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Abstract 16 

X-ray fluorescence spectrometry has been employed to measure Pb in a wide range of 17 

consumer and environmental plastics, including food-packaging material, household goods, 18 

electronic casings, beach litter and agricultural waste. Results reveal high concentrations of Pb 19 

(> 1000 mg kg-1) in historical items that are still in use or circulation (e.g. toys, construction 20 

plastics, wiring insulation) and variable, but generally lower concentrations in more recently 21 

manufactured articles. Analysis of Br, Cl and Cr, proxies for brominated flame retardants, 22 

polyvinyl chloride (PVC) and chromate pigments, respectively, suggests that as historical 23 

material is recycled, Pb from electronic plastics and pigments, but not PVC, is dispersed into a 24 

variety of newer products. Although most cases in the consumer sector comply with relevant 25 

EU Directives, some products that are non-compliant highlight shortfalls in regulations where 26 

recycling is involved and potential problems arising from the direct fashioning of industrial 27 

plastics into new consumer goods through attempts to be environmentally positive. The 28 

uncontrolled loss of historical and recycled plastics has also resulted in Pb contamination of 29 

the environment. Here, it is proposed that litter can be classified as hazardous depending on its 30 

Pb content and according to existing regulations that embrace consumer plastics.   31 

 32 

Keywords: XRF; historical plastic; consumer goods; recycling; contamination; environmental 33 

litter; EU directives 34 

  35 
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1. Introduction 36 

Current consensus in the scientific community is that there is no safe level of exposure to lead 37 

(Pb), and in particular for young children (Lanphear, 2017; Spungen, 2019). Thus, cumulative 38 

childhood exposure can result in damage to the brain and nervous system, slowed growth, 39 

anaemia, hearing loss, and behavioural and learning problems, while in adults exposure can 40 

increase blood pressure and incidence of hypertension, decrease kidney function and reduce 41 

fertility (Agency for Toxic Substances and Disease Registry, 2007). 42 

The widespread use of leaded gasoline caused the dispersion of large quantities of airborne Pb 43 

throughout the environment in the 20th century, resulting in serious exposure for both humans 44 

and ecosystems (Caprino and Togna, 1998; Kristensen, 2015). Despite the phasing out of Pb 45 

as an antiknock agent, dusts and soils with high concentrations of legacy automotive Pb are 46 

still present in cities and close to major roads (Mielke et al., 2010; Filella and Bonet, 2017). 47 

Other legacy sources of Pb in the environment and/or in the household include old paints that 48 

are deteriorating or disturbed, leaded plumbing and industrial and mining waste (Clark et al., 49 

2004; Howard et al., 2015; Shu et al., 2015; Ruckart et al.,, 2019).  50 

An additional source of legacy Pb that has received less attention is historical plastic or plastic 51 

that has been recycled from historical plastic. Lead was commonly used in a range of plastics 52 

as a series of chromate pigments and in polyvinyl chloride as a heat and UV stabiliser (Hansen 53 

et al., 2013). However, strict regulations on Pb concentrations in electrical plastics (Restriction 54 

of Hazardous Substances – RoHS – Directive; Commission Delegated Directive, 2015), toys 55 

(Toy Safety Directive 2009/48/EC; European Parliament and Council of the EU, 2009), 56 

packaging (Packaging and Packaging Waste Directive 94/62/EC; European Parliament and 57 

Council of the EU, 1994) and food contact material (EC Directive 2002/72/EC; Commission 58 

Directive, 2002), coupled with the voluntary phasing out of Pb by the PVC industry (VinylPlus, 59 
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2014), have effectively eliminated the intentional introduction of the metal into new products 60 

on the European market. In the US, the Consumer Products Safety Improvement Act now limits 61 

the amount of Pb in products intended for children under 12 years, including plastics 62 

(Consumer Product Safety Commission, 2008), while the Institute of Electrical and Electronics 63 

Engineers Standard 1680 regarding personal computer products adopts the RoHS and 64 

packaging and Packaging Waste directives and refers to an optional limit of intentionally added 65 

Pb in plastic computer components (IEEE, 2006). Despite these regulations, evidence for the 66 

dispersion of Pb at lower levels in contemporary consumer plastics that result from the legal 67 

and illegal recycling of historical plastics has recently emerged (Turner and Filella 2017; 68 

