

Profiling and Identification of Web Applications in

Computer Network

by

Hussein Jaber Oudah

A thesis submitted to the University of Plymouth

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Engineering, Computing and Mathematics

April 2020

COPYRIGHT STATEMENT

This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the

author's prior consent.

ii

Acknowledgements

First and foremost, I would like to thank Allah (God) Almighty for giving me the

strength, knowledge, ability, and opportunity to undertake this research study and

to persevere and complete it satisfactorily. Without his blessings, this

achievement would not have been possible.

I would like to express my appreciation and gratitude to my supervisor Dr Bogdan

Ghita for his continuous support, interest, patience, and guidance throughout my

studies. Thanks must also go to my other supervisors, Dr David Lancaster and

David Walker, who has spent time proofreading papers and my thesis, in addition

to providing helpful experience and guidance throughout my studies.

My acknowledgement would be incomplete without thanking the biggest source

of my strength, my family. Thank you for encouraging me in all of my pursuits and

inspiring me to follow my dreams. I am especially grateful to my mother and my

father for his support and never-ending love.

My unreserved love, thanks, and appreciation must go to my wife (Zaman) and

my sons who have been very patient, understanding, and inspiring to me

throughout this endeavour, spending days, nights, and sometimes even holidays

without me. I hope the potential success of this research will compensate some

of what they have missed. May Allah bless them.

Many thanks to my colleague Dr Taimur for his support and for the motivating

ideas and thoughts they provided during my PhD journey.

Finally, I would like to acknowledge, with thanks and appreciation, the

government of Iraq and the Higher Committee for Education Development in Iraq,

for granting me a scholarship and sponsoring my PhD studies.

iii

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the

author been registered for any other University award without prior agreement of

the Doctoral College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not

formed part of any other degree either at the University of Plymouth or at another

establishment.

This study was financed with the aid of a scholarship from the Republic of Iraq.

Relevant seminars and conferences were attended at which work was often

presented and published.

Word count of thesis: 43, 896 words

List of publications:

H. Oudah, B. Ghita, and T. Bakhshi, “Network Application Detection Using Traffic

Burstiness,” in World Congress on Internet Security (WorldCIS-2017), 2017.

https://www.researchgate.net/profile/Hussein_Oudah2/publication/321906101_

Network_Application_Detection_Using_Traffic_Burstiness/links/5d42e8a392851

cd046987a8b/Network-Application-Detection-Using-Traffic-Burstiness.pdf

H. Oudah, B. Ghita, and T. Bakhshi, “A Novel Feature Set for Application

Identification,” in International Journal for Information Security Research (IJISR),

Volume 8, Issue 1, March 2018

DOI: https://doi.org/10.20533/ijisr.2042.4639.2018.0088

H. Oudah, B. Ghita, and T. Bakhshi, “A Novel Features Set for Internet Traffic

Classification using Burstiness,” in 5th International Conference on Information

System Security and Privacy 2019.

DOI: https://doi.org/10.5220/0007384203970404

https://www.researchgate.net/profile/Hussein_Oudah2/publication/321906101_Network_Application_Detection_Using_Traffic_Burstiness/links/5d42e8a392851cd046987a8b/Network-Application-Detection-Using-Traffic-Burstiness.pdf
https://www.researchgate.net/profile/Hussein_Oudah2/publication/321906101_Network_Application_Detection_Using_Traffic_Burstiness/links/5d42e8a392851cd046987a8b/Network-Application-Detection-Using-Traffic-Burstiness.pdf
https://www.researchgate.net/profile/Hussein_Oudah2/publication/321906101_Network_Application_Detection_Using_Traffic_Burstiness/links/5d42e8a392851cd046987a8b/Network-Application-Detection-Using-Traffic-Burstiness.pdf
https://doi.org/10.20533/ijisr.2042.4639.2018.0088
https://doi.org/10.5220/0007384203970404

iv

H. Oudah, B. Ghita, T. Bakhshi, A. Alruban, D. Walker "Using Burstiness for

Network Applications Classification", Journal of Computer Networks and

Communications, 2019.

DOI: https://doi.org/10.1155/2019/5758437

Signed Hussein Oudah

 Date 13/04/2020

https://doi.org/10.1155/2019/5758437

v

Abstract

Profiling and Identification of Web Applications in Computer Network

Hussein Jaber Oudah

Characterising network traffic is a critical step for detecting network intrusion or

misuse. The traditional way to identify the application associated with a set of

traffic flows uses port number and DPI (Deep Packet Inspection), but it is affected

by the use of dynamic ports and encryption. The research community proposed

models for traffic classification that determined the most important requirements

and recommendations for a successful approach. The suggested alternatives

could be categorised into four techniques: port-based, packet payload based,

host behavioural, and statistical-based. The traditional way to identifying traffic

flows typically focuses on using IANA assigned port numbers and deep packet

inspection (DPI). However, an increasing number of Internet applications

nowadays that frequently use dynamic post assignments and encryption data

traffic render these techniques in achieving real-time traffic identification. In

recent years, two other techniques have been introduced, focusing on host

behaviour and statistical methods, to avoid these limitations. The former

technique is based on the idea that hosts generate different communication

patterns at the transport layer; by extracting these behavioural patterns, activities

and applications can be classified. However, it cannot correctly identify the

application names, classifying both Yahoo and Gmail as email. Thereby, studies

have focused on using statistical features approach for identifying traffic

associated with applications based on machine learning algorithms. This method

relies on characteristics of IP flows, minimising the overhead limitations

associated with other schemes. Classification accuracy of statistical flow-based

vi

approaches, however, depends on the discrimination ability of the traffic features

used. NetFlow represents the de-facto standard in monitoring and analysing

network traffic, but the information it provides is not enough to describe the

application behaviour. The primary challenge is to describe the activity within

entirely and among network flows to understand application usage and user

behaviour. This thesis proposes novel features to describe precisely a web

application behaviour in order to segregate various user activities. Extracting the

most discriminative features, which characterise web applications, is a key to gain

higher accuracy without being biased by either users or network circumstances.

This work investigates novel and superior features that characterize a behaviour

of an application based on timing of arrival packets and flows. As part of

describing the application behaviour, the research considered the on/off data

transfer, defining characteristics for many typical applications, and the amount of

data transferred or exchanged. Furthermore, the research considered timing and

patterns for user events as part of a network application session. Using an

extended set of traffic features output from traffic captures, a supervised machine

learning classifier was developed.

To this effect, the present work customised the popular tcptrace utility to generate

classification features based on traffic burstiness and periods of inactivity for

everyday Internet usage. A C5.0 decision tree classifier is applied using the

proposed features for eleven different Internet applications, generated by ten

users. Overall, the newly proposed features reported a significant level of

accuracy (~98%) in classifying the respective applications. Afterwards,

uncontrolled data collected from a real environment for a group of 20 users while

accessing different applications was used to evaluate the proposed features. The

vii

evaluation tests indicated that the method has an accuracy of 87% in identifying

the correct network application.

viii

Table of Contents

List of Figures .. xi

List of Tables ... xii

Abbreviation List .. xiv

1 Introduction.. 1

1.1 Introduction .. 1

1.2 Context – Internet Traffic Classification ... 4

1.3 Traffic Classification Importance ... 6

1.4 Existing Methods and Challenges .. 8

1.5 Aims of the Project ... 11

1.6 Thesis Structure .. 12

2 Internet Traffic Review ... 15

2.1 Introduction .. 15

2.2 Internet Connectivity, Applications, and Traffic.. 16

2.2.1 Internet Traffic .. 18

2.3 Network performance and applications .. 20

2.3.1 Packet Loss and throughput .. 21

2.3.2 Popular web applications .. 22

2.4 Traffic and performance monitoring .. 25

2.4.1 Packets .. 26

2.4.2 Flows ... 27

2.4.3 Challenges ... 31

2.5 Statistical modelling ... 32

2.6 Classification .. 34

2.6.1 Decision Tree .. 34

2.6.2 Boosting .. 36

2.6.3 Cross-validation .. 37

2.6.4 Confusion matrix... 37

2.6.5 Entropy, and Bias versus variance .. 39

2.7 Conclusions .. 40

3 Application identification – existing methods and limitations 42

3.1 Introduction .. 42

3.2 Port-Based Technique .. 43

3.3 Deep Packet Inspection (DPI) Technique .. 44

ix

3.4 Host Behavioral Techniques... 45

3.5 Machine-Learning-Based approaches .. 47

3.6 Hybrid Traffic Classification Techniques .. 54

3.7 Burstiness Based Approach .. 56

3.8 Splitting Traffic Based On DNS Requests ... 58

3.9 Discussion and Conclusion .. 59

4 Application identification based on burstiness ... 62

4.1 Introduction .. 62

4.2 Inter arrival timing, burstiness and features ... 63

4.2.1 Packet Analysis ... 64

4.2.2 Flow Analysis ... 69

4.2.3 Conventional Analysis .. 70

4.3 Preliminary Study ... 71

4.3.1 Data collection and analysis .. 71

4.3.2 The Decision Tree Analysis and Classifier Derivation 73

4.4 Conclusion .. 77

5 Methodology and Data Collection .. 78

5.1 Introduction .. 78

5.2 General Block Diagram for a Proposed System .. 78

5.2.1 Data collection .. 81

5.2.2 DNS Queries ... 84

5.2.3 Data Analysis .. 86

5.2.4 IP Matching ... 86

5.2.5 Keywords Matching .. 87

5.3 Conclusion .. 89

6 Analysis ... 91

6.1 Introduction .. 91

6.2 Cluster analysis ... 92

6.2.1 Controlled data .. 92

6.3 Principal Component Analysis (PCA) ... 98

6.4 T-test ... 100

6.5 Conclusion .. 101

7 Evaluation ... 103

7.1 Introduction .. 103

x

7.2 Controlled environment evaluation .. 103

7.3 Uncontrolled data ... 108

7.3.1 Feature selection ... 108

7.3.2 C5.0 decision tree classifier .. 111

7.3.3 Confusion Matrix .. 113

7.4 Conclusion .. 115

8 An architecture for application-based management of traffic using SDN 117

8.1 Introduction .. 117

8.2 Design requirements ... 118

8.3 Traffic Identification Architecture ... 119

8.3.1 Network devices .. 121

8.3.2 Controller .. 121

8.3.3 Network application .. 122

8.4 Strengths and weaknesses of the architecture .. 122

8.5 Conclusions .. 124

9 Conclusion and Future Work ... 125

9.1 Achievements of the research... 125

9.2 Limitations of the Research .. 128

9.3 Scope for Future Work ... 130

References .. 132

APPENDIX- A ... 149

xi

List of Figures

Figure 1-1: Cisco VNI Forecast Report: Growth in IP Traffic (2017-2022) 5

Figure 1-2: Web Traffic (Type) Distributions [32]... 6

Figure 2-1: Low Latency for Applying CDN[45] ... 17

Figure 2-2: The Forecast of Global Traffic, 2017-2021 [2] 19

Figure 2-3: CDN Internet Traffic Growth, 2017-2022 [47].................................. 19

Figure 3-1: Definition of bursts and idle time based on [148] 57

Figure 4-1: Distribution of inter-packet arrival times for five applications 67

Figure 4-2: Estimation of packet bursts and idle time .. 67

Figure 4-3: various behaviour for six applications .. 76

Figure 5-1: Proposed traffic classification methodology 79

Figure 6-1: Clustering features dendrogram for set1 ... 93

Figure 6-2: Features cluster dendrogram for 84 features 95

Figure 6-3: Dentrograms separation of samples into clusters for three data sets

 ... 98

Figure 6-4: Scree plot of data .. 99

Figure 6-5: Score plot.. 100

Figure 6-6: Distributions of ten users for Amazon application 102

Figure 7-1: Top 15 attributes ranked in Random Forest classifier 110

Figure 7-2: Behaviour of eleven applications for most significant feature and the

lowest one .. 110

Figure 8-1: SDN architecture with traffic classification 120

xii

List of Tables

Table 1-1: Existing Traffic Classification Approaches and Challenges 9

Table 2-1: Different Activities for Eleven Web Applications 23

Table 2-2: Pros and Cons of C5.0 Algorithm .. 35

Table 2-3: confusion matrix ... 38

Table 4-1: burstiness & idle time parameters for packet analysis 68

Table 4-2: Burstiness & idle time parameters for flow analysis 70

Table 4-3: Conventional features proposed by previous studies [18–21, 24, 28,

92, 100, 109, 110, 112–114, 119–125, 141–143] 72

Table 4-4: Summary of the data collection for six applications 73

Table 4-5: Accuracy of the classifier with feature sets 75

Table 4-6: Features used in the classifier model .. 76

Table 5-1: summary of the collected data ... 83

Table 5-2: Application keywords ... 84

Table 5-3: DNS enquires .. 85

Table 5-4: DNS enquires .. 88

Table 5-5: Overall results for classification of the observed data 89

Table 6-1: Features selection for each data subset .. 94

Table 6-2: Features hierarchical clustering ... 95

Table 6-3: The P-values for ten users ... 101

Table 7-1: Accuracies for the first three classifiers ... 105

Table 7-2: Accuracy for the C5.0 classifier ... 106

Table 7-3: Percentage attributes usage in C 5.0 classifier 106

Table 7-4: Confusion matrix for all features .. 108

Table 7-5: Accuracies for different feature sets using C5.0 111

xiii

Table 7-6: Average accuracies with different feature sets using cross validation

 ... 112

Table 7-7: Attributes usage in C 5.0 classifier ... 113

Table 7-8: Confusion Matrix results for optimal classifier 114

xiv

Abbreviation List

ISPs Internet Service Providers

VNI Visual Networking Index

IANA Internet assigned numbers authority

CAGR Compound Annual Growth Rate

DPI Deep packet inspection

MLAs Machine-learning algorithms

TC Traffic classification

SLFC Session level flow classification

PSD Packet size distribution

MSSC Message size sequence classifier

MSSes Message size sequences

STF Small time scale flight

LTF large time scale flight

T burst_threshold

I Idle_threshold

CSCAN Centre for Security, Communications and Network Research

PCA Principal Component analysis

CDN Contents delivery network

QoS Quality of service

QoE Quality of experience

SVM Support Vector Machine

GB Gradient Boosting

SDN Software defined network

1

1 Introduction

1.1 Introduction

In the context of ever-increasing network activity and reliance on the

Internet, monitoring and characterizing network traffic is critical in providing

network administrators with the necessary information for operational and

security activities. A number of directions were explored by research community,

such as establishing what are the websites that the users are

interested in, how much traffic is generated by specific network

applications, and whether these applications or services can be controlled in

terms of network resource demands [1]. A report published by Cisco predicted

that global IP traffic will raise to 4.8ZB per year by the end of 2022 [2]. In addition,

characterising network traffic is a critical step for detecting network intrusion and

traffic anomalies, both typically featuring in end-user and corporate environments.

A UK-based survey from 2018 about cyber security breaches acknowledged that

the majority of all organisations depend heavily on digital environments such as

email, websites, online banking and shopping; therefore; providing a secure

system in Internet environment is vital to keep people’s life safer and easier. One

of the reasonable solutions is to do traffic classification and labelling applications

to set priority for significant traffic and dismiss the noise in order to maintain

resources and keep optimal performance. It was observed that when a data is

captured under windows, there are some traffic comes in the wire even a user not

access Internet as these computers owned by the University. They run web-

based services in the background that add noise to captured traffic.

There are four main approaches (port-based, packet payload based, host

behavioural, and statistical-based) that have been used for characterizing

Internet traffic and giving the administrators, ISPs (Internet Service Providers),

2

and engineers a better view of the network activity. In the early days of the

Internet, applications were identified based exclusively on port number [3].

However, due to the continuous growth of Internet applications, this is no longer

an option, as applications have been moved towards a web-based front-end (i.e.,

they used http or https with port 80 and 443 respectively) or used dynamic ports

[4]. Consequently, this method becomes inaccurate in identifying applications and

typical performance ranging between 30-70% [5]. A more accurate method is

Deep packet inspection (DPI) [6] that relies on the contents of the packets to

identify signatures of applications or protocols. This method is also proved to be

inefficient in recent years as most applications use encryption methods,

moreover, it breaches the privacy of the users and needs more computational

resources [7, 8]. The research community has therefore introduced two

techniques, focusing on host behaviour and statistical methods, to avoid these

limitations. The former technique is based on how an application behaves

depending on a variety of communication patterns at transport layer generated

from this application. Despite the high accuracy of this method (over 90%) that

was considered by many studies [9–15], it is unable to identify application name

such as YouTube or Netflix while classifying them as streaming. However, this

technique is primary used to identify P2P applications with high accuracy as the

approach relies on the connection patterns that are generated from the peers. In

other words, this approach based on analysing parameters that are collected from

different flows in the end-point before successful application identification.

In contrast, the statistical approach tends to outperform previous methods with

high accuracy (over 95%) and it is widely used by the recent studies [16–18] [19–

28]. This method uses packet header rather than payload information, which

makes the approach efficient even with encrypted traffic and does not breach the

user’s privacy; it achieved a relatively high accuracy while employing machine-

3

learning algorithms MLAs. Different techniques have been used in this method

from supervised to unsupervised and semi-supervised ML. Whilst the supervised

approach outperforms the other techniques, building robust ground truth data for

training a machine-learning model is required. In addition, it is apparent that most

papers tried to do coarse classification. In other words, most studies identified

either application class such as streaming and browsing, or protocols such as

HTTP and FTP, or P2P applications such as Bit Torrent and skype. Few papers

tried to do fine-grained classification such as the one in 2018 [29] that identified

application type such as Facebook and Google services. Such studies typically

employ machine learning approaches to classify Internet traffic based on

recycling conventional features, focusing on the amount of data transferred in the

network or the arrival timing for packets, flows or session. These features are

calculated statistically and are therefore subject to change due to the continuously

changing in the content of web pages. The features that are introduced in this

thesis are based on timing between packets within a flow or between flows within

a session based on burstiness and idle time. In other words, they are counting

the activities of a user when he/she is browsing internet websites to represent the

behaviour of the application.

Flow accounting methods such as NetFlow [30] represent the de-facto standard

in monitoring and analysing network traffic. A NetFlow record, however,

comprises limited aggregate information about packets traversing the network

and is usually considered inadequate to describe application behaviour. This

project aims to propose and investigate a novel mechanism to define web

applications as seen through the generated network traffic using tcptrace tool.

Therefore, this thesis proposes novel features to describe precisely a web

application behaviour in order to segregate various user activities. Extracting the

most discriminative features, which characterise web applications, is a key to gain

4

higher accuracy without being biased by either users or network circumstances.

This work investigates novel and superior features that characterize a behaviour

of an application based on timing of arrival packets and flows.

While the application does indeed exhibit a different signature in terms of packet

arrival distribution, user behaviour may also influence this distribution, particularly

in relation to long-term activity, as idle times are a factor of user behaviour too.

The results showed that some features can be affected by a user behaviour when

different users browse the same application. Using different feature or set of

features could lead to different results, therefore, more investigations are needed

to prove whether a user’s behaviour is affected or not by the proposed features.

The rest of the chapter is organized as follows: Section 1.2 illustrates the growth

and rapid evolution of Internet traffic over the past decade. Section 1.3 identifies

the need for traffic classification. Section 1.4 discusses the methods of current

traffic classification approaches and challenges. Section 1.5 highlights the aims

and objectives of this thesis, and section 1.6 presents the thesis structure.

1.2 Context – Internet Traffic Classification

In 2019 the Cisco Visual Networking Index (VNI)[2], which is responsible for

tracking and forecasting networking applications, published a report that

predicted the anticipated growth in global IP traffic and the number of connected

devices from (2017-2022). The report forecasts that the annual global IP traffic

will stand at around 4.8 ZB per year by the end of 2022, while the annual rate was

1.5 ZB per year by the end of 2017. Figure 1-1 shows the yearly consumption of

IP traffic between the years 2017-2022. The boost in compound annual growth

rate (CAGR) that surpasses 26% is a substantial increase in yearly Internet traffic.

Moreover, the report also highlights the following key findings with respect to the

growth in user Internet activity. Broadband speeds will double by 2022, the

5

Figure 1-1: Cisco VNI Forecast Report: Growth in IP Traffic (2017-2022)

globally fixed broadband speeds could increase from 39 Mbps in 2017 to reach

up to 75.4 Mbps in 2022. Wireless traffic will overtake wired traffic by 2022; the

percentage of wireless and mobile devices traffic will be about 71% of IP traffic;

however, only 29% of IP traffic will be generated by wired devices by the end of

2022. Smartphone traffic will also exceed PC traffic by 2022; in 2017, the traffic

generated by the PCs was about 41% of total IP traffic, while by 2022 this

percentage will decline to approximately 19%. In contrast, the IP traffic generated

by the smartphones will be 44 percent of total IP traffic by 2022, up from 18

percent in 2017. The growth of PC traffic will be 8%, while the percentage of other

devices such as TVs, tablets, M2M, and smartphones will be around 17%, 39%,

44%, and 58% respectively. Two sources of web traffic are generated across the

computer networks. Traffic that is being generated by devices such as TVs,

tablets, PCs and smartphones, which is mentioned by Cisco VNI Forecast Report

and is emerging from people browsing the Internet. In contrast, there is another

type of web traffic that is generated by search engine, good bot traffic, hacking

tools, and scrapers, which is belong to non-human sources. The later one

6

represents a majority of web traffic according to a report that was published by

Incapsula [31], which is a provider of cloud-based security for web sites. Figure

1-2 shows the distribution and composition of Internet traffic in different

categories. In addition to the growing constraints on existing networks, a profound

increase in Internet traffic also affects storage devices and application servers,

influencing the overall performance and efficiency of network infrastructures [31].

This makes the task of classifying Internet traffic for subsequent policy

implementation even more pertinent, requiring a sophisticated yet scalable traffic

classification approach to manage network traffic efficiently. The following section

discusses the need for traffic classification in more detail.

Figure 1-2: Web Traffic (Type) Distributions [32]

1.3 Traffic Classification Importance

Traffic classification can be considered as an initial task of analysing different

patterns of applications and protocols in the network and subsequently utilising

classification information to manage different tasks such as monitoring, service

discovery, routing control, and resource optimisation [33]. The existing solutions

7

for traffic monitoring and management such as Solarwinds, Nmap, spiceworks,

Zabbix, and Cacti are only used to monitor network devices (i.e., switches,

routers, and firewalls). In other words, they provide visibility into the devices on

the managed networks. These tools provide detail information about the CPU,

temperature, fan and etc. Other tools such as ntop [34] is a traffic probe that

capturing packet using libpcap to display information on network traffic. This tool

provides information regarding volume, bytes, and IP addresses and classify

traffic based on IP, port, and protocols. Also, Wireshark is an open source packet

analyser that capturing packets at wire speed or reading existing dump files. It is

able to filter, group and annualize network traffic. IP SLA is a tool to detect jitter,

packet loss, and MOS (Mean Opinion Score). This tool can use DNS to verify

protocols such as FTP and HTTP. As can be noticed that these solutions are

providing only information about volume, IP addresses or protocols such as FTP

and HTTP. Therefore, the method proposed in this thesis is to classify traffic into

different web applications such as Facebook, YouTube and Gmail. As an

example, application identification helps Internet Service Providers (ISPs) in

managing and prioritising Internet traffic classes and appropriating network

resources. Traffic classification, therefore, aids network administrators in

accurately distributing limited network resources in an effective manner. Also,

traffic classification is helping the network designers to understand different types

of traffic to apply quality of service (QoS). The requirements of applications and

services are different according to bandwidth, delay, packet loss and other

parameters. Therefore, knowing what application or service is associated with

network flows is essential. The next section reviews some of the limitations of

existing solutions to traffic monitoring and managing.

https://www.zabbix.com/true_open_source
https://www.cacti.net/features.php
https://www.tcpdump.org/

8

1.4 Existing Methods and Challenges

Several prior studies have discussed a range of traffic classification mechanisms

focusing on port-based mappings for traffic classification to the use of machine

learning (ML) techniques for accurate application identification. A summary of

prominent methods along with their limitations is presented in Table 1-1. In the

early stages of traffic characterisation, Internet assigned numbers authority

(IANA) port-based mapping was used to classify Internet traffic type [35]. Being a

relatively simple approach, it yielded high accuracy in the early days of the

Internet when all applications were assigned and utilised known (documented)

port numbers. After the rapid evolution of the Internet and the subsequent

increase in the number of available applications, port-based traffic identification

became increasingly obsolete. Moreover, the existence of firewalls, address

translation, port forwarding and protocol tunnelling makes it challenging to match

service with a particular port [10].

Deep packet inspection (DPI) techniques emerged when port-based classification

technique was deemed ineffective. DPI investigates the payload and the header

of the packet searching for virus, spam, intrusion or signatures that belong to

specific applications [36]. DPI is robust and gives highly accurate traffic

identification, but also requires relatively high processing time and adds to the

management overhead. Additionally, DPI schemes do not conserve user privacy

and more importantly cannot deal with encrypted applications [36]. To address

the above limitations of traffic classification, research studies also focused on

techniques which analyse the host behaviour by observing the traffic patterns

generated by different end-user applications through the network to reveal the

application type [10]. Although being more resource efficient in comparison with

DPI, behavioural classification also presented some challenges. Applications

9

have somewhat similar network behaviour, for example, VoIP and P2P could not

be accurately classified using host behaviour alone and required heuristic-based

approaches using different machine learning techniques to increase classification

accuracy. Another body of work in traffic classification employed statistical

analysis for identifying application traffic types recording numerical features such

as packet size, inter-arrival time of the packets, byte size, etc. Statistical analysis,

coupled with machine learning algorithms incorporating supervised and

unsupervised training methods, can be used to build ground truth classification

data for individual applications. The accuracy of the machine learning approaches

requires significant effort in obtaining high-quality ground truth data for supervised

classifier derivation [37].

 Table 1-1: Existing Traffic Classification Approaches and Challenges

Many hybrid approaches have, therefore, been implemented in several prior

studies to design an optimal traffic classifier. The trade-offs between high

classification accuracy, the specific approach used and system (hardware)

Classification

Approach

Method Limitations

Port-Based IANA assigned port-

mappings

Dynamic port-assignments

and tunnelling

Deep Packet Inspection Packet content and header

analysis

Computational overhead

encrypted payload

Host Behaviour

Analysis

Analyse host behaviour and

application traffic pattern

Applications with similar

behaviour are difficult to

classify

Statistical Analysis Identify applications using

numerical traffic features

Difficult to obtain high

quality ground-truth

training data

Combinatorial/Hybrid Multiple approaches,

combination of machine

learning techniques

Specific to individual

network settings

10

requirements are highly dependent on business needs and the implementation

scenario. Each of the proposed solutions focuses on or is suitable for a specific

network setting, meaning that no global classification scheme can be deployed

for at least many network environments [38]. The primary reasons contributing to

the challenges in designing a generalised traffic classification model can be

summarised as follows:

1. Resource constraints: The first reason associated with the limited

applicability of any solution is the rate of traffic traversing computer

networks and somewhat inadequate computational resources such as

memory, storage, etc. in implementing real-time traffic classification. As

mentioned earlier, while techniques such as DPI are highly accurate in

identifying traffic using extracted patterns and features from packet

payloads, the underlying equipment required for classifying traffic in even

a modestly vast enterprise network is costly.

2. Regular re-evaluation: Once an optimal traffic classifier has been built

using statistical, DPI or hybrid ML-based approaches; it needs to be

regularly updated to identify newer applications (signatures) accurately.

The classifier design, therefore, needs to account for and consider the real-

time data collection mechanism, specifically the method for continuously

acquiring ground-truth data and regularly updating/re-training the derived

classifier. This adds further management and computational overhead to

the classification system. Techniques such as offline training of the

classifier followed by online classification have been used in prior studies

to circumvent resource constraints; however, an optimal method for

regular re-training and evaluation of classification system is still required.

11

3. Limited datasets: The third reason for the difficulty of designing traffic

classification model is the inability to accurately compare among the

several presently available methods of traffic classification. Limited public

availability of data sets and lack of open source classification systems led

researchers to either build their own training datasets (or databases) that

make an accurate comparison among the available techniques even more

challenging. Furthermore, where such datasets have been made

available, training data are usually labelled using basic techniques such

as port-based application mappings resulting in low-quality training data.

Finally, as the complexity of the Internet continually evolves, the composition and

volume of the traffic characteristics will alter continuously. Therefore, new

methods are being continuously introduced for accurate traffic classification and

Internet traffic identification will remain a prevalent research problem in future.

1.5 Aims of the Project

This project aims to propose and investigate novel mechanisms to define web

applications as seen through the generated network traffic. The project is divided

into the following distinct stages.

1. Display the real Internet traffic nowadays and how it is predicted to grow in

the future (chapter 2).

2. Review prior research in Internet traffic classification, identifying means of

recording network application traffic patterns and characterising traffic

(chapter 3).

3. Define novel traffic metrics for application and user traffic profiling and

recording. To accurately describe the application behavior, the project will

consider parameters such as the on/off data transfer, defining

characteristics for a number of typical applications considering timing and

12

patterns for user events as part of a network application session (chapter

4).

4. Collect datasets appropriate for studying application behavior, under

controlled environment to build the ground truth data and real traffic

network to investigate the feasibility of the proposed method (chapter 5).

5. Perform an analysis of the proposed features to determine whether they

are discriminant for identifying network applications based on the traffic

that they exchange. Data analysis aims to find out the correlation and

variability between the proposed features; consequently, an application

behavior could be represented by few features rather than applying many

features which enhance the classification accuracy (chapter 6).

6. Use machine learning techniques with an extended set of traffic features

as input to derive an Internet traffic classifier that will be validated and

evaluated against a number of applications (chapter 7).

7. Displays SDN (Software-defined network) technology to build an

architecture to identify different applications based on IP addresses

matching (chapter 8).

1.6 Thesis Structure

The remainder of thesis is structured as follows: Chapter 2 introduces the Internet

infrastructure and overviews the technologies that have accelerated Internet

performance, such as cloud computing and CDN. These technologies make the

traffic classification harder as such environments increase the number of Internet

applications and the possibility of continuous developing by the applications

owners. Therefore, the behaviour of the applications could be different during the

time that requires new definition for the existing metrics and propose new ones.

In addition, this chapter provides an indication of what applications/traffic exists

13

on this environment and connected devices. Moreover, this chapter focuses on

network performance and challenges that could be faced during data

transmission such as throughput, delays and loss of packets.

Chapter 3 presents the methods that are proposed by the research community

for classification Internet applications with the emerging of Internet and how the

early methods became inapplicable with nowadays applications. This chapter is

ended with comprehensive discussion and conclusion for the most challenges

that face the traffic classification.

Chapter 4 presents the main principle of burstiness and idle time and how the

proposed features are generated. This principle identifies an additional set of

features that can be used to discriminate between network applications, based

on the statistical differences between inter-arrival times of packets and flows. The

burstiness principle defined in two levels, the first level is in the context of packet

analysis and the second level is in the context of flow analysis. Finally, the chapter

highlights on a preliminary study that is conducted to determine whether the

distribution of arrival time does indeed differ when using different applications

Chapter 5 shows a methodology and a collection of two types of data sets to test

the feasibility of the proposed features mentioned in chapter 4. The first data set

contained 10 users that were browsing 11 applications. The second data set was

real data that was collected from a lab at Plymouth University for 20 users and

different Internet applications; the chapter also presents the methodology of the

proposed design for traffic classification. Moreover, the chapter details the pre-

processing steps that were carried out on the data before evaluation by the

classifiers.

14

Chapter 6 presents a feasibility study of using statistical techniques for selecting

potential features by a thorough examination and preliminary testing. This

analysis aims to determine whether the proposed features have a positive impact

in discriminating between applications. This chapter aims to determine the

possible correlations between input features, exploring the possible relationship

between input and output features and investigating the minimum set of input

features that maximize the accuracy for output prediction.

Chapter 7 presents an in-depth investigation into approaches that classify Internet

traffic to evaluate the performance of the proposed features and to determine the

validity of the present features. Building upon the previous chapters that

investigated the features and the proposed design, this chapter proceeds to

evaluate appropriate classifiers to determine the overall performance that can be

achieved.

Chapter 8 displays SDN (Software-defined network) technology to build an

architecture to identify different applications based on IP addresses matching.

This chapter explains the main components of this architecture and the possible

advantages and disadvantages.

Chapter 9 Presents the main conclusions from the research, highlighting the key

achievements and limitations. The chapter also discusses the future research and

development.

15

2 Internet Traffic Review

2.1 Introduction

Today’s Internet is a massive engineering system that contains of hundreds of

millions of servers, communication links, routers and switches; with billions of

users that are accessing this environment via laptops, tablets, and smartphones

[39]. Accessing the Internet enables users to buy and sell goods, watch movies

or TV programs, play games, communicate and share information with friends

and others. Companies and employers try to exploit the Internet for advertising

their services and goods to customers based on their requirements. Therefore,

any online activities that occur in this environment can be monetised. The

success of such online environment is based on the availability of high-bandwidth

and low-latency network connectivity that triggered of emerging new services

such as social networking, content delivery, and e-commerce at large scale. This

environment opens the doors for new technology to appear such as the Internet

of things, M2M, gaming network and smartphones that run different applications

and causes a massive of Internet traffic. Scheduling such massive traffic with the

existing resources for a diverse set of applications is a challenging problem that

needs a scalable and dynamic approach to manage and classify each application.

