that the central routine of the code, the application of
the Hamiltonian to the many-body state, leads, due to the kinetic energy term, to very non-local
memory access. We describe a solution for this problem and show that the new algorithm scales
very efficiently on BlueGene/L. Moreover, our approach is not restricted to correlated electrons
but can also be used to simulate quantum spin systems relevant for quantum computing.

1 Motivation

Essentially all of condensed matter physics is described by the non-relativistic Schrödinger
equation i~ ∂

∂t |Ψ〉 = H |Ψ〉, with the Hamiltonian

H = −
Nn∑
α=1

~P 2
α

2Mα
−

Ne∑
j=1

~p 2
j

2m
−

Ne∑
j=1

Nn∑
α=1

Zαe
2

|~rj − ~Rα|
+

Ne∑
j<k

e2

|~rj − ~rk|
+

Nn∑
α<β

ZαZβe
2

|~Rα − ~Rβ |

where Zα is the atomic number, Mα the mass, ~Rα the position and ~Pα the momentum of
nucleus α. ~pj and ~rj denote the jth electron’s momentum and position and Ne, Nn the
number of electrons, nuclei respectively. To accurately describe materials of technologi-
cal interest and design new ones with superior properties, all we have to do is solve this
equation. There is, however, a severe problem which makes a brute-force approach to the
many-body Schrödinger equation infeasible. To illustrate this, let us for consider a single
iron atom. With its 26 electrons the total electronic wave function depends on 26 times 3
spatial coordinates. Thus, even without spin, specifying the electronic wave function on a
hypercubic grid with merely 10 points per coordinate, we would have to store 1078 num-
bers. This is impossible in practice: Even if we could store a number in a single hydrogen
atom, the required memory would weight 1051 kg – far more than our home-galaxy, the
milky way.
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H = −t
∑

〈i ,j〉,σ

c†j,σ ci ,σ + U
∑

i

ni ,↑ni ,↓Figure 1. The molecular metal TTF-TCNQ. Centre: molecular levels of the isolated molecules; left: two TTF
molecules with the electron density of their highest occupied molecular orbital (HOMO); right: TCNQ with the
electron density of the lowest unoccupied molecular orbital (LUMO). The red arrow denotes the charge transfer
of 0.6 electrons from the TTF-HOMO to the TCNQ-LUMO.

Still, the quantitative description of solids is not an entirely hopeless enterprise. Even
though an exact treatment is a practical impossibility, there are successful approximations
that work for wide classes of materials. The most prominent examples are approximations
to density functional theory.1 They effectively map the hard many-body problem to an ef-
fective single-particle problem that can be efficiently solved numerically. Essential to these
approximations is that the Coulomb repulsion is described on a mean-field level. Such an
approximation fails, however, to capture the physics in systems with strong correlations.
In these systems the Coulomb repulsion between the electrons is so strong that the motion
of a single electron depends on the position of all the others. The electrons thus lose their
individuality and the single-electron picture breaks down. To accurately model this, we
have to solve the many-electron problem exactly. Clearly we cannot do this for the full
Hamiltonian. Instead, we consider a simplified Hamiltonian, which describes only those
electrons that are essential to the correlation effects.2 We illustrate this for the example of
TTF-TCNQ, a quasi one-dimensional organic metal.

As shown in Fig. 1, TTF and TCNQ are stable molecules with completely filled molec-
ular orbitals. The highest molecular orbital (HOMO) of TTF is, however, significantly
higher in energy than the lowest unoccupied molecular orbtial (LUMO) of TCNQ. Thus
in a crystal of TTF and TCNQ, charge is transferred from the TTF-HOMO to the TCNQ-
LUMO. This leads to partially filled bands and thus metallic behaviour. In the TTF-TCNQ
crystal, like molecules are stacked on top of each other. Electrons can move along these
stacks, while hopping between different stacks is extremely weak. Thus the material is
quasi one-dimensional.