Turner, 2018).  69 

In this study, we use a rapid, non-destructive X-ray fluorescence (XRF) technique to determine 70 

the concentrations of Pb and various other elements serving as proxies for the origin of Pb in 71 

both contemporary and historical consumer plastics and in material lost to the environment. 72 

The results provide a valuable insight into the extent of Pb contamination in plastics in 73 

circulation and that pervade in the environment, and allow us to assess whether current 74 

regulations are being met or, in many circumstances, are entirely appropriate, and in particular 75 

where material is recycled. 76 

 2. Materials and methods 77 

2.1. Materials 78 

About 1500 samples were considered here that had been analysed as part of previous research 79 

programmes (Turner and Solman, 2016; Turner and Filella, 2017; Filella and Turner, 2018) or 80 

had been acquired specifically for the present study. Samples constitute hard plastics (i.e. 81 

excluding rubbers and foams) and, while textiles have not been included, we consider 82 

constructions of coarser and longer fibres like rope and twine. Table 1 categorises and 83 
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quantifies the plastics according to use or source and provides general examples for each 84 

category. Thus, agriculture and beached refer to plastics lost in nature through agricultural and 85 

aquatic-maritime activities and from littering and municipal (and industrial) waste and 86 

embraces primary objects and secondary fragments (including microplastics of < 5 mm in 87 

diameter). Agricultural samples were collected from the edges of fields in Luxembourg and 88 

Spain during spring and summer of 2018 and beached samples were retrieved from the 89 

strandlines of sandy shores of southwest England in mid-2015 and the gravel shores of Lake 90 

Geneva in March 2016.  91 

Single-use food defines plastics used for the packaging of food and the containment or 92 

takeaway of fast food and drinks that had been acquired since 2016. Consumer goods refers to 93 

products commonly encountered in the household, office or workplace and includes items 94 

purchased in the UK within the last five years and in Switzerland in 2018 as well as older 95 

articles (up to 45 years) that are in common circulation or use because of their durability or 96 

their function (e.g. structural and plumbing). Electronic plastics are casings and housings of 97 

electronic and electrical equipment and insulation for wiring (excluding rubbers). Note that in 98 

Table 1, and based on signage or estimated age, consumer and electronic plastics are 99 

subdivided (by number) according to whether articles had been purchased, manufactured or 100 

installed before or since the original RoHS Directive (2002/95/EC; European Parliament and 101 

Council, 2003) came into effect in July 2006.   102 

Table 1: Quantities (n) and categories of plastic considered in the present study, along with 103 

general examples and the number of PVC-based samples (n-PVC) in each category. Shown in 104 

parentheses are the numbers of samples estimated or known to be manufactured pre-RoHS and 105 

post-RoHS.   106 
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 107 

2.2. XRF analysis 108 

Samples were analysed by energy-dispersive FP-XRF using a Niton XL3t 950 He GOLDD+ 109 

operated in a standardless ‘plastics’ mode (Turner and Solman, 2016). The majority of samples 110 

were analysed in the laboratory in an accessory stand and by remote activation of the 111 

instrument, with a thickness correction algorithm applied between 50 m and 12 mm. 112 

Thickness was determined through the measurement surface using Allendale digital callipers 113 

or, where inaccessible, was estimated from the thickness of samples of similar construction.  114 

Samples were analysed for a suite of elements, of which the present focus was on Pb, Br (a 115 

proxy for brominated flame retardants), Cl (a proxy for PVC above a concentration of 15%; 116 

Turner and Filella, 2020) and Cr (whose association with Pb may indicate the presence of lead 117 

chromate pigments). Counting was undertaken for periods ranging from 30 to 180 s, depending 118 

on sample thickness, that were distributed equally or in a 1:2 ratio between a low energy range 119 

(20 kV and 100 A) and main energy range (50 kV and 40 A). Spectra were quantified by 120 

fundamental parameter coefficients to yield concentrations on a dry weight basis (in mg kg-1) 121 

and with a counting error of 2 (95% confidence). For samples too large to be contained by 122 

the accessory stand or that were permanent fixtures in the household setting the instrument was 123 

used handheld and with a backscatter shield under the conditions described above.  124 