This chapter aims to provide a general introduction to the Internet infrastructure

and overviews the technologies that have accelerated Internet performance, such

as cloud computing and CDN — in addition, presenting the main points of applying

traffic engineering and the appropriate tools in capturing, analysing and reduction

traffic.

16

2.2 Internet Connectivity, Applications, and Traffic

The Internet is a collection of massive number of networks that contains hardware

and software equipment that provide a global communication [40]. There are

different Internet applications have been emerged recently such as social

networks (e.g., Facebook, Twitter), video applications (e.g., Netflix, YouTube),

and personal applications (e.g., iCloud, Dropbox). These applications need

various requirements such as availability of resources and response time due to

an enormous number of users access them over the Internet. For example,

hundreds of processing units with thousands of servers spread over the world to

provide a high quality of service for Google’s users or Facebook. Therefore, many

invented technologies have been built in the recent of years to fulfil this demand

(e.g., cloud computing and contents delivery network (CDN)) [41]. Cloud

computing means that the resources are available in data centres and

everywhere with infinite scale and high response time to provide services on

demand with low cost to users over the Internet [42]. The National Institute of

Standards and Technology (NIST) describes cloud computing based on five

Primary features which include on-demand service, easy remote access even

from mobile devices, cloud resources are shared by customers, flexible in

providing and release resources, and services are priced based on usage [43].

Applications in cloud computing have the advantage of an automatic-scaling

feature which is not available in the traditional applications that provides these

applications with high performance, availability, and lowest cost. Multiple

applications in the cloud-based are dissimilar from the traditional applications in

that share on a virtual machine (i.e., computing, memory, storage, and resources

of a network) that provided by cloud infrastructure service provider.

17

On the other hand, CDN technology consists of servers that are connected to the

origin server and located at massive load points. The primary goal is to deliver

contents to clients from the nearest server that decreases not only the distance

of carrying the contents from the main cloud but also reduces the number of hops

in the packet travelling from point to point. This increases the performance of the

system as it provides low latency and low packet loss [44]. The CDN consists of

many geographical locations called PoPs (points of presence) that are cached

with the contents to cover as much as possible users. For instance, when a user

tries to access a web site that is hosted in the US, the contents of this web site

are delivered from the PoP that is located in London [45] as Figure 2-1 shows this

case clearly.

Figure 2-1: Low Latency for Applying CDN[45]

18

2.2.1 Internet Traffic

Internet traffic has grown dramatically during the last decades, based on a study

published by Cisco [2] showing that the global traffic on the Internet networks was

about 100 GB per day in 1992. In 2002, after only ten years, it raised to 100 GB

per second, the raising nearly 86,440-fold within one decade. In 2017, global

Internet traffic extended more than 46.6 TB per second. This study predicted that

the traffic will reach up to 150.7 TB per second in 2022. There are many reasons

behind this growth in such traffic; mainly, the increasing number of Internet users

which has been growing from 500 million users within the past 15 years to more

than 4 billion users [46]. Moreover, each person is expected to have about 3.6 of

connected devices in 2022 up from 2.4 in 2017. Besides, the emerging of M2M

applications such as healthcare monitoring, traffic control (vehicles), security in

business and transportation which increase the growth of connected devices in

the Internet environment. Further, other devices such as TVs, Non-Smartphones,

PCs and others are also contributing to this growth, and the amount of generating

traffic differs from one device to another. Figure 2-2 shows that smartphones will

be the main source of global traffic (39 percent) in 2022 [2]. Although the M2M

devices represent the majority of the connected devices, they are less generating

from others. On the other hand, content delivery network technology (CDN)

caches content in local servers which provide Internet availability for users and

satisfy their requests [47]. For instance, a user from North America was able to

access a third percent of his traffic from CDN area in 2017 and this figure will raise

up to half percent by 2022. Universally, the average internet traffic, which

delivered from CDN, was 56% in 2017 and it expects to be 72% by 2022 as shown

in Figure 2-3. Another important factor is a broadband speed that also would be

increased from 39 Mbps to 75.4 Mbps during the period from 2017-2022.

19

Figure 2-2: The Forecast of Global Traffic, 2017-2021 [2]

Figure 2-3: CDN Internet Traffic Growth, 2017-2022 [47]

A consumption of user for different Internet applications certainly raise when he

has more bandwidth. Internet service providers found that with more bandwidth

more traffic generates. Consequently, and due to the enormous traffic and users,

there are concerns of breaching the security. For example, the FBI IC3 (Internet

Crime Complaint Centre) received on average about 22,000 incidents of cyber

attacks per month in 2014, with total loss of approximately $800 million [48]. Also,

another report from Data Breach Investigations found about 80,000 incidents

around the world in the same year and causing losing about $400 million [49]. In

May 2017, the cyber attackers released a phishing program known as WannaCry

20

through victims’ email, which encrypted all victim’s files. The program affected

more than 200,000 computers around the world and they asked the infected

users to pay $300 to control back on their files according to the Europol [50]. The

biggest impact was in the UK in the NHS sectors which were unable to access

their digital information caused cancellation of operations and appointments as

patients’ information were encrypted.

2.3 Network performance and applications

The aim of building a robust network is to enable the Internet services to move

higher data between the clients and servers rapidly and without any loss in the

data. However, there are some challenges that limit this aim such as throughput,

delays and loss of packets. When the packet begins his journey from the source

host, crosses many routers, and finishes in the destination host, it suffers from

different types of delays at each node during this route. These delays are

processing delay, queuing delay, transmission delay and propagation delay,

which are in total give the actual delay that happens in the network.

Consequently, such a delay will impact on the performance of Internet

applications such as email, browsing, and video streaming[51]. The individual

value of these delays changes from significant to a value that could be negligible.

For example, the propagation delay could be a few microseconds within local

connections while this delay could be higher for hundreds of milliseconds for

geographical connections. The transmission and processing delays nowadays

are negligible as the majority of the routers have high transmission speed and

throughput. On the other hand, the queuing delay that is unlike the others and it

is more interesting by the research community can alter among different packets

as it is harnessed by the policy first-come-first-served. For example, when an

empty buffer of a router receives 10 packets at ones, the first two or three packets

21

could be sent without delay while the remaining packets might be sent in different

delay. Therefore, this delay impacts by different factors which are the arriving rate

of the packets to the router, the transmission rate of the packets from the router,

and whether the arriving traffic comes in discrete form or bursts form. When the

ratio between the arriving packets rate to the transmission bits rate is greater than

1, the queue would increase gradually until the router begins to lose packets;

therefore, the traffic engineer tries to make this ratio less or equal to 1. In the

opposite scenario, when the router is set to the ideal case, then the queueing

delay would be formed based on the nature of the arriving packets (periodic or

burst). The second case would be the worst when the traffic comes in burst forms

and the queuing delay would also increase gradually.

2.3.1 Packet Loss and throughput

Traffic intensity in telecommunication networks denotes to the number of

occupied resources (servers) at a given instant of time. When the traffic intensity

is nearly 1 or less, the queuing delay will not reach infinity. In contrast, when the

traffic density is greater than 1, the queueing buffer would be full and there are no

space to store packets, therefore, the packet is dropped by the router and this is

the packet loss. This phenomenon happens when there are high traffic density

and the packets losing increases with increasing the intensity. Therefore, the

delay and the probability of packet loss determine the network performance [51].

Throughput is also considered a measure of performance in a computer network

and could be defined as the amount of data that the end node can receive per

time. In voice applications, the throughput is very important and should be no less

than 24 kbps for voice and 256 kbps for video applications with low delay. To

understand the throughput, two scenarios are taken to explain this concept. The

first scenario, when a server starts transferring data to a client, the rate of

22

transmission should not exceed the minimum transmission rate of any node within

a single link. In a different scenario, when a data is transferred from 10 servers to

10 clients and all the server shares the same link. The throughput rate is no longer

calculated from the Min of the transmission links rate; instead, it is calculated from

the transmission common link rate divided by 10 [52]. Therefore, the Internet

networks could be impacted by the bottlenecks circumstances due to the

bandwidth shared as shown in the above example, and this leads to high latency,

packet loss and network outages.

2.3.2 Popular web applications

Internet traffic contains a variety of applications, such as online search, e-

entertainment, online social networking, and gaming, all parts of people’s lives.

Most popular web applications [53] are selected to explore the fact that different

applications can generate different characteristics based on application type and

usage. Table 2-1 shows the properties of the web applications, which were

browed by human being with the most common activities for users when he/she

accesses the Internet. In spite of the common activities for applications that

belong to the same class such as Facebook and Instagram, there are different

characteristics for others when comparing among different classes. From the

network traffic perspective, Facebook and Instagram web traffic could be

classified into three clusters as were reported by [28], the first cluster contains the

biggest payload such as streaming video, the second cluster contains information

to control and establish connections, while the third one relates to the background

and live information which is updated frequently. As shown from the Cisco report,

that the video data represents a major part of traffic with volume reaching to

terabits per second TB/s [53], such traffic cannot be provided from one or few

servers to end users, rather it is provided by CDN that is available to user’ location

23

Table 2-1: Different Activities for Eleven Web Applications

App/Type Web

browsing

Instance

messages

Streaming VoIP Email Search engine

Facebook &

Instagram

× × × ×

You Tube × × ×

Skype × × ×

Gmail &

Yahoo mail

 ×

BBC news &

CNN

× × ×

Google search

& Bing

 ×

Amazon × ×

Due to the popularity of this application, the ISP (Internet service provider) must

offer a good service to their clients in particular with large bandwidth demand.

When the YouTube web application is requested by the client, several

communications occur between clients, YouTube server, and cached contents

server (CDN) [54][55]. According to study[28], the authors showed in practical

that the YouTube traffic is not just a streaming, but also include other two classes

which are video searches and messages between the YouTube servers. Looking

at Skype traffic, two distinct clusters could be noticed, according to [28]; the first

cluster is produced due the connections between client and super host which are

basically low level data rate, while the other cluster is generated from connections

between two clients which contains the actual calling with high-level data rate.

For Email applications such as Gmail and Yahoo email, two clusters could be

noticed, one for exchange email messages between client and server and this

type of flows could be easily identified by well-known destination port such as

24

SMTP, POP, and IMAP protocols. The second cluster regarding the flows of

directory lookup for the client and they have a low data rate compared with the

first cluster [28]. For news websites such as BBC news and CNN, three types of

flows that are generated when the client accesses such websites. The first type

is video streaming and this flows include a high volume of data, the second type

represents browsing with low bit rate flows and the last type forms search engine

with also low bit rate. For Google search and Bing websites contain only one type

of flows for a searching engine that accesses an external different website with a

low bit rate. In conclusion, different applications generate different traffic in which

different requirements need to be provided by the ISPs. The fact that the ISP

needs to identify applications in order to profile users depending on their

interactions. Therefore, providing standard QoS for the customers is not an easy

task as the end-to-end path contains several networks that introduce packet loss

and delay. The ISP offers good quality by utilizing bandwidth and availability in

particular for live applications such as VoIP, gaming, and video conference

streaming. For example, in real-time gaming that needs instance updating of a

game information, a quality of experience (QoE) depends on latency and packet

loss. Also for VoIP and video, the jitter (variation of latency over time) and packet

loss are important for providing consistent service. Moreover, a new trend

appears for giving the best quality based on specific application, for example, the

ISP Australian iiNet [56] increased bandwidth for customers who accessed the

Netflix application. In contrast, the application provider does efforts to minimize

packet size requirements to reduce application burden which leads to minimum

bandwidth allocation and improves QoS for packet loss and latency. Therefore,

labelling flows/packets based on the application that using traffic classification

(TC) techniques is vital for better QoS by routing appropriate traffic [57]. For

example, the SDN (software-defined network) updates the network parameters

25

based on requirements in the flows which are identified using TC engine,

therefore the success of SDN operation relies on accurate classification [58].

Although new technologies have been introduced in this area such as cloud

computing and CDN, the continuous increase of the traffic could influence

performance, reliability and scalability of many Internet applications. Poor

handling of these parameters could cost companies a lot of money as well as their

reputation [59], therefore, the quality of Internet applications and services must

be under a strict policy. The Internet success is dependent on providing sufficient

resources and suitable performance requirements for present and future

applications. For that reason, the internet service providers (ISPs) need to

accommodate these requirements, but all traffic is encrypted, consequently, it is

difficult to differentiate between flows. This project aims to propose and

investigate a novel mechanisms to define web applications as seen through the

generated network traffic to provide services with good quality.

2.4 Traffic and performance monitoring

The process of monitoring transmitted or received traffic within an Internet

network is called internet traffic monitoring that aims to the following benefits:

1. Characterizing Internet traffic and giving the administrators, ISPs

(Internet Service Providers), and engineers a better view of the network

activity

2. Setting priority for significant traffic and dismiss the noise in order to

maintain resources and keep optimal performance.

3. establishing what are the websites that the users are

interested in, how much traffic is generated by specific network

applications, and whether these applications or services can be

controlled in terms of network resource demands

26

4. Identifying new applications and protocols, detect malicious or suspicious

activities and provide a policy to delete or block such activities.

This section contains information regarding packets, flows, and tools that are

used to capture and analysis traffic.

2.4.1 Packets

Traffic characteristics are important in performance analysis to calculate

throughput, packet loss, packet delay in the links and routers, moreover, it is vital

in network engineering that is concerned to know the network capacity and

demand, monitoring and enhancing the operation of the network. The simplest

form, which is valuable in traffic, is a packet, which is a principal unit in the IP

protocol. Monitoring a collection of packets at some point of the network can

reveal different activities. The most essential information in the packets is the

manner of packet arrivals at observation point such as router or link. The arrival

packet times could be summarized through the distribution of the characterization

of inter-arrival process {In, n=1, 2…} where (In) = An - An-1, where An refers to the

arrival of current packet time and An-1 refers to arrival of previous packet time. The

packet size is also important which is equal to a total number of bytes in the

packet, using time series of packet arrival with the size of the packets could reveal

very essential information as the packet size varies during the time[60]. Packets

could be also defined as a collection of packets during the active time, and zero

packets during idle time, the state is similar to on/off process [61]. This traffic is

generated when a number of packets form a train, which is defined as pulses of

packets that are separated by an interval greater than a defined threshold

between inter-arrival packet times. The precise of determining the right threshold

does not change from the distributions of packets when it is greater than a typical

value [62]. This definition is important to understand traffic properties and the

27

transport protocols that are responsible for generating such phenomena when the

main source of traffic (applications) is accessing. Observing and examining this

structure helps understanding the traffic characteristics and their applications. A

collection of trains called a session, the session could be defined as a single

activity for the user when he/she accesses an application such as browsing page

or sending an email.

tcpdump: tcpdump is a program for capturing the packets that travel through

network interfaces. The libpcap library is an application programming interface

(API) includes pcap which is implemented by Unix-like systems and used for

capturing network traffic [63]. The interfaces in the network could be monitored

by this library that contains entry points for that purpose and collects the desired

packets. If the interface is set in the promiscuous mode, all packets would be

collected included the host packets. The raw packet data is delivered using

libpcap library to a higher software that is responsible for analysing packet header

fields and interpreting protocols. This tool provides different tasks over capturing

and presenting statistical information of packets such as debugging and

troubleshooting issues. Capturing packets in the local area network (LAN) is

easier from capturing within links of the Internet as the state becomes more

complicated. With higher data bit rate, higher traffic is aggregated with more

diversity and volume, hence, special requirements should be met for such data

collection [64].

2.4.2 Flows

Packet levels are required to identify applications; however, a preferred approach

and input would be traffic summarization. Instead of processing and storing

information about individual packets, analysis may focus on packets transferred

between endpoints that share the same attributes. This term is called a flow,

28

where packets have the same source and destination addresses, source and

destination ports, and protocol [65]. The information in the flow is valuable as it

presents some traffic characteristics as follows:

 The source address shows who is initializing the traffic.

 The destination address displays who is receiving traffic.

 Ports refer to some protocols such as http or https as port numbers are 80

or 443.

 Priority of traffic could be examined by the class of service.

 Flow timestamps that show flow life.

 TCP handshakes flags.

From an application perspective, a flow can be defined as packets exchange

between a sending application and receiving application. Labelling a packet that

belongs to an application leads to label all packets in the flow consequently, this

mechanism speeds up the classification process in high link networks and

requires no additional resources. The IP flow could be collected at a various level,

it might be collected by the port number, protocol type, IP address or combination

of these attributes. For instance, VoIP applications have two protocols, H.323 that

is setting up a call and RTP that is carrying the voice data. Marking the H.323 flow

leads to tag all RTP/RTCP flows that share the same source IP and destination

IP [66]. In recent years, the researchers and operators have used flow-based

techniques in different complex applications such as management of resources,

traffic classification, and intrusion detection rather than simple diagnosing and

accounting. They are carried out easy, scalable as well as their wide availability

in existing hardware using standardized export formats such as NetFlow.

Capturing flows: reducing the volume of data traffic that requires more resources

is the key to collect and manage packets in high-speed links. Different methods

29

have been emerged to achieve data reduction. Simple Network Management

Protocol (SNMP) is the most common approaches that use counter methods for

data reduction, and the collection of flow records [67]. The first type is based on

counting bytes or packets with time series, this approach is applicable in all

routers. However, there are problems in data collection that utilized SNMP, the

first problem regarding packet loss as the approach uses UDP for transmission.

Secondly, losing synchronization in the time series through different network

interfaces as the polling used for data collection. Similarly, sFlow which is a

protocol that used in high-speed monitoring as it selects one packet for every

sampling rate and gathering the total size of all the selected packets and send

them using UDP to the collector. In spite of the SNMP and sFlow protocols

provides critical information about the bandwidth and how it is being utilized by

the IP network, the operators cannot rely on this tool to characterize Internet

applications and patterns which is important in business thrive. The most powerful

approach than counters, which shows network activities in simple form with losing

important traffic characteristics, is capturing data traffic via packet trains or flows,

which provides valuable information to the ISPs and in data analysis field. The

concept of packet train was first introduced in [62] and it provided summary

information about the Internet traffic that used for uncovering basic network

activities, applications and users monitoring, network design, and security

analysis. The packet trains can be captured using the tools that are embedded in

the main routers. The drawback in the packet trains is the difficulty of determining

a general definition for the end time of the packet train. There are different criteria

to determine this time, either by setting time out the threshold for the inter-arrival

packets or by the whole flow or by observation the FIN or RST packet [68].

30

 Tcptrace: Capturing packets which share the same 5-tuples within time

period called flows as presented early where most routers and switches

nowadays export flows in the form of NetFlow. NetFlow represents the de-

facto standard in monitoring and analysing network traffic that invented by

Cisco and embedded in their equipment [69]. However, the information it

provides is not enough to describe the application behaviour. Modifying

this tool is not applicable as it is owned by cisco, to this effect, the present

work customised the popular tcptrace utility to generate classification

features based on traffic burstiness and periods of inactivity (idle time) for

everyday Internet usage. The collected Internet traffic can be analysed

using the tcptrace tool [70], developed at Ohio University and is widely

considered a useful tool for identifying network flows [71]. The tcptrace

utility segregates traffic sent between client and server and vice-versa

while other tools such as Wireshark group the sent and received traffic in

a single stream [72]. It is used specifically to analysis TCP connections by

filtering dump files from tcpdump as input and output summary report with

the separated flow. The research community has previously used tcptrace

to extract a lot of features to classify Internet traffic as well as for intrusion

detection [73, 74]. Features were extracted from tcptrace tool directly by

making some modification inside this tool to generate more features, or

indirectly by writing an external script based on features taken from the

tool. In [58][71], they used the same attributes which were focusing on

flow-group and time occupancy. Flow-group is generated during the first

few seconds of communication and based on the same IP address, while

time occupancy depends on the ratio of flow duration over the entire

duration. The state of occupancy could be high when the data transfers

continuously while the state could be low when the data transfer occurs in

31

a short duration of time chunks. The main drawbacks in capturing trains of

packets and flows are the absence of the inter-arrival packet time and the

difficulty of determining precise time-scale[68].

2.4.3 Challenges

The previous sections presented clearly the massive volume and complex

properties of traffic that existing in the computer networks. The development of

the Internet from single backbone before 1995 to enormous interconnections

nowadays make the difficulty to determine a network that explains a global view

to the entire Internet traffic [60]. Therefore measuring and characterizing such

traffic can be challenging for engineers and researchers. There are different traffic

characteristics in different networks, in other words, the properties of local point

in some network might not be the same at another network. The traffic attributes

seem to be not the same at home network, university campus, backbone network,

and access network. Moreover, the packets that are passing through the physical

layer could be affected by corruption, delay and loss that are not seen in the

network layer. Capturing packets at high-speed links is a challenge as such links

produce hundreds of megabytes per second that make the data processing,

storing and managing very difficult. The suitable case is to capture packets for a

short time or summaries these packets in the flow form or capturing process

would be exclusive for only packet header. Moreover, traffic collection could

contain sensitive information for both users and ISPs as capturing full packets

could reveal different user activities such as passwords, visiting websites and

emails. ISPs could display information about the network such as customers,

interconnection points, network peers, and policies which regard important

information for the competitors.

32

2.5 Statistical modelling

Statistics is a mathematical technique that deals with a numerical data from

collection, analysis, interpretation, presentation, and organization. It could be

classified into two parts:

1. Descriptive statistics: it refers to the initial presentation of the data in a

meaningful manner especially with a lot of data with basic calculation such

as mean, median, and standard deviation to show information about a

group of data. These statistics are a measure of central tendency or

variability and as follows:

 The measure of central tendency: This measure summaries

statistics for a feature to display how the distribution of the values

around the middle. The most frequently measures that are used in

determining the central tendency of the data are mean and median.

These are very simple arithmetic that calculates the average and

midpoint of the data respectively, they are powerful as they are very

sensitive to the outliers in the data. The outliers usually have high

or low values in the feature that deviate from other values, pre-

processing such outliers is very important to avoid overfitting in the

classifier.

 The measure of variability: The variability measures the dispersion

in a feature value and displays how the distribution of the data is

spread out which is an opposite concept for the measure of central

tendency. The feature values are more consistent when variability

is low, while with high variability, the values are farther from others.

The most common measures of the variability are range and

stranded deviation, the range is the difference between two

33

extremist values and become useful when the size of the sample is

small. In our work, the range was divided into two separate

measures (i.e., maximum and minimum), these two measures were

calculated for each feature. While the standard deviation is the

difference between each value in the feature and the mean value

for that feature, higher standard deviation means the feature values

more spread out, while when the data are closer from the mean, the

standard deviation is lower.

2. Inferential statistics: these techniques deal with a subset of entire data

and draw conclusions based on hypothesis testing, estimation of the

parameters, and their correlation within data. This type of analysis reveals

the hidden information of the relationship between the numerical

characteristics that cannot obtain with the machine learning techniques.

These statistics can be test them using the following parameters:

 Hypothesis testing: this is the procedure of carrying out some statistical

tests on a sample of data to draw conclusions about the overall population.

There are two hypotheses (null and alternate) which test the validity of our

assumption for statistically significant or not.

1. Null hypothesis: this hypothesis assumes that there is not a

difference or a significance in the sample and it is always

homogeneous.

2. Alternative hypothesis: if there is a difference or a significance in

the sample, the null hypothesis will be rejected based on P-value.

 P-value: after proceeding a hypothesis test in data, the P-value measures

the significance of the results.

 If the P-value less than 0.05, the null hypothesis will reject.

34

 If the P-value greater than 0.05, the null hypothesis is true.

To summarise the process of hypothesis testing, firstly, the null hypothesis would

be considered, secondly, collect the data and compute the test statistics. Finally,

the null hypothesis is rejected or accepted based on the P-value.

2.6 Classification

The early sections have presented the amount of traffic that could be generated

from the Internet applications which is considered as big data. For a review, a one

trillion web pages or more is available on the Internet; every one-second new

video is uploaded to the YouTube, and over 20PB of information are processed

by Google every day [75][76]. Powerful techniques and algorithms are needed for

analysing this data, machine learning techniques have been proposed as an

essential tool for this problem. This section introduces the most effective machine

learning algorithms that were used in this work.

2.6.1 Decision Tree

A decision tree is a tree that a feature is represented by a node. A decision (rule)

is represented by a link and an outcome is represented by a leaf. The classes are

split in each level by recursive binary splitting to identify records with the purest

class. The problem in the decision tree is the overfitting due to high variance in

estimating each single data point, this makes the algorithm unreliable with the

presence of noisy data. This problem was solved by using Bagging algorithm,

which is an ensemble technique deployed on decision trees. The technique

divides the samples into subsample of records and for all features, subsequently,

applying decision tree individually for each subsample and later ensemble the

results by choosing the ultimate vote. C5.0 and random forest are the most

powerful techniques that are used in this filed [77].

35

 C5.0: The decision tree could be generated by several algorithms, but the

C5.0 algorithm, an improved version of the earlier C4.5, is more well-

known [78]. The source code of this algorithm was made publically

available and also incorporated into data analysis tools such as R

programming language. Furthermore, the decision trees implemented by

C5.0 algorithm are quite robust and are easy to deploy and understand.

Supervised C5.0 also performs better than other algorithms such as Neural

Network and Support Vector Machine [37]. The advantage and

disadvantages of C5.0 could be summarised in Table 2-2. C5.0 is accurate

and needs lower time in execution compared with other ML methods.

Several techniques have been added to this algorithm such as boosting.

Table 2-2: Pros and Cons of C5.0 Algorithm

Advantages Disadvantages

 Doing well for all purposes

 High automatic processing to

specify the nominal features

 Choose only the most

important features

 Can be implemented using

small training data, and more

powerful from other complex

algorithms

 Splitting features that

having a large number of

levels

 It is easy to overfit a

model

 Sensible to changes in

the training data

In decision trees, the first challenging task is to recognize which

parameters to split data upon. C5.0 uses entropy to measure the segments

of data that includes only a single class. The entropy of a sample of data

refers to how the class values are mixed. If the entropy is equal to 0, that

means the sample of data is completely homogenous, while, if it is 1, that

means the segment of the data is non-homogenous. The drawback of

36

decision trees is that these grow continuously when features are splitting

and divided into smaller and smaller partitions until the classifier finished

or run out of features. This problem could affect the training data. C5.0

algorithm has an attribute of pruning which reduces growth in C5.0.

 Random forest: The concept of this algorithm is the same as in bagging

algorithm except that the random forest merges multiple tree decisions to

obtain more accurate prediction. Moreover, bagging algorithm was

developed more using random forest by adding more randomness to the

model and searching about the best features within a random subset of

features that lead to low bias and low variance [79].

2.6.2 Boosting

The boosting refers to algorithms that apply weak classifiers to build a strong

classifier by combining the results. The algorithm gives all records the same

weight and applies a sequence of iterations of classification; the misclassified

records increase their weight, while the weight of the right classified records is

reduced. Finally, a strong classifier is created from incorporating the individual

ones with the best tuning for the parameters to avoid overfitting [80] [81]. There

are many algorithms for boosting such as AdaBoost and Gradient Tree boosting

 AdaBoost: in bagging classifier, a bootstrap method is applied to the

training data through a parallel process as each sample treats

independently. In contrast, boosting does not use the bootstrap sampling

as the method works sequentially, each tree depends on the previously

treated tree until reach a strong classifier.

 Gradient Boosting: gradient Boosting is a machine learning technique that

is used for solving problems in regression and classification. The concept

of this algorithm is similar to the AdaBoost algorithm that gives higher

37

weight to the weak learners but it uses gradients in the loss function for

best fitting of the miss-classified samples.

2.6.3 Cross-validation

The common approach of modelling is by dividing a data into two parts, one for

training a model and the other for evaluating it. The disadvantage of such an

approach is missing out some important information of the data leads to low

prediction performance. Cross validation is statistical method that divide data into

equal folds, one fold used for validation the model, and the others used for training

it. Each round, a different fold is used for validation until all folds are cycled

through. This technique is used to evaluate the performance of machine learning

model by testing the model on unseen data to avoid overfitting and underfitting

problems.

2.6.4 Confusion matrix

The confusion matrix is a table that categorizes predictions according to whether

they match the actual value in the data. When the predicted value is the same as

the actual value, this is a correct classification, correct prediction falls on the

diagonal in the confusion matrix [82]. The model’s ability depends on its

performance to recognize one class from others. The class of interest is known

as the positive class, while all others are known as negative. The relation

between positive class and negative class predictions can be depicted as a 2*2

confusion matrix in Table 2.3 that tabulates whether the obtained prediction falls

into one of four categories:

 True positive (TP): correctly classified as the class of interest

 True negative (TN): correctly classified as not the class of interest

 False positive (FP): incorrectly classified as the class of interest

 False negative (FN): incorrectly classified as not the class of interest

38

Table 2-3: confusion matrix

Various measures, such as error-rate, accuracy, specificity, sensitivity, and

precision, are derived from the confusion matrix.

 Accuracy: the accuracy is the proportion of true positive and true negative

divided by a total number of predictions. The best accuracy is 1, whereas

the worst is 0. With the 2*2 confusion matrix, the formula of prediction

accuracy is shown in Eq. 2.1

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 … … … …. (2.1)

 Error rate: Error rate (ERR) is calculated as the number of all incorrect

predictions divided by the total number of the dataset. The best error rate is 0,

whereas the worst is 1. With the 2*2 confusion matrix, the formula of the

prediction error rate is shown in Eq. 2.2

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 … … … … (2.2)

Similarly in Eq. 2.3

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 … … … … … (2.3)

39

 Sensitivity: The sensitivity (Recall or True positive rate) measures the

proportion of positive examples that correctly classified; its formula is in

Eq. 2.4

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 … … … … … (2.4)

 Specificity: measures the proportion of negative examples that correctly

classified, and its formula is as in Eq. 2.5

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 … … … … … (2.5)

2.6.5 Entropy, and Bias versus variance

The entropy could be defined in physics and in communication theory. Generally,

it refers to a process in which a randomness increases with the time. Naturally,

the universe evolves into a highest entropy, for example, the differences in the

thermal lead to disappear. Accordingly, the temperature will be uniform for

everything in the universe. In data communication, the entropy means the

randomness degree, errors are frequently being signalled with higher entropy.

Also, the entropy is a measure of impurity or the randomness in the data being

processed, the entropy is zero when the sample is homogeneous. A higher value

for the entropy means more heterogeneous in the sample with more difficulty to

describe the data, until the value becomes 1, the sample becomes most

heterogeneousness.

A bias is a measure that compere between the prediction values of a model and

the actual values in order to assess the bias. By repeating the process of the

model building more than one time, different predictions will be generated for the

model because of the randomness in different data sets. The bias is high when

the actual values are far off from the predicted values and it indicates that the

model is too simple to deal with the complexity of the data and causes under

40

fitting. For example, linear regression that based on an assumption that the target

has linear relationship with features.

A variance measures how the predicted value is scattered from the actual value.

High variance means that the model is very flexible for training data points, which

gives them a lot of attention but does error rates on testing data; therefore,

overfitting is caused by high variance. For example, in supervised learning, when

a model try to capture the noise in the data points, overfitting is caused.

A trade-off is important between variance and bias without overfitting or under

fitting the data. Under fitting is caused by high bias when a model is too simple

and has few features. On the other hand, the overfitting problem in the model

caused by high variance when the model becomes more sensitive to any small

change in the training data.

2.7 Conclusions

This chapter presented the amount of traffic that is transferred in Internet’s

infrastructure nowadays that provides a transmission of a huge data due to being

accessed by billions of users for different applications. The development of the

Internet from single backbone before 1995 to enormous interconnections

nowadays make the difficulty to determine a network that gives a general view to

the entire Internet traffic. Moreover, the applications need various requirements

such as availability of resources and response time due to an enormous number

of users access them over the Internet. Characterising such a traffic is essential

for monitoring, service discovery, routing control, and resource optimisation.

However, capturing packets at high-speed links is a challenge as such links

produce hundreds of megabytes per second that make the data processing,

storing and managing very difficult. Using flow measurements as an alternative

to packet traces for traffic classification have gained momentum due to a dealing

41

with less amount of data and avoid the encryption with preserving user’s privacy.

Data collection using flow-based relies on packet headers that summaries traffic

characteristic. Next chapter introduces various methods for traffic classification.

42

3 Application identification – existing methods and

limitations

3.1 Introduction

As highlighted by the previous chapter, the proliferation of end users along with

the advanced technologies of wireless connectivity, and the growing in the

number of web applications have produced a complex Internet topology.

Managing such a complex configuration with a huge amount of traffic is more

challenging that impact negatively on both QoS and the QoE. This work is

focusing on monitoring this traffic and proposed reliable approach of traffic

classification that can cope with real time usage. A number of studies [16, 83, 92,

84–91] proposed models for traffic classification, with many thorough surveys [7,

93–97] that determined the most important requirements and recommendations

for a successful approach. The proposed alternatives could be categorised into

four techniques: port-based, packet payload based, host behavioural, and

statistical-based. The traditional way to identifying traffic flows typically focuses

on using IANA assigned port numbers and deep packet inspection (DPI) [35, 36].