As pointed out above, we cannot treat all the electrons in the molecular solid. In-
stead, we focus our efforts on the most important electronic states: the partially filled TTF-
HOMO and TCNQ-LUMO. The effects of the other electrons are included by considering
their screening effects.3 The simplest model Hamiltonian which captures both effects, the
itinerancy of the electrons as well as the strong Coulomb interaction is the Hubbard model

H = −
∑

σ,i6=j

tijc
†
iσ cjσ + U

∑
i

ni↑ni↓ . (1.1)
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Hubbard model

H =
∑
〈i j〉,σ ti ,j c

†
j,σci ,σ + U

∑
i ni ,↑ni ,↓
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Figure 2. Illustration of the Hubbard model and the configuration basis of the Hilbert space. Upper left: next
neighbour hopping (kinetic term); lower left: Coulomb repulsion U ; right: basis for a three site system with two
up and one down spin electron. The left label denotes the index of the configuration. Equivalently, a state is also
unambiguously pointed to by a tuple of up- and down-configuration index.

The first term gives the kinetic energy, where tij is the amplitude for an electron to hop
from the molecule at site i to lattice site j. Note that hopping does not change the spin
σ. The second term represents the Coulomb repulsion between two electrons in the same
molecular orbital. Both terms are illustrated in Fig. 2.

Since the Hamiltonian does neither change the number of electrons nor their spin, we
need to consider (1.1) only on Hilbert spaces with a fixed number of electrons of spin up
N↑ and spin down N↓. For a finite system of L orbitals there are

(
L

Nσ

)
different ways

to arrange Nσ electrons of spin σ. Thus the dimension of the Hilbert space is given by(
L

N↑

)
·
(

L
N↓

)
. For three orbitals, two up- and one down-spin electron, there are 9 different

configurations shown in Fig. 2. Even though we significantly simplified the problem, we
still have to face the many-body problem: increasing system size, the dimension of the
Hilbert space increases steeply. A system with 20 orbitals and 10 electrons of either spin
already contains more than 34 billion (34 134 779 536) different configurations. Storing a
single many-body state for this system takes about 254 GB.

2 Lanczos Method

We have seen that even for small systems the full Hamiltonian matrix is so large that it
cannot be stored on a computer. Fortunately the matrix is sparse in real space, since each
configuration is only connected to few others by hopping and the Coulomb repulsion part
of the Hamiltonian is diagonal. To obtain the ground-state eigenvalue and -vector for
our sparse Hamiltonian H we use the Lanczos method: We start from a random vector
|φ0〉, leading to a first energy value E0 = E [φ0] = 〈φ0|H|φ0〉. In analogy to the gradient
descent method we look for the direction of steepest descent in the energy functional which
is given by H |φ0〉. The resulting vector is orthogonalized with respect to the starting
vector, i.e.

〈φ1|H|φ0〉 |φ1〉 = H |φ0〉 − 〈φ0|H|φ0〉 |φ0〉 .
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Now the same step is done with |φ1〉 leading to

〈φ2|H|φ1〉 |φ2〉 = H |φ1〉 − 〈φ1|H|φ1〉 |φ1〉 − 〈φ1|H|φ0〉 |φ0〉 ,

or in general,

βn+1 |φn+1〉 = H |φn〉 − αn |φn〉 − βn |φn−1〉 ,

where n ∈ 2, . . . ,m and

αn = 〈φn|H|φn〉 , βn+1 = 〈φn+1|H|φn〉 .

From this equation we see that the HamiltonianH is tridiagonal in the basis of the Lanczos
vectors. In practice we need only of the order of 100 iterations to converge to the ground-
state. If we are only interested in the ground-state energy, we only have to store two vectors
of the size of the Hilbert space. In order to also get the ground state vector, a third vector is
needed. As discussed above the dimension grows swiftly and thus the applicability of the
method is limited by the maximum available main memory.

The Lanzcos method also provides a way to calculate Green functions, i.e.

Gk(ω) =
∑

n

∣∣∣〈ψN±1
n

∣∣∣c(†)k

∣∣∣ψ0

〉∣∣∣2
ω ∓ (EN±1

n − EN
0 )

.

Having calculated the ground-state vector as described above we apply the c(†)k operator to
it, normalize, and use the result as initial vector for a Lanczos iteration. The αi and βi then
give the Green function

Gk(ω) =
β2

0

ω − α0 − β2
1

ω−α1−
β2
2

ω−α2−
β2
3

ω−α3−···

.