As a performance check, polyethylene reference discs Niton PN 180-619 (Cr = 101 + 10 mg 125 

kg-1; Pb = 150 + 12 mg kg-1) and Niton PN 180-554 (Br = 495 + 20 mg kg-1; Cr = 995 + 40 mg 126 

kg-1; Pb = 1002 + 40 mg kg-1) were analysed throughout each measurement session, with the 127 

Category n n- PVC Examples

Agriculture 55 2 film, gauze-mesh, packaging, potting, tree protection, twine, tarpaulin

Beached (lacustrine) 584 32 primary and secondary plastics

Beached (marine) 217 2 primary and secondary plastics and microplastics (< 5 mm)

Consumer goods 353 (193/160) 58 (31/27) toys, storage, stationery, apparel, sports gear, plumbing, construction, tools, decor 

Electronic 193 (115/78) 18 (16/2) phones, chargers, wiring, laptops, white goods, appliances, sockets-switches, remotes

Single-use food 95 2 packaging, trays, cutlery, cups, bottles, lids, stirrers

Total 1497 114
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instrument returning concentrations that were consistently within 15% of certified values. 128 

Detection limits varied depending on counting time, sample size and thickness and whether the 129 

instrument was deployed in a stand or activated handheld but indicative values based on the 130 

lowest counting errors returned throughout the study were about 6 mg kg-1 for Br and Pb and 131 

12 mg kg-1 for Cl and Cr. Precision, defined as the relative standard deviation arising from 132 

quintuplicate measurements of selected samples, was better than 10% in most cases but 133 

approached 20% for small or thin samples or where concentrations were close to detection 134 

limits. 135 

3. Results 136 

The number of cases in which Pb was detected and summary statistics for concentrations of 137 

the metal are shown for each plastic sample category in Table 2. Note that the data for the 138 

beached samples differ slightly to those published previously because here we have focused on 139 

hard plastics and have neglected foams, paints and rubbers (Turner and Solman, 2016; Filella 140 

and Turner, 2018). Detection occurred across all categories and was most frequent (on a 141 

percentage basis) among beached samples and electronic plastics and was lowest in the single-142 

use food category. Overall, Pb concentrations were variable, spanning four orders of magnitude 143 

and ranging from < 10 mg kg-1 to about 3.4% by weight, and >20% of Pb-positive samples in 144 

each category with the exception of single-use food exceed the RoHS limit for Pb of 1000 mg 145 

kg-1.  146 

Samples of PVC, defined as returning a Cl content greater than 15% by the XRF, were 147 

encountered in all categories but were most abundant (on a percentage basis) among consumer 148 

goods and least abundant in beached marine plastics (Table 1). Associations of Pb with PVC 149 

were most frequent in consumer goods and electronic plastics while associations with Br and 150 
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Cr were most frequent in beached litter; in contrast, no associations of Pb with PVC or Cr and 151 

just one association with Br were observed in the single-use food category (Table 2). 152 

Table 3 shows the number of cases in which Pb was detected and summary statistics for 153 

concentrations of the metal for electronic and consumer plastics categorised according to 154 

whether they were estimated or known (from signage) to have been manufactured, sold or 155 

installed pre-RoHS or post-RoHS. Thus, about a third of electronic articles manufactured 156 

before the directive came into effect (in 2006) contained detectable Pb, with an exceedance of 157 

the RoHS limit of 1000 mg kg-1 in 19 cases and an association with PVC in 14 samples. In 158 

contrast, only four post-RoHS electronic samples contained detectable Pb with no exceedance 159 

of the RoHS limit or association with PVC. Despite these differences, however, a Mann-160 

Whitney U test undertaken in Minitab v19 revealed no significant difference (p = 0.119) in 161 

median concentrations between the two groups. With respect to consumer plastics, Pb detection 162 

rate was similar among products manufactured pre-RoHS and post-RoHS, and although mean, 163 

median and maximum concentrations were greater in pre-RoHS consumer articles than post-164 

RoHS items, a Mann-Whitney U test indicated no significant difference (p = 0.131) in median 165 

concentrations. 166 

Table 2: Number and percentage of samples in which Pb was detected (n (%)) and summary 167 

statistics defining Pb concentrations (in mg kg-1) in each category. Also shown are the number 168 

of samples that exceed the RoHS limit of 1000 mg kg-1 (n > RoHS), and the number of cases 169 

where Pb was detected in PVC (n-PVC) and with Br (n-Br) or Cr (n-Cr). 170 
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 171 