However, an increasing number of Internet applications nowadays that frequently

use dynamic post assignments and tunnelling which renders port-based traffic

classification extremely challenging and prone to errors. DPI is useful, but it

requires significant computational resources, presenting scalability issues in

achieving real-time traffic identification, and cannot cope with the encrypted

traffic.[4, 7]. In recent years, two other techniques have been introduced, focusing

on host behaviour and statistical methods, to avoid these limitations. The former

technique is based on the idea that hosts generate different communication

patterns at the transport layer; by extracting these behavioural patterns, activities

and applications can be classified. Although the method showed acceptable

43

performance (over 90%) [9] and it can detect the application type, however, it

cannot correctly identify the application names, classifying both Yahoo or Gmail

as email [98]. Thereby, studies have focused on using statistical features

approach for identifying traffic associated with applications based on machine

learning algorithms [99]. This method relies on characteristics of IP flows such as

a number of packets in a flow, size and duration of a flow which reflect unique

patterns for applications. The aforementioned method considered flexible for

emerging traffic as it utilizes network level (packet header) with promising results

rather than application level (packet contents) [100]. Moreover, this method is less

influenced by the DPI when the traffic is encrypted and it does not touch the user’s

privacy; consequentially, recent efforts have been put in this approach [101]. In

the following sections, an extensive study for methods that were used in traffic

classification, display advantages and disadvantages of each method; discussion

and conclusion end this chapter.

3.2 Port-Based Technique

Historically, the first approach of traffic classification is port-based, using the

transport layer port number. Port numbers in the range of (0-1023) are the well-

known ports and assigned to popular services by IANA [35] such as port 25 for

SMTP and port 80 for HTTP, while the port range numbers from 1024 to 49151

are registered for specific services. On the other hand, the range from 49152 to

65535 contains dynamic or private ports that are unregistered and utilised for

private or customized services and temporary communication purposes using

dynamic and ephemeral allocation. Port-based classification is simple and yields

highly accuracy for certain applications such as SMTP or DNS that use specific

(static) port numbers. However, most of the present Internet applications use

dynamic port numbers[102]. Some applications also use encryption and tunnel

https://en.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority

44

traffic through well-known port numbers such as HTTP or HTTPS. Furthermore,

firewalls, address translation, port forwarding and tunnelling make it quite difficult

to match a service with a particular port [10]. As such port-based traffic

classification is now considered ineffective showing not more than 70% accuracy

when tested against other available methods [103]. In spite of providing low

classification accuracy, port-based traffic identification is still relevant in Internet

backbone due to the scalability of use and relatively minimum computational

power required [98]. In brief, port-based classification aids in determining the

tendency of overall application trends when combined with additional techniques

resulting in hybrid approaches. Many recent studies, therefore, combine port-

based classification with machine learning and statistical analysis of network

traffic resulting in higher accuracy, discussed later in this chapter. To overcome

this limitation, deep packet inspection (DPI) method became the preferred

solution.

3.3 Deep Packet Inspection (DPI) Technique

It is argued that the low accuracy associated with the port-based method can be

solved using DPI. This approach includes not only the inspection of packet

headers but also the packet's payload traversing the network. The evolution of

DPI started by recording the signatures of each application or protocol format

(manually) using reverse engineering or vendor white papers describing the

behavioural of applications. In [104], DPI was used to classify P2P applications;

they produced signatures for each P2P application according to the available

documentation and analysing packet traces. The recorded signatures were

subsequently used in designing filters to identify P2P applications in real-time

traffic. The authors chose five P2P applications to test the filters and the results

showed that the ratio of false negatives and false positives was less than 5%.

45

Moreover, the study claimed that the technique could classify P2P applications

by examining only a few packets which makes the approach more scalable for

high-speed analysis. To avoid the manual efforts, application signatures were

extracted from the payload contents of IP traffic using three machine learning

algorithms [105]. The proposed method was evaluated by collecting 100GB of

data traffic from 500 customers to identify seven applications (i.e., FTP control,

SMTP, POP3, IMAP, HTTPS, HTTP, and SSH). The results showed high

accuracy up to 99% with the ability to work in real-time environments. Although

this method achieved high accuracy, one of the obvious limitations is the

requirement of high processing power while dealing with a huge amount of data

and requires prior knowledge about application signatures. Moreover, DPI-based

approaches cannot identify encrypted traffic or proprietary protocols. Additionally,

due to privacy concerns, the analysis of data and information at the application

layer may be deemed illegal because it may reveal personal information. The

research community, therefore, proposed new techniques regarding traffic

classification that are more promising are shown in the next sections.

3.4 Host Behavioral Techniques

This techniques are based on the idea that hosts generate different

communication patterns at the transport layer; by extracting these behavioural

patterns, activities and applications can be classified according to these patterns.

The success of this method relies on parameters that should be collected and

analysed from different flows as this method based on end-point activity such as

number of connected hosts, time frame and protocol type. In 2004, [106]

proposed two heuristics to identify P2P applications (source-destination IP pairs

and IP-port pair). They utilised the payload approach for identifying nine P2P

applications by doing reverse engineering and analysing these applications. In

46

2006 [13] put six rules that described precisely the behaviour of 10 P2P

applications with high accuracy. The same heuristics used in previous studies

were utilized in [14] with only 0.2% of data remained unclassified from large real

traffic. At the same time and in 2005, [90] introduced a new technique named

BLINK that analysed and identified the connection patterns of host behaviour

based on three levels (i.e., social level, network level, and the application level).

The proposed features proved high accuracy in classifying different types of traffic

by more than 95%. Other studies [11, 12] proposed heuristics to identify whether

the hosts use P2P applications or not. Authors in [11] introduced only features

such as the ratio of number of ports used to the number of IPs connected to by

the host, and a number of failed connections to explore the P2P traffic. Hurley in

[12] proposed four semantics (source and destination host, further connections

between hosts, and flow activity). They claimed that about 90% of web and P2P

flows could be identified with misclassification less than 2.86% of flows for P2P

and 0.54% for the web. While authors in [15] studied the effectiveness of

correlation information in the multiple flows to classify P2P applications (such as

Skype, Thunder, and PPTV). They proposed a novel set of features vector that

showed high accuracy to identify the known P2P applications over 90%. Other

studies [9] [107] tried to identify one application, for instance, the authors in [9]

set three heuristics to describe Bit Torrent application based on any NetFlow

record that is provided by Cisco routers. They designed a traffic classification

model based on the selected features with high accuracy above 92% to

discriminate the Bit Torrent from mixed real Internet traffic. Similarly, in [107], the

authors studied semantics that describe the application behaviour (Google

Hangout) and extracted suitable features set to design a classification model.

Naive Base, decision tree and AdaBoost were used to classify data collected and

their findings were that the accuracy increased as new classes were added. The

47

authors used recall as a metric for evaluation and the results for the three

algorithms were 99.98%, 100%, and 100% respectively. However, the

experiments were carried out only to identify Google services. Recently, [10]

studied the mechanism of data exchange for two protocols (TCP and UDP) at the

end host to classify Internet traffic. The study collected P2P application traffic

(eMule, FrostWire, Skype, µ Torrent and Vuze) as well as non-P2P traffic (Web,

Dropbox LAN, FTP and SMTP) using the Wireshark tool. The heuristics used

included the port number, port pairs, unique IP addresses and TCP to UDP

protocol percentage. The results showed that only 0.2% of classified traffic

remained unknown. The study assumed that any peer that utilized port 80 was

using non-P2P applications. This assumption may lead to misclassification when

applied in different network environments due to the fact that most P2P

applications masquerade their ports using well-known ports (like port 80) to avoid

detection [108]. Although the method showed acceptable performance (over

90%) with low resources compared to payload methods and it can detect the

application type, it cannot correctly identify the application name, classifying both

Yahoo or Gmail as email [98] [9]. Moreover, this technique as shown from the

previous studies is primary used to identify P2P applications with high accuracy

as the approach relies on the connection patterns that are generated from the

peers.

3.5 Machine-Learning-Based approaches

Whilst the previous methods have limitations in terms of application

identifications, recent studies focused on employing a statistical approach that

can characterise traffic associated with an application based upon statistics and

information theory. This approach does not rely on the contents of the packet and

can potentially profile encrypted traffic [99]. Moreover, this method utilises flow

48

measurements which become available in most network devices that provide

traffic accounting solution in low cost [28]. The solution assumes that each

application has unique statistical characteristics that could be extracted from the

collected data. Usually, statistical approaches utilise machine-learning algorithms

(MLAs) to identify the patterns in the communication and attempt to link them to

specific applications [18, 28, 109, 110]. A huge academic effort has been

concentrated on recruiting the MLAs in classifying Internet traffic based on

statistical method [97]. High accuracy was achieved (over 95%) by applying these

techniques [16, 17, 26]. The advantage of using ML algorithms is that they can

be used in a real time environment that provides rapid application detection with

high accuracy. Machine learning based techniques could be divided into three

categories depending on the type of algorithms used. These techniques include

supervised, unsupervised and semi-supervised learning. Each of the

classification techniques is discussed as follows.

a) Supervised learning techniques

In supervised learning, a type of the traffic that needs to be classified needs to be

labelled to produce a ground truth or training data. This data represents the

signatures of the application that is used to build a classification model. This

method is powerful, and it has high accuracy, but it depends on the quality of

ground truth (training data), however, it cannot identify new applications [111]. A

number of prior studies have used supervised learning techniques in tandem with

flow records to classify traffic.

Some studies [19, 112] [119] used one algorithm (i.e., support vector machine

(SVM)) to classify traffic. These studies utilized a flow of packets that are

transferred in each direction as statistical features such as packet size and

number of packets. Three data sets were applied to evaluate the SVM classifier

49

such as UNIBS set (private), LBNL and CAIDA (public) with accuracy over 90%.

For instance, Hong et. al. in [19] used SVM algorithm to identify Seven classes

(Mail, FTP, Database, Multimedia, P2P and WWW) based on statistical

information that were extracted from NetFlow records. The results showed that

99% of web traffic could be identified correctly; however, each class needed

different type of SVM algorithm to identify. For instances, (database, FTP and

P2P traffic) could be identified by using SVM-4 rather than other SVMs. Mail traffic

could be classified with more precision by using SVM-3 and Multimedia traffic

with SVM-5. Although the proposed scheme achieved high accuracy, it can only

identify a traffic class. For further accuracy, the authors in [21, 113, 114]

suggested a framework that consists of many algorithms. In [21], the authors

selected a series of simple linear binary classifiers to characterize a real data

traffic that was collected from different ISP locations; the combination showed

promising results. Similarly, in [113], the authors applied seven classifiers (i.e.,

NBTree, PART, J48, Bayes Net, Bayes, kernel, and SVM) to identify different

levels of real data traffic from local to the wide area network. They argued that

each dataset was classified correctly based on different classifiers as each

network has features which could be different from other networks. Therefore,

they concluded that a need for a framework that contains many algorithms is

essential. However, using more classifiers in traffic classification, enlarge the

framework and increases the complexity of the scheme. Therefore, studies such

as [115–117] made comparison between different machine learning algorithms.

For example, [116] proposed six ML algorithms (i.e., AdaBoost, Support Vector

Machine, Naive Bayesian, RIPPER and C4.5) to identify SSH and Skype traffic.

The authors used basic attributes such as size of packets in each direction and

inter-arrival time. Also, in [117], the authors tried to identify the SSH protocol using

46 statistical features. Three datasets were used to evaluate three algorithms of

50

machine learning (i.e., C4.5, k-means and Multi-Objective Genetic Algorithm

(MOGA)). Both studies showed that the results of the C4.5 classifier

accomplished the best accuracy.

Based on the success of the C4.5 classifier, recent studies such as [29, 37, 117]

utilized C5.0, which is a developed version of C4.5 for traffic classification. [118]

identified HTTP traffic from non-HTTP traffic with an accuracy of 94%; the most

features that were used by the classifier were payload size and number of PSH

flags to the client direction. The same authors in [37] used the same classifier to

identify seven applications (i.e., web browser traffic, Skype, torrent, interactive

gaming and SSH, FTP, web radio) with high accuracy over 99% and with different

statistics of basic attributes. In 2018 [29], the authors used C5.0 to identify modern

applications such as Facebook and Google services using the very first packets

and they achieved high accuracy reached up to 98%. The selected classifier (i.e.

C5.0) outdo other methods such as Naïve Bayes and K-NN. These studies

achieved high accuracy as they identified only traffic class such as email and

video streaming or protocols such as http and FTP. Other studies, such as [91,

119, 120] proposed a transfer learning as an alternative to a traditional

assumption of classical machine learning, which both training and testing data

belong to the same source. In [91], they claimed that the data distribution would

be changed with different time, location and traffic types. Therefore, they trained

different data from different data sources and made a transfer of knowledge from

a target model to a source model. They argued that high classification accuracy

was accomplished by the proposed method based on the same features by just

changing the statistics operations.

A new technique was deployed in recent studies [121–123] that describe the

behavioural of an application based on the packets or messages exchanged

between client and server. [121] proposed a new approach of classification

51

named as SLFC (session level flow classification) that groups traffic flows into

sessions to represent the behavioural of the application. The proposed design

consists of two parts, flow classification and flow grouping classification. The first

part identified an application based on the packet size distribution (PSD) of each

flow and compared individual flows to pre-applications. The second part classifies

network flows into groups using port locality; the authors claimed that the

operating system generates similar port numbers for the same application within

a short time. The method achieved high accurate results about 98%; however,

the execution time for the method could be slow as the decision relies on

inspecting 300 packets. Therefore, the same authors in [122] proposed a new

approach that could be suitable to the real-time, named message size sequence

classifier (MSSC) that could make a decision by inspecting only 15 packets. This

approach depends on the exchanged packets between client and server that

derive a sequence based on the directions and sizes of these packets. The traffic

flows were classified by comparing the message size sequences (MSSes) of

each flow with pre-labelled applications to determine which application is related

to a flow. Similarly, Hajjar et. al. in [123], proposed an identification model which

depends on using first messages of application-layer by utilizing flow size,

direction and position of respective messages in the flows. The study argued that

the first messages of each application have sufficiently discriminating control

information. Some other studies, such as [124, 125], argued that the message

size remains very important in classification traffic flows. However, applications

that have the same statistical attributes due to the similarity in their protocols are

quite difficult to identify.

b) Unsupervised learning techniques

In unsupervised algorithms, the traffic classes are categorised based on the

similarity of the objects. This method does not need prior knowledge of the

52

classes; therefore, it is able to explore new applications without any training data.

Well-known methods were used in traffic classification such as Auto Class [126],

k-means [127], DBSCAN [84] and fuzzy C-means [128]. For instance, Zander et

al. [126] used Auto Class approach (i.e., unsupervised Bayesian classifier) to

group traffic flows based on statistical features. These features were mean and

variance of packets length, size of each direction, flow duration and mean of inter-

arrival time. The authors used a feature selection method based on machine

learning to determine the optimal features set. These features were evaluated

using datasets collected form traffic traces and from different Internet locations

with average accuracy reached up to 86.5%. Erman et al. [84] Utilized k-means,

DBSCAN and Auto class algorithms to group traffic flow for two data traces. The

authors used characteristics based mainly on the previous work Zander et al.

[126]. The authors claimed that the accuracy of clustering increased when the

number of clusters were more than the number of classes. McGregor [129]

proposed using expectation maximizing (EM) algorithm to create clusters for the

traffic flows and labelled them manually. New features were added to the

proposed system such as the bulk of data transferred and idle time. The authors

defined the bulk when more than three successive packets are transferred in one

direction, while the idle time was defined when no packets are transferred within

2 seconds. The problem in clustering methods is how to set the number of clusters

without any information about the real applications. Moreover, previous work [84,

126, 127, 129–133] showed that using traditional clustering algorithms led to low

accuracy cause of the produced clusters usually are not equivalent to the

application classes. The flows of specific applications often spread within clusters

or the cluster includes different flows of an application. Therefore, other studies

[134, 135] used K-means for grouping the unlabelled traffic and utilized payload

analysis tool for labelling traffic to avoid using supervised training data.

53

c) Semi-supervised techniques

Semi-supervised learning algorithms utilize both labelled and unlabelled data and

these respective techniques have taken more attention in last decade. In several

data collection conditions, labelled data samples are expensive to obtain or

limited; however, unlabelled samples are easy to collect making the combination

of limited labelled data with unlabelled records for effective classifier learning

[136]. The aim of using such approach is to detect zero-day applications, many

studies followed this approach such as [26, 137–140]. For instances, Erman’s in

[137] proposed combining supervised training data set with unsupervised

technique by training a few known samples with many unknown samples and they

achieved high accuracy greater than 90%. Flows would be labelled based on the

nearest of predefined cluster, while other flows identify as unknown. Also, Vlăduţu

et al. [26] proposed an automatic scheme to detect zero-day traffic by clustering

traffic flows using k-means based on statistical features of unidirectional and

bidirectional flows. Secondly, these clusters used to train supervised classier

C4.5 to determine the new or unseen flows with accuracy over 90%. The study

classified protocols such as HTTP or SSH. These studies used statistical features

that described flows as individual (i.e. duration and size of the flow, the total

number of packets in flow, size of packet and inter-arrival time).

In contrast, several studies [20, 24, 100, 141–143] used a heuristic of three tuples

(destination IP, destination port and protocol) for flows during a certain period of

time. They claimed that flows that sharing these tuples belong to the same

application. Zhang et al. [20] utilized these tuples with features (i.e., total number

of packets within flow, size of flow, and the Min, Max, mean and standard

deviation for packet size and inter-arrival time). Many experiments were

implemented on two data sets and the results revealed improvement even when

the training samples were few. The same authors in [24] used the same features

54

that utilized supervised and unsupervised machine learning algorithms to detect

zero-day applications. They mixed the labelled and unlabelled samples and

utilized the k-means clustering method to divide the traffic flows into k clusters.

Zero-day application flows represented the cluster that not carry any predefined

labels, while the other unknown flows were classified by the nearest to the

labelled cluster. These flows used to train random forest classifier and extracted

the zero-day flows in the test stage. The results showed significant improvement

in the accuracy compared with other classifiers. However, using cluster analysis

to label flows for generating training data caused error in identification traffic [133].

Although these studies achieved good results in classification traffic and detect

new classes, they only classified network protocols such as FTP, HTTP, SSH,

and SMTP or P2P applications such as BitTorrent and EDONKEY.

3.6 Hybrid Traffic Classification Techniques

Most recent studies [98, 125, 144] attempted to combine more than one method

to obtain superior accuracy of up to 99%.

Park et. al in [98] proposed a new technique called functional separation method

to classify traffic. The authors collected data from the end-hosts using a traffic

collecting agent and the pre-processing stage sanitizes and separates

applications from each other. Afterwards, the functional separation method

partitioned each application according to their functions. The port-based method

is used to group the application functions according to the port number similarity.

In the other hand, payload-based and communication patterns were used for

each group to check the inter-group application similarity. Finally, flow statistics

were used per-group to discriminate the functionality in similar port numbers. The

study used applications such as P2P, Web storage, messenger, video/music

streaming and games for identification. Similarly, Lu and Xue in [144] utilized two

55

approaches to identify Internet traffic (port and payload). The study used the co-

clustering method and basic attributes (source/destination IP and destination port

number) to characterize the host behaviour. The proposed technique first divided

the flows into TCP and UDP and used the payload to classify all the flows into

known and unknown traffic. These flows were later combined and the co-

clustering method used to cluster the traffic into host communities using port

numbers. Finally, each host community was clustered according to destination IP

addresses. The experiment was performed using the data collected from a large

scale ISP for two days, and the results showed that the accuracy of identifying

applications on the first day was 100%, while the accuracy on the next day was

about to 86% due to the similarity between applications. Furthermore, the authors

discovered attack flows within known traffic which could be easily identified. The

authors used the following features: protocol; the number of the packet; flow size;

flow duration; Min & Max packet size; Max, Min & average packet arrival time;

Min, Max & average payload size; the size of the 1st, 2nd , 3rd, 4th & 5th packet

in the flow.

Yoon et. al [125] used the inter-flow relationships in application traffic to generate

new signatures which are called behaviour signatures. The study claimed that

this behaviour signature is unique for each application carrying out a particular

task. The study included a combination of web-based activities and different

network applications (Nateon, DropBox, UTorrent, Skype, Teamviewer, Youtube,

Google, Facebook, Yahoo, and Wikipedia). The results showed that method

precision was 100%, although the recall was low. The method identified

encrypted traffic when it was compared with the payload. However, the inter-flow

classification was based on the supposition that the single function generated

plural flows. Changing this assumption renders the behaviour signature

meaningless. The method can only identify the predefined applications and could

56

not deal with zero-day applications seen for the first time. In addition, the study

applied the proposed method in a specific network environment consisting of four

hosts and at two different time-frames with implementation in a real-time mode

not being evaluated. Nevertheless, these studies suffer from the complexity of

analysis of using more than one approach.

3.7 Burstiness Based Approach

Selecting the right features represents a measure of the data quality that should

be discriminative, informative and independent for building a robust classifier [92].

Given this classification, the statistical differences between inter-arrival times of

packets and flows approach outlined in this work strengthens the behavioural

and statistical methods by considering arrival times of packets and flows as

discriminating features among applications. The authors in [145] proved that

there is a variability (burstiness) in network traffic by using a measure called Index

of Variability. The hypothesis of timing can be used to discriminate between

applications was also put forward in [146], which claimed that applications

generate different behaviour based on statistical features relating to the timing of

packets arriving. More details about burstiness were proposed by [147] which

defined in two levels. The first level was called a small time scale flight (STF)

which means that the inter-arrival times of packets occur within a predefined time

T (i.e., constant threshold and in the range of 5-10 milliseconds). The second level

is a large time scale flight (LTF) and defined larger inter-arrival times of packets

with value 40-1000 milliseconds. A different number of bursts would be generated

for each definition based on the value of the threshold. Moreover, a study [148]

defined a burstiness as a group of consecutive packets with shorter inter-arrival

delays than the packets arriving before or after them. The study proposed that

inter-arrival time ta (i.e., subtraction of the arriving time of the first bit of packet 2

57

from that of the last bit of packet 1) should be in the range (τ -d1, τ +d2) where τ

is a predefined inter packet arrival time and (di) is the tolerance to form a burst.

The burst is formed if the value of ta in the range (τ -d1, τ +d2), the minimum

packets to create the burst are two. While the value of di should not exceed the

value of τ where di ϵ (0, τ). Figure 3.1 shows how the group of packets forms a

burst based on inter-packet arrival time and inactivity of time between bursts. This

burstiness phenomenon could happen within packets or within flows. In this study,

the burstiness concept will be defined on two levels, the first level is in the context

of packet analysis and the second level is in the context of flow analysis.

The previous studies [145–148] defined the burstiness concept as explained

earlier in the section, but they did not implement it. This work applied the

burstiness definition using tcptrace tool by writing a script within its code (open

source code) and expanded the concept to produce novel features.

It can be noticed that the statistical approach is appropriate for traffic classification

as it can deal with encrypted traffic, which nowadays becomes the dominant, and

it can adapt with real-time traffic. The Most studies in the literature put a heavy

load on the MLAs to classify and identify Internet traffic, ignoring adding new

features to describe more characteristics for traffic nowadays.

Figure 3-1: Definition of bursts and idle time based on [148]

58

Moreover, two surveys [96, 136] claimed in their final recommendations that traffic

classification needs a multi-classifier model to overcome the limitations in the

previous methods. This thesis therefore is seeking to introduce new attributes to

give the researchers and administrators a better view to the modern traffic and

utilizes the main important classifiers that were used in the literature.

3.8 Splitting Traffic Based On DNS Requests

Internet traffic can also be classified based on DNS inquires and IP address to

reveal valuable information. The authors of [149, 150] focused on the volume and

variety of DNS queries generated from both clients and servers, aiming to

observe the effect of caching mechanisms on the client side. Other studies, such

as [151, 152], exploited the DNS information to reveal malware activities. Further,

the authors of [153] used DNS queries to classify traffic by matching keywords in

the domain names table with the collected flows of traffic. These labelled flows

were categorised based on domain name similarity, and the aim was to break

down the traffic volume.

Using a similar scenario, [154] argued that traffic could be classified based on the

IP address and hostname. Although the results showed that up to 55% of web

traffic could be identified based on the proposed method, it also had a high

accuracy in identifying applications such as WhatsApp, Twitter, and Dropbox.

Based on the long-term monitoring, the authors concluded that the IP addresses

of servers associated with each application remain stable for short periods, but

they change over long periods. The study recommended updating and checking

the IP addresses frequently for the methods that rely on IP address as a key

feature. Similarly, the authors in [155] proposed a method to label websites based

on server address. Firstly, they collected data from different users working on the

same website to ensure that the server addresses belong to the same

59

application, then they built a ground truth of IP addresses for specific applications

and used them to classify a mix of traffic flows. The method showed good results

when considering DNS queries. Following the same line of research, the authors

in [110] used server addresses to group traffic applications to study the user

activities. Authors of [156, 157] claimed that the IP address represents an

informative feature. Similarly, [158] utilised DNS to tag flows by capturing a first

packet of each flow and exploiting domain names which were separated into

keywords to form vectors for each application. They claimed that DNS information

could be useful to identify more than 30% of traffic. In [159, 160], the authors used

DNS to label flows based on the keywords available after resolving IP addresses.

Otherwise, the flows would be classified based on selected attributes and with

the aid of machine learning to improve accuracy. The previous studies concluded

that DNS information and IP address could be effective factors in classifying

applications.

3.9 Discussion and Conclusion

The research community suggested four main approaches that have been used

for characterizing Internet traffic and giving the administrators, ISPs and

engineers a better view of what is happening in computer network. In the early

days of the Internet, its applications were identified easily based upon only port

number [3]. IANA [35] assigned protocols to well-known transport layer ports in

which the identification process was merely based upon matching the port

number in the packet header with the table containing the port-applications. Due

to the continuous growth of Internet applications, they are no longer used

standard ports; instead of, they have been moved towards a web-based front-end

or used dynamic ports [4]. Consequently, this method becomes inaccurate in

identifying applications and typical performance ranging between 30-70% [5]. A

60

more accurate method is Deep packet inspection (DPI) [6] that relies on the

contents of the packets to identify signatures of applications or protocols. This

method became inefficient when most applications uses encryption methods;

moreover, it breaches the privacy of the users and needs more computational

resources [7, 8]. The research community has therefore introduced two

techniques, focusing on host behaviour and statistical methods, to avoid these

limitations. The former technique is based on how an application behaves

depending on a variety of communication patterns at transport layer generated

from this application. Despite the high accuracy of this method (over 90%) [9], it

is unable to identify application name such as YouTube or Netflix while classifying

them as streaming. In contrast, statistical approach outperforms the previous

methods with high accuracy (over 95%) and it is widely used by the recent studies

[16–18, 26]. This method uses packet header rather than payload information that

makes the approach efficient even with encrypted traffic, and does not breach the

user’s privacy. Although the most studies have been considering that the early

methods are inefficient, some recent studies utilized these methods in different

scenarios by incorporating them in the most promising approaches as showed in

section 3.6 (hybrid approaches).

From the literature, it is noticeable that most papers tried to do coarse

classification. In other words, most studies identified either application classes

such as streaming and browsing, or protocols such as HTTP and FTP, or P2P

applications such as Bit Torrent and skype. Only one paper, [29], tried to do fine-

grained classification in 2018 and identified the application type for modern

applications such as Facebook and Google services; although the study identified

another modern service (i.e. Google services),Google provides multiple services

such as Gmail and Google search. It is also found that studies have applied a

variety of traffic classification techniques; high accuracy has been performed

61

using the statistical-based with employing machine-learning algorithms MLAs.

Different techniques were used in this method from supervised to unsupervised

and semi-supervised. In spite of the supervised approach outperforms the other

techniques, building robust ground truth data for training a machine-learning

model is required. Among the different supervised algorithms that were used by

the research community [37, 112, 161–163], decision tree algorithms such as C4.5

and C5.0 were the best in classifying traffic. Recent studies [29, 37, 118] used

the developed version of C4.5 (i.e.C5.0) to identify modern applications such as

Facebook and Google services with very the first packets with high accuracy.

These studies employed a machine learning approach to classify Internet traffic

based on recycling the conventional features. These features normally calculate

data that transferres in the network or calculate arrival timing for packets, flows

or session such as the total number of packets, number of bytes and inter-arrival

time. These features are calculated statistically; as a result, they are subject to

change due to continuous changes in the content of web pages. The features

introduced in this thesis are based on timing between packets within the flow or

between flows within the session based on burstiness and idle time. In other

words, they are counting the activities of the user when he/she is browsing

internet websites to represent the behaviour of the application. Although the user

could have different behaviour each time, the data that are generating from the

application would be the same. The next chapter explains in detail the proposed

method and the novel features used within it.

62

4 Application identification based on burstiness

4.1 Introduction

The continuous developments of web applications render the early methods (i.e.

port-based and DPI-based) unusable for detection as modern applications use

dynamic ports and encrypted methods. On the other hand, the behavioural and

statistical methods have been considered the most promising methods because

they rely on packet header characteristics in classifying network traffic. Thereby,

neither port numbers nor payload signatures would be used for an application

identification. The success of these methods depends on using optimal machine

learning algorithms and selecting suitable features. Whilst prior art focused upon

using different machine–learning algorithms, little attention has been given for

proposing innovative and superior features. Proposing new features should be

accomplished carefully to sufficiently obtain discriminative features which

precisely describe a web application behaviour in order to segregate various user

activities. Extracting the most discriminative features, which characterise web

applications, is a key to gain higher accuracy without being biased by either users

or network circumstances. This chapter investigates novel and superior features

that characterize a behaviour of an application based on timing of arrival packets

and flows. To this end, the project exploited a concept of burstiness for new

features generation, which defines closely spaced data exchanges, and idle

periods, which separate longer-term transactions. These concepts are applied in

two levels, packet analysis level and flow analysis level. Therefore, the following

aims are addressed to be accomplished across the following chapters:

1. Proposing and identifying new features based on inter-arrival timing of

packets and flows using burstiness and idle time concept.

63

2. Determining the ground truth dataset for investigating the proposed innovative

features and for labelling a real traffic.

3. Investigating whether burstiness-based features are discriminant for

identifying network applications based on the traffic that they exchange.

4. Investigating the efficiency of burstiness-based features versus traditional

flow- and volume-based features for identifying network applications.

5. Investigating the unique behaviour of each application based on the proposed

new features.

6. Determining the possible correlations (similarity) between input features in

order to convert action of many variables with the same correlation to a small

number of compound ones.

7. Investigating the minimum set of input features that maximizes the accuracy

for output prediction.

8. Demonstrating that different users behaviors do not affect on the application

behaviour.

In this chapter, a first aim is addressed by implementing a preliminary study to

determine the feasibility of the proposed features.

4.2 Inter arrival timing, burstiness and features

The existing statistical parameters of the footprint generated by web

applications such as packet size, flow size and duration, and inter-arrival time

of packets are considered by previous studies [18, 28, 109, 110] . These

features are calculated statistically; as a result, they are subject to change due

to continuous changes in the content of web pages. The leading assumption

is that different web applications will have different patterns and different

behavior over time [164]. In other words, different applications have different

64

distributions of timing within them due to the inherent behavior of the

applications. In addition, the behavior of the human (users) might impact on

the application behavior. The work aims to extract features that differentiate

between web applications behavior while considering the user behavior using

inter-arrival time between packets and flows with session. This work focuses

in particular on burstiness that describes objects on the same web page, and

idle periods that depicts different objects when a user is moving from one page

to another. For instance, streaming a video on Netflix versus E-mail checking

or using social media could lead to significantly different packet arrival

patterns and hence a slightly different burstiness signature. The following

example explains the concept of burstiness and how it may be used to

discriminate the behavior of Internet applications. When a user is browsing an

application, for instance the BBC news website (bbc.co.uk/news), the session

would consist of some pages that the user chooses to visit. Within each page,

the browser will be requesting and downloading the objects embedded in the

page, some on the same site, some hosted on other sites. From a timing

perspective, the download of objects on a page would appear as a burst of

connections, followed by a period of inactivity (idle time) while a user reads

the page until he/she decides to click on a link and load another page.

4.2.1 Packet Analysis

In this level of analysis (packet-based), the bursts and idle times would be formed

based on the inter-arrival times for packets during the connection between client

and server. This level was defined by [148] as a group of consecutive packets

with shorter inter-arrival delays than the packets arriving before or after them.

Given one of the two unidirectional data flows within a connection, a

burst_threshold (T) is defined as a maximum time delay between the arrivals of

65

two consecutive packets that belong to the same burst. In contrast, idle_threshold

(I) is defined as the distance between groups of packets of inter-arrival time at

which could identify the idle time that separates two consecutive data exchanges.

In order to provide a meaningful description of the interactions, the analysis must

establish the values for T and I, and whether they should be constant or dynamic.

A previous study [147] defined two ranges for T that defined in two levels. The

first level is small time scale flight (STF) which means that inter-arrival times of

packets occur within a predefined time T (i.e., constant threshold and in the range

of 5-10 milliseconds). The second level is large time scale flight (LTF) and defined

larger inter-arrival times of packets with a value between (40-1000 milliseconds).