3 Computational Aspects

The key ingredient of the Lanczos algorithm described above is the sparse matrix vector
multiplication. Already for quite small systems this operation takes most of the execution
time, and increasing the size of the many-body vector it dominates ever more. Thus it
will be the focus our parallelization efforts. On shared memory systems this matrix-vector
multiplication is embarrassingly simple: The resulting vector elements can be calculated
independently. Thus different threads can work on different chunks of this vector. The fac-
tor vector as well as the matrix elements are only read, so that there is no need for locking.
An OpenMP parallelization thus needs only a single pragma. Similarly parallelizing also
the scalar products, we obtain almost ideal speedup on an IBM p690 frame of JUMP in
Jülich. The implementation is however limited to a single node. To use significantly more
memory we need to find an efficient distributed memory implementation.

The kinetic energy term of the Hamiltonian (1.1) has non-diagonal terms and therefore
leads to non-local memory access patterns. A naive distributed memory parallelization is
to emulate a shared memory by direct remote memory access via MPI one-sided commu-
nication. This approach leads, however, to a severe speed-down, i.e. the more processors
we use, the longer we have to wait for the result. This is shown in the inset of Fig. 4.
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Figure 3. Transpose operation that makes memory access thread-local when calculating the operation of the
Hamiltonian on the state-vector. The communication (red arrows) is realized by a call to MPI Alltoall,
which is very efficiently implemented on BlueGene/L. The small grey arrows indicate the local operations needed
to complete the matrix-transpose.

To obtain an efficient distributed memory implementation we use a simple yet impor-
tant observation: As pointed out above, the kinetic energy term conserves spin. Thus,
performing the up-electron hopping takes only different up-hopping configurations into
account while the down-electron configuration remains unchanged. If we group all up
configurations for a fixed down configuration together in a single thread this hopping can
thus be carried out locally. Fig. 2 illustrates this: for a fixed index i↓, all i↑ configurations
follow and can be stored in a thread. We see, that this basis can be naturally indexed by
a tuple (i↓, i↑) (right labels in Fig. 2) instead of the global index (left labels). We can
therefore equivalently regard the vectors as matrices v(i↓, i↑) with indices i↓ and i↑. Now
it is easy to see that a matrix transpose reshuffles the data elements such that the down
configurations are sequentially in memory and local to the thread.

Therefore, the efficiency of the sparse matrix-vector multiplication rests on the perfor-
mance of the matrix transpose operation. We implement it with MPI Alltoall. This
routine expects, however, the data packages which will be sent to a given process to be
stored contiguously in memory. This does not apply to our case, since we would like to
store the spin-down electron configurations sequentially in memory. Thus, the matrix is
stored column wise. For MPI Alltoall to work properly, we would have to bring the
data elements in row-major order. This could be done by performing a local matrix trans-
pose. The involved matrices are, however, in general rectangular, leading to expensive
local-copy and reordering operations. We can avoid this by calling MPI Alltoall for
each column separately. After calling MPI Alltoall for each column (red arrows in
Fig. 3) only a local strided transposition has to be performed (small pink arrows) to obtain
the fully transposed matrix or Lanczos vector.4, 5 The speed-up (left plot of Fig. 4) shows
that collective communication is indeed very efficient, particularly on the BlueGene/L.

The implementation described so far uses MPI Alltoall which assumes that the
matrix to be transposed is a square matrix and that the dimension dim↑ = dim↓ is divisible
by the number of MPI processes. To overcome these restrictions we have generalized
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Figure 4. Speed-up of the Lanczos code. Left: IBM BlueGene/L JUBL (squares (CO mode) and circles (VN
mode)) and IBM Regatta JUMP (triangles and diamonds: collective comm., stars: 1-sided comm.) for different
problem sizes; right: speedup of the Lanczos code on IBM BlueGene/L JUBL in CO mode for 20 sites half-filled
Hubbard model.

the algorithm to MPI Alltoallv.4 The right plot of Fig. 4 shows the speed-up of the
generalized algorithm for a 20 sites system with half-filling (10 electrons of either spin).
The corresponding size of the many-body vector is about 254 GB. The plot shows that we
can efficiently use about 8192 threads and suggests that for larger system sizes we should
be able to exploit even more processors.