 172 

Table 3: Number and percentage of pre-RoHS and post-RoHS electrical plastics and consumer 173 

goods in which Pb was detected (n (%)) and summary statistics defining Pb concentrations (in 174 

mg kg-1) in each category. Also shown are the number of samples that exceed the RoHS limit 175 

of 1000 mg kg-1 (n > RoHS), and the number of cases where Pb was detected in PVC (n-PVC) 176 

and with Br (n-Br) or Cr (n-Cr). 177 

 178 

 179 

4. Discussion 180 

4.1. Legacy Pb in plastics 181 

Evidently, Pb is widely and heterogeneously distributed in plastics that are in circulation and 182 

production as well as lost in nature. The presence of Pb in older plastics is expected because 183 

Agriculture Beached (lacustrine) Beached (marine) Consumer goods Electronic Single-use food

n (%) 6 (10.9) 134 (22.9) 47 (21.7) 42 (11.9) 41 (21.2) 4 (4.2)

mean 4500 2150 765 3300 5570 114

sd 8060 4010 2010 5560 8080 152

median 390 433 142 573 512 43.2

min 62.1 5.9 6.3 3.9 17.3 26.9

max 20400 23500 13200 21700 34100 342

Q1 302 41.0 30.8 137 104 32.8

Q3 4230 2210 704 3720 10000 124

n  > RoHS 2 55 9 18 19 0

n -PVC 0 16 0 14 14 0

n -Br 0 43 20 11 19 1

n -Cr 5 88 32 12 4 0

Pre-RoHS Post-RoHS Pre-RoHS Post-RoHS

Electronic Consumer

n (%) 37 (32.2) 4 (5.1) 23 (11.9) 19 (11.9)

mean 6160 149 5070 1160

sd 8300 91.0 6870 1970

median 1070 149 1190 302

min 17.3 48 3.87 9.64

max 34100 251 21700 7240

Q1 158 89.7 282 68.0

Q3 10500 209 9000 1040

n  > RoHS 19 0 13 5

n -PVC 14 0 10 4

n -Br 16 3 5 6

n -Cr 4 0 6 6
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the metal chromate was used in a number of coloured pigments in a range of plastics and 184 

various leaded compounds acted as heat and UV stabilisers in PVC until they were restricted 185 

or phased out according to a series of international regulations and agreements (Hansen et al., 186 

2013). Thus, in many older consumer and electronic plastics, high concentrations of Pb were 187 

encountered in unplasticised PVC (e.g. window and door frames) and plasticised PVC (e.g. 188 

electrical wire insulation, garden hosing and inflatable toys) and in a range of brightly coloured 189 

articles. These traits also characterise many (presumably older) articles and fragments retrieved 190 

from the environment, and in particular from beaches, where decadal-old plastics derived from 191 

the municipal waste stream, littering or loss (e.g. at sea) may be washed up or exposed (Watts 192 

et al., 2017; Turner et al., 2020). 193 

4.2. Legacy use and recycling of lead chromate  194 

The presence and pervasiveness of lead chromate is evident from the association of Pb and Cr 195 

in consumer goods and environmental plastics shown in Figure 1. Thus, the highest 196 

concentrations ([Pb] > 1000 mg kg-1) generally arise from older samples coloured with chrome 197 

yellow (PbCrO4), chrome green (PbCrO4 mixed with Fe-based Prussian blue) and chrome 198 

orange-red (PbCrO4
 ˖ PbO) (Oldring, 2001), with the majority of data close to the line defining 199 

the mass ratio of [Pb] to [Cr] in pure PbCrO4 (~ 4). Samples lying close to the line but having 200 

Pb and Cr concentrations too low to act as a colourant (e.g. [Pb] ~ 100 to 1000 mg kg-1) were 201 

encountered in each category shown and for both contemporary and historical articles. Here, 202 

presumably, chromate-based pigments are widely encountered as contaminants of the 203 

mechanical recycling of coloured plastics. For Pb concentrations below about 100 mg kg-1, 204 

data points in Figure 1 are more heterogeneously dispersed and generally lie well below the 205 

slope defining the composition of PbCrO4. This may be attributed to the more general Pb 206 
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contamination of recycled plastic (including electronic-based waste; see below) and the use of 207 

additional Cr pigments that are free of Pb. 208 

The general observations above are consistent with the phasing out of Pb chromate pigments 209 