 Another study [148] proposed two different scenarios for the value of T; the first

one was dynamic which means different values could be for the T, while the

second scenario was fixed without proposing any values for T, more details on

this study provided in section 3.7. In order to obtain an image of the range of time

values for the protocol interaction, Figure 4-1 shows the inter-packet arrival time

for five applications. Most distributions of the inter-packet arrival time fall under 1

second, except for YouTube that falls under 0.5 seconds; accordingly, the

burst_threshold could be set to 1 second. While the application does indeed

exhibit a different signature in terms of packet arrival distribution, user behaviour

may also influence this distribution, particularly in relation to long-term activity, as

idle times are a factor of user behaviour too. The idle time could be varied

according to the behaviour of the user when he/she moves from one page to

another. As shown in previous studies, the distribution of timing for user

connections may be used as a discriminant for those users [165][110]. However,

while users may introduce a level of noise in the distribution, a sufficiently large

data sample of users, packets and applications would allow determining the

66

benefits and limitations of the method. It is acknowledged that the number of

users in the present study is relatively small to draw statistically-strong

conclusions about the efficiency and generalisation of the proposed method. The

study also investigated that the users with variable interaction and behaviour may

impact on the success of the method. Prior study, such as [166] defined the idle

time as a time that there are no packets have been observed; they utilised idle

time values typically ranging from 15 seconds to 5 minutes for monitoring flow

records. The idle threshold (I) was proposed to be set at 10 seconds, which

relates to different actions (interactions) of the same user. A user likely do

different actions on an application with some sort of breaks (5 s, 10 s, 20 s).

Therefore, 10 s was selected to define a maximum delay for a user to do a new

action. The pseudocode in Figure 4-2 summarises the estimation of bursts and

idle time between packets and for each flow. For each packet arrival, the inter-

arrival time is compared with the two burstiness thresholds to determine whether

the packet is part of a new burst or session. As showed in Figure 3.1 in chapter

3, many features could be extracted from each flow and from each direction, such

as a total number of bursts in direction a-b/b-a, the total number of packets within

bursts for each direction and the total size of bursts in bytes in each direction. The

possible features that could be extracted from the pseudocode are described in

Table 4-1; each of the inputs in the table is a pair of variables, one for the a-to-b

direction and one for the b-to-a direction. The table contains two types of features:

the first type of features were generated using tcptrace tool. While, the second

type that are in green colour represent features that are calculated from the first

type such as ratio between two features and average.

67

Figure 4-1: Distribution of inter-packet arrival times for five applications

Figure 4-2: Estimation of packet bursts and idle time

68

Table 4-1: burstiness & idle time parameters for packet analysis

No. Features Features as in tcptrace Definition

1,2 number of
bursts

Burst_no_a
Burst_no_b

Number of bursts in each
flow when the time of
successive packets is less
than 1 s

3, 4 number of
packets in
bursts

Pkt_count_a
Pkt_count_b

The total number of packets
in all bursts in each flow

5 Ratio of b2a Pkt_count_b /
Pkt_count_a

The ratio between the
number of packets in bursts
in flow b, and the number of
packets in bursts in flow a

6, 7 Number of
bytes in
bursts

burst_size_bytes_a
burst_size_bytes_b

The total size of bytes in all
bursts in each flow

8 Ratio b2a Burst_size_bytes_b/
Burst_size_bytes_a

The ratio between the data
size of bursts in flow b, and
the data size of bursts in flow
a

9, 10 Average
bytes

Avg_burst_size_bytes_a
Avg_burst_size_bytes_b

The total size of bytes in all
bursts in each flow divided
by the total of data packets
within bursts in each flow

11,12 Burst
duration

Burst_duration_a
Burst_duration_b

The time duration of all
bursts in each flow

13,14 Inter-arrival
time

Inter_arrival_time_burst
_a
Inter_arrival_time_burst
_b

The time duration of all
bursts in each flow divided
by the total packets within
bursts

15,
16

Idle time

Idle_time_a
Idle_time_b

The accumulation of inter
arrival packets times when
the time being greater than
40s

17,
18

Number of
bursts(data)

Burst_data_no_a
Burst_data_no_b

Number of bursts in each
flow when the time of
successive packets is less
than 1 s and data size
greater than 0

19,
20

Number of
data packets
in bursts

Pkt_data_count_a
Pkt_data_count_b

The number of data packets
in all bursts in each flow

21 Ratio b2a

Pkt_data_count_b/
Pkt_data_count_a

The ratio between the
number of data packets in all
bursts (data) in flow b, and
the number of data packets
in all bursts(data) in flow a

69

22,
23

Number of
bytes in
bursts

Burst_size_bytes_data_
a
Burst_size_bytes_data_
b

The total size of bytes in all
bursts(data) in each flow

24 Ratio of data
b2a

Burst_size_bytes_data_
b/
Burst_size_bytes_data_
a

The ratio between the data
size of bursts(data) in flow b,
and the data size of
bursts(data) in flow a

25,
26

Average
data bytes

Avg_burst_size_bytes_d
ata_a
Avg_burst_size_bytes_d
ata_b

The total size of bytes in all
bursts(data) in each flow
divided by the total of data
packets within bursts(data)
in each flow

27,
28

Burst
duration

Burst_duration_data_a
Burst_duration_data_b

The time duration of all
bursts(data) in each flow

29,
30

Inter-arrival
time

Burst_duration_data_a
Burst_duration_data_b

The time duration of all
bursts(data) in each flow
divided by the total packets
within burst

31,
32

Idle time Idle_time_data_a
Idle_time_data_b

The accumulation of inter
arrival packets times when
the time being greater than
40s

4.2.2 Flow Analysis

The same concept of burstiness and idle time, which was applied in section 4.2.1

was applied to calculate the burst and idle time between flows. The variables

included the time differences between the initial times of flows and subsequent

flows, which are calculated from the first packet of each flow. The timestamp of a

first packet for a first flow is subtracted from the timestamp of a first packet for a

second flow. If the time difference is equal or less than 1 second, then the two

flows are part of the same burst. Otherwise, the time difference is more than 10

seconds, then the period is considered as an idle time; flows that fall between

these periods are ignored. Table 4-2 summarises the burst-based features

among flows.

70

Table 4-2: Burstiness & idle time parameters for flow analysis

No. Features Formula Description
33 Conn_all No. of connections Total number of

connections
34,
35

Burst-no no_burst_in_conns_1,
no_burst_in_conns_2

Total number of
bursts between
flows for each
session

36,
37

Flows-no conns_no_in_burst_1,
conns_no_in_burst_2

Total number of
flows within all
bursts for each
session

38,
39

Packets-no packets_no_in_burst_conns_1,
packets_no_in_burst_conns_2

Total number of
packets within all
bursts for each
session

40,
41

Packets-data-
no

packets_data_no_in_burst_conns_1,
packets_data_no_in_burst_conns_2

Total number of
data packets
within all bursts
for each session

42,
43

Burst-size size_burst_conns_1,
size_burst_conns_2

Total size of all
bursts for each
session

44,
45

Average-
burst-size

average_size_burst_conns_1,
average_size_burst_conns_2

Average size of
bursts for each
session

46,
47

Burst-duration
burst_conns_duration_1,
burst_conns_duration_2

Total time
duration for all
bursts

48,
49

Burst-
duration/burst-
no

inter_arrival_time_burst_conns_1,
inter_arrival_time_burst_conns_2

Ratio between
burst duration
and total number
of bursts for
each session

50,
51

Burst-idle-
time

idle_time_burst_conns_1,
idle_time_burst_conns_2

Total inactive
time between
flows for each
session

4.2.3 Conventional Analysis

The previous studies proposed statistical features as showed in chapter three

section 3.5; these features are generated using tcptrace tool. In this work, the

proposed features are compared with features that were suggested by previous

studies to show how the effects of the burstiness and idle time method in

71

distinguishing between applications. These features were calculated for each

direction of a flow, as shown in Table 4-3 .

4.3 Preliminary Study

A preliminary study was conducted to determine whether the distribution of arrival

times does indeed differ when using different applications. The data used for the

study included captured the Internet traffic of the activities for six different

applications on a machine running Linux, and using Google Chrome as web

browser. The data was captured by running the tcpdump tool in the background

while the user browses the applications. Afterwards, the data was analysed to

extract the features, which described in the previous section, and finally C5.0

algorithm was utilized for classification the applications.

4.3.1 Data collection and analysis

For the experiment, the data were captured at University of Plymouth in the

CSCAN (Centre for Security, Communications and Network Research) lab from

six users, who were full time PhD students and they were only available at time

of data collection (i.e., May-July 2017 and 2018). Three computers were used for

this experiment with Linux operating system to collect more data samples during

short time and also some participants did not install Linux operating system on

their PCs. Each user was asked to browse six of most popular web applications

(i.e., BBC news, Facebook, Google searching, Skype, Yahoo mail and

YouTube)[53]. The reason for selecting these applications as they are considered

the most well-known applications [53]. The users accessed separately each

application for (30) times and each time was for (2-5) minutes, creating a dataset

of 180 sessions per application (i.e., 30 sessions × 6 users). Users were limited

to using only a single application in any session and dump files were accordingly

labelled with the name of the accessed application.

72

Table 4-3: Conventional features proposed by previous studies [18, 19, 112–114,

119–125, 20, 141–143, 21, 24, 28, 91, 100, 109, 110]

No. Features Formula Definition
52,
53

total number of
packets

Packets_a
Packets_b

Total number of
packets in each flow

54 ratio of b2a Packets_b / packets_a The ratio between
the total packets of
flow b, and total
packets of flow a

55,
56

number of data
packets

Data_packets_a
Data_packets_b

Number of data
packets for each flow

57 ratio of b2a

Data_packets_b/
Data_packets_a

The ratio between
the data packets of
flow b, and data
packets of flow a

58,
59

number of flags
packets

Flags_packets_a
flags_packets_b

Number of flags
packets in each flow

60 ratio of b2a

Flags_packets_b/
Flags_packets_a

The ratio between
the flags packets of
flow b, and flags
packets of flow a

61,
62

ratio of flags and
total packets

Flags_packets_a /
Packets_a
Flags_packets_b/
Packets_b

The ratio between
the flags packets and
total packets of each
flow

63,
64

1st packet size First_pkt_a
First_pkt_b

The size of the first
packet in each flow

65,
66

flow duration Flow_duration_a
Flow_duration_b

The time duration of
each flow (the time of
last packet
subtracted by the
time of the first
packet)

67,
68

Inter arrival time Inter_arrival_time_a
Inter_arrival_time_b

The time duration of
each flow divided by
the total number of
packets

The large and separated dataset were used to build robust classifier model. The

data was collected during four months starting in Nov 2016 by running a tcpdump

tool [167] in the background, and storing the data in the storage area for preparing

to analyse in the next stage. The limitation in such data collection that each file

73

contains only flows about the labelled application, although this approach is

useful to build a ground truth dataset for use in the training phase, a classifier

trained on this data would not be able to predict traffic from additional

applications. Table 4-4 shows more details for the captured data.

Table 4-4: Summary of the data collection for six applications

Application Flows Duration (h)

BBC news 32,596 15.6

Facebook 5,620 12.9

Google searching 27,640 8.5

Skype 2,632 9.88
Yahoo mail 48,116 10.22

YouTube 11,233 11.3

In the next stage, the collected data was analysed using the tcptrace tool [70] with

packet trace as input and output flows that have the same five tuples (source IP

address, source port number, destination IP address, destination port number

and protocol). As part of this study, two levels of features were used – packet-level

features (set1) and conventional analysis features (set2) as presented in section

4.2.1 and 4.2.3 respectively. More statistical operations (i.e., maximum,

minimum, mean, median, and standard deviation) were applied upon the

conventional and packets burst features. The aim of these processes was to

summarize the output of all features in one row for each operation. Therefore, the

result was five rows per session. Afterwards, the five rows were allocated in one

row which represents the signature of the sample (session) that be the input to a

classifier.

4.3.2 The Decision Tree Analysis and Classifier Derivation

The final dataset that obtained from previous section contained six Internet

appliations with more than 1000 sesssions. This dataset included only the

74

features that were introduced in section 4.2.1 & 4.2.3. The evaluation of the

proposed features versus the traditional ones was carried out using three feature

sets. The first feature set contained the burstiness and idle time features that were

proposed by this work as were shown in Table 4.1. The second feature set

included the features that were suggested from the previous studies, while the

third feature set combined both sets. As highlighted earlier, the research

community used the C5.0 algorithm to obtain more accurate results as new

features were added to this algorithm (i.e., boosting and pruning). The boosting

feature was used in this work, this algorithm gives all records the same weight

and applies a sequence of iterations of classification. The iterations could be 10,

20, 50, or 100, and for each iteration the misclassified records are increased their

weight, while the weight of the right classified records is reduced. Finally, a strong

classifier is created from incorporating the individual ones with the best tuning for

the parameters to avoid overfitting. With no boosting, a parallel process is applied

as each sample or feature treats independently. In contrast, boosting works

sequentially, each tree depends on the previously treated tree until reach a strong

classifier. Therefore, this experiment used this algorithm to evaluate the collected

data that was split to ratio of 2/1 for training and testing respectively. Table 4-5

presents the accuracy for two feature sets that range between 90-97.96%, the

accuracy for the conventional feature set exceeded the accuracy obtained by the

proposed features. Combined two sets and using boosting factor (i.e., 10 & 100)

slightly enhanced the classifier ability to discriminate the different traffic that were

generated from the applications.

The attributes usage (percentage) by the optimal C5.0 in computing the decision

tree using feature set 3 is given in Table 4.6. The Table shows the comparison

between conventional and proposed features.

75

Table 4-5: Accuracy of the classifier with feature sets

Feature set No boost Boost 10 Boost 100

Set 1 (new approach burstiness) 94.33 96.83 96.83

Set 2 (conventional) 93 97.33 97.5

Set 3 (combined set1 & set2) 90.7 97.96 97.96

The attributes in interval 100 percentage reported maximum usage in segregating

among the six applications. Moreover, the attributes in interval between 75-99%

percentages showed highly usage by the classifier. These percentages will be

explained in chapter 7, page 107 with table 7-3. The burstiness attributes between

packets streams were the majority part compared with the conventional ones,

which were offered differentiation among applications activities. This is another

indicator that the classifier strongly relied on the proposed features as they

provided high discrimination between applications. The arrival time of packets and

the inter-arrival delay were calculated from the packet traces using a 1-second

threshold for the burst size and 10 seconds for delay size.

Figure 4-3 displays a boxplot analysis of the six applications using average burst

size per flow feature. The burst size could be defined as a total number of bytes in

all bursts in each flow, and this feature was calculated using tcptrace tool as

showed in Table 4-1 (packet level analysis). This feature is a combination of

feature 9 and feature 10 in the table. The boxplot is a plot that displays a data

distribution based on a summary of five values (minimum, first quartile, median,

third quartile, and maximum). The plot presents the distribution of the data through

their quartiles, it can be observed from this descriptive statistics that the

distributions of the applications are different. The values of the feature are

negative as a normalization technique was applied as part of data pre-processing

for machine learning.

76

Table 4-6: Features used in the classifier model

Conventional features usage

100%

Mean & median of no. of packets_a; Mean of no. of data_packets_a,
Mean_flow_duration_b; Max_flow_duration_b; Median of the first
packet_a & the first Packets_b; Standard deviation of inter arrival
time_b

75-
99%

Mean no. of data Packets_b; Median of no. of flags packets_a / no. of
packets_a; sd of the first Packets_b; Max of inter arrival time_a; Mean
of the first packet in each direction; Mean of inter arrival time_b; Sd of
ratio of no. of packets in both directions; Mean of no. of flags
Packets_b; Sd of number of data packets_a; Sd of number of
packets_a

Proposed features usage

100%

Mean of number of data burst_a; Mean of the inter arrival
time_data_b ; Max of number of packets in burst_b; max size of the
data burst_b; max of data burst duration_b; Max of the average of size
of the data burst_b; Median of the duration burst_a; Median of the inter
arrival time_data_a; Sd
burst_duration_b;Sd_burst_size_bytes_data_a;d_inter_arrival_time_
data_b; No. of connections for each session; No. of connections in
bursts; Mean of the ratio of size of burst in both direction; Max of the
ratio of size of data burst in both direction

75-
99%

Max size of burst_b; Max no. of burst_b; Median of ratio of the burst
size in both directions; Sd of the no. of packets in burst; Mean of the
inter arrival time in the burst; Max no. of the data burst_a; Sd of the
average of the size burst_b; Median of ratio of the data burst size in
both directions; Max of number of packets in burst_a; Median of Avg.
of size of data burst_a; Sd of size burst_a; Sd of Avg of size burst_a;
Sd of inter arrival time in burst_a; No. of bursts in connections; Mean
of size of data burst_b; Max of inter arrival time in data burst_a; Sd of
ratio size burst in both directions; Sd of size of data burst_b; Sd no. of
data packets in burst_a

Figure 4-3: various behaviour for six applications

77

The results signify that the features related to the burstiness and idle time have

high efficiency in discriminating the different applications. Combining both sets

showed considerable improvement in classification accuracy peaking at

(97.96%).

4.4 Conclusion

This chapter presented a novel set of features for applications identification based

on inter-arrival times between packets and flows, most specifically burstiness and

idle time. The initial assumption was that different applications produce different

distributions of data, creating various connections and timing patterns between

the generated packets and flows. The features were defined on two levels, the

first level was in the context of packet analysis and the second level was in the

context of flow analysis. This concept was applied by modifying the tcptrace tool

to extract the new features by writing a code inside the tool. A preliminary study

was established to examine the effectiveness of the proposed features by

employing C5.0 classifier with a small data set. Based on the experimental

results, the proposed features proved to contain contributory information towards

the classification results by providing high discrimination between the

applications. In addition, the experimental results showed that the proposed

features are the most in the classifier usage than the conventional ones, which

were proposed by other studies (this sentence is deleted by the author). Based

on the success of the experimental results, the next chapter will focus upon

adding more web applications and more features with large data sets (controlled

and uncontrolled environments).

78

5 Methodology and Data Collection

5.1 Introduction

The previous chapter presented a set of novel features based on the inter-arrival

time between packets and flows, focusing on the burstiness and idle time in

Internet traffic using limited datasets. To test the ability of such features to

generalise, two types of larger data sets were collected; the first data set

contained 10 users that were browsing 11 of most popular Internet applications.

The users were guided/instructed to browse these application in order to build a

strong truth data table preparing to use it in labelling a second data set (i.e.

uncontrolled data). The second data set was real data that collected from 20 users

that were browsing different applications independently. Both data sets were

analysed by utilizing tcptrace tool to generate the proposed features; different

techniques were used for labelling uncontrolled data relied upon DNS and IP

addresses.

The remainder of this chapter is organized as follows. Section 5.2 presents a

block diagram for the proposed methodology explaining briefly the main steps.

Followed by subsections that elaborate data collection for the controlled and

uncontrolled data, pre-processing and data analysis. Section 5.3 draws

conclusions.

5.2 General Block Diagram for a Proposed System

A high-level architecture of a proposed system is presented in Figure 5.1 that

identifies applications based on the concept of the burstiness and idle time that

explained in previous chapter. The architecture consists of two main parts, the first

part is for applications identification based on data that was collected in a

controlled environment (i.e. the users were given instructions sheet of what should

they browse). For a second part, a data was collected with an uncontrolled

79

Figure 5-1: Proposed traffic classification methodology

environment (i.e. website browsing was based on user’s preference). Highlighting

the key components of application identification scheme with a description of

principal steps as follows:

1. Data collection: Firstly, the data was captured using tcpdump tool from

users that were accessing Internet applications. The controlled data

was collected per application, stored in files, and labelled according to

the application. For uncontrolled data, the data contained different

activities based on user’s preference; therefore, the data was labelled

based on DNS quires, and IP addresses by matching with the controlled

data.

2. Data analysis: Afterwards, the traffic was analysed by tcptrace to

extract the features that were explained in previous chapter section 4.2.

80

Two sets of features were generated from the tcptrace, the

conventional features and the proposed features for packet analysis.

More features were generated from these two sets using a Python

script such as ratio between some features and calculate average value

for others (see appendix B for the scripts). Additionally, a third set of

features which, contains the proposed features for flow analysis, was

generated using Python script.

3. IP matching: IP addresses for each application in the controlled data

were stored in a file and labelled with that application. Therefore, the

matching process starts with reading the DNS request in the

uncontrolled data to determine the application name and afterwards

fetching the specified file of the IP addresses for that application in the

controlled data. Secondly, matching the unknown flows (after the DNS

request) with the specified IP file until the end of the flow trace and tag

them as known flows. Finally, dump known flows in separated files and

labelled them according to the application name.

4. Statistical operations: Five statistical operations were calculated (Min,

Max, mean, median and standard deviation) for only the conventional

and packet analysis features. These features were calculated for each

feature vertically, for all connections and per session. More details in

this step in subsection 5.2.6.

Machine Learning/ Decision Tree Analysis: Using machine learning algorithms,

different data sets of computed features were utilized to obtain a decision for

application classification. Two experiments are implemented in this work; a first

experiment is for the controlled data and a second experiment is for the

uncontrolled data. In the first experiment, the data was collected using Linux

operating system, which was installed via VMware tool under Windows operating

81

system. A NAT (Network Address Translation) network was set up, which

translates IP address of virtual machine to the IP address of the host system. In

[168], they studied an impact of virtualization on performance of Amazon Elastic

Cloud Computing network (EC2). They measured packet delay, packet loss, and

TCP/UDP throughput between virtual machines of Amazon EC2 and they found

that there are a considerable abnormally delay variations and changing in the

throughput. In this work experiment, only one virtual machine was installed per

PC to collect data from the network that is not impact on the experiment

measures. Aims and details of each experiment are provided in the next

subsections.

5.2.1 Data collection

Data collection used tcpdump but two different type of sessions (i.e. controlled

and uncontrolled); given the way data is organized, the uncontrolled data is

slightly different from the controlled one. In controlled data, the truth table was

derived automatically as the applications that the users accessed were known,

while the other one, generating the truth table required additional IP/DNS

mapping and this illustrated in the second diagram. More details regarding both

types are presented next.

Controlled environment: this data was collected from individual applications

under controlled environment for different samples of each application and

different users. The authors in [37] claimed that the data collected from a user

side when he/she working on known applications leads to accurate results. The

data collection was conducted at University of Plymouth in the CSCAN lab. The

data collection process spanned between May-July 2017. Eight computers were

used for this purpose, six of them belonging to the participants, and two of them

belong to the researcher; all these computers were Linux virtual machines. All the

82

users were full-time PhD students that were working in the lab, ten students were

chosen to take part in the collection, their ages ranged from (30-43) years old,

seven males and three females. Eleven applications were selected to browse,

which are the most popular applications that are accessing by users, using

Google chrome as Internet explorer [53]. These applications are different in their

page contents, they included social websites (i.e. Facebook and Instagram),

news websites (i.e. BBC news and CNN), searching engines (i.e. Google search

and Bing), and E-mail browser (i.e. Yahoo mail and G-mail), P2P application

(Skype), video streaming (YouTube), and shopping website (Amazon). The users

were asked to browse these applications separately. Hence, the data was

collected per application and dumped in labelled files for analysing. The data

collection contained instructions sheet that was given to users and as follows:

1. In the beginning, a user turn on the VMware and run Ubuntu version

15.10.

2. Run command line prompt and start running tcpdump tool in the

background.

3. Access Google chrome and start browsing one of the eleven

applications, for example Facebook, for a period of time between (2-5)

minutes. After finishing the browsing, the user closes the explorer and

stops tcpdump tool.

4. Label the file, which contains the captured data with user name followed

by application name and number of the sample, for example

Hussein.facebook1.

5. Repeat the steps from 2 to 4 for the same application and for 30 times.

The total sessions for each user were 30 per application resulting 300 sessions

for ten users; the total number of sessions for all applications and for all users

were 3300. Table 5-1 summarises the data collection for controlled data.

83

Table 5-1: summary of the collected data

Traffic class Application type Size (GB) Flows Duration (h)

News
BBC news 1.72 56394 25

CNN 7.25 25123 11.2

Social media
Facebook 2.5 9630 21.97

Instagram 0.469 5641 11.15

Search engine
Google 0.370 45960 13

Bing 0.578 30953 10.55
Video chat Skype 0.490 3948 14.88

Email client
Yahoo mail 1.09 76674 15.66

G-mail 0.6 49720 10.13
Video streaming YouTube 4.29 18816 17.9

Shopping Amazon 1.13 51793 12

Uncontrolled environment: A real data was collected for various activities and

different users that were accessing websites applications. The raw data traffic

was collected in the same lab (CSCAN) at University of Plymouth between May-

July 2018. The participants used twenty university computers and they were a

mix of laptop and desktop computers. Eighteen computers were installed using

Windows operating system and two of them were installed using Windows and

Linux operating system and under different virtual machine environments (i.e.

VMware and virtual box). The users were PhD students working in the lab, 20

students were chosen to take part in data collection, their ages ranged from (30-

43) years old, (14) males and (6) females. Different Internet applications were

browsed using Google chrome explorer and based on user’s preference and

without any instructions given by the researcher. The data was collected using

tcpdump tool via a network-based method and it was divided into 24 samples per

day. Each sample represents one-hour traffic of pcap format; this division reduces

the size and processing time of each sample. In the controlled data, the

applications were known as instructions were given the users; while in the

uncontrolled data, the applications were unknown as a traffic was a mix of multiple

applications and different users. This traffic needs more data processing for

84

labelling; therefore, the next step would be an additional process for only the

uncontrolled data as shown in the next subsections.

5.2.2 DNS Queries

The aim of this process is to label flows and this can be accomplished by using

DNS queries. The uncollected data was packet-based and contained DNS

enquires - thus the contents of the DNS requests were used to identify

applications. In each DNS packet request, a keyword refers to requested

applications. The procedures of reading the application request is as follows:

1. Read each packet line for port number 53 which represents the DNS

enquires.

2. These enquires contain application requests, if the user requests the

amazon website, a keyword “www.amazon.com.” would be in the DNS

enquires. Other keywords for different applications, see the Table 5-2.

3. Create a file named with the requested application, open it and dump all

packets in this file for three seconds by setting a timer, this threshold

based on assumption that a user needs minimum three seconds to

change from a current website to another.

4. Reset the timer after the end of three seconds and store all packets until

a next request.

5. Repeat step 1-4 until the end of the data trace.

Table 5-2: Application keywords

Website Keyword
Amazon www.amazon.com.
BBC news www.bbc.co.uk.
Bing www.bing.com.
CNN www.cnn.com.
Facebook www.facebook.com.
Instagram www.instagram.com.
Yahoo mail login.yahoo.com.
YouTube www.youtube.com.
Google engine www.google.com.
G-mail accounts.google.com.
University of Plymouth www.plymouth.ac.uk.

http://www.amazon.com/
http://www.amazon.com/

85

This process partitioned the traffic into many applications considering the specific

time stamp of each request preparing for the next stage. Packets after three

seconds for each request until the next request remained unknown, in the next

stage, the packet trace will be analysed into flows to speed up a matching

process. Through monitoring the captured traffic, applications such as CNN and

Facebook generate requests for other applications. For example, when a user

accesses the CNN website, there are requests for YouTube, Facebook, BBC

news or Instagram. This behaviour for some applications causes errors in

identifying the real activities based on the previous procedure. Therefore, this

study determined the following applications (i.e. YouTube, Facebook, BBC news

or Instagram) that could be generated by other websites to check if they are

certain requested by users. The study used a resolution of the DNS to read

keywords, for example, when a user requests the Instagram, the following

keywords are released (‘instagram-p3-shv-01-lhr3.fbcdn.net.https’ and ‘instagram-p3-

shv’). By setting a counter for these keywords, if they exceed 180 within 2 minutes,

then the Instagram is certain, otherwise the application is not certain. The same

scenario was applied for other applications, Table 5.3 shows these applications

with their keywords and counters. The counter was set to 500 as these

applications released the keywords in a range (450-550) and within 2 minutes

when a user requests any one of these applications.

Table 5-3: DNS enquires

Application Keywords counter
YouTube '-in-f14.1e100.net.https'

'.1e100.net.https'

'-in-f2.1e100.net.https'

500

Facebook '.facebook.com.https'

'.fbcdn.net.https'

500

BBC news 'bbc' 500

86

5.2.3 Data Analysis

The collected Internet traffic were analyzed using the tcptrace tool that processes

pcap files (packet trace) as input and groups them into flows that are sharing the

same five tuples (source IP address, source port number, destination IP address,

destination port number and protocol). This tool takes pcap files and transfers

them into 49 features that were presented in section 4.2. Thirteen of them

described the packet characteristics and for each direction of a flow such as total

number of packets, total number of data packets, total number of flags packets,

and size of the first packet. Four of them display the flow duration and inter arrival

time. The others show advanced features that were proposed by this study such

as total number of bursts, total number of packets in bursts, duration of the burst

and idle time. The tcptrace tool generated only two levels of the features: packet

analysis and conventional analysis, which were described in subsections 4.2.1

and 4.2.3 respectivly. The flow analysis features, which were described in section

4.2.2 and in the table 4.2, were produced from the labelled connections using

Python script. For control envirnmnent, these features were obtained directly after

finishing the data analsis. In contrast, the uncontrolled environmnent, these

features would be produced after labelling all traffic (matching process in the next

section).

5.2.4 IP Matching

From the controlled data, IP addresses for each application were stored in a file

labelled with that application. The uncontrolled data was analysed as shown in

the previous subsection into flows that contained known flows based on reading

the DNS requests plus the three seconds after the requests. Therefore, the

matching process firstly started with reading the known flows to determine the

application name and afterwards fetching the specified file of the IP addresses for

87

that application. Secondly, matching the unknown flows with the specified file until

the end of the flow trace and tag them as known flows. Finally, dumping known

flows in separated files and labelling them according to the application name.

Based on previous studies, the IP files are subjecting to change continuously by

the owners of applications for security reasons. Therefore, updating these

addresses are essential, but it must be automatically and during the identification

process.

5.2.5 Keywords Matching

Many flows remained unknown after the IP matching process; all were stored in

a separated file named as unknown flows. For the controlled data, the IP

addresses file for each application were resolved into keywords based on DNS

queries and stored in a separated file named as keywords file. The results for

these keywords for each application are illustrated in Table 5-4. This process

included firstly resolving a server IP address of the unknown flows into keywords.

Secondly matching these keywords with the keywords file until the end of the flow

trace. Finally, dumping known flows to separated files.

Afterwards, five statistical operations (Min, Max, mean, median and standard

deviation) were used for summarizing statistics of each feature vertically. The

mean and median measure a central of tendency for feature values to display

how the distribution of the values around the middle. They are very sensitive to

the outliers in a data; the outliers usually have high or low values that deviate from

other values, pre-processing and removing such outliers is very important to avoid

overfitting in the classifier. In contrast, the variability measures the dispersion in

feature values and displays how a data is spread out. The feature values being

more consistent when the variability is low, in opposite, the values being farther

from others when the variability is high. The most common measures of the

88

Table 5-4: DNS enquires

Application Keywords

Amazon 'cloudfront.net', 'deploy.static.akamaitechnologies.com.https',

's3-3-w.amazonaws.com.https'

BBC news 'an.haven.com.https', '.bbc.co.uk.http',

 'www.edigitalsurvey.com.http'

Bing 'a-0001.a-msedge.net.http'

CNN 'a23-55-58-227.deploy.static.akamaitechnologies.com.https','west-

1.compute.amazonaws.com.http','compute-1.amazonaws.com.https',

'akamaitechnologies.com.http','1e100.net.https','fbcdn.net.https',

'pixel.quantserve.com.http'

Facebook '.fbcdn.net.https', '.facebook.com.https', '.fbcdn.net.https'

Instagram 'instagram-p3-shv-01-lhr3.fbcdn.net.https','instagram-p3-shv'

Yahoo mail '.ycpi.vip.lob.yahoo.com.https','mpr2.ngd.vip.ir2.yahoo.com.https',

'r1.ycpi.vip.ir2.yahoo.net.https',

 'beap3.cbs.vip.ir2.yahoo.com.https',

 'ats1.member.vip.ir2.yahoo.com.https',

'pr-bh.pbp.vip.ir2.yahoo.com.https',

'public.comet.vip.bf1.yahoo.com.https','a2.ue.vip.ir2.yahoo.net.https',

'gw.iris.vip.bf1.yahoo.com.https','e1.ycpi.vip.lob.yahoo.com.https','a1.ue.vip

.ir2.yahoo.net.https'

Youtube 'lhr35s05'

Google 'lhr25s','wk-in'

G-mail 'lhr35s05'

University of
Plymouth

'plymouth'

variability are range and stranded deviation, the range is the difference between

two extremist values and become useful when the size of the sample is small. In

our work, the range was divided into two separate measures (i.e., maximum and

minimum), these two measures were calculated for each feature.

These operations were applied only for conventional and packet analysis features

as these features were calculated per flow, therefore, these operations

summaries the session statistically. In contrast, the flow features were already

summaries the session such as the number of connections per session. The

results of these operations to the conventional and packet features were five rows

(i.e., one row for each operation) and afterwards these rows were arranged in one

row. Therefore, these features were doubled five times, for instance, a feature

packet_a, which is a total number of packets in transmitting direction, become

min_packet_a, max_packet_a, mean_packet_a, median_packet_a, and

89

standard_deviation_packet_a. These features were combined with flow level

features.