4 Cluster Perturbation Theory and Spin-Charge Separation

Our parallel implementation of the Lanczos method enables us to efficiently calculate
angular-resolved spectral functions for quite large systems. However, we still can have
at most as many different momenta as we have sites. To resolve exciting physics like spin-
charge separation we need, however, a much higher resolution. A way to achieve this is
cluster perturbation theory (CPT).6 The general idea is to solve a finite cluster with open
boundary conditions exactly and then treat hopping between clusters in strong coupling
perturbation theory, leading to an effective infinite chain.

We use the CPT technique in combination with the Lanczos method to study the
quasi one-dimensional molecular metal TTF-TCNQ. Its low dimensionality in tandem with
strong Coulomb repulsion compared to the kinetic energy leads to strong correlations and
interesting many-body effects. Fig. 5 shows the angular-resolved spectral function for
TCNQ in a CPT calculation for a 20 sites t-U Hubbard model. At the Γ-point we ob-
serve signatures of spin-charge separation: The electron dispersion splits into a holon and
a spinon branch. To generate this plot about three BlueGene/L rack-days are needed: The
calculation of the ground state is negligible and takes considerably less than half an hour on
2048 processors in VN mode on a BlueGene/L system. To calculate the Green’s function
for photoemission and inverse photoemission about 400 Green’s functions each have to be
calculated, where the former calculation takes a total of about 15 hours whereas the latter
one takes about two days.
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Figure 5. Angular-resolved spectral function obtained by CPT for a 20 sites TCNQ-like t-U Hubbard model
with 6 electrons of either spin (U = 1.96eV, t = 0.4eV). The white line shows the chemical potential, the green
cosine the independent-particle band. Signatures of spin-charge separation are clearly observed in the vicinity of
the Γ-point.

5 Quantum Spins and Decoherence

A simplified version of the transposition scheme using MPI Alltoall can be used to
simulate quantum spin systems. We study the decoherence of two 1/2-spins (qubits) cou-
pled to independent baths (a and b) of 1/2-spins. The Hamiltonian of this system is

H =
∑

i∈BATHa

Ji~s0~si +
∑

j∈BATHb

Jj~s1~sj .

Since the Hilbert space of this system grows like 2L where L is the total number
of spins, we face similar problems as in the Lanczos method. In general, for a time-
independent Hamiltonian, the time evolution operator is given by U(t) = exp (−iHt).
Using a Suzuki-Trotter decomposition we can rewrite the operator as a product of time
evolution operators for small time steps U(t) ≈

∏N
U(∆t), where t = N∆t. We further

decompose the time evolution operator such that we have a product of time evolution op-
erators for two-spin systems, i.e. treating each term in the Hamiltonian separately, yielding

U(∆t) =
N∏

k=1

exp (−iHk∆t/2) ·
1∏

k=N

exp (−iHk∆t/2) +O(∆t3) ,

where N denotes the terms in the Hamiltonian and exp (−iHk∆t/2) is given by

eiJk∆t/8


exp(−iJk∆t/4) 0 0 0

0 cos(Jk∆t/4) −i sin(Jk∆t/4) 0
0 −i sin(Jk∆t/4) cos(Jk∆t/4) 0
0 0 0 exp(−iJk∆t/4)

 .

Thus we reduce calculating the exponential of the spin-Hamiltonian to simple matrix prod-
ucts. As before the matrix elements are not necessarily local to the threads, but can be made
so by appropriate calls to MPI Alltoall. To test this approach we have so far consid-
ered systems of up to 26 spins for which we obtain almost ideal speed-up for up to 1024
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Figure 6. Entanglement-of-formation of a two qubit system, where each qubit couples to a bath of 10 spins.
The coupling constants are chosen such that

P
i |Ji|2 = C (see text). The curves from left to right show C =

1,1/2,1/4,1/8,1/16. The initial state for the qubits is a Bell state.

processors in VN mode. As a first application we study the sudden death of entanglement.
We start with the two qubits in the Bell state (|↑↓〉+ |↓↑〉)/

√
2 and a random, but unpolar-

ized bath. The coupling constants are chosen randomly, but normalized to
∑

i |Ji|2 = C.
We find that the entanglement-of-formation7 goes to zero after a finite time. As can be
seen from Fig. 6, the time to this sudden-death of entanglement8 is roughly proportional to
the strength of the coupling to the bath C.
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