in Europe and, effectively, since an EU court overruling authorisation for production and export 210 

by a Canadian company in March 2019, an outright ban (EVISA, 2019). However, XRF results 211 

returned for some samples analysed suggest that these pigments are still circulating as 212 

colourants in a limited number contemporary products. Specifically, Pb above a concentration 213 

of 1000 mg kg-1 was found in association with Cr above a concentration of a few hundred mg 214 

kg-1 in a green clothes peg, red and yellow “environmentally sustainable” shoulder bags that 215 

had been fashioned from PVC truck tarp, and pieces of yellow and green agricultural packaging 216 

that appeared to have been discarded recently. 217 

 218 

Figure 1: Concentration of Pb versus concentration of Cr in consumer goods and plastics lost 219 

to the environment. Note that samples of PVC employing Pb-based stabilisers are not included. 220 

The line of slope 4:1 defines the mass ratio of Pb to Cr in pure lead chromate. 221 
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4.3. Lead contamination from electrical and electronic plastic recycling  222 

Although Br is a constituent of the halogenated copper phthalocyanine pigments (Ranta-Korpi 223 

et al., 2014), the principal use of brominated compounds in plastics is as flame retardants in 224 

electronic components, casings and insulation (Papazoglou, 2004). Thus, an association of Pb 225 

with Br provides an upper estimate of the number of samples in each category where the metal 226 

is derived from the poorly managed and often illegal use or recycling of contaminated 227 

electronic and electrical waste (Turner, 2018). The highest percentage of Br-Pb associations 228 

among Pb-positive samples occurs in the electronic category (Table 2) and associations are 229 

observed in both pre- and post-RoHS articles (Table 3), presumably reflecting the use of 230 

recycled electronic and electrical plastic in what is intended to be a regulated, circular economy. 231 

Significantly, there were no associations of Br-Pb-Cr in this category, suggesting that Pb in 232 

electronic and electrical plastic is contaminated by additional sources other than lead chromate 233 

pigments (e.g. PVC and soldering residues). Associations of Br-Pb were also observed in 234 

several consumer products, a single-use food item (cocktail stirrer) and various plastic items 235 

and fragments retrieved from coastal and lacustrine beaches. Moreover, in these categories Cr 236 

was also detected in the presence of both Br and Pb in many cases. This suggests that the 237 

recycling of electronic waste is not constrained to the electrical and electronic industries but 238 

that some material has been (and continues to be) exported for use in a broader array of plastic 239 

products that may or may not be contaminated by residues of lead chromate pigments. 240 

4.4. Lead in PVC 241 

The frequency distributions of Pb concentrations amongst the samples of PVC in each category 242 

are shown in Table 4. Overall and within each category Pb concentrations display a distinctly 243 

bimodal distribution; that is, out of 114 PVC-based samples Pb concentrations are focussed 244 

above 1000 mg kg-1 (n = 39) and below the detection limit (n = 69). PVC samples containing 245 
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[Pb] > 1000 mg kg-1 were dominated by older consumer products, plastics associated with pre-246 

RoHS electrical and electronic items (and occasionally containing traces of Br) and articles and 247 

fragments of beached lacustrine litter, while Pb-free PVC samples comprised newer consumer 248 

goods, post-WEEE electrical plastics, single-use food articles and various plastics lost to the 249 

environment (Tables 2 and 3). Presumably, this observation reflects the historical use of Pb-250 

based heat and UV stabilisers in PVC in various sectors and the gradual and voluntary phasing 251 

out and replacement of Pb in the more recent manufacture of PVC (VinylPlus, 2014). Unlike 252 

the case for Pb chromate, however, there is no evidence for the widespread contamination of 253 

newer PVC products by Pb-based stabilisers. (The only notable exception is the pair of PVC 254 

shoulder bags described above, but here Pb appears to be related to the more general use of 255 

lead chromate in colour pigments rather than the presence of Pb-based stabilisers.) These 256 

observations suggest one or more of the following: the mechanical recycling of PVC has been 257 

more targeted at and successful in eliminating older Pb-based materials; Pb-based PVC is 258 

recycled for more specific, industrial or professional purposes; the recycling of PVC in general 259 

has been reduced in order to avoid product contamination.  260 

Table 4: Frequency distribution of Pb concentrations (mg kg-1) in samples of PVC from each 261 

category. < LOD = below the detection limit. 262 

 263 

Category < LOD < 100 100-1000 1000-10,000 >10,000

Agriculture 2

Beached (lacustrine) 15 1 1 10 4

Beached (marine) 2

Consumer goods 44 4 6 4

Electronic 4 4 11

Single-use food 2
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4.5. Compliance with and appropriateness of current regulations 264 