The results were 9 applications with details in Table 5-5, as shown in the table

that the most application that had been used by the users was the G-mail against

very low usage for Yahoo mail.

Table 5-5: Overall results for classification of the observed data

Application Flows Duration
(h)

Number of samples

BBC news 3,150 1.6 6

Facebook 98,210 33.1 287

Google 59,422 88.5 892

Yahoo mail 6,795 0.8 9

YouTube 66,500 76.5 714

G-mail 1,448,392 143 870

Amazon 23,975 6.6 34

Plymouth.ac.uk 24,225 42.5 286

Bing 10,324 17.2 110

5.3 Conclusion

This chapter presented twofold of data sets for the proposed method and the

required processing steps. The first data set was collected within a controlled

environment to build a ground truth data for the second data set, which was

collected in a real-time environment. Both data sets were analysed into different

feature levels using tcptrace tool, preparing the data sets for more analysis in the

next chapter. The uncontrolled data was labelled based on DNS enquires and

matching the connections of traffic with the IP addresses of the applications,

which were built from the controlled data. This matching process resulted in

unclassified flows due to a changing in IP addresses for the requested

applications and these new addresses had not been updated in the database

files. As mentioned earlier, the database must be updated regularly, A study [154]

investigated the stability of IP addresses and bags of domain over time for popular

services (i.e., Facebook, Google, Google video, WhatsApp, Twitter, and

90

Dropbox). A study collected 12 datasets from residential network over a full year

(2015), each dataset contained one month of data. Lists of IP addresses were

created that were used by the popular services. The authors noticed that all

services showed a change in the lists of IP addresses over the year, but this

change is different from one service to another. For instances, Google Video

showed relatively stable in the IP list, 15% of changing was for Dropbox. While

for Twitter and Google, about 50% of the IP addresses were changed after one

month of observation, for Dropbox and Facebook, the lists of IP addresses were

completely disappeared after one year of observation. Part of the identification

process, this work assumed that the generated traffic after the requesting

application until the three seconds could be considered as part of that application.

Therefore, this traffic can be used to update the database, however, this small

period cannot updated the entire database and the assumption could be

inaccurate that might add wrong addresses to the database. In the next chapter,

an analysis for the controlled data is applied to reduce the number of features by

finding the correlations between these features and visualize the selected

features.

91

6 Analysis

6.1 Introduction

The previous chapter included collecting the data in controlled and uncontrolled

environments, analysing the packets trace to flow-based trace, and pre-

processing the analysed traffic. This generated the features that were presented

in section 4.2 with labelling flows regarding their applications. Due to the large

datasets, which contain many features, data reduction approaches were applied

through an analysis to find a possible correlations between these features that

leads to reduce in the number of them. Selecting the more relevant features and

eliminating the irrelevant ones in the initial steps increases the performance of

machine learning classifier. Filtering these features manually and trying to find

the correlation with the specified target is a difficult task and time-consuming. A

clustering analysis is used to explore a similarity between variables;

consequently, one of them can represent the variables that have similar

correlation. The same technique is used to find the variability between sessions

to validate the ability of the proposed features in discriminating between

applications. Moreover, principal component analysis (PCA) is used for graph

representations as a descriptive analysis.

The chapter addresses the following aims:

 Determining the possible correlations (similarity) between input features in

order to reduce in the number of features.

 Investigating the minimum set of input features that maximizes the

accuracy for output prediction.

 Demonstrating that different users' behaviors do not effect on the

application behavior.

92

6.2 Cluster analysis

Clustering techniques are utilized to group objects within clusters that are similar

to each other, and they have been widely used for solving research problems.

These techniques are helpful for displaying these groups in suitable graphs and

identifying the correlation between sessions and features. There are two main

techniques, hierarchical and k-means clustering, in this framework, a hierarchical

clustering is used to group different features and samples of a data set. Only the

controlled data is analysed using hierarchical clustering to find the similarity

between features by drawing a dendrogram. For the uncontrolled data, a machine

learning technique is deployed for features selection in the next chapter.

6.2.1 Controlled data

This data set contained 199 features with 3300 sessions, for better visualization,

they are divided into nine data subsets and each subset contains 22 features as

average. The hierarchical clustering is applied for each subset individually. Firstly,

the technique is applied for the first subset (set1) that contains 24 features. The

dendrogram in Figure 6-1 shows different clusters, the x-axes represents the

features and the y-axes represents the similarity percentage. Ten clusters are

noticed in the figure and each one given different colour. Within individual

clusters, which have more than two features, the similarity is varied. For some

features, the similarity is above 85%, while for others, the similarity reaches nearly

100%. This similarity shows that the action of these features are the same and

93

Figure 6-1: Clustering features dendrogram for set1

that leads to reduction in the number of features. Based on the cluster result, the

number of features is reduced from 24 features into 10 features (the value 10

represents the cluster number); one feature is chosen from each cluster.

The same procedure was repeated on the remaining data subsets by applying

the hierarchical clustering and drawing the dendrogram figures for each subset.

The similarity between features is different for each data subset; consequently,

the number of clusters are different. Table 6-1 shows the final features reduction

of each data subset with 84 features in total for nine data subsets. The table

presents also high availability for the proposed features, out of 84 features, there

are 60 features belong to the proposed ones, which are in a blue colour in the

table. They showed high dissimilarity from the other conventional features, in

other words, the proposed features have a unique footprint that could identify

various activities.

94

Table 6-1: Features selection for each data subset

Subsets Features

Subset1 mean_packets_a,mean_data_packets_b,mean_flags_packets_b/flags_p
acket_a,
mean_flags_packets_b/packets_b,mean_first_pkt_a,mean_burst_no_a,
mean_burst_no_b,mean_pkt_count_a, mean_burst_size_bytes_a

Subset2 mean_burst_size_bytes_b/burst_size_bytes_a,
mean_AVG_burst_size_bytes_a, mean_AVG_burst_size_bytes_b,
mean_burst_duration_a,mean_inter_arrival_time_burst_a,
mean_burst_data_no_a,mean_burst_data_no_b,
mean_pkt_data_count_b

Subset3 mean_idle_time_data_b,
max_packets_a, max_packets_b, max_packets_b/packets_a,
max_data_packets_b,max_data_packets_b/data_packets_b,
max_first_pkt_a, max_first_pkt_b,max_burst_no_a, max_pkt_count_a,
max_pkt_count_b/pkt_count_a

Subset4 max_burst_size_bytes_b,max_burst_size_bytes_b/burst_size_bytes_a,
max_AVG_burst_size_bytes_a, max_AVG_burst_size_bytes_b,max_bur
st_duration_a, max_burst_data_no_a,max_burst_data_no_b

Subset5 max_idle_time_data_a, md_packets_a,
md_packets_b,md_packets_b/packets_a,
md_data_packets_a, md_flags_packets_a, md_flags_packets_b,md_fla
gs_packets_a/packets_a, md_first_pkt_a,md_burst_no_a,
md_pkt_count_b, md_pkt_count_b/pkt_count_a

Subset6 md_burst_size_bytes_a, md_AVG_burst_size_bytes_a,
md_AVG_burst_size_bytes_b, md_burst_duration_a, md_idle_time_a,
_pkt_data_count_a, md_burst_size_bytes_b/burst_size_bytes_a,
md_AVG_burst_size_bytes_data_a,md_burst_size_bytes_data_b/burst_
size_bytes_data_a

Subset7 md_inter_arrival_time_data_b,md_idle_time_data_a,sd_packets_a, sd_p
ackets_b/packets_a,sd_data_packets_a, sd_flags_packets_a,sd_flags_p
ackets_b/flags_packet_a, sd_flags_packets_a/packets_a,sd_first_pkt_a,
sd_first_pkt_b, sd_burst_no_a,sd_pkt_count_b

Subset8 sd_pkt_count_b/pkt_count_a,
sd_burst_size_bytes_a,sd_AVG_burst_size_bytes_a,
sd_burst_duration_a,
sd_inter_arrival_time_burst_a, sd_burst_data_no_a, sd_burst_data_no_b
, sd_pkt_data_count_b,
sd_burst_size_bytes_data_b, sd_AVG_burst_size_bytes_data_b,sd_bur
st_duration_data_a

Subset9 sd_inter_arrival_time_data_a, sd_inter_arrival_time_data_b,
sd_idle_time_data_a, sd_idle_time_data_b, No. of connections

95

For more reduction in the number of features, the same cluster technique is

deployed on the final data set with 84 features, and the results are shown in

dendrogram Figure 6-2. There are 29 clusters of features with similarity more than

80% in which the number of features is reduced to 29. Due to a high number of

features, they are not visible in the figure, but the clustering splits the features into

about 29 ones. These features are listed in Table 6-2 for 29 clusters, one feature

could represent the cluster behaviour.

Figure 6-2: Features cluster dendrogram for 84 features

Table 6-2: Features hierarchical clustering

Clusters Features

Cluster 1 (mean_packets_a); (sd_packets_a)

Cluster 2 (mean_data_packets_b); (mean_AVG_burst_size_bytes_a)

Cluster 3 (mean_flags_packets_b/flags_packet_a)

Cluster 4 (mean_flags_packets_b/packets_b); (md_pkt_count_b/pkt_count
_a); (md_burst_size_bytes_b/burst_siz); (md_AVG_burst_size_b

96

ytes_b); (sd_burst_duration_data_a); (sd_inter_arrival_time_dat
a_b)

Cluster 5 (mean_first_pkt_a); (max_first_pkt_a); (max_first_pkt_b); (max_
pkt_count_b/pkt_count_a); (max_AVG_burst_size_bytes_a); (ma
x_AVG_burst_size_bytes_b); (sd_first_pkt_b); (sd_inter_arrival_t
ime_data_a)

Cluster 6 (mean_burst_no_a); (mean_burst_data_no_b); (md_pkt_data_c
ount_a)

Cluster 7 mean_burst_no_b

Cluster 8 mean_pkt_count_a mean_pkt_data_count_b max_pkt_count_a

Cluster 9 mean_burst_size_bytes_a mean_burst_duration_a max_burst_
duration_a sd_burst_duration_a

Cluster 10 mean_burst_size_bytes_b/burst_size_bytes_a max_burst_size_
bytes_b/burst_si

Cluster 11 mean_AVG_burst_size_bytes_b mean_idle_time_data_b max_
burst_size_bytes_b max_idle_time_data_a

Cluster 12 mean_inter_arrival_time_burst_a md_burst_duration_a sd_inter
_arrival_time_burst_a

Cluster 13 mean_burst_data_no_a

Cluster 14 max_packets_a md_packets_b/packets_a sd_flags_packets_a/
packets_a sd_AVG_burst_size_bytes_a

Cluster 15 max_packets_b No. of connections

Cluster 16 max_packets_b/packets_a md_burst_no_a md_pkt_count_b m
d_burst_size_bytes_a md_AVG_burst_size_bytes_a sd_burst_si
ze_bytes_data_b sd_AVG_burst_size_bytes_data_b

Cluster 17 max_data_packets_b

Cluster 18 max_data_packets_b/data_packets_a md_flags_packets_b

Cluster 19 max_burst_no_a md_inter_arrival_time_data_b

Cluster 20 max_burst_data_no_a md_burst_size_bytes_data_b/burs sd_fl
ags_packets_a

Cluster 21 max_burst_data_no_b md_flags_packets_a md_AVG_burst_si
ze_bytes_data_a sd_data_packets_a sd_pkt_count_a sd_pkt_c
ount_b/pkt_count_a

Cluster 22 md_packets_a sd_first_pkt_a sd_burst_data_no_a

Cluster 23 md_packets_b sd_burst_no_a sd_burst_data_no_b

Cluster 24 md_data_packets_a sd_pkt_data_count_b

Cluster 25 md_flags_packets_a/packets_a sd_burst_size_bytes_a

Cluster 26 md_first_pkt_a

Cluster 27 md_idle_time_a md_idle_time_data_a

Cluster 28 sd_packets_b/packets_a sd_flags_packets_b/flags_packet

Cluster 29 sd_idle_time_data_a

97

The features were reduced in the previous analysis based on the correlation

(similarity) between them from 199 to 84 and finally to 29. To demonstrate the

validity of the reduction approach, a clustering was applied to the data set, but

between sessions (30,300), which contain the eleven application. Using ward

Linkage with Euclidean distance in the Minitab tool for three data sets with

different features (199, 84, and 29), a very good improvement in the separations

between sessions is achieved for the last data set with 29 features. Figure 6-3

shows three dendograms for three data sets; although the x-axis includes many

sessions that cannot recognize them, the separation between sessions is clear

for the three figures. For instances, Figure 6-3 (A) shows only seven clusters for

dataset that contains 199 features and eleven applications, while Figure 6-3 (B)

shows clearly nine clusters for dataset that contains 84 features and the same

number of applications. Figure 6-3 (c) shows all the activities of eleven

applications for dataset that contains only 29 features. The features are able to

discriminate among the application samples based on the statistical differences

between inter-arrival times of packets and flows. In other words, the selected

applications generate different behaviour based on statistical features relating to

the timing of packets arriving. As a result, the proposed features show high ability

in identifying the eleven applications.

98

Figure 6-3: Dentrograms separation of samples into clusters for three data sets

6.3 Principal Component Analysis (PCA)

In the previous section, the cluster analysis was introduced to show the similarity

between features as the approach of data reduction. In contrast, a PCA, which

examines the variability in the data by generating few features. This technique

was applied to the data that consists of 29 features and 2, 200 samples for data

visualization and to show how the contributions of the selected features in

presenting the data. In other words, it is impossible to visualize data with many

features, but PCA can read the variance in the overall data and describe many

features in a few components. Figure 6-4 shows the scree plot that describes the

variability of the overall data by the contribution of each component based on

eigenvalues. The first two components represent most the features, while the

remaining components show a decrease in the representation. It is

(199)

(29)

(84)

99

Figure 6-4: Scree plot of data

clearly highlights that most of the variability of the data is presented by the first

two component PC1 and PC2. The other significant variability clarified by the

components PC3 to PC5, while the remaining componets are illustrated low

variance. Although the first component absorbed the largest variability of the data

as can be seen from the eigenvalue, the other components also take part in the

data variance. From the figure, the features are reduced from 29 to only 5

features, which are represent most of the variability of the data. Figure 6-5

presents a score plot generated from calculating the values of PC1 and PC2 in

the x-axis and y-axis respectively. Although the two components are not sufficient

to identify clearly the different applications, the figure shows the eight activities of

the traffic applications, except for Amazon sessions which do not appear in the

graph. Skype and Google are spread within activities, as the second one can be

used at each application for searching. Although the plot deals with 11

applications as shown from the class label in the top right of the plot, only 8

applications appear in the figure as the two components (PC1 & PC2) are not

able to present all applications. Visualization data in more than two dimensions

can give a better understanding of the application behaviour.

100

Figure 6-5: Score plot

6.4 T-test

Another categorical variable in the data set is a user; the robust features must be

not affected by the user behaviour when the application is browsed by a different

user. An analysis is applied based on the same data set that were collected from

ten different users that browsing eleven applications. The analysis is based on

two-sample t-test that tests whether there is a difference between user1 and

remaining nine users (the values are chosen randomly from the 9 users). This

test calculated the possible difference of the mean values of feature

(sd_burst_data_no_a) between user1 when he/she browsed the Amazon web

site versus other users. A P-value was calculated for user1 against other users

and the same calculations were applied on user2 against remaining users and so

on until user10. The all P-values for ten users present in Table 6-3; all the P-

values for the users are greater than 0.005 except for user4 and user5 where the

P-values are less than 0.005. Based on a study [169], it claimed that the scientists

propose that the default P-value should change from 0.05 to 0.005 for statistical

significance. The reason for this change as the traditional threshold (0.05)

101

produces a high false discovery even when there are no errors in the statistical

analysis and experimental design. This is obvious from Figure 6-6 that shows the

distributions of the feature values for ten users. Similarly, the user4 and user5

show different distributions, while the others show nearly identical distributions.

The reason that user4 and user5 do not follow the same pattern of other users

could be that these users have different behaviour from the others or these users

did not follow the instructions that were set by the researcher (controlled data,

see page 83). For instance, the researcher set a period for browsing between (2-

5) minutes, changing in the browsing period could effect on the user’s behaviour.

Moreover, the user’s behaviour in this experiment based on only one feature

(sd_burst_data_no_a), using different feature or set of features could lead to

different results.

Table 6-3: The P-values for ten users

Users User1 User2 User3 User4 User5 User6 User7 User8 User9 User10

P-Value 0.01 0.69 0.23 2.249e-11 0.0001 0.56 0.98 0.30 0.02 0.53

6.5 Conclusion

This chapter analysed the controlled data set that was presented in section 5.2.1

in order to decrease the number of features. A hierarchical clustering technique

is used for features reduction by exploring the correlation between them. The

analysis found possible correlations between these features that were reduced

from 199 to 84 and to only 29. The reduced features improved a discrimination

among the eleven applications rather than the entire features. The analysis also

found that the proposed features contributed more in the clustering rather than

the conventional ones. Additional analysis was applied on the categorical variable

(user) using only one feature (sd_burst_data_no_a). The results showed that this

feature can be affected by a user behaviour when different users browse the

102

same application. Using different feature or set of features could lead to different

conclusion, therefore, more investigations are needed to prove whether a user’s

behaviour is affected or not by the proposed features. Next chapter evaluates the

collected data using different machine learning algorithms.

Figure 6-6: Distributions of ten users for Amazon application

103

7 Evaluation

7.1 Introduction

Building upon the previous chapters that highlighted the features, data collection,

and the proposed design, this chapter proceeds to evaluate the proposed method

using appropriate classifiers. The chapter investigates whether features

associated with packet arrival timing can be used to identify network applications

based on their traffic and timing patterns. The evaluation started with the

controlled data, which was collected under strict policy, using four machine-

learning algorithms. This data represents the truth table for the next step

evaluation for the uncontrolled data using C5.0 classifier.

This chapter addresses these aims:

1. Continuing investigating whether burstiness-based features are

discriminant for identifying more network applications based on the traffic

that they exchange.

2. Investigating the efficiency of burstiness-based features versus traditional

flow- and volume-based features for identifying network applications.

3. Investigating the uniqueness behaviour of each application based on the

proposed new features.

7.2 Controlled environment evaluation

A first experiment is conducted by using the data that was collected under control

environment as showed in the section 5.2.1. Four supervised machine-learning

algorithms (i.e., Gradient Boosting (GB), Random forest, SVM and the C5.0) were

applied on the controlled data using four different feature sets. The first features

set (set1) included 29 features, which were obtained from the analysis in the

previous chapter. The second features set (set2) contained the features that were

104

suggested from the previous studies, which were presented in section 4.2.3, table

4.3 (17 features multiply by 4 the four statistical operations, the total 68). The third

features set (set3) consisted of the burstiness and idle time features, which were

introduced in section 4.2.1, table 4.1(32 features multiply by 4, plus the first three

flow features in table 4.2); while the forth features set (set4) combined the last

two feature sets (set2 & set3). Cross validation technique was used in these

classifiers for training and testing the model with five folds as ratio 4/1

respectively. Moreover, a grid search technique was utilized for hyper parameter

tuning by evaluating the model through the best combination of these parameters.

The best combinations of parameters for the GB, Random forest, and SVM were

(learning rate = 0.1, Maximum depth = 5, Max leaf nodes = 40, Number of

estimators = 100); (Maximum depth = 8, Max leaf nodes = 40, Number of

estimators = 100); (C = 1, Kernel = rbf) respectivily. The accuracies for the

models with execution times are illustrated in Table 7-1. High performance was

recorded for the gradient boosting in classifying different applications for four

feature sets compared with low accuracy for the SVM classifier. However, the

time consuming for using the gradient boosting is much more from the other

classifiers. The best efficiency regarding accuracy and time was for Random

forest. The gradient boosting classifier shows a similarity in accurses for the first

three feature sets. In other words, the features that were proposed by the prior

studies achieved similar accuracy compared with the proposed features by this

work. Combing the last two feature sets as in set4 slightly improved accuracy, but

with more processing time in traffic classification. Overall, increasing the number

of features leads to marginal increase in accuracies for all classifiers to identify

11 applications. The best choice that compromise between accuracy and time is

for set3 and random forest classifier, which is achieved 94.51 within 6.2 s.

105

Table 7-1: Accuracies for the first three classifiers

 Features Gradient
Boosting

Time SVM Time Random
forest

Time

Set1 29 94.06 45.2s 87.42 3.3s 92.21 3.5s

Set2 68 94.75 1.5min 87.42 3.3s 92.60 5.3s

Set3 131 94.54 2.3min 86.93 10.7s 94.51 6.2s

Set4 199 95.69 3.5min 91.72 14.5s 94.51 8.2s

`

In contrast, higher accuracy was achieved using the C5.0 model with different

boosting values (i.e., 0, 10, 15, 20, 50, and 100) that improved the performance

of the classifier. The results of the classifier are presented in Table 7-2. Set1,

which included only 29 of the selected features, resulted in a maximum accuracy

95.82% with a maximum allowed boosting factor of 100, but with longest time

10.6 s. The reasonable result regarding the accuracy and time was when the

boosting factor is 15 with high accuracy 95.55%. Set2, which contained features

of prior studies, resulting in slightly increase in accuracy and processing time

when compared to set1 with boosting factor 10 with accuracy 96.18. Set3, which

included the proposed features, and resulted in a considerably improved

accuracy of 96.91% and at the same boosting factor. Finally, set4 incorporating

(set2 & set3) led to a maximum accuracy of 97.36 % with 10 times boost. the

results signified that the features related to the burstiness and idle time have high

efficiency in discriminating the different applications. Combining both sets

showed considerable improvement in classification accuracy peaking at (97.4%).

The proposed features showed the ability to better description for the applications

than the other parameters, which enhance the classifier capability. Similarly, the

top features showed high accuracy and very reasonable execution time. Setting

the boosting value at 10 achieved high improvement in accuracy for all data sets,

while the following boosting values (i.e., 15, 20, 50, and 100) showed slightly

improvement in accuracy for all data sets.

106

Table 7-2: Accuracy for the C5.0 classifier

 No

boost

Time

(sec)

Boost

10

Time

(sec)

Boost

15

Time

(sec)

Boost

20

Time

(sec)

Boost

50

Time

(sec)

Boost

100

Time

(sec)

Set1 89.45 0.1 94.82 1.1 95.55 1.9 95.27 2.3 95.36 5.7 95.82 10.6

Set2 90 0.4 95.45 3.7 96.18 5.1 96.18 6 96.55 16.7 96.73 39.6

Set3 88.55 0.8 96.36 6.1 96.91 9.1 96.73 10.5 96.73 27.7 96.64 58.1

Set4 89.82 1.3 97.36 10.4 96.82 13.3 97.09 16.5 97.45 41 97.36 102.9

C5.0 has an advantage that displays the percentage usage of each attribute that

used in building the classifier in training stage. Table 7-3 shows the most

attributes as percentage that contribute in the classifier using set4 and at boosting

factor 10. In decision tree, the most frequently attribute used is at the root (i.e.

high percentage), while the less used when an attribute is further down the tree

(less percentage). The table displays a strong availability usage by the classifier

for the proposed features compared in low usage for the features that were

proposed by prior studies.

Table 7-3: Percentage attributes usage in C 5.0 classifier

Percentage
usage

Proposed attributes

100% mean_burst_data_no_a; max_burst_size_bytes_data_b;
max_AVG_burst_size_bytes_data_b;
md_burst_duration_a; No.of.connections

98.36% sd_pkt_count_a

97.86% md_AVG_burst_size_bytes_data_a

92.14% max_inter_arrival_time_data_a

89.05% No.of.conns.in.bursts

72.73% max_idle_time_data_b

70.50% max_idle_time_data_a

63.36% mean_burst_size_bytes_data_b.burst_size_bytes_data_a
Percentage
usage

Prior studies attributes

94.23% md_first_pkt_b

64.27% mean_flow_duration_b

62.95% mean_data_packets_a

107

The accuracy represents only the ratio of correctly classified instances versus all

instances. For further investigation in the performance of the classifier across all

applications, Table 7-4 presents the confusion matrix table to describe the

performance of the classifier for each class. The row shows the instances in the

predicted class while column shows the instances in the actual class. The

diagonal of the matrix represents the number of samples that are correctly

classified as interest class and called True Positive (TP). The rest of the values

in the row of each application are misclassified False Positives (FP), and the rest

of the values in the column of each application are misclassified False Negatives

(FN). The overall performance of the classifier is considerably high for all

applications except for the Bing application. Out of the total tested samples, it was

observed that Amazon had the least number of false negatives and zero for Gmail

and Skype. The reason for having these applications high classification accuracy

could be attributed due to that they have unique behaviour from the others. The

applications performing the lowest in terms of classification were Bing and

Google. For application Bing, a significant number of samples were misclassified

as CNN. In addition, for application, Google was mismatched as Bing, Gmail,

Yahoo mail and YouTube. This was due to that the Google application could be

as a background search engine for many applications. Other applications also

performed rather well, only having two samples classified as false negatives.

Overall, the accuracy of all applications was satisfactorily high.

108

Table 7-4: Confusion matrix for all features

Apps

A
m

a
z
o

n

B
B

C

B
in

g

C
N

N

F
a

c
e

b
o

o
k

G
-m

a
il

G
o

o
g

le

In
s
ta

g
ra

m

S
k
y
p

e

Y
-m

a
il

Y
o

u
T

u
b

e

Amazon 99 0 2 0 0 0 0 0 0 0 0

BBC 0 98 2 2 0 0 0 0 0 0 0

Bing 1 0 90 0 0 0 1 0 0 1 0

CNN 0 1 5 98 0 0 0 0 0 0 0

Facebook 0 0 0 0 98 0 0 2 0 1 0

G-mail 0 0 0 0 0 100 2 0 0 0 1

Google 0 0 1 0 1 0 95 0 0 0 0

Instagram 0 0 0 0 0 0 0 98 0 0 0

Skype 0 0 0 0 0 0 0 0 100 0 0

Y-mail 0 1 0 0 0 0 1 0 0 98 2

YouTube 0 0 0 0 1 0 1 0 0 0 97

7.3 Uncontrolled data

The final dataset that obtained from chapter 5 in section 5.2.6 contained nine

Internet appliations (i.e. BBC news, Facebook, Google, Yahoo mail, You tube, G-

mail, Amazon, University of Plymouth website, and Bing) with 3200 sesssions.

This dataset included all the features that were introduced in chapter 4 , to do

comparison between previous studies and current study, this dataset was divided

into three subsets features. The first subset (set1) contained the features that

were suggested from the previous studies, which were presented in section 4.2.3,

table 4.3 (17 features multiply by 5 the five statistical operations, the total 85

features). The second subset (set2) consisted of the burstiness and idle time

features between packets, which were introduced in section 4.2.1, table 4.1(32

features multiply by five, 160 features, plus 18 flow features, which were

presented in section 4.2.2 in table 4.2, the total 178); while the third subset (set3)

combined the both.

7.3.1 Feature selection

Feature selection approach was applied using random forest on three subsets

before classification stage. This approach ranks features from the most significant

109

ones that mostly contribute in building the classifier to least significant ones that

have low impact. Therefore, only features that have high importance in

discriminating different applications were used to build a C5.0 classifier in training

stage. The importance measure of the random forest based on a given feature is

being biased significantly into correlated predictor variables [170]. Random forest

algorithm was implemented using Python script on the three subsets for feature

selection; for all sets, the features were ranked from most important features to

low significant ones, (see appendix A, script 4 page 189 for more details about

implementation of Python script for Feature selection using Random Forest

algorithm).The top 15 features are illustrated in Figure 7-1 for set3, which

contained the entire features. The figure shows how significant the impact of the

proposed attributes in building the model, 13 of the top 15 features are selected

from the proposed features, while only 2 features belong to the conventional

features. Figure 7-2 (A) shows the top-ranked attribute, which is the Min (burst-

duration-data-a/Packet-data-a). The figure depicts different distribution for the

applications for the examined feature. Although, there are some similarities in the

variability across the YouTube, Google, and G-mail, they belong to the same

company (i.e. Google) as a colocation of servers within the same IP network. In

contrast, Figure 7-2 (B) illustrates the lowest ranked feature, which is the burst-

duration-data-b. Although this feature contributes the lowest in the random forest,

it shows a little variability only for the four applications that were mentioned

recently.

110

Figure 7-1: Top 15 attributes ranked in Random Forest classifier

Figure 7-2: Behaviour of eleven applications for most significant feature and the
lowest one

111

7.3.2 C5.0 decision tree classifier

The effectiveness of the suitable features in classifying traffic activities was

examined using a set of preliminarily experiments. In the previous section, for all

data sets, the features were ranked from most significant feature to the lowest

one. Different ranges of the top-ranked features for each data set were taken to

explore the performance of these features using C5.0 algorithm. Table 7-5 shows

the resulting predication accuracy for training data sets and for different ranges

of the top-ranked features. As shown from the figure that the overall accuracy

increases when the number of features increases. However, for set2 with the

range of features from 70-100 and 120-178, the accuracy decreases from 46.49%

to 43.01% and from 48.55% to 45.78% respectively. Therefore, these ranges of

features were removed from the set2 that reduced the features from 178 to 90

and achieves high accuracy. Apart from this, increasing the top-ranked features

that were obtained from the random forest technique (i.e. set1 and set3) does

increase very slightly in terms of C5.0 accuracy.

Table 7-5: Accuracies for different feature sets using C5.0

Set1

Features 20 40 60 85

Accuracy 45.84 45.93 46.36 47.77

Set2

Features 35 70 100 120 178 90

Accuracy 44.83 46.49 43.01 48.55 45.78 49.30

Set3

Features 47 86 122 162 193 263

Accuracy 46.94 47.12 48.55 47.21 50.16 52.55

After applying the features selection for the three data sets, cross validation

technique was used in C5.0 classifier for training and testing the model with three

folds as ratio 2/1 respectively. This technique partitioned the data into three equal

112

parts; the model was trained on two parts of the data and tested on the remaining

part. The process was repeated three times on different parts and the error was

calculated by taking the average of all errors. This ratio is different from the ratio

for the controlled data, which was 4/1, as the number of samples for some

applications were very few. For example, the number of samples for Yahoo mail

and BBC web site were 9 and 6 respectively. The classification algorithm was

applied to all three feature sets with six different boosting values (0, 10, 15, 20,

50 and 100). The results in Table 7-6 indicate low accuracy for the set1 compared

to set2 as the burstiness features increase the efficiency of the classifier in

discriminating the different applications. Combining both sets showed

considerable improvement in classification accuracy raising up to (79.68% at

boost 10). The proposed features showed the ability for better discriminating

among the applications in comparison with the other features, which enhances

the classifier capability. Table 7-7 compares the number of basic and burstiness

features that were used by C5.0 classifier. The burstiness attributes reported

superiority in segregating the applications. This is another indicator showing that

the classifier strongly relied on the proposed features (i.e. burstiness features)

because they provide high discrimination amongst applications.

Table 7-6: Average accuracies with different feature sets using cross validation

Boosting 0 10 15 20 50 100

Set1 47.77 56.56 58.05 58.54 60.30 60.31

Set2 49.30 58.75 60.21 61.11 64.23 65.51

Set3 52.55 79.73 73.99 67.78 68.10 67.13

113

Table 7-7: Attributes usage in C 5.0 classifier

Basic features usage (75-100)%

data_packets[min, max], flow_duration[mean, min], flags_packets[mean, min, max] ,

inter_arrival_time_data[sd, min]

Burstiness features usage (75-100)%

burst_size_bytes[md, min, mean], burst_no[sd, min], idle_time_data[mean, min, sd],

pkt_data_count[min, mean], pkt_count[min, sd], inter_arrival_time_burst_conns[min,

sd], inter_arrival_time_burst[mean, max], burst_size_bytes_data[max, min, mean],

burst_duration[sd, mean], burst_data_no[min]

7.3.3 Confusion Matrix

The accuracy, as presented in the previous section, represents only the ratio of

correctly classified samples versus all samples. For further analysis in the

performance of the classifier, Table 7-8 presents the confusion matrix, with the

predicted class on the rows and the actual class on the columns. The overall

performance of the classifier is high for all applications except for the Google

applications (i.e. Gmail, YouTube, and Google search engine). Out of the total

tested samples, it was observed that lowest rate of false negatives was for the

University of Plymouth website, out from 70 samples for this application, only five

samples classified as G-mail. While all samples (3, 11, 2) for Yahoo mail, Amazon

and BBC news respectively were classified correctly. On the other hand, the

Google applications (Gmail, YouTube, and Google) performed the worst in terms

of classification, as they belong to the same company and they were misclassified

as each other.

114

Table 7-8: Confusion Matrix results for optimal classifier

Applications Gmail Y-

mail

Amazon BBC Bing Facebook Google UoP

site

YouTube

Gmail 198 0 0 0 3 6 14 5 13

Ymail 0 4 0 0 0 0 0 0 0

Amazon 0 0 9 0 0 0 0 0 0

BBC 0 0 0 2 0 0 0 0 0

Bing 4 0 0 0 20 2 16 0 7

Facebook 14 0 0 0 5 82 0 0 8

Google 32 0 2 0 2 2 247 0 12

UoP site 11 0 0 0 0 3 0 90 1

YouTube 30 0 0 0 4 0 20 0 198

As showed from the accuracies in tables (7.2 for controlled data & 7.6 for

uncontrolled data) that the proposed features have the same impact of

conventional features in classifying traffic activities. Merging both features

showed significant improvement in the results that majority of them contributed

strongly in building the classifiers as showed in tables (Table 7-3 for controlled

data, Table 7-7 for uncontrolled data). However, some applications resulted in

low accuracies such as Google, G-mail and YouTube as they belong to the same

owner. This is one of the limitations of this work that relied on IP addresses and

DNS in labelling Internet applications. In other words, the existence of CDN

technology in hosting different applications leads to inaccurate results when using

IP addresses and DNS in identification[44, 154]. Moreover, the data traffic was

collected at the University of Plymouth and from managed-computers owned by

the university. They run web-based services in the background that add noise to

captured traffic and this case do not happen using Linux operating system. A large

dataset with different types of applications would be better to investigate more in

performance of the proposed work. Moreover, finding a more accurate method

115

for labelling traffic that enhances the accuracy and leads to clear analysis in

different applications.

7.4 Conclusion

This chapter evaluated two types of data (controlled and uncontrolled) using four

ML algorithms to investigate that the proposed features able to identify network

applications based on their traffic and timing patterns. The study compared the

proposed features with the features of prior studies, the results showed very high

accuracy for the proposed features in segregating the different traffic activities

regarding the controlled data. C5.0 classifier recorded higher accuracy compared

with the others classifiers used reached to more than 97%. In addition, the

proposed features contributed in the classifier usage more than the prior studies

features. For the uncontrolled data, overall accuracy was more than 79%;

however, some applications resulted in low accuracies such as Google, G-mail

and YouTube as they belong to the same owner. One of the limitations of this

work was that the constructing of the truth table for application membership of

flows relied on IP addresses and DNS. Unfortunately, due to the underlying CDN

hosting of different applications, this classification led to inaccurate results.

Moreover, the data traffic was collected at the University of Plymouth and from

managed-computers owned by the University and included many web-based

services that introduced noise in the collected data. On the other hand, by

comparing with results that were achieved by previous studies and obtained high

accuracy, most these studies classified traffic according to network protocols

such as FTP, IMAP and HTTP or according to application class such as Email,

P2P and streaming. These types of traffic are easy to identify and can obtain high

accuracy. Based on reviewing the literature, few studies such as [29] that

classified modern applications (i.e. Facebook and Google services). However,

116

these studies relied on DPI method for labelling traffic that they used supervised

approach for traffic classification. DPI had been considered trustworthy by such

studies [116, 132] until in 2009 a study [171] claimed that libraries of DPI are

unreliable. Nowadays, current applications are web-based and encrypted;

therefore, DPI method cannot cope with modern services as it based on matching

payload patterns, IP addresses and port numbers [29].

117

8 An architecture for application-based management of

traffic using SDN

8.1 Introduction

The previous chapters presented novel features for Internet traffic classification.

The work proposed a methodology that firstly started the collection of known

applications individually in order to examine the validity of the proposed features

and to create a database for the next step. Secondly, a real traffic for different

Internet applications was collected and labelled based on the IP address and

DNS queries. This methodology aimed to build a database that contained flows

mapping to their applications. This chapter proposed traffic classification

architecture using SDN and this architecture was provided by large database that

contained labelled applications. The database required no additional modification

or complex hardware to the SDN framework that made the architecture applicable

in real time traffic. The architecture exploits software-defined network (SDN) that

is capable to route traffic intelligently based on a set of quality of service

requirements. SDN does not know which flows belong to which application,

therefore, this project provides the correct input to the SDN, which means the

correct identification for traffic (i.e. applications). Classifying traffic based on

inaccurate method leads to poor identification for the applications; as a result,

more resources would be granted to application that does not need them and

exclude the suitable resources from the right application. Technically, it might be

inaccurate due to misclassification of flows; however, knowing a percentage of

traffic flows must be improving the provision for quality of service.

The remainder of this chapter is organized as follows. Section 8.2 presents design

requirements, section 8.3 introduces SDN architecture explaining briefly the main

118

steps, and followed by subsections that elaborates the system in more details.

Section 8.4 discusses the strengths and weaknesses of the architecture and

section 8.5 draws conclusions.

8.2 Design requirements

Inventing new network applications and services such as cloud and virtual

machine usage enables the users to access web applications even by using

smart phones and iPads that burdens network resources. Internet equipment

perform tasks efficiently and independently, however, the network devices

become more complex with the growth of Internet. SDN has introduced a solution

that simplifies the design of the network devices in which decouples a control

plane from a data plane [172]. Also, this approach provides a central

management to these devices rather than using traditional tools such as SNMP

and CLI [173]. The control plane configures the data plane and programs paths

to route flows. In other words, the data flows are forwarding at the data plane

based on the information at the control plane. As a results, the traffic classification

would be effectively applicable with the presence of SDN. However, applying

traffic classification in an enterprise network that contains various venders’

devices with their implementations requires sophisticated framework that could

be time consuming. The framework should be responsive and efficient with

different types of flows. The authors in [174] claimed that there are requirements

for traffic classification system which are explained as follows:

1. A framework requires to be consistent for specified types of traffic.

2. Traffic classification must be adaptive for unexpected traffic flows that

generated in the network.

3. QoS and traffic engineering need a framework that able to classify traffic

before the end of the flow.

119

Although the SDN platform could fulfil these requirements in terms of managing

traffic load efficiently, and lowering a network complexity [175], the application of

traffic classification (TC) requires a sophisticated modification in the SDN

environment. The authors in [176] acknowledged that building an application

identification within SDN can affect either the TC efficacy or can forward

performance due to the complexity that being added to the architecture. In

addition, the study [174] claimed that adopting TC in the SDN platform could

reveal incompatibility issues in protocols or networking devices. Therefore,

providing the SDN with known applications flows enables the SDN to prioritize

flows according the predefined parameters without adding any complexity in the

platform. The following section presented the architecture for application-based

management of traffic using SDN.

8.3 Traffic Identification Architecture

Figure 8-1 shows the architecture of the traffic classification with the aid of SDN

platform that explains the mechanism of identification; a description of the main

steps as follows:

1. User application: the user application refers to a device that initiates a

connection with an application server such as YouTube or Facebook.

2. Network devices (data plane): this plane contains devices such as

switches and routers that are responsible for forwarding data. These

devices contain flow tables and that configured by a controller through

OpenFlow protocol.

3. Controller (control plane): this plane configures and updates the flows

table to provide best routing paths between server and client based on an

application type and predefined requirements.

120

4. Network application (application plane): this plane contains applications

that responsible for performing a modification in network aspects such as

polices and behaviour of the network. The database of labelled application

flows are resided in the network application, for each freshly established

flow, the controller queries the database for possible matching to

determine the application type, check policy requirements, prioritize flow

in the flows table, and route this flow accordingly. The following

subsections present the components and the mechanism in more details.

Figure 8-1: SDN architecture with traffic classification

121

8.3.1 Network devices

This network includes SDN switches and routers that consists of flows table,

which deals with any flow entries to instruct the switch to process the flow to best

path. In addition, this network contains a secure channel that connects the

controller with the switch to transfer packets and commands through OpenFlow

protocol. The controller had previously built the flows table through setting

suitable rules that downloaded to the device through OpenFlow protocol.

The OpenFlow is a general-purpose protocol that determines the

communications (messages and message formats) and exchanges between the

controllers (control plane) and switches (data plane) [177]. Furthermore, it defines

how the switches to react and respond to commands from the controller. After

initiating a connection from a user to request an application, the first packet

arrives to an SDN switch that matches this packet with the flows table to execute

the appropriate action and forward this packet to a destination. If the packet does

not matched with the flows table, it would be forwarded to the controller using

southbound API (OpenFlow protocol).

8.3.2 Controller

The controller observes the whole network, executes the policy rules, controls the

network devices, and provides two interfaces. The first interface is the

southbound that connects the controller with the devices through OpenFlow

protocol; the second one is the northbound that connects the controller with the

application through REST API. Both controller and network application are

participating in implementing policy rules such as forwarding, routing, load

balance, and redirection. The controller receives the unmatched flow that can

add, delete or update the flows table. The controller uses the network application

in order to determine an action regarding this flow; therefore, it sends a flow to

122

the database, which included the labelled application flows, to query the unknown

flow through the northbound interface.

8.3.3 Network application

The SDN controller connects with SDN applications via northbound API, these

applications execute the above controller. The main tasks of these applications

are to configure a best route for a flow between network points, balancing traffic

load between different paths, responding to any changing in the network

behaviour such as adding new devices or dropping a failure one. The network

application contains two databases; the first database includes the applications

flows for nine applications that labelled in the previous chapter. The second

database keeps the policy requirements for these applications, which defined by

the owners of the applications. The controller uses a destination IP address of a

received flow to match with the IP addresses in the database; thereby, each

packet arrives to the controller queries the database. Consequently, the database

server replies with the appropriate application such as YouTube, afterwards, the

controller checks appropriate policy requirements for this application.

Accordingly, the controller adds new entry in a flow table of a switch with a

prioritization order. Hence, the switch can forward the flows that have high priority

and to the best route based on application type and its requirements to obtain

optimal performance regarding quality of service.

8.4 Strengths and weaknesses of the architecture

The more likely benefits of applying SDN architecture is to route traffic intelligently

and with high efficiency. Moreover, it provides a programmable environment for

engineers and administrators to configure, manage and prioritize network traffic

via API. Thus, labelling application flows in advance and providing them with the

optimal set of quality of service parameters, distributing network resources

123

effectively based on applications requirements. In other words, the SDN is

configured to prioritize flows according to the applications in addition to their

requirements without adding any complexity. The SDN can tag flows by providing

it with a database, which contained IP addresses for application flows of nine

applications. This database was labelled by applying traffic classification that was

explained in the previous chapters. The database is used by the controller to

match with a destination IP address of a received flow; therefore, the controller

queries the database for each packet entry. Afterwards, the controller checks an

appropriate policy requirements, accordingly, the controller adds new entry in a

flow table of a switch with a prioritization order. Hence, the switch can forward the

flows that have high priority and to a best route based on application type and its

requirements to obtain optimal performance regarding quality of service.

In contrast, mapping the IP addresses to applications may be changed over time

that leads to incorrect classification; therefore, updating the IP addresses is

important. A flow that is based on correct information will be allocated in correct

requirements. Otherwise, if the proposed method determined that the IP address

of flow has changed assignment from application a to application b, the database

will be updated and the next traffic should be provided with the correct set of

quality of service provision.

Also, another issue that when the IP address of the flow checks with the database,

a conflict more likely to happen for different applications. For instance, the Google

services share the same IP address for G-mail and Google search as they are

belong to the same company. In this case, a counter can be set to predict the

flow correctly. This counter determines the amount of traffic for each application.

For example, if the flows are classified within particular time into three

124

applications based on matching process, then the controller deduces that the

correct application has the majority of flows.

8.5 Conclusions

The proposed method of traffic classification is applied using SDN framework due

to its efficacy and simplicity in managing and routing traffic flows. The method

provides the SDN with a large database that contains on nine applications

mapping to their IP addresses. Although the accuracy of this mapping is not

completely accurate, the identification approach supplies the network with a

reasonable portion of labelled flows which improve the quality of service. The

controller matches the incoming flows with the IP addresses in the database that

make the process of flow identification is suitable in the real time. However,

relying on IP addresses in traffic classification could result in misclassified for

large flows throughout time as the IP addresses are changing their assignment

dynamically to the application. Thereby, updating them frequently is vital for

correcting the database that leads to accurate results.

125

9 Conclusion and Future Work

This chapter summaries the thesis by outlining the main achievements of the

research, followed by discussing the limitations of the project. The chapter, also,

highlighted the future research directions within Internet traffic classification filed.

9.1 Achievements of the research

Overall, the research has accomplished all the objectives originally stated in

Chapter 1, with a series of experimental and analysis undertaken towards the

development of characterizing Internet traffic mechanism. The key contributions

and achievements of this research are listed as follows:

1. Presenting a review of Internet traffic classification techniques (chapter

3). Many techniques in characterizing and classifying traffic were

discussed in a more detail, attention was given for those which are

applicable to providing accurate results and require low resources in

traffic classification. Statistical and behavioural approaches (section

3.4 and section 3.5 respectively) are the most promising methods

within the research community that describe a better view of Internet

traffic nowadays. By utilizing these methods, characterizing flows to

which they belong can take place rapidly and with high accuracy as the

traditional ones are no longer applicable.

2. Proposing a novel feature set that effectively described the application

and user behaviour as seen through the generated network traffic

(Chapter 4). The project presented parameters such as the on/off data

transfer, defining characteristics for a number of typical applications

126

considering timing and patterns for user events as part of a network

application session. This set of features used to discriminate between

network applications, based on the statistical differences between

inter-arrival times of packets and flows. A concentration has been given

to burstiness, which defines closely-spaced data exchanges, such as

objects on the same page. Additionally, idle periods, which separate

longer-term transactions, such as moving from one page to another

when the user is browsing a website. These novel features have been

derived based on different distributions of packet size, duration, the

distribution of the bursts, and the idle time parameters, which are

obtained from various applications. Therefore, this would be generating

different amounts of data, creating various connection and timing

patterns between the generated packets and flows, beyond the generic

distribution of connections for overall traffic.

3. Collecting two types of data, the first data was collected within control

environment for eleven applications and for ten users. This type was

collected under strict instructions by the researcher in order to build

ground truth data for flows mapping to the correct applications. This

data became the basis for traffic classification as it drew the behavior

of the web applications according to the proposed features. The second

type was collected from real traffic network for nine applications and 20

users. The users were browsing the applications based on their

preferences and without any restrictions.

4. An experimental investigation and evaluation of the feasibility of the

new traffic featues that defined application and user traffic profiling. A

series of experiments were carried out on both controlled and real data

127

for different applications that were accessed by many users. Firstly, a

preliminarily experiment was conducted on six applications and six

users (chapter 4) that showed high accuracy for the proposed features.

The second experiment evaluated more data that contained eleven

applications and ten users (chapter 7). Also, the results reflected high

ability of the new features to classify these applications. The third

experiment was performed on real data that collected from (CSCAN)

lab at Plymouth University for two months for nine applications and 20

users (chapter 7). The results exhibited good accuracy and usage for

the proposed method.

5. Deep analysis for the proposed features (chapter 6) to determine

whether the proposed features have positive impact in discriminating

Internet applications. Data analysis aims to explore a correlation and

variability amongst the features that led to data reduction in these

features. Firstly, the data was initially decreased based on basic

calculations (i.e., mean, median, max, min and standard deviation).

Afterwards, hierarchical clustering was used to group different features

and samples in the data set. The data was analyzed using hierarchical

clustering to find the similarity amongst features by drawing a

dendrogram. This technique reduced the features from 199 to 29. This

technique was applied to the data that consist of 29 features and 2,200

samples for data visualization and to show how the contributions of the

selected features in presenting the data.

6. Traffic classification architecture was proposed using SDN, the

architecture was provided by large database that contained labelled

128

applications. This database was contributed to this work through

experimentation and analysis that achieved in this thesis. The

database required no additional modification or complex hardware to

the SDN framework that made the architecture applicable in real time

traffic.

A number of papers related to the research project have been presented and

published in refereed journal and conferences (provided in Appendix A). As a

result, the research is deemed having made positive contributions to the field

of Internet traffic, and specifically in classifying Internet applications.

9.2 Limitations of the Research

Although the objectives of the project have been met, a number of limitations

associated with the project can be identified. The key limitations of the research

are summarised as follows:

1. The data was browsed only through the Google Chrome web browser,

using different explorers could effect on the proposed features and

consequently on classification accuracy. Moreover, the first data, which

was collected under controlled environment, captured under Linux

operating system, while the second data, which was collected under

uncontrolled environment, captured under Windows operating system,

which owned by the University of Plymouth. The two datasets were

collecting under different operating systems as the datasets were captured

using the University’s computers. It was observed that when a data is

captured under windows (university) systems, there is still background

traffic even a user is not accessing the Internet due to web

programs/updates/network broadcasts, etc. continuing in the background

129

and adding noise to captured traffic. In the case of researcher installed

Linux operating systems, the background traffic can be better managed

and even stopped due to administrative privilege, improving the ground

truth data capturing of individual applications. Therefore, the controlled

data was collected under researcher installed Linux OS, and used to build

ground truth dataset.

2. Both types of data were collected from the same environment, which was

University of Plymouth. Due to the fact that the application flows of real

data was labelled based on the IP addresses of the first data, changing the

data collection environment could impact on the classification results.

3. The real data was collected at the CSCAN lab that included limited users

(20) that affected the collected data as it produced limited browsing

sessions for some applications such as BBC news, Yahoo mail, and

Amazon included 6, 9, and 34 sessions respectively.

4. The data traffic was collected at the University of Plymouth and from

managed-computers owned by the university that added many web-based

services that introduced noise in the collected data.

5. Labelling the real data was based on mapping the application flows to the

IP addresses and DNS queries and due to the underlying CDN hosting of

different applications. This hosting led to inaccurate results in traffic

classification.

6. The traffic features generation has been accomplished using fixed

thresholds values (i.e. burst_threshold and idle_threshold). However,

exploiting dynamic threshold values can possibly change the classification

accuracy.

130

9.3 Scope for Future Work

The research program has enhanced the domain of Internet traffic classification.

However, there are a number of areas of future work that could be carried out to

further advance the findings of this research. The validation results are promising,

but ultimately, there is a room for improving. The details of the suggestion are

listed below:

1. Considering larger dataset with different types of applications and more

end users in order to fully investigate the performance of the proposed

work. Moreover, future work will also focus on recognizing new

applications that emerge over time by applying the proposed method.

2. A superior approach for labelling the network traffic can also be

incorporated to ensure the robustness of the method.

3. Investigating more in the implications of using the proposed method in

traffic prioritization architecture.

4. With introducing new trend applications in internet environment such as

web 2.0 and mobile applications, it is important to identify these

applications to build standard ground data that contains main objects and

classes.

Completing these identified topics of future work would make the classification of

network traffic more accurate (low error rates), which would adapt with the

continuous changing of networks and applications to manage in precis the future

networks.

131

132

References

[1] I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, and A. Nucci,

“DNS to the Rescue: Discerning Content and Services in a Tangled Web,”

Proc. 2012 ACM SIGCOMM Internet Meas. Conf. (IMC ’12), pp. 413–426,

2012.

[2] Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2017–2022,”

2019.

[3] N. Al Khater and R. E. Overill, “Network traffic classification techniques and

challenges,” 10th Int. Conf. Digit. Inf. Manag. ICDIM 2015, no. Icdim, pp.

43–48, 2016.

[4] A. Moore and K. Papagiannaki, “Toward the accurate identification of

network applications,” Passiv. Act. Netw. Meas., 2005.

[5] R. Zou, T. Xu, and H. Hou, “An enhanced Netflow data collection system,”

Proc. 2012 2nd Int. Conf. Instrum. Meas. Comput. Commun. Control.

IMCCC 2012, pp. 508–511, 2012.

[6] A. Boukhtouta, S. A. Mokhov, N. E. Lakhdari, M. Debbabi, and J. Paquet,

“Network malware classification comparison using DPI and flow packet

headers,” J. Comput. Virol. Hacking Tech., vol. 12, no. 2, pp. 69–100, May

2016.

[7] M. Finsterbusch, C. Richter, E. Rocha, J. A. Müller, and K. Hänßgen, “A

survey of payload-based traffic classification approaches,” IEEE Commun.

Surv. Tutorials, vol. 16, no. 2, pp. 1135–1156, 2014.

[8] B.-R. P. Bujlow T, Carela-Español V, “Extended Independent Comparison

of Popular Deep Packet Inspection (DPI) Tools for Traffic Classification,”

2014.

[9] A. Bashir, C. Huang, B. Nandy, and N. Seddigh, “Classifying P2P activity

in Netflow records: A case study on BitTorrent,” IEEE Int. Conf. Commun.,

pp. 3018–3023, 2013.

[10] J. M. Reddy and C. Hota, “Heuristic-Based Real-Time P2P Traffic

Identification,” 2015 Int. Conf. Emerg. Inf. Technol. Eng. Solut., pp. 38–43,

133

2015.

[11] J. Yan, Z. Wu, H. Luo, and S. Zhang, “P2P traffic identification based on

host and flow behaviour characteristics,” Cybern. Inf. Technol., vol. 13, no.

3, pp. 64–76, 2013.

[12] J. Hurley, E. Garcia-Palacios, and S. Sezer, “Host-Based P2P Flow

Identification and Use in Real-Time,” ACM Trans. Web, vol. 5, no. 2, pp. 1–

27, 2011.

[13] M. Perényi, T. D. Dang, A. Gefferth, and S. Molnár, “Identification and

Analysis of Peer-to-Peer Traffic,” J. Commun., vol. 1, no. 7, pp. 36–46,

2006.

[14] W. John and S. Tafvelin, “Heuristics to classify Internet backbone traffic

based on connection patterns,” 2008 Int. Conf. Inf. Networking, ICOIN, no.

April, 2008.

[15] D. Wang, L. Zhang, Y. Xue, and Y. Dong, “Characterizing Application

Behaviors for classifying P2P traffic,” 2014 Int. Conf. Comput. Netw.

Commun., pp. 21–25, 2014.

[16] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification

through simple statistical fingerprinting,” ACM SIGCOMM Comput.

Commun. Rev., vol. 37, no. 1, p. 5, 2007.

[17] R. Alshammari and A. N. Zincir-Heywood, “How Robust Can a Machine

Learning Approach Be for Classifying Encrypted VoIP?,” J. Netw. Syst.

Manag., vol. 23, no. 4, pp. 830–869, 2015.

[18] A. Ulliac and B. V Ghita, “Non-Intrusive Identification of Peer-to-Peer

Traffic,” in 2010 Third International Conference on Communication Theory,

Reliability, and Quality of Service, pp. 175–183.

[19] Y. Hong, C. Huang, B. Nandy, and N. Seddigh, “Iterative-Tuning Support

Vector Machine For Network Traffic Classification,” Integr. Netw. Manag.

(IM), 2015 IFIP/IEEE Int. Symp. (pp. 458-466). IEEE, pp. 458–466, 2015.

[20] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network

traffic classification using correlation information,” IEEE Trans. Parallel

Distrib. Syst., vol. 24, no. 1, pp. 104–117, 2013.

134

[21] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang, “A

Modular Machine Learning System for Flow-Level Traffic Classification in

Large Networks,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 1–34,

2012.

[22] G. Piraisoody, C. Huang, B. Nandy, and N. Seddigh, “Classification of

applications in HTTP tunnels,” Proc. 2013 IEEE 2nd Int. Conf. Cloud

Networking, CloudNet 2013, pp. 67–74, 2013.

[23] H. Alizadeh, “Traffic Classification and Verification using Unsupervised

Learning of Gaussian Mixture Models,” Meas. Netw. (M&N), 2015 IEEE Int.

Work. (pp. 1-6). IEEE, 2015.

[24] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust Network Traffic

Classification,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1257–1270,

2015.

[25] R. Lin, O. Li, Q. Li, and Y. Liu, “Unknown network protocol classification

method based on semi-supervised learning,” Comput. Commun., pp. 300–

308, 2015.

[26] A. Vlăduţu, D. Comăneci, and C. Dobre, “Internet traffic classification based

on flows’ statistical properties with machine learning,” Int. J. Netw. Manag.,

vol. 27, no. 3, p. e1929, May 2017.

[27] F. R. Taylor, “Evaluation of Supervised Machine Learning for Classifying

Video Traffic,” Nova Southeastern University. Retrieved from NSUWorks,

College of Engineering and Computing, 2016.

[28] T. Bakhshi and B. Ghita, “On Internet Traffic Classification: A Two-Phased

Machine Learning Approach,” J. Comput. Networks Commun., vol. 2016,

no. May, 2016.

[29] Z. Aouini, A. Kortebi, Y. Ghamri-Doudane, and I. L. Cherif, “Early

classification of residential networks traffic using C5.0 machine learning

algorithm,” IFIP Wirel. Days, vol. 2018-April, pp. 46–53, 2018.

[30] Cisco, “Cisco IOS NetFlow Version 9 Flow-Record Format,” 2011.

[31] Ben Popper, “Internet traffic jams are widespread in the US, and are

probably about to get a lot worse - The Verge,” 2014. [Online]. Available:

135

https://www.theverge.com/2014/10/31/7138449/m-lab-netflix-comcast-

verizon-isp-business-dispute-congestion-traffic-interconnection.

[Accessed: 26-Jun-2019].

[32] Incapsula, “Half of all web traffic ‘not human’- study - Digital Intelligence

daily digital marketing research,” 2012. [Online]. Available:

http://www.digitalstrategyconsulting.com/intelligence/2012/03/half_of_all_

web_traffic_not_hu.php. [Accessed: 18-Dec-2016].

[33] Cisco, WAN and Application Optimization Solution Guide. San Jose, USA,

2008.

[34] “ntopng – ntop.” [Online]. Available: https://www.ntop.org/products/traffic-

analysis/ntop/. [Accessed: 12-Feb-2019].

[35] M. S. Joe Touch; Eliot Lear, Allison Mankin, Markku Kojo, Kumiko Ono and

and A. Z. Lars Eggert, Alexey Melnikov, Wes Eddy, “IANA.” [Online].

Available: http://www.iana.org/assignments/service-names-port-

numbers/service-names-port-numbers.xhtml. [Accessed: 04-Mar-2016].

[36] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep Packet

Inspection over Encrypted Traffic,” in In SIGCOMM, 2015.

[37] T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification of

network traffic based on C5.0 machine learning algorithm,” in Proceedings

of ICNC, 2012.

[38] V. C. Español, “Network traffic classification: from theory to practice,” PhD

thesis, Barcelona University, 2014.

[39] R. K. Kurose J, Cmputer Networking A top-Down Approach. England:

Pearson Education Limited, 2013.

[40] Nader F.Mir, Computer and Communication Networks. Westford: Pearson

Education Limited, 2015.

[41] M. Satyanarayanan, “The Emergence of Edge Computing,” IEEE, 2015.

[42] J. Moura and D. Hutchison, “Review and analysis of networking challenges

in cloud computing,” J. Netw. Comput. Appl., vol. 60, pp. 113–129, 2016.

[43] N. L. S. da F. ; R. Boutaba, Cloud services, networking, and management.

136

Wiley-IEEE Press., 2015.

[44] Kate Gerwig, “What is CDN technology, and who are the current CDN

providers?,” 2017. [Online]. Available:

https://searchnetworking.techtarget.com/tutorial/What-is-CDN-technology-

and-who-are-the-current-CDN-providers. [Accessed: 12-Feb-2019].

[45] Incapsula, “What is a CDN? How does a CDN Work?” [Online]. Available:

https://www.incapsula.com/cdn-guide/what-is-cdn-how-it-works.html.

[Accessed: 12-Feb-2019].

[46] “Number of Internet Users (2016) - Internet Live Stats.” [Online]. Available:

http://www.internetlivestats.com/internet-users/. [Accessed: 12-Feb-2019].

[47] Akamai, “CDN Technology.” [Online]. Available:

https://www.akamai.com/uk/en/resources/cdn-technology.jsp. [Accessed:

12-Feb-2019].

[48] FBI, “2014 Internet Crime Report,” Fed. Bur. Investig. Internet Crime

Complain. Cent., pp. 1–48, 2014.

[49] Verizon, “2015 Verizon Data Breach Report,” 2015. [Online]. Available:

http://higherlogicdownload.s3.amazonaws.com/GOVERNANCEPROFES

SIONALS/a8892c7c-6297-4149-b9fc-

378577d0b150/UploadedImages/Landing Page Documents/DBIR

Executive Summary vv 4-10-15.pdf.

[50] T. A. Mattei, “Privacy, Confidentiality, and Security of Health Care

Information: Lessons from the Recent WannaCry Cyberattack,” World

Neurosurg., vol. 104, pp. 972–974, 2017.

[51] R. K. Kurose James, Computer Networking A top-Down Approach.

England: Pearson Education Limited, 2013.

[52] R. K. Medhi D., Network Routing, Algorithms, Protocols, and Architectures.

San Francisco: Morgan Kaufmann, 2007.

[53] Alexa, “Top sites in United Kingdom,” 2016. [Online]. Available:

https://www.alexa.com/topsites. [Accessed: 12-Feb-2019].

[54] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube network

137

traffic at a campus network - Measurements, models, and implications,”

Comput. Networks, vol. 53, no. 4, pp. 501–514, 2009.

[55] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local: YouTube

network traffic at a campus network: measurements and implications,”

Computer Science Department Faculty Publication Series. 177., 2008.

[56] Alex Hern, “Netflix in row over net neutrality support | Technology | The

Guardian,” 2015. [Online]. Available:

https://www.theguardian.com/technology/2015/mar/05/netflix-row-net-

neutrality-support-australia. [Accessed: 12-Feb-2019].

[57] S. E. Middleton and S. Modafferi, “Scalable classification of QoS for real-

time interactive applications from IP traffic measurements,” Comput.

Networks, vol. 107, no. Part 1, pp. 121–132, 2016.

[58] P. Wang, S. C. Lin, and M. Luo, “A framework for QoS-aware traffic

classification using semi-supervised machine learning in SDNs,” Proc. -

2016 IEEE Int. Conf. Serv. Comput. SCC 2016, pp. 760–765, 2016.

[59] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A Platform

for High-Performance Internet Applications,” ACM SIGOPS Oper. Syst.

Rev., vol. 44, no. 3, p. 2, Aug. 2010.

[60] K. B. Crovella Mark, Internet Measurement Infrastructure, traffic, &

applications. West Sussex: John Wiley & Sons, 2006.

[61] R. Jain and S. Routhier, “Packet Trains--Measurements and a New Model

for Computer Network Traffic,” IEEE J. Sel. Areas Commun., 2004.

[62] K. C. Claffy, H. W. Braun, and G. C. Polyzos, “A Parameterizable

Methodology for Internet Traffic Flow Profiling,” IEEE J. Sel. Areas

Commun., vol. 13, no. 8, pp. 1481–1494, 1995.

[63] J. Mogul, efficient use of workstations for passive monitoring of local area

network. ACM Press, 1990.

[64] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of

data centers in the wild,” in Proceedings of the 10th annual conference on

Internet measurement - IMC ’10, 2010, p. 267.

138

[65] M. James D, Network Analysis, Architecture, and Design. Burlington:

Morgan Kaufmann, 2007.

[66] Cisco, “Cisco 10000 Series Router Quality of Service Configuration Guide,”

2013.

[67] M. B. Stephen, Network Management MIBs and MPLS. Pearson Education

Limited, 2003.

[68] K. B. crovella M., Internet Measurement Infrastructure, traffic, &

applications. West Sussex: John Wiley & Sons, 2006.

[69] Cisco, “Introduction to Cisco IOS® NetFlow,” 2012. [Online]. Available:

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-

netflow/prod_white_paper0900aecd80406232.pdf.

[70] Shawn Ostermann, “tcptrace - Official Homepage.” [Online]. Available:

http://www.tcptrace.org/.

[71] L. Hu and L. Zhang, “Real-time internet traffic identification based on

decision tree,” World Autom. Congr., pp. 1–3, 2012.

[72] S. S. Lopes Pereira, J. E. Bessa Maia, and J. L. de Castroe Silva, “ITCM:

A Real Time Internet Traffic Classifier Monitor,” Int. J. Comput. Sci. Inf.

Technol., vol. 6, no. 6, pp. 23–38, 2014.

[73] H. Zhang, G. Lu, M. T. Qassrawi, Y. Zhang, and X. Yu, “Feature selection

for optimizing traffic classification,” Comput. Commun., vol. 35, no. 12, pp.

1457–1471, 2012.

[74] D. Z. Moore, Andrew, Discriminators for use in flow-based classification.

Queen Mary and Westfield College, Department of Computer Science,

2005.

[75] D. S. Valentino Zocca, Gianmario Spacagna, “Python Deep Learning.”

Packt Publishing, Limited. Ebook, 2017.

[76] K. P. Murphy, “Machine Learning : A Probabilistic Perspective.” MIT Press.

Ebook, 2012.

[77] Pratap Dangeti, “Statistics for Machine Learning.” BIRMINGHAM -

MUMBAI: Packt Publishing Ltd, 2017.

139

[78] Rulequest, “Rulequest research data mining tools,” 2006. [Online].

Available: http://www.rulequest.com/. [Accessed: 12-Jan-2017].

[79] N. Donges, “The Random Forest Algorithm,” 2018. [Online]. Available:

https://towardsdatascience.com/the-random-forest-algorithm-

d457d499ffcd. [Accessed: 12-Jan-2019].

[80] R. E. Schapire, “The boosting approach to machine learning: an overview,”

Nonlinear Estim. Classif., vol. 171, pp. 149–171, 2003.

[81] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-

line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 139,

pp. 23–37, 1995.