There are several cases in the present study that highlight regulations which target certain 265 

products but neglect the life cycle of the material. For example, the current RoHS limit for Pb 266 

in any component of electrical and electronic equipment is 1000 mg kg-1 (Commission 267 

Delegated Directive, 2015), and while this is only exceeded among electrical plastics which 268 

pre-date the 2006 implementation of the original Directive (European Parliament and Council, 269 

2003), it is exceeded in several newly purchased consumer plastics, some of which are likely 270 

to have been manufactured from recycled (and pre-RoHS) electronic plastic. That is, a directive 271 

that is specific to electrical plastic does not apply to products that are repurposed from regulated 272 

material. 273 

Adding to this complexity, and although not electrical in origin, PVC truck tarp that appears to 274 

be free of leaded stabilisers but that is coloured by Pb chromate pigments would be non-275 

compliant according to the RoHS. However, this material has been fashioned directly (without 276 

mechanical recycling) into shoulder bags produced in Switzerland that are currently on sale in 277 

the EU. Subsequent acquisition and XRF analyses of a wider range of bags (n = 9) revealed the 278 

more general presence of Pb chromate pigments in such products. This is an example of what 279 

is designed to be an environmentally positive process that transfers a hazardous plastic from 280 

the industrial (transportation) sector to consumer products and one that evades the various 281 

regulations on Pb that are currently in place. 282 

The dispersion of Pb into plastics more widely through recycling can also result in the non-283 

compliance or potential non-compliance of specific types of consumer plastic. For example, a 284 

recent amendment to the latest iteration of the Toy Safety Directive stipulates a migration limit 285 

(in dilute HCl) of Pb from material that can be scraped off, including plastic, of 23 mg kg-1 286 

(The Council of the European Union, 2017). This means that, in theory, any toy contaminated 287 
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with Pb above the concentration limit (and ascertained by XRF) could be subject to migration 288 

testing. Article II of the Packaging and Packaging Waste Directive (European Parliament and 289 

Council of the EU, 1994) states that the sum of concentrations of Pb, Cd, Hg and Cr(VI) present 290 

in packaging or packaging components shall not exceed 100 mg kg-1. Since the directive also 291 

includes industrial packaging, it would appear that at least two fragments of agricultural 292 

wrapping waste greatly exceed the limit value with respect to Pb alone or with respect to Pb 293 

combined with Cr(VI). Directive 2002/72/EC relating to plastics intended to come into contact 294 

with foodstuffs (Commission Directive, 2002) stipulates an upper limit of 2 mg kg-1 of Pb in 295 

the raw material prior to granulation. On this basis, therefore, four single-use food contact items 296 

reported here (three drinks stirrers and a coffee cup lid; Pb = 27 to 342 mg kg-1) are non-297 

compliant.  298 

One of the key objectives of many of the directives above was to limit noxious metals in plastics 299 

because of their environmental impacts, and in particular, to reduce their presence in emissions, 300 

ash or leachate arising from controlled disposal. Specific regulations are, however, neither 301 

feasible nor appropriate for metal-rich plastics that have accumulated in the environment from 302 

a multitude of historical and, likely, transboundary sources. That said, existing regulations or 303 

limit values could be used as a framework to define whether plastic litter, including 304 

microplastics, is chemically hazardous or not and whether it poses a risk to wildlife or the 305 

environment. 306 

5. Conclusions 307 

This study has revealed the wide distribution of Pb in plastics that are in circulation, in 308 

production and lost in nature. Observations are attributed to the historical use of the metal as a 309 

pigment and additive in plastics (including PVC) and the contamination of contemporary 310 

products through mechanical material recycling. Consequently, some currently manufactured 311 
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products are non-compliant with respect to various directives aimed at protecting human health 312 

and the environment. Although plastics lost in nature are not embraced by any specific 313 

regulation, limit values could be used as an aid to assess potential impacts in the environment.    314 

 315 
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