[82] A. P. Bradley, “The Use of the Area under the Roc Curve in the Evaluation

of Machine Learning Algorithms,” Pattern Recognit., vol. 30, no. 7, pp.

1145–1159, 1997.

[83] X. Bo, C. Ming, L. Fei, and W. Na, “P2P flows identification method based

on listening port,” Proc. 2009 2nd IEEE Int. Conf. Broadband Netw.

Multimed. Technol. IEEE IC-BNMT2009, pp. 296–300, 2009.

[84] J. Erman and M. Arlitt, “Traffic classification using clustering algorithms,”

2006 SIGCOMM Work., pp. 281–286, 2006.

[85] J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic

classification using flow statistical properties and IP packet payload,” J.

Comput. Syst. Sci., vol. 79, no. 5, pp. 573–585, 2013.

[86] N. F. Huang, G. Y. Jai, and Chao, “Application traffic classification at the

early stage by characterizing application rounds,” Inf. Sci. (Ny)., vol. 232,

no. 22, pp. 130–142, 2013.

[87] A. Fahad, Z. Tari, and Khalil, “An optimal and stable feature selection

approach for traffic classification based on multi-criterion fusion,” Futur.

Gener. Comput. Syst., vol. 36, pp. 156–169, 2014.

[88] M. Iliofotou, K. Hyun-chul, and Faloutsos, “Graph-based P2P traffic

classification at the internet backbone,” Proc. - IEEE INFOCOM, 2009.

[89] D. Rossi and S. Valenti, “Fine-grained traffic classification with netflow

140

data,” Proc. 6th Int. Wirel. Commun. Mob. Comput. Conf. ZZZ - IWCMC

’10, p. 479, 2010.

[90] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: multilevel

traffic classification in the dark,” ACM SIGCOMM Comput. Commun. Rev.,

vol. 35, no. 4, pp. 229–240, 2005.

[91] G. Sun, L. Liang, and Chen, “Network traffic classification based on transfer

learning,” Comput. Electr. Eng., vol. 69, pp. 920–927, 2018.

[92] A. Hajjar, J. Khalife, and J. Díaz-Verdejo, “Network traffic application

identification based on message size analysis,” J. Netw. Comput. Appl.,

vol. 58, pp. 130–143, 2015.

[93] C. So-In, “A Survey of Network Traffic Monitoring and Analysis Tools,” Cse

576-06 Comput. Syst. Anal. Proj., pp. 1–24, 2009.

[94] A. C. Hall, “A Survey of Network Traffic Classification Techniques,” IEEE

Commun. Surv. TUTORIALS, VOL. 10, NO. 4, pp. 56–76, 2008.

[95] Y. Aun, S. Manickam, and S. Karuppayah, “A review on features’

robustness in high diversity mobile traffic classifications,” Int. J. Commun.

Networks Inf. Secur., vol. 9, no. 2, pp. 294–304, 2017.

[96] J. Khalife, A. Hajjar, and J. Diaz-Verdejo, “A multilevel taxonomy and

requirements for an optimal traffic-classification model,” Int. J. Netw.

Manag., vol. 24, no. 2, pp. 101–120, Mar. 2014.

[97] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic

classification using machine learning,” IEEE Commun. Surv. Tutorials, vol.

10, no. 4, pp. 56–76, 2008.

[98] B. Park, Y. Won, J. Chung, M. Kim, and J. W.-K. Hong, “Fine-grained traffic

classification based on functional separation,” Int. J. Netw. Manag., vol. 23,

no. 5, pp. 350–381, 2013.

[99] S. Valenti, D. Rossi, A. Dainotti, A. Pescap, A. Finamore, and M. Mellia,

“Reviewing traffic classification,” TMA, 2013.

[100] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, G. Wei, and L. T. Yang, “Internet

traffic classification using constrained clustering,” IEEE Trans. Parallel

141

Distrib. Syst., vol. 25, no. 11, pp. 2932–2943, 2014.

[101] K. Yogo, R. Shinkuma, T. Konishi, S. Itaya, and S. Doi, “A Survey of

Methods for Encrypted Traffic Classification and Analysis,” Int. J. Netw.

Manag., vol. 00, no. 22, pp. 1–11, 2012.

[102] R. Raveendran, “A Novel Aggregated Statistical Feature Based Accurate

Classification For Internet Traffic,” Data Min. Adv. Comput. (SAPIENCE),

Int. Conf. (pp. 225-232). IEEE, 2016.

[103] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “NDPI: Open-source

high-speed deep packet inspection,” in IWCMC 2014 - 10th International

Wireless Communications and Mobile Computing Conference, 2014, pp.

617–622.

[104] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network

identification of p2p traffic using application signatures,” Proc. 13th Int.

Conf. World Wide Web, p. 521, 2004.

[105] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: Automated

Construction of Application Signatures,” Proceeding 2005 ACM SIGCOMM

Work. Min. Netw. data - MineNet ’05, no. May, p. 197, 2005.

[106] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport layer

identification of P2P traffic,” IMC ’04 Proc. 4th ACM SIGCOMM Conf.

Internet Meas., pp. 121–134, 2004.

[107] J. Datta, N. Kataria, and N. Hubballi, “Network Traffic Classification in

Encrypted Environment : A Case Study of Google Hangout,” in

Communications (NCC), 2015 Twenty First National Conference, pp. 1–6.

[108] Yiming Gong, “Identifying P2P users using traffic analysis | Symantec

Connect.” [Online]. Available:

http://www.symantec.com/connect/articles/identifying-p2p-users-using-

traffic-analysis. [Accessed: 07-Apr-2016].

[109] A. Buczak and E. Guven, “A survey of data mining and machine learning

methods for cyber security intrusion detection,” IEEE Commun. Surv.

Tutorials, vol. PP, no. 99, p. 1, 2015.

[110] T. Bakhshi and B. Ghita, “Traffic profiling: Evaluating stability in multi-

142

device user environments,” Proc. - IEEE 30th Int. Conf. Adv. Inf. Netw.

Appl. Work. WAINA 2016, pp. 731–736, 2016.

[111] P. Pinky and S. E. V. Ewards, “A Survey on IP Traffic Classification Using

Machine Learning,” Int. J. Eng. Res. Appl., vol. 3, no. 1, pp. 2099–2104,

2013.

[112] A. Este, F. Gringoli, and L. Salgarelli, “Support Vector Machines For Tcp

Traffic Classification,” J. Comput. Networks, vol. 53, no. 14, pp. 2476–2490,

2009.

[113] A. Callado, J. Kelner, D. Sadok, C. A. Kamienski, and S. Fernandes, “Better

network traffic identification through the independent combination of

techniques,” J. Netw. Comput. Appl., vol. 33, no. 4, pp. 433–446, 2010.

[114] J. R. Chandrakant and D. L. Shashikant, “Machine learning based internet

traffic recognition with statistical approach,” India Conf. (INDICON), 2013

Annu. IEEE, pp. 1–6.

[115] A. Dainotti, A. Pescapé, and C. Sansone, “Early classification of network

traffic through multi-classification,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6613

LNCS, pp. 122–135, 2011.

[116] R. Alshammari and a. N. Zincir-Heywood, “Machine learning based

encrypted traffic classification: Identifying SSH and Skype,” IEEE Symp.

Comput. Intell. Secur. Def. Appl. CISDA 2009, 2009.

[117] D. J. Arndt and A. N. Zincir-Heywood, “A Comparison of three machine

learning techniques for encrypted network traffic analysis,” IEEE SSCI

2011 - Symp. Ser. Comput. Intell. - CISDA 2011 2011 IEEE Symp. Comput.

Intell. Secur. Def. Appl., pp. 107–114, 2011.

[118] T. Bujlow, T. Riaz, and J. Pedersen, “Classification of HTTP traffic based

on C5. 0 Machine Learning Algorithm,” Proc. Fourth IEEE Int. Work.

Perform. Eval. Commun. Distrib. Syst. Web-based Serv. Archit.

(PEDISWESA 2012), pp. 882–887, 2012.

[119] Y. Yao and G. Doretto, “Boosting for transfer learning with multiple

sources,” 2010 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

143

no. December, pp. 1855–1862, 2010.

[120] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions

on Knowledge and Data Engineering. 2010.

[121] C. N. Lu, Y. D. Lin, C. Y. Huang, and Y. C. Lai, “Session level flow

classification by packet size distribution and session grouping,” Proc. - 26th

IEEE Int. Conf. Adv. Inf. Netw. Appl. Work. WAINA 2012, vol. 56, no. 1, pp.

221–226, 2012.

[122] C. N. Lu, C. Y. Huang, Y. D. Lin, and Y. C. Lai, “High performance traffic

classification based on message size sequence and distribution,” J. Netw.

Comput. Appl., vol. 76, no. April, pp. 60–74, 2016.

[123] A. Hajjar, J. Khalife, and J. Díaz-verdejo, “Network traffic application

identification based on message size analysis,” Elsevier JNCA, vol. 58, pp.

130–143, 2015.

[124] A. Iacovazzi and A. Baiocchi, “Internet traffic privacy enhancement with

masking: Optimization and tradeoffs,” IEEE Trans. Parallel Distrib. Syst.,

vol. 25, no. 2, pp. 353–362, 2014.

[125] S. Yoon, J. Park, and M. Kim, “Behavior Signature for Fine-grained Traffic

Identification,” Appl. Math, 9(2L), pp.523-534, vol. 534, no. 2, pp. 523–534,

2015.

[126] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification

and application identification using machine learning,” IEEE Conf. Local

Comput. Networks 30th Anniv. (LCN’05)l, 2005.

[127] J. Erman, A. Mahanti, and M. Arlitt, “Internet traffic identification using

machine learning,” Glob. Telecommun. Conf. GLOBECOM’06. IEEE, pp.

1–6, 2006.

[128] D. Liu and C.-H. Lung, “P2P traffic identification and optimization using

fuzzy c-means clustering,” IEEE Int. Conf. Fuzzy Syst., pp. 2245–2252,

2011.

[129] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using

machine learning techniques,” Int. Work. Passiv. Act. Netw. Meas., pp.

205–214, 2004.

144

[130] F. Hernández-Campos, “Statistical clustering of internet communication

patterns,” Proc. 35th Symp. Interface Comput. Sci. Stat. Comput. Sci. Stat.,

vol. 35, 2003.

[131] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, “Traffic

classification on the fly,” ACM SIGCOMM Comput. Commun. Rev., vol. 36,

no. 2, p. 23, 2006.

[132] L. Bernaille, R. Teixeira, L. Bernaille, R. Teixeira, E. Recognition, A.

Conference, L. Bernaille, and R. Teixeira, “Early Recognition of Encrypted

Applications,” in in Proc. 8th International Conference, Passive and Active

Measurement Conference, Louvain-la-Neuve, Belgium, 2007.

[133] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Semi-

supervised network traffic classification,” Proc. ACM SIGMETRICS Int.

Conf. Meas. Model. Comput. Syst., p. 370, 2007.

[134] L. Bernaille, R. Teixeira, I. Akodjenou, and Soule, “Traffic Classification On

The Fly,” ACM SIGCOMM Comput. Commun. Rev., vol. 36, 2006.

[135] M. M. Alessandro Finamore, “Mining Unclassified Traffic Using Automatic

Clustering Techniques,” in Proc. Third Int’l Traffic Monitoring and Analysis

(TMA), 2011, pp. 150–163.

[136] S. Sun, “A survey of multi-view machine learning,” Neural Comput. Appl.,

vol. 23, no. 7–8, pp. 2031–2038, 2013.

[137] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson,

“Offline/realtime traffic classification using semi-supervised learning,”

Perform. Eval., vol. 64, no. 9–12, pp. 1194–1213, 2007.

[138] D. M. Divakaran, L. Su, Y. S. Liau, and V. L. Vrizlynn, “SLIC: Self-Learning

Intelligent Classifier for network traffic,” Comput. Networks, vol. 91, pp.

283–297, 2015.

[139] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker,

“Unexpected means of protocol inference,” Proc. 6th ACM SIGCOMM

Internet Meas. - IMC ’06, p. 313, 2006.

[140] P. Ducange, G. Mannara, F. Marcelloni, R. Pecori, and M. Vecchio, “A

novel approach for internet traffic classification based on multi-objective

145

evolutionary fuzzy classifiers,” IEEE Int. Conf. Fuzzy Syst., no. July, pp. 1–

6, 2017.

[141] M. Canini, M. Zadnik, and A. W. Moore, “Experience with High-Speed

Automated Application-Identi fi cation for Network-Management,” Proc.

Fifth ACM/IEEE Symp. Archit. Netw. Comm. Syst., 2009.

[142] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, and B. Xie, “Internet traffic

clustering with side information,” J. Comput. Syst. Sci., vol. 80, no. 5, pp.

1021–1036, 2014.

[143] R. Zhang, “EDW-Voting : Robust Realtime Traffic Classification Combined

with Flow Side Information,” 2018 Tenth Int. Conf. Adv. Comput. Intell., pp.

438–442, 2018.

[144] W. Lu and L. Xue, “A Heuristic-Based Co-clustering Algorithm for the

Internet Traffic Classification,” 2014 28th Int. Conf. Adv. Inf. Netw. Appl.

Work., no. 5, pp. 49–54, 2014.

[145] G. Y. Lazarou, J. Baca, V. S. Frost, and J. B. Evans, “Describing Network

Traffic Using the Index of Variability,” IEEE/ACM Trans. Netw., vol. 17, no.

5, pp. 1672–1683, 2009.

[146] M. Roughan and S. Sen, “Class-of-service mapping for QoS: a statistical

signature-based approach to IP traffic classification,” ACM SIGCOMM

Internet Meas. Work. 2004, Taormina, Sicily, Italy, pp. 135–148, 2004.

[147] S. Shakkottai, N. Brownlee, and kc claffy, “A Study of Burstiness in TCP

Flows BT - Passive and Active Network Measurement,” Passiv. Act. Netw.

Meas., pp. 13–26, 2005.

[148] R. Krzanowski, “Burst (of packets) and burstiness,” 66th IETF Meet., 2006.

[149] R. Liston, S. Srinivasan, and E. Zegura, “Diversity in DNS performance

measures,” Proc. Second ACM SIGCOMM Work. Internet Meas. Work. -

IMW ’02, p. 19, 2002.

[150] J. Jung, E. Sit, H. Balakrishnan, and R. M. Dns, “Performance and

Effectiveness of Caching,” SIGCOMM Internet Meas. Work. San Fr. CA,

Nov, vol. 10, no. 5, pp. 589–603, 2001.

146

[151] D. Wessels, “Is your caching resolver polluting the internet?,” Proc. ACM

SIGCOMM Work. Netw. Troubl. Res. theory Oper. Pract. meet

malfunctioning Real., pp. 271–276, 2004.

[152] D. Whyte, E. Kranakis, and P. Van Oorschot, “DNS-based detection of

scanning worms in an enterprise network,” Netw. Distrib. Syst. Symp., no.

1, pp. 1–17, 2005.

[153] D. Plonka and P. Barford, “Flexible Traffic and Host Profiling via DNS

Rendezvous,” in in Proceedings of the SATIN, 2011.

[154] M. Trevisan, I. Drago, M. Mellia, and M. M. Munafo, “Towards web service

classification using addresses and DNS,” 2016 Int. Wirel. Commun. Mob.

Comput. Conf. IWCMC 2016, pp. 38–43, 2016.

[155] L. M. Torres, E. Magana, M. Izal, and D. Morato, “A popularity-aware

method for discovering server IP addresses related to websites,” Glob. Inf.

Infrastruct. Symp. GIIS 2013, 2013.

[156] A. N. Mahmood and Leckie, “An Efficient Clustering Scheme to Exploit

Hierarchical Data in Network Traffic Analysis,” IEEE Trans. Knowl. Data

Eng., vol. 20, no. 6, pp. 752–767, 2008.

[157] D. R. A. P. Davide Tammaro, Silvio Valenti1, “Exploiting packet sampling

measurements for traffic characterization and classification,” Int. J. Netw.

Manag., vol. 22, no. 6, pp. 451–476, 2012.

[158] and M. P. P. Foremski, C. Callegari, “DNS-Class Immediate classification

of IP flows using DNS,” Int. J. Netw. Manag, vol. 24, pp. 272–288, 2014.

[159] N. F. Huang, C. C. Li, C. H. Li, C. C. Chen, C. H. Chen, and I. H. Hsu,

“Application identification system for SDN QoS based on machine learning

and DNS responses,” 19th Asia-Pacific Netw. Oper. Manag. Symp. Manag.

a World Things, APNOMS 2017, pp. 407–410, 2017.

[160] G. Mamidisetti and G. T. Varma, “Performance Issues of Internet Protocol

Versions,” Int. J. Soft Comput. Eng., vol. 3, no. 6, pp. 30–32, 2014.

[161] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for internet

traffic classification.,” IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 223–

239, 2007.

147

[162] J. Li, S. Zhang, Y. Lu, and J. Yan, “Real-time P2P traffic identification,”

GLOBECOM - IEEE Glob. Telecommun. Conf., pp. 2474–2478, 2008.

[163] Y. Zhang, H. Wang, and S. Cheng, “A method for real-time peer-to-peer

traffic classification based on C4.5,” Int. Conf. Commun. Technol.

Proceedings, ICCT, pp. 1192–1195, 2010.

[164] B. V. Ghita, S. M. Furnell, B. M. Lines, and E. C. Ifeachor, “Endpoint study

of Internet paths and Web pages transfers,” Campus-Wide Inf. Syst., vol.

20, no. 3, pp. 90–97, 2003.

[165] T. Bakhshi and B. Ghita, “User Traffic Profiling In a Software Defined

Networking Context,” 2015 Internet Technol. Appl. ITA 2015 - Proc. 6th Int.

Conf., no. September, pp. 91–97, 2015.

[166] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and

A. Pras, “Flow Monitoring Explained: From Packet Capture to Data Analysis

with NetFlow and IPFIX,” IEEE Commun. Surv. Tutorials, vol. 16, no. c, pp.

1–1, 2014.

[167] tcpdump, “Tcpdump/Libpcap public repository,” 2016. [Online]. Available:

http://www.tcpdump.org/#. [Accessed: 27-Dec-2016].

[168] G. Wang and T. S. E. Ng, “The impact of virtualization on network

performance of Amazon EC2 Data Center,” Proc. - IEEE INFOCOM, 2010.

[169] J. Daniel, O. James, A. Brian, A. Kenneth, D. Christopher, D. Thomas, D.

Boeck, I. Edward, P. Donald, G. Anthony, D. Jarrod, V. Larry, H. Ho, J.

Daniel, P. A. John, J. Holland, E. Scott, A. Don, L. Stephen, H. Timothy, D.

Felix, and V. Zandt, “Redefine Statistical Significance,” Nat. Hum. Behav.,

vol. 2, no. 1, p. 6, 2018.

[170] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis,

“Conditional variable importance for random forests.,” BMC Bioinformatics,

vol. 9, p. 307, 2008.

[171] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominant

characteristics of residential broadband internet traffic,” IMC’09, Novemb.

4–6, p. 90, 2009.

[172] S. Shenker, M. Casado, T. Koponen, and N. McKeown, “The Future of

148

Networking , and the Past of Protocols Software-Defined Networking,”

Open Netw. Summit, 2011.

[173] H. Kim and N. Feamster, “Improving Network Management with Software

Defined Networking,” Commun. Mag. IEEE, vol. 51, no. 2, pp. 114–119,

2013.

[174] B. Ng, M. Hayes, and W. K. G. Seah, “Developing a traffic classification

platform for enterprise networks with SDN: Experiences & lessons

learned,” ’ Proc. IFIP Netw. Conf. (IFIP Networking), Toulouse, Fr., vol. 5,

pp. 1–9, 2015.

[175] K. Guerra Perez, X. Yang, S. Scott-Hayward, and S. Sezer, “A configurable

packet classification architecture for Software-Defined Networking,” Int.

Syst. Chip Conf., pp. 353–358, 2014.

[176] M. Hayes, B. Ng, A. Pekar, and W. K. G. Seah, “Scalable Architecture for

SDN Traffic Classification,” IEEE Syst. J., vol. 12, no. 4, pp. 3203–3214,

2018.

[177] T. Bakhshi and B. Ghita, “OpenFlow-enabled user traffic profiling in campus

software defined networks,” Int. Conf. Wirel. Mob. Comput. Netw.

Commun., 2016.

149

APPENDIX- A

Experimental Analysis Scripts for Traffic Classification

1. Tcptrace analysis script to analyse captured traffic and calculate

burstiness, idle time and some of conventional features.

2. R-script to calculate flow and remaining conventional features.

3. Python scripts for analysing uncontrolled dataset.

4. Python script for Feature selection using Random Forest for only

uncontrolled dataset.

5. Machine Learning Techniques for controlled environment using Gradient

Boosting, SVM, and Random Forest.

6. C5.0 classifier for both controlled and uncontrolled (R-script).

150

151

1. Tcptrace analysis script to analyse captured traffic and calculate

burstiness, idle time and some of conventional features (chapter 4, section

4.2.1, section 4.2.3)

==

===============

This Script is writtin in c langauge by modifying the Tcptrace tool, which is an

open source tool.

This tool takes packet trace as input and output flows with the proposed features.

This tool is applied for both controlled and uncontrolled environment

==

===============

This script was written in C script, which calculates the burstiness and idle time

features

//calculate the first time of each connection added by hussien

first_time_connection = ((ptp_save->first_time.tv_sec * 1000) + (ptp_save-

>first_time.tv_usec));

//fprintf(stdout,"\tfirst packet: %s", ts2ascii(&ptp_save->first_time));

inter_connection_time = first_time_connection - last_time_connection;

if (inter_connection_time < 1000) {

++cur_conn_burst;

++count_conn;

}else if (count_conn >=2){

++burst_conn;

152

conn_no+=cur_conn_burst;

cur_conn_burst=0;

count_conn=0;

}else {

cur_conn_burst=0;

count_conn=0;

}

fprintf(stdout,"No.of conns: %d",num_tcp_pairs+1);

fprintf(stdout," No.of bursts in activity: %d",burst_conn);

fprintf(stdout," No.of conns in burts: %d\n",conn_no);

//fprintf(stdout," %ld\n", inter_connection_time);

last_time_connection = ((ptp_save->first_time.tv_sec * 1000) + (ptp_save-

>first_time.tv_usec));

}

ptp_save->last_time = current_time;

//the code

if (dir == A2B) {

thisdir = &ptp_save->a2b;

otherdir = &ptp_save->b2a;

//Determine the first time of this direction

if (thisdir-> count_a2b == 0){

thisdir->first_time=current_time;

++thisdir-> count_a2b;}

} else {

thisdir = &ptp_save->b2a;

153

otherdir = &ptp_save->a2b;

//Determine the first time of this direction

if (thisdir-> count_b2a == 0){

thisdir->first_time=current_time;

++thisdir-> count_b2a;}

}

/* meta connection stats */

if (SYN_SET(ptcp))

++thisdir->syn_count;

if (RESET_SET(ptcp))

++thisdir->reset_count;

if (FIN_SET(ptcp))

++thisdir->fin_count;

/* calculate data length added by hussein */

tcp_length = getpayloadlength(pip, plast);

tcp_data_length = tcp_length - (4 * TH_OFF(ptcp));

//burst calculation

thisdir->current = ((current_time.tv_sec * 1000) + (current_time.tv_usec));

thisdir->inter_time = thisdir->current- thisdir->last;

//burst calculation for only data packets > 0

if (thisdir->inter_time < 1000){

if (tcp_data_length > 0) {

++thisdir->crt_burst_data;

++thisdir->count_data;

thisdir->burst_size_bytes_data_tmp+=tcp_data_length;

if (thisdir->count_data ==1){

154

//Start time of each burst

thisdir->first_time_burst_data=thisdir->current;}

if (thisdir->count_data >1){

//End time of each packet in burst

thisdir->last_time_burst_data=thisdir->current;

thisdir->burst_duration_data_tmp=thisdir->last_time_burst_data-thisdir-

>first_time_burst_data;}

}

} else if (thisdir->count_data >= 2)

{

//Burst number

++thisdir->burst_data_no;

//Number of packets in burst

thisdir->pkt_data_count+= thisdir->crt_burst_data;

//Data size

thisdir->burst_size_bytes_data+=thisdir->burst_size_bytes_data_tmp;

thisdir->burst_duration_data+= thisdir->burst_duration_data_tmp;

//Idle time between bursts for each direction

if (thisdir->inter_time > 10000){

thisdir->idle_time_data+= thisdir->inter_time;}

//Initials the parameters again

thisdir->count_data=0;

thisdir->crt_burst_data=0;

thisdir->burst_size_bytes_data_tmp=0;

thisdir->first_time_burst_data=0;

155

thisdir->last_time_burst_data=0;

}else {thisdir->count_data=0;thisdir->crt_burst_data=0;thisdir-

>burst_size_bytes_data_tmp=0;thisdir->

first_time_burst_data=0;thisdir->last_time_burst_data=0;}

//burst calculation for all packets

if (thisdir->inter_time < 1000)

{

//No.of packets for each burst and set a counter

++thisdir->crt_burst;

++thisdir->count;

//No.of bytes in Bursts in each direction

thisdir->burst_size_bytes_tmp+=tcp_data_length;

if (thisdir->count ==1){

//Start time of each burst

thisdir->first_time_burst=thisdir->current;}

}else if (thisdir->count >=2){

//End time of each burst

thisdir->last_time_burst=thisdir->last;

//No.of bursts for each direction

++thisdir->burst_no;

//Burst duration for each direction

thisdir->burst_duration+= thisdir->last_time_burst - thisdir->first_time_burst;

//No.of packets in bursts for each direction

thisdir->pkt_count+= thisdir->crt_burst;

//Data size

thisdir->burst_size_bytes+=thisdir->burst_size_bytes_tmp;

156

//Idle time between bursts for each direction

if (thisdir->inter_time > 1000){

thisdir->idle_time+= thisdir->inter_time;}

3

thisdir->crt_burst=0;

thisdir->count=0;

thisdir->burst_size_bytes_tmp=0;

thisdir->first_time_burst=0;

thisdir->last_time_burst=0;

}else {thisdir->count=0;thisdir->crt_burst=0;thisdir->burst_size_bytes_tmp=0;

thisdir->first_time_burst=0;

thisdir->last_time_burst=0;}

thisdir->last=((current_time.tv_sec * 1000) + (current_time.tv_usec));

157

2. R-script to calculate flow and remaining conventional features (chapter

4, sections 4.2.2 and 4.2.3).

i. R-script to calculate remaining conventional features

==

===============

This script calculates additional packet level features

==

===============

#this script for one activity

#set the directory

#setwd("f:/csv")

path="C:/Users/hjoudah/Dropbox/hussein/python/real data results/samples files/

group_comp_withoutrunR/

echotrace-2018-07-17_09.02.14.pcap/burst_packets_features.csv"

setwd("C:/Users/hjoudah/Dropbox/hussein/python/real data results/samples files/

group_comp_withoutrunR/

echotrace-2018-07-17_09.02.14.pcap/R")

ldf <- list() # creates a list

listcsv <- dir(pattern = "*.csv") # creates the list of all the csv files in the

directory

#loop to read each file

for (k in 1:length(listcsv)){

158

#read file

ldf[[k]] <- read.csv(listcsv[k])

print (listcsv[k])

h=ldf[[k]]

h$x <- NULL

h$y <- NULL

#complete the claculation of some field

h$packets_b.packets_a<-h$packets_b/h$packets_a

h$data_packets_b.data_packets_a<-h$data_packets_b/h$data_packets_a

h$flags_packets_b.flags_packets_a<-h$flags_packets_b/h$flags_packets_a

h$flags_packets_a.packets_a<-h$flags_packets_a/h$packets_a

h$flags_packets_b.packets_b<-h$flags_packets_b/h$packets_b

h$flow_size_bytes_b.flow_size_bytes_a<-h$flow_size_bytes_b/h$flow_size_bytes_a

h$Avg_flow_size_bytes_a<-h$flow_size_bytes_a/h$data_packets_a

h$Avg_flow_size_bytes_b<-h$flow_size_bytes_b/h$data_packets_b

h$pkt_count_b.pkt_count_a<-hpkt_count_b/hpkt_count_a

h$burst_size_bytes_b.burst_size_bytes_a<-h$burst_size_bytes_b/h$burst_size_bytes_a

h$AVG_burst_size_bytes_a<-h$burst_size_bytes_a/h$pkt_data_count_a

h$AVG_burst_size_bytes_b<-h$burst_size_bytes_b/h$pkt_data_count_b

h$inter_arrival_time_burst_a<-h$burst_duration_a/h$pkt_count_a

h$inter_arrival_time_burst_b<-h$burst_duration_b/h$pkt_count_b

h$pkt_data_count_b.pkt_data_count_a<-h$pkt_data_count_b/h$pkt_data_count_a

h$burst_size_bytes_data_b.burst_size_bytes_data_a<-h$burst_size_bytes_data_b/h

$burst_size_bytes_data_a

h$AVG_burst_size_bytes_data_a<-h$burst_size_bytes_data_a/h$pkt_data_count_a

159

h$AVG_burst_size_bytes_data_b<-h$burst_size_bytes_data_b/h$pkt_data_count_b

h$inter_arrival_time_data_a<-h$burst_size_bytes_data_a/h$pkt_data_count_a

h$inter_arrival_time_data_b<-h$burst_size_bytes_data_b/h$pkt_data_count_b

#Replace each NAN or infinite with 0

h=rapply(h, f=function(x) ifelse(is.nan(x),0,x), how="replace")

h=rapply(h, f=function(x) ifelse(is.infinite(x),0,x), how="replace")

#calculate some statistical features

m<-colMeans(h)

mn<-apply(h,2,min)

mx<-apply(h,2,max)

md<-apply(h,2,median)

sd<-apply(h,2,sd)

#put the varibles in one dataframe

total <- rbind(m,mn,mx,md,sd)

ldf[[k]]=total

#create matrix

ldf[[k]]=as.matrix(sapply(ldf[[k]], as.numeric))

#this is to convert the rows to one row

ldf[[k]] <- c(t(ldf[[k]]))

names(ldf[[k]]) <- c(outer(colnames(df), rownames(df), paste, sep="."))

#convert the colum to row

ldf[[k]]= t(ldf[[k]])

}

#bind all file and put them in one file

if (k == 30){total <-

160

rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]],ldf[[7]],ldf[[8]],

ldf[[9]],ldf[[10]],ldf[[11]],ldf[[12]],ldf[[13]],ldf[[14]],ldf[[15]],ldf[[16]],ldf

[[17]],ldf[[18]],

ldf[[19]],ldf[[20]],ldf[[21]],ldf[[22]],ldf[[23]],ldf[[24]],ldf[[25]],ldf[[26]],ld

f[[27]],ldf[[28]],

ldf[[29]],ldf[[30]])

} else if (k==10) {total <-

rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]],ldf[[7]],ldf[[8]],

ldf[[9]],ldf[[10]])

} else if (k==9) { total <-

rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]],ldf[[7]],ldf[[8]],

ldf[[9]])

} else if (k==8) { total <-

rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]],ldf[[7]],ldf[[8]])

} else if (k==7) { total <-

rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]],ldf[[7]])

} else if (k==6) { total <-

rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]])

} else if (k==5) { total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]])

} else if (k==4) { total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]])

} else if (k==3) { total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]])

} else if (k==2) { total <- rbind(ldf[[1]],ldf[[2]])

} else if (k==1) { total <- (ldf[[1]])

}

#total <-

rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]],ldf[[7]],ldf[[8]])

161

#total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]],ldf[[7]])

#total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]],ldf[[6]])

#total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]],ldf[[5]])

#total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]],ldf[[4]])

#total <- rbind(ldf[[1]],ldf[[2]],ldf[[3]])

#total <- rbind(ldf[[1]],ldf[[2]])

#total <- ldf[[1]]

#set new path of directory

#setwd("C:/Users/hjoudah/Dropbox/test")

#write to file

#setwd("C:/Users/hjoudah/Dropbox/hussein/python/real data results/samples files/

sample_21/")

write.table(total,path,sep=",",row.names = FALSE,col.names = FALSE)

162

ii. R-script to calculate flow features

==

===============

This script to read the flow trace

==

===============

path = directory_path+folder+'/matched_flows/'

pathr= directory_path+folder+'/R/'

path2=directory_path+folder+'/burst_conns_features.csv'

files = [x for x in os.listdir(path) if x[-3:] == 'csv']

for app in files:

print app

Define variables

inter_conns_time =[]

cur_conn_burst =0

count_conn = 0

no_burst_in_conns_1 = 0

conns_no_in_burst_1 = 0

all_features =0

packets_no_in_burst_conns_1 =0

packets_data_no_in_burst_conns_1=0

size_burst_conns_1=0

average_size_burst_conns_1=0

163

burst_conns_duration_1=0

idle_time_burst_conns_1=0

packets_no_in_burst_conns_1_tmp=0

packets_data_no_in_burst_conns_1_tmp=0

size_burst_conns_1_tmp=0

Read the file

pd.options.display.float_format = '{:,.6f}'.format

start_time = pd.read_csv(path+app, header = None, sep =',')

#add the second part with micrisecond part

start_time[0] = start_time[0]+start_time[1]/1000000

#drop the microsecond column

start_time.drop([1], axis = 1,inplace = True)

Calculte burstiness

for index, single_time in enumerate(start_time.iterrows()):

if index != len(start_time) -1:

time = start_time[0][index+1] - start_time[0][index]

if time > 10:

idle_time_burst_conns_1+=time

if time < 1:

cur_conn_burst = cur_conn_burst +1

count_conn = count_conn + 1

packets_no_in_burst_conns_1_tmp+= start_time[2][index]+start_time[3]

[index]

packets_data_no_in_burst_conns_1_tmp += start_time[5][index]

+start_time[6][index]

size_burst_conns_1_tmp+= start_time[13][index]+start_time[14][index]

164

#caculate the burst duration

if count_conn == 1:

first_time_conn = start_time[0][index]

else:

last_time_conn = start_time[0][index]

burst_conn_duration_tmp =last_time_conn-first_time_conn

elif count_conn >= 2:

no_burst_in_conns_1 = no_burst_in_conns_1 +1

conns_no_in_burst_1+=cur_conn_burst

packets_no_in_burst_conns_1+=packets_no_in_burst_conns_1_tmp

packets_data_no_in_burst_conns_1+=packets_data_no_in_burst_conn

s_1_tmp

size_burst_conns_1+=size_burst_conns_1_tmp

burst_conns_duration_1+= burst_conn_duration_tmp

cur_conn_burst=0

count_conn=0

packets_no_in_burst_conns_1_tmp=0

packets_data_no_in_burst_conns_1_tmp=0

size_burst_conns_1_tmp=0

else:

cur_conn_burst=0

count_conn=0

packets_no_in_burst_conns_1_tmp=0

packets_data_no_in_burst_conns_1_tmp=0

size_burst_conns_1_tmp=0

inter_conns_time.append(time)

165

#Write inter connections time on file

file = open('inter_time_1.txt', 'w')

for line in inter_conns_time:

file.write('%s' % line +'\n')

file.close()

#calculate other features from the above features

try:

average_size_burst_conns_1 = size_burst_conns_1 /

packets_data_no_in_burst_conns_1

except ZeroDivisionError:

os.remove(path+app)

os.remove(pathr+app)

print('this file is

delected:***

**

**',pa

th+app)

continue

inter_arrival_time_burst_conns_1 = burst_conns_duration_1/

packets_no_in_burst_conns_1

#the second part of program caculate the burstiness and idle time based on

last and first time

#define varibles

inter_conns_time_2 =[]

166

cur_conn_burst =0

count_conn = 0

no_burst_in_conns_2 = 0

conns_no_in_burst_2 = 0

all_features =0

packets_no_in_burst_conns_2 =0

packets_data_no_in_burst_conns_2=0

size_burst_conns_2=0

average_size_burst_conns_2=0

burst_conns_duration_2=0

idle_time_burst_conns_2=0

packets_no_in_burst_conns_2_tmp=0

packets_data_no_in_burst_conns_2_tmp=0

size_burst_conns_2_tmp=0

Read the file

pd.options.display.float_format = '{:,.6f}'.format

start_time = pd.read_csv(path+app, header = None, sep =',')

start_time.drop([60], axis = 1,inplace = True)#for dropping the blank field

#start_time = start_time.loc[:,6:]

start_time[0] = start_time[0]+start_time[1]/1000000

start_time[61] = start_time[61]+start_time[62]/1000000

start_time.drop([1], axis = 1,inplace = True)

start_time.drop([62], axis = 1,inplace = True)

Calculte burstiness

for index, single_time in enumerate(start_time.iterrows()):

if index != len(start_time) -1:

167

if start_time[61][index] > start_time[0][index+1]:

cur_conn_burst = cur_conn_burst +1

count_conn = count_conn + 1

packets_no_in_burst_conns_2_tmp+=start_time[2][index]

+start_time[3][index]

packets_data_no_in_burst_conns_2_tmp+=start_time[5][index]

+start_time[6][index]

size_burst_conns_2_tmp+=start_time[13][index]+start_time[14]

[index]

#caculate the burst duration

if count_conn == 1:

first_time_conn = start_time[0][index]

else:

last_time_conn = start_time[61][index+1]

burst_conn_duration_tmp =last_time_conn-first_time_conn

elif count_conn >= 2:

no_burst_in_conns_2 = no_burst_in_conns_2 +1

conns_no_in_burst_2+=cur_conn_burst

packets_no_in_burst_conns_2+=packets_no_in_burst_conns_2_tmp

packets_data_no_in_burst_conns_2+=packets_data_no_in_burst_conn

s_2_tmp

size_burst_conns_2+=size_burst_conns_2_tmp

burst_conns_duration_2+= burst_conn_duration_tmp

idle_time_burst_conns_2+=start_time[0][index+1] -

start_time[61][index]

cur_conn_burst=0

168

count_conn=0

packets_data_no_in_burst_conns_2_tmp=0

packets_no_in_burst_conns_2_tmp=0

size_burst_conns_2_tmp=0

else:

cur_conn_burst=0

count_conn=0

packets_data_no_in_burst_conns_2_tmp=0

packets_no_in_burst_conns_2_tmp=0

size_burst_conns_2_tmp=0

inter_conns_time_2.append(start_time[61][index] - start_time[0][index

+1])

#Write inter connections time on fileon file

file = open('inter_time_2.txt', 'w')

for line in inter_conns_time_2:

file.write('%s' % line +'\n')

file.close()

#calculate other features from the above features

print app

try:#this action is to remove file that is devision by zero

average_size_burst_conns_2 = size_burst_conns_2 /

packets_data_no_in_burst_conns_2

except ZeroDivisionError:

os.remove(path+app)#remove the file if it is devsion by zero from

matchflows

os.remove(pathr+app)#remove the file if it is devsion by zero from R

169

print('this file is

delected:***

**

',path+app)

continue

inter_arrival_time_burst_conns_2 = burst_conns_duration_2/

packets_no_in_burst_conns_2

#write features on file

features = [no_burst_in_conns_1, conns_no_in_burst_1,

packets_no_in_burst_conns_1, packets_data_no_in_burst_conns_1,

size_burst_conns_1, average_size_burst_conns_1,

burst_conns_duration_1, inter_arrival_time_burst_conns_1,

idle_time_burst_conns_1, no_burst_in_conns_2,

conns_no_in_burst_2, packets_no_in_burst_conns_2,

packets_data_no_in_burst_conns_2, size_burst_conns_2,

average_size_burst_conns_2, burst_conns_duration_2,

inter_arrival_time_burst_conns_2, idle_time_burst_conns_2]

file = open('burst_conns_features_tmp.csv', 'a')

for line in features:

file.write('%s ' % line+',')

file.write(app)

file.write('\n')

file.close()

#put the header and features values togather in file

170

headers = ['no_burst_in_conns_1', 'conns_no_in_burst_1',

'packets_no_in_burst_conns_1', 'packets_data_no_in_burst_conns_1',

' size_burst_conns_1' , 'average_size_burst_conns_1 ',

'burst_conns_duration_1', 'inter_arrival_time_burst_conns_1',

'idle_time_burst_conns_1', 'no_burst_in_conns_2',

'conns_no_in_burst_2', 'packets_no_in_burst_conns_2',

'packets_data_no_in_burst_conns_2', ' size_burst_conns_2' ,

'average_size_burst_conns_2 ', 'burst_conns_duration_2',

'inter_arrival_time_burst_conns_2', 'idle_time_burst_conns_2']

#burst_conns_features_2 = pd.read_csv('burst_conns_features_2.csv', header =

None, sep =',')

burst_conns_features = open(path2, 'w')

orig = open('burst_conns_features_tmp.csv', 'r')

burst_conns_features.write(','.join(headers) + '\n')

for line in orig.readlines():

burst_conns_features.write(line)

orig.close()

burst_conns_features.close()

os.remove('burst_conns_features_tmp.csv')

##

########

171

3. Python scripts for analysing uncontrolled dataset (chapter 5, sections

(5.2.2 – 5.2.5)

==

===============

These are gruop of scripts for analysing datasets in uncontrolled environment

==

===============

This script was writtin in Python to label mixed traffic based on IP address and

DNS queries

Note:

We do not need to read both colums for IP, we only read the forth colum for IP

server because the second colum alawys 192.168

as it is data collected from one client

#the program is run twice, the first run is for determining the requests and the

second one for collect flows until the next request

#***

Import some libraraies

import string

import re

import pandas as pd

import os

directory_path ='C:/Users/hjoudah/Dropbox/hussein/python/real data results/samples

172

files/group_1/'

#directory_path ='C:/Users/hjoudah/Dropbox/pcaplinux/'

for folder in os.listdir(directory_path):#read the directory files

print 'the name of folder is here *******************************' , folder

==

===============

This script is to read the packet trace

==

===============

################# for run only change the folder

#######################################

path1=directory_path+folder+'/matched_flows/'

path2=directory_path+folder+'/R/'

path3=directory_path+folder+'/input_files/'

pd.options.display.float_format = '{:,.6f}'.format#to display the float value

untial six value

Read the text files, the first one with IP address, while the second one with

domain name(input files)

note the time stamp of both files should be seconds

text1 = path3+'packet.dat' # contain only IPs address

text2 = path3+'packetn.dat' # contain the domain names

netflow_csv = pd.read_csv(path3+'netflow.csv', header = None, sep =' ')

#netflowdomain_csv = pd.read_csv('netflown.csv', engine='python', header = None)

netflow_csv['known_tag'] = 0

173

==

===============

This script is for DNS queries (section 5.2.2)

==

===============

first_req_detected = 0

request = '.53: ' #the request

netflow_csv[6] = netflow_csv[6]+netflow_csv[7]/1000000 # to combine the seconds

part with the microseconds part

netflow_csv.drop([7], axis = 1,inplace = True)# remove the microsececonds part

from the file

requests =[]

#print(netflowdomain_csv.head())

The applications keywords, this keywords come with the request of the

application

amazonKeyword = ' www.amazon.com. '

bbcKeyword = ' www.bbc.co.uk. '

bingKeyword = ' www.bing.com. '

cnnKeyword = ' www.cnn.com. '

facebookKeyword = ' www.facebook.com. '

instagramKeyword = ' www.instagram.com. '

yahoomailKeyword = ' login.yahoo.com. '

youtubeKeyword = ' www.youtube.com. '

googleKeyword = ' www.google.com. '

174

gmailKeyword = ' accounts.google.com. '

plymouthkeyword = 'www.plymouth.ac.uk.'

#put all the keywords in list to easy to read

keywords = [amazonKeyword, bbcKeyword, bingKeyword, cnnKeyword,

instagramKeyword, yahoomailKeyword, youtubeKeyword, facebookKeyword,

googleKeyword, gmailKeyword, plymouthkeyword]

#Create a file for each application to put the traffic that belong to it

new_ip_dict = {'www_amazon_com':[], 'www_bbc_co_uk':[], 'www_bing_com':[],

'www_cnn_com': [], 'www_instagram_com': [],

'login_yahoo_com': [], 'www_youtube_com': [], 'www_facebook_com':

[], 'www_google_com': [], 'accounts_google_com': [], 'www_plymouth_ac_uk': []}

matched_server_ip_dict = {'www_amazon_com':[], 'www_bbc_co_uk':[],

'www_bing_com':[], 'www_cnn_com': [], 'www_instagram_com': [],

'login_yahoo_com': [], 'www_youtube_com': [],

'www_facebook_com': [], 'www_google_com': [], 'accounts_google_com': [],

'www_plymouth_ac_uk': []}

keyword_application = {'www_amazon_com':['cloudfront.net',

'deploy.static.akamaitechnologies.com.https', 's3-3-w.amazonaws.com.https'],

'www_bbc_co_uk':['an.haven.com.https', '.bbc.co.uk.http',

'www.edigitalsurvey.com.http'],'www_bing_com':['a-0001.a-msedge.net.http'],

'www_cnn_com':

['a23-55-58-227.deploy.static.akamaitechnologies.com.https','west-

1.compute.amazonaws

.com.http','

compute-1.amazonaws.com.https',

'akamaitechnologies.com.http','1e100.net.https','fbcdn.net.https','pixel.quantserve.c

175

om.http'],

'www_facebook_com':['.fbcdn.net.https',

'.facebook.com.https', '.fbcdn.net.https'],

'www_instagram_com':['instagram-p3-shv-01-

lhr3.fbcdn.net.https','instagram-p3-shv'],

'login_yahoo_com':

['.ycpi.vip.lob.yahoo.com.https','mpr2.ngd.vip.ir2.yahoo.com.https','r1.ycpi.vip.ir2.

yahoo.net.https',

'beap3.cbs.vip.ir2.yahoo.com.https',

'ats1.member.vip.ir2.yahoo.com.https','pr-bh.pbp.vip.ir2.yahoo.com.https',

'public.comet.vip.bf1.yahoo.com.https',

'a2.ue.vip.ir2.yahoo.net.https','gw.iris.vip.bf1.yahoo.com.https',

'e1.ycpi.vip.lob.yahoo.com.https','a1.u

e.vip.ir2.yahoo.net.https'],

'www_youtube_com':['lhr35s05'], 'www_google_com':

['lhr25s','wk-in'], 'accounts_google_com':['lhr35s05'], 'www_plymouth_ac_uk' :

['plymouth']}

#2/0/0 CNAME clients.l.google.com.

#'www_youtube_com':['-in-f14.1e100.net.https','.1e100.net.https','-inf2.1e100.

net.https']

stepIndex = 0

#open the first file

with open(text1, 'rb') as f:

lines = f.read().splitlines()

for index, row in enumerate(lines[stepIndex:]):

if any(keyword in row for keyword in keywords) and request in row:#

176

check the keyword and request in the line

print (index).......................for error check

try:

key = string.replace(row.split(" A? ", 1)[1][:-6], '.', '_')#

the key is the request after add _ to be equel

#to defination of www_applicationname_com

except IndexError:

key = string.replace(row.split(" AAAA? ", 1)[1][:-6], '.',

'_')# the key is the request after add _ to be equel

#to defination of www_applicationname_com

if len(matched_server_ip_dict[key]) > 0:# to check if the file is

empty (i.e., we read a request for one time)

pass

else:

print 'Keyword is found in line :', index, key # printing the

line number and request

with open(text2) as file2:# read the second text file because

it contains domain names

linefile2 = file2.read().splitlines()

if key == 'www_youtube_com':# this is just to check that this

application is youtube

these words are generated when the Youtube is requested

youtubeServer_1 = '-in-f14.1e100.net.https'

youtubeServer_2 = '.1e100.net.https'

youtubeServer_3 = '-in-f2.1e100.net.https'

youtubeServerCounter = 0

177

for lane in linefile2[index:]:#read the text file from the

request

if youtubeServer_1 in lane or youtubeServer_2 in lane

or youtubeServer_3 in lane:# check the words in

#the line

if float(lane[0:10]) - float(row[0:10]) > 120:

break

youtubeServerCounter += 1#count the number of words

if youtubeServerCounter < 500:

continue

elif key == 'www_facebook_com':# this is just to check that

this app is facebook (the same proceture as in YouTube)

facebookServer_1 = '.facebook.com.https'

facebookServer_2 = '.fbcdn.net.https'

facebookServerCounter = 0

for index2,lane in enumerate(linefile2[index:]):

if facebookServer_1 in lane or facebookServer_2 in

lane:

if float(lane[0:10]) - float(row[0:10]) > 120:

break

facebookServerCounter += 1

#print facebookServerCounter

if facebookServerCounter < 500:

continue

elif key == 'www_bbc_co_uk': # this is just to check that

this application is bbc

178

#(the same proceture as in YouTube)

bbcServer_1 = 'bbc'

bbcServerCounter = 0

for index2, lane in enumerate(linefile2[index:]):

if bbcServer_1 in lane :

if float(lane[0:10]) - float(row[0:10]) > 120:

break

bbcServerCounter += 1

print facebookServerCounter

if bbcServerCounter < 500:

continue

elif key == 'www_instagram_com':# this is just to check that

this app is instagram (the same proceture as in YouTube)

instagramServer_1 = 'instagram-p3-shv-01-

lhr3.fbcdn.net.https'

instagramServer_2 = 'instagram-p3-shv'

instagramServerCounter = 0

for index2,lane in enumerate(linefile2[index:]):

if instagramServer_1 in lane or instagramServer_2 in

lane:

if float(lane[0:10]) - float(row[0:10]) > 180:

break

instagramServerCounter += 1

if instagramServerCounter < 1000:

continue

with open(key + '.txt', 'rb') as file:# open the IPs file#and

179

this is the start of taking the real key

IPsfile = file.read().splitlines()

==

===============

IP matching script section 5.2.4

==

===============

this is to extract each IP from the line and compare it with the IPs_list and

within three seconds----------------

for internalIndex, internalLines in

enumerate(lines[index:]):#this loop to matach the IP in the line (text file)

#with the IP in the IPs file

if internalLines.split()[2][:8] != '192.168.': # take

only the line that is not start by

#192.168(read the first part of the line)

IP = internalLines.split()[2] # read the colum two

IP_only = re.findall(r'[0-9]+(?:\.[0-9]+){3}', IP)

extract the IP without port

if not IP_only:#this is for that the extracted ip

form make an error

pass

else:#if the ip extracted without error

if IP_only[0] not in IPsfile and

(float(internalLines[0:10]) - float(row[0:10]) < 3):

180

new_ip_dict[key].append(IP_only[0])# append

to the file of target application

elif float(internalLines[0:10]) -

float(row[0:10]) > 3:

#start check flows

break

elif internalLines.split()[4][:8] != '192.168.': # take

only the line that is not start by

#192.168(read the second part of the line)

IP = internalLines.split()[4] # read the colum two

IP_only = re.findall(r'[0-9]+(?:\.[0-9]+){3}', IP)

extract the IP without port and final

if not IP_only:

pass

else:

if IP_only[0] not in IPsfile and

(float(internalLines[0:10]) - float(row[0:10]) < 3):#[0:10] to take

#all the time digits

new_ip_dict[key].append(IP_only[0]) #

append ip to the file of target application

#(update the ips file)

elif float(internalLines[0:10]) -

float(row[0:10]) > 3:# after three seconds the update the ips file

#will stop

break

else:

181

pass

stepIndex = index+internalIndex# this is to update the pointer

of the index

#--

#this is to update the ips files from the dictionary (write the dictionary on

the ips files-----------------------

for Key, value in new_ip_dict.iteritems():#to inter in each

dictionary and make a loop

if len(new_ip_dict[Key]) > 0:

with open(key + '.txt', 'a') as IPs_file: # open

the IPs file

new_ip_dict = {a: list(set(b)) for a, b in

new_ip_dict.items()}##remove duplicate IPs from dict

for line in new_ip_dict[Key]:

IPs_file.write('\n' + line)

#--

#---------------- this is to filter the flows from the first reqest, check the

first flow time and compare it if it is greater

#than the first request

if first_req_detected == 0:

netflow_csv = netflow_csv[netflow_csv[6] >=

float(row[0:10])]

first_req_detected = 1

#Match each server IP in the flow file with the IP in the IPs_file and append to

the application file---------------

182

#this is for filter the fllows that are greater than request

selected_flows_within_time = netflow_csv[netflow_csv[6] >=

float(row[0:10])]

#netflow_csv.to_csv('matched_flows/netflowwithtime.csv',

header=False)# write the filter flows

#on file netflowwithtime

this is for matching the filter flows with IPs file

with open(key + '.txt', 'rb') as file: # open the IPs file

IPsfile = file.read().splitlines()

counter_reqest =0

for index, flow in

enumerate(selected_flows_within_time.iterrows()): # this loop to matach the IP in

the line

#(netflow file) with the IP in the IPs file

counter_reqest = counter_reqest+1

if counter_reqest ==1:requests.append(flow[0]+1) #

IPsfile_subnet = ['.'.join(ip.split('.')[:3]) for ip in

IPsfile]# this to split the IP and remove the last

#one and then join only the remaining three parts with

dot.

current_index = flow[0] # read the index

if "192.168" not in flow[1][1]:

#if flow.split()[2][:8] != '192.168.':

server_IP = flow[1][1] # read the colum two(ip

server part)

server_IP = '.'.join(server_IP.split('.')[:3])# this

183

to split the IP and remove the last one and then

#join only the remaining three parts with dot.

if (server_IP in IPsfile_subnet) :# to check the ip

(in netflow file) in the ips file

flow = str(flow[1][9]) + ' ' + str(flow[1][10])

+ ' ' + str(flow[1][11]) + ' ' + str(flow[1][12])

+ ' ' + str(flow[1][13])

#flow = str(flow[1][0])+' : '+str(flow[1][1])+'

'+str(flow[1][2])+' : '+str(flow[1][3]+'

'+str(flow[1][4])+' : '+str(flow[1][5]))# build

the flow that we need

matched_server_ip_dict[key].append(flow) #

append to the file of target application

#print flow

selected_flows_within_time =

selected_flows_within_time.loc[selected_flows_within_time.index

!= current_index]#select the flows that are unknown

netflow_csv.set_value(current_index,

'known_tag', 1)#tag each flow with 1 to be known

#netflowdomain_csv.set_value(current_index,

'known_tag', 1)

else:#to check the row in (netflow file) that contain

the keywords in the dictionary of the key

#if key == 'accounts_google_com':

continue

#print netflow_csv.loc[current_index][4]

184

################## this script to check that

the remaining flows match with the keywords section 5.2.5

for app_domain in keyword_application[key]:

#this if below for real data

#if app_domain in

netflow_csv.loc[current_index][4] or app_domain in

#netflow_csv.loc[current_index][8]:

if app_domain in

netflow_csv.loc[current_index][4]:

flow = str(flow[1][9]) + ' ' +

str(flow[1][10]) + ' ' + str(flow[1][11])

+ ' ' + str(flow[1][12]) + ' ' +

str(flow[1][13])

#flow = str(flow[1][0]) + ' : ' +

str(flow[1][1]) + ' ' + str(flow[1][2]) + ' :

' + str(flow[1][3] + ' ' +

str(flow[1][4]) + ' : ' + str(flow[1][5])) # build the flow that we need

matched_server_ip_dict[key].append(fl

ow) # append to the file of target application

selected_flows_within_time =

selected_flows_within_time.loc[selected_flows_within_time.index

!= current_index]# select the flows that are known

netflow_csv.set_value(current_index,

'known_tag',1) # tag each flow with 1 to be known

#netflowdomain_csv.set_value(current_

index, 'known_tag', 1)

185

break

elif "192.168" not in flow[1][3]:

server_IP = flow[1][3] # read the colum two(ip

server part)

server_IP = '.'.join(server_IP.split('.')[:3])# this

to split the IP and remove the last one and then join

#only the remaining three parts with dot.

if (server_IP in IPsfile_subnet) :# to check the ip

(in netflow file) in the ips file

flow = str(flow[1][9]) + ' ' + str(flow[1][10])

+ ' ' + str(flow[1][11]) + ' ' + str(flow[1][12])

+ ' ' + str(flow[1][13])

#flow = str(flow[1][0])+' : '+str(flow[1][1])+'

'+str(flow[1][2])+' : '+str(flow[1][3]+' '+str(flow[1][4])+'

: '+str(flow[1][5]))# build the flow that we

need

matched_server_ip_dict[key].append(flow) #

append to the file of target application

#print flow

selected_flows_within_time =

selected_flows_within_time.loc[selected_flows_within_time.index

!= current_index]#select the flows that are unknown

netflow_csv.set_value(current_index,

'known_tag', 1)#tag each flow with 1 to be known

#netflowdomain_csv.set_value(current_index,

'known_tag', 1)

186

else:#to check the row in (netflow file) that contain

the keywords in the dictionary of the key

#if key == 'accounts_google_com':

continue

#print netflow_csv.loc[current_index][4]

for app_domain in keyword_application[key]:

#this if below for real data

#if app_domain in

netflow_csv.loc[current_index][4] or app_domain in netflow_csv.loc[current_index][8]:

if app_domain in

netflow_csv.loc[current_index][4]:

flow = str(flow[1][9]) + ' ' +

str(flow[1][10]) + ' ' + str(flow[1][11]) + ' ' + str(flow[1][12])

+ ' ' + str(flow[1][13])

#flow = str(flow[1][0]) + ' : ' +

str(flow[1][1]) + ' ' + str(flow[1][2]) + ' : ' + str(flow[1][3] +

' ' + str(flow[1][4]) + ' : ' +

str(flow[1][5])) # build the flow that we need

matched_server_ip_dict[key].append(fl

ow) # append to the file of target application

selected_flows_within_time =

selected_flows_within_time.loc[selected_flows_within_time.index

!= current_index] # select the

#flows that are known

netflow_csv.set_value(current_index,

'known_tag',1) # tag each flow with 1 to be known

187

#netflowdomain_csv.set_value(current_

index, 'known_tag', 1)

break

#this to write flows in the files for applications

for Key, value in matched_server_ip_dict.iteritems():#to inter in each dictionary

and make a loop

if len(matched_server_ip_dict[Key]) > 0:

#with open('matched_flows/'+Key+'_flows.txt', 'w') as f:#write the

contents of each dictionary to file (this the path and the name)

#for line in matched_server_ip_dict[Key]:

#f.write(line+'\n')

print Key,':', len(matched_server_ip_dict[Key])

The unknown flows in IPs form

netflow_csv_unknown = netflow_csv[netflow_csv['known_tag'] == 0]

#netflow_csv_unknown.to_csv('matched_flows/unknown_flows.txt', header=False,

index=False)

requests.append(10000000000000)

requests.append(10000000000000)

path=directory_path+folder+'/R/'

files = [x for x in os.listdir(path) if x[-3:] == 'csv']#read the files

for app in files:

netflow_csv = pd.read_csv(path+app, header = None, sep =',')

netflow_csv.drop([0,1,60,61,62], axis = 1,inplace = True)# remove the time

parts from the file and blank field

netflow_csv_header = pd.read_csv('C:/Users/hjoudah/Dropbox/hussein/python/

real data results/samples files/facebook.csv', sep =',').columns #read the columns

188

only (header)

netflow_csv.columns = netflow_csv_header# put the header to the file header

netflow_csv.to_csv(path+app, index=False)# write the file

189

4. Python script for Feature selection using Random Forest for only

uncontrolled dataset (chapter 7, section 7.3.1)

===========Feature selextion rbased on RF==============

Number of important features

num_selected_feature = 100

Display the features that belong to the number

'sd_inter_arrival_time_data_b'

dataset.columns[242]

[94, 82, 239, 71, 99, 261, 97, 69, 92, 244, 67, 10, 168, 173, 253, 101, 81, 96, 210,

Split the dataset in two equal parts

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=0, s

X_train, selected_features, importances = feature_imp_RandomForest(X_train,

y_train)

top_rakned_features_list = selected_features.values[:num_selected_feature].tolist()

print(top_rakned_features_list)

X_test = X_test.values

X_test = X_test[:,top_rakned_features_list]

indices = np.argsort(importances)[::-1][:15]

Plot the feature importances of the forest

plt.figure()

plt.title("Feature importances")

plt.bar(range(15), importances[indices],

def feature_imp_RandomForest(X_train, y_train):

190

rf = RandomForestClassifier(n_estimators=300, max_depth=8,

min_samples_leaf=4, max_fea

rf.fit(X_train, y_train)

importances = rf.feature_importances_

##################################

#for showing the features ranks

features_rank = list(zip([x for x in range(0, X_train.shape[1])], rf.feature_importan

features_importance_df = pd.DataFrame(features_rank, columns=['features', 'rank'])

features_importance_df = features_importance_df.sort_values(by=['rank'],

ascending=Fal

global top_features

selected_features = features_importance_df['features']

##################################

X_train = X_train.values

X_train = X_train[:,rf.feature_importances_.argsort()[::-1][:num_selected_feature]]

#joblib.dump(rf.feature_importances_.argsort()[::-1][:num_selected_feature],'pre-

train

return X_train, selected_features, importances

color="b", align="center")

plt.xticks(range(15), indices)

plt.xlabel('Feature Number')

plt.ylabel('Importance %')

plt.show()

================ End of feature selction ===============

191

5. Machine Learning Techniques for controlled environment using Gradient

Boosting, SVM, and Random Forest (Python script)(chapter 7, section

7.2)

Import libraraies

Standard useful data processing imports

import random

from math import sqrt

import numpy as np

import pandas as pd

Visualisation imports

import matplotlib.pyplot as plt

import seaborn as sns

Scikit learn for preprocessing

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold,StratifiedKFold

#from sklearn.cross_validation import cross_val_score, cross_val_predict

from sklearn.model_selection import cross_validate,cross_val_predict

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_squared_error, r2_score

from keras.utils.np_utils import to_categorical

%matplotlib inline

from google.colab import files

from sklearn.linear_model import LinearRegression

192

from sklearn.ensemble import GradientBoostingClassifier,

RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from xgboost import XGBRegressor

from xgboost import plot_importance

from sklearn.datasets import make_regression

import multiprocessing as mp

!pip install -U seaborn

import xlrd

Loading data

dataset = pd.read_csv("/content/controlled_data_both.csv")

user mean_packets_a mean_packets_b mean_packets_b/packets_a

mean_data_packets

0 user1 23.719298 6.0 107.0 14

1 user1 24.441558 7.0 173.0 1

2 user1 19.333333 6.0 242.0 1

3 user1 17.423729 7.0 112.0 1

4 user1 18.031250 6.0 154.0

5 rows × 201 columns

dataset.head()

dataset['class'] = dataset['class'].str.strip(to_strip=None)

CategoricalDtype(categories=['amazon', 'bbcnews', 'bing', 'cnn', 'facebook',

'gmail',

'googlebrowsing', 'instagram', 'skype', 'yahoomail',

'youtube'],

ordered=False)

193

dataset['class'] = dataset['class'].astype('category')

dataset['class'].dtypes

dataset['class'] = dataset['class'].cat.codes

mean_packets_a mean_packets_b mean_packets_b/packets_a

mean_data_packets_a

count 2200.000000 2200.000000 2200.000000 2200.000000

mean 73.781318 38.166867 856.327523 27.535815

std 214.902133 187.058186 2587.607310 128.671790

min 7.048951 1.000000 0.381103 1.658363

25% 14.152352 4.000000 76.500000 7.000000

50% 22.148756 6.000000 179.000000 9.000000

75% 36.758152 7.000000 427.750000 11.500000

max 2232.142857 2737.571429 25351.000000 1836.454545

8 rows × 200 columns

dataset.describe()

dataset.groupby(['class']).count()

mean_packets_a mean_packets_b mean_packets_b/packets_a

mean_data_packets_a

class

0 200 200 200 200

1 200 200 200 200

2 200 200 200 200

3 200 200 200 200

4 200 200 200 200

5 200 200 200 200

6 200 200 200 200

194

7 200 200 200 200

8 200 200 200 200

9 200 200 200 200

10 200 200 200 200

11 rows × 199 columns

dataset.drop('user', inplace=True, axis=1)

X, y = dataset.loc[:, dataset.iloc[:,:].columns != 'class'], dataset.loc[:,

dataset.iloc[:,:].co

Grid Search

grid_param = {

'learning_rate':[.3,.2,.1,.09,.07],

'max_depth': [3,4,5,7,9],

'max_leaf_nodes': [20,30,40,50],

'n_estimators':[80,100,150,200,250],

}

grid_param = {

'learning_rate':[.1],

'max_depth': [5],

'max_leaf_nodes': [40],

'n_estimators':[100],

}

GradientBoostingClassifier

model = GradientBoostingClassifier()

model = GridSearchCV(model, grid_param, cv=StratifiedKFold(5),verbose=1)

p=mp.Pool(4)

model = model.fit(X, y.values.ravel())

195

model.best_params_

y_pred = model.predict(X)

SVM

grid_param = {

'C':[1.0],

'kernel': ['rbf']

}

from sklearn.svm import SVC

model = SVC()

model = GridSearchCV(model, grid_param, cv=StratifiedKFold(5),verbose=1)

model = model.fit(X, y)

model.best_params_

model.best_score_

0.09090909090909091

Random Forest

grid_param = {

'max_depth': [8],

'max_leaf_nodes': [40],

'n_estimators':[100],

}

model = RandomForestClassifier()

model = GridSearchCV(model, grid_param, cv=StratifiedKFold(5),verbose=1)

model = model.fit(X, y.values.ravel())

model.best_params_

0.9040909090909091

196

6. C5.0 classifier for both controlled and uncontrolled (R-script) (chapter 7,

section 7.2 and chapter 7, section 7.3.2 respectively)

===

====================

This script to classift traffic using machine learning C5.0

===

====================

Import libraries

library(caret)

library(e1071)

#set the directory

setwd("C:/Users/hjoudah/Dropbox/hussein/")

#read the file

applications <-read.csv("all.csv")

#View (applications)

X <- applications [,1:58]

Y <- applications [,59]

trainx <- X[1:34630,]

trainy <- Y[1:34630]

testx <- X[34631:34919,]

197

testy <- Y[34631:34919]

treeModel <- C50::C5.0(trainx, trainy)

summary (treeModel)

p <- predict (treeModel, testx, type="class")

sum (p==testy)/length(p)

confusionMatrix (p, testy